

This document is directly linked to the paper:

Potential evaluation of Carnot battery integrating waste heat recovery in industry Olivier Thomé*, Olivier Dumont, Vincent Lemort [Proceedings of ECOS 2023]

or

Techno-economic assessment tool for the pre-study of Carnot battery integrating waste heat recovery in industry Olivier Thomé*, Olivier Dumont, Vincent Lemort [/!\ **Preprint** - Elsevier Journal of Energy Storage, 2024]

Appendix A : Additional mappings

Author: THOMÉ Olivier 💿

For an older version of this document or mappings with other values, don't hesitate to contact the author.

If you use this document in your work, please cite it using: /!\ Preprint - O. Thomé, O. Dumont, V. Lemort, Techno-economic assessment tool for the pre-study of Carnot battery integrating waste heat recovery in industry, Journal of Energy Storage 2024

Contents

1	Am	pient temperature: 20°	\mathbf{C}																						4
	1.1	Waste heat temparature:	40°C .																						4
	1.2	Waste heat temparature:	60°C .																						5
	1.3	Waste heat temparature:	80°C .																						6
	1.4	Waste heat temparature:	100°C																						7
	1.5	Waste heat temparature:	120°C																						8
	1.6	Waste heat temparature:	150°C																						9
	1.7	Waste heat temparature:	200°C																						10
	1.8	Waste heat temparature:	250°C																						11
	1.9	Waste heat temparature:	300°C																						12
	1.10	Waste heat temparature:	350°C																						13
	1.11	Waste heat temparature:	400°C																						14
	1.12	Waste heat temparature:	500°C													·									15
	1.13	Waste heat temparature:	600°C				•	•		•			•			·			•					•	16
	1.14	Waste heat temparature:	700°C	•	•	•••	•	•	•••	•			•	•••	•	·	•••	•	•	•	•	•	•••	•	17
	1 15	Waste heat temparature:	800°C	•	•	•••	•	•	•••	•	• •		•	•••	·	·	•••	•	•	•	•	•	• •	•	18
	1 16	Waste heat temparature:	900°C	•	•	•••	•	•	•••	•	• •	•••	•	•••	•	•	•••	•	•	•	•	•	•••	•	19
	1.10	Waste heat temparature.	500 C	•	•	•••	•	•	•••	•	• •	•••	•	•••	·	•	•••	•	·	•	•	•		•	10
2	Am	pient temperature: -5°	\mathbf{C}																						20
	2.1	Waste heat temparature:	40°C .	•																					20
	2.2	Waste heat temparature:	60°C .																						21
	2.3	Waste heat temparature:	80°C .																						22
	2.4	Waste heat temparature:	100°C																						23
	2.5	Waste heat temparature:	120°C																						24
	2.6	Waste heat temparature:	$150^{\circ}\mathrm{C}$																						25
	2.7	Waste heat temparature:	200°C																						26
	2.8	Waste heat temparature:	$250^{\circ}\mathrm{C}$																						27
	2.9	Waste heat temparature:	300°C																						28
	2.10	Waste heat temparature:	350°C																						29
	2.11	Waste heat temparature:	400°C																						$\frac{-0}{30}$
	2.12	Waste heat temparature:	500°C																						31
	2.13	Waste heat temparature:	600°C																						32
	2.14	Waste heat temparature:	700°C																						33
	2.15	Waste heat temparature:	800°C	•	•		•	•	•••	•			•	•••	•	·	•••	•	•	•	•	•	•••	•	34
	2.10 2.16	Waste heat temparature:	900°C	•	•	•••	•	•	•••	•	• •	•••	•	•••	•	•	•••	•	•	•	•	•	•••	•	35
	2.10		000 0	•	•	•••	•	•	•••	•	• •	•••	•	•••	·	·	•••	•	•	•	•	•	• •	•	00
3	Am	oient temperature: 15°	\mathbf{C}																						36
	3.1	Waste heat temparature:	40°C .																						36
	3.2	Waste heat temparature:	60°C .	•																					37
	3.3	Waste heat temparature:	80°C .																						38
	3.4	Waste heat temparature:	100°C																						39
	3.5	Waste heat temparature:	120°C																						40
	3.6	Waste heat temparature:	150°C																						41
	3.7	Waste heat temparature:	200°C																						42
	3.8	Waste heat temparature:	250°C	•			•																		43
	3.9	Waste heat temparature:	300°C	•			•		. '			•			•			•		-				•	44
	3.10	Waste heat temparature:	350°C	•	•	•	•	•	•	•		•	•		•	•		•	·	Ĩ	•		•	•	45
	3 11	Waste heat temparature	400°C	•	•	•••	•	•	•••	•	• •	•••	•	•••	•	•	• •	•	•	•	•	•	•••	•	46
	3 1 2	Waste heat temparature	500°C	•	•	•••	•	•	•••	•	• •	•••	•	•••	·	•	•••	•	•	•	•	•	•••	•	47
	3.13	Waste heat temparature.	600°C	•			•	•	•••	•	• •	•••	•		•	•	•••	•	•	•	•	•	•••	•	48
	J. 10			•	•	•	•	•	•	•	• •	•	•	· ·	•	-	• •	•	-	-	-		· •	•	10

	3.14	Waste heat temparature:	$700^{\circ}\mathrm{C}$				 																49
	3.15	Waste heat temparature:	$800^{\circ}\mathrm{C}$				 																50
	3.16	Waste heat temparature:	900°C	•	•	•	 • •	•	•	 •	•	•	 •	•	•	•	 •	•	•	•	•	•	51
4	Aml	bient temperature: 35°	\mathbf{C}																				52
	4.1	Waste heat temparature:	$40^{\circ}\mathrm{C}$.				 																52
	4.2	Waste heat temparature:	60°C .				 																53
	4.3	Waste heat temparature:	80°C .				 																54
	4.4	Waste heat temparature:	$100^{\circ}\mathrm{C}$				 																55
	4.5	Waste heat temparature:	$120^{\circ}\mathrm{C}$				 																56
	4.6	Waste heat temparature:	$150^{\circ}\mathrm{C}$				 																57
	4.7	Waste heat temparature:	$200^{\circ}\mathrm{C}$				 																58
	4.8	Waste heat temparature:	$250^{\circ}\mathrm{C}$				 																59
	4.9	Waste heat temparature:	$300^{\circ}\mathrm{C}$				 																60
	4.10	Waste heat temparature:	$350^{\circ}\mathrm{C}$				 																61
	4.11	Waste heat temparature:	$400^{\circ}\mathrm{C}$				 																62
	4.12	Waste heat temparature:	$500^{\circ}\mathrm{C}$				 																63
	4.13	Waste heat temparature:	$600^{\circ}\mathrm{C}$				 																64
	4.14	Waste heat temparature:	$700^{\circ}\mathrm{C}$				 																65
	4.15	Waste heat temparature:	$800^{\circ}\mathrm{C}$				 																66
	4.16	Waste heat temparature:	$900^{\circ}\mathrm{C}$				 																67

Ambient temperature: 20°C 1

1.1 Waste heat temparature: 40°C

and (C) with CB based on Carnot cycles

and (D^{*}) with CB based on Carnot cycles

and (D) with CB based on Carnot cycles

Figure 1: Maximum gain for electricity pricing (A) Figure 2: Maximum gain for electricity pricing (A) and (C) with CB based on Lorenz cycles

Figure 3: Maximum gain for electricity pricing (C*) Figure 4: Maximum gain for electricity pricing (C*) and (D^{*}) with CB based on Lorenz cycles

Figure 5: Maximum gain for electricity pricing (B) Figure 6: Maximum gain for electricity pricing (B) and (D) with CB based on Lorenz cycles

Waste heat temparature: 60°C 1.2

and (C) with CB based on Carnot cycles

and (D^*) with CB based on Carnot cycles

and (D) with CB based on Carnot cycles

Figure 7: Maximum gain for electricity pricing (A) Figure 8: Maximum gain for electricity pricing (A) and (C) with CB based on Lorenz cycles

Figure 9: Maximum gain for electricity pricing (C*) Figure 10: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Lorenz cycles

Figure 11: Maximum gain for electricity pricing (B) Figure 12: Maximum gain for electricity pricing (B) and (D) with CB based on Lorenz cycles

1.3Waste heat temparature: 80°C

and (C) with CB based on Carnot cycles

Figure 13: Maximum gain for electricity pricing (A) Figure 14: Maximum gain for electricity pricing (A) and (C) with CB based on Lorenz cycles

Figure 15: Maximum gain for electricity pricing Figure 16: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

and (D) with CB based on Carnot cycles

Figure 17: Maximum gain for electricity pricing (B) Figure 18: Maximum gain for electricity pricing (B) and (D) with CB based on Lorenz cycles

Waste heat temparature: 100°C 1.4

and (C) with CB based on Carnot cycles

Figure 19: Maximum gain for electricity pricing (A) Figure 20: Maximum gain for electricity pricing (A) and (C) with CB based on Lorenz cycles

Figure 21: Maximum gain for electricity pricing Figure 22: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

and (D) with CB based on Carnot cycles

Figure 23: Maximum gain for electricity pricing (B) Figure 24: Maximum gain for electricity pricing (B) and (D) with CB based on Lorenz cycles

1.5Waste heat temparature: 120°C

and (C) with CB based on Carnot cycles

Figure 25: Maximum gain for electricity pricing (A) Figure 26: Maximum gain for electricity pricing (A) and (C) with CB based on Lorenz cycles

Figure 27: Maximum gain for electricity pricing Figure 28: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

and (D) with CB based on Carnot cycles

Figure 29: Maximum gain for electricity pricing (B) Figure 30: Maximum gain for electricity pricing (B) and (D) with CB based on Lorenz cycles

1.6Waste heat temparature: 150°C

and (C) with CB based on Carnot cycles

Figure 31: Maximum gain for electricity pricing (A) Figure 32: Maximum gain for electricity pricing (A) and (C) with CB based on Lorenz cycles

Figure 33: Maximum gain for electricity pricing Figure 34: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

and (D) with CB based on Carnot cycles

, u=100% , g=50%) Reduct [%] (Twaste =150°C 0 -5 ∑ -10 Cmin/Cmax -15 -20

Figure 35: Maximum gain for electricity pricing (B) Figure 36: Maximum gain for electricity pricing (B) and (D) with CB based on Lorenz cycles

 E_{gas}/E_{el} [%]

10²

103

101

-25 + 10⁰

1.7Waste heat temparature: 200°C

and (C) with CB based on Carnot cycles

Figure 37: Maximum gain for electricity pricing (A) Figure 38: Maximum gain for electricity pricing (A) and (C) with CB based on Lorenz cycles

Figure 39: Maximum gain for electricity pricing Figure 40: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

and (D) with CB based on Carnot cycles

Figure 41: Maximum gain for electricity pricing (B) Figure 42: Maximum gain for electricity pricing (B) and (D) with CB based on Lorenz cycles

1.8Waste heat temparature: 250°C

and (C) with CB based on Carnot cycles

Figure 43: Maximum gain for electricity pricing (A) Figure 44: Maximum gain for electricity pricing (A) and (C) with CB based on Lorenz cycles

Figure 45: Maximum gain for electricity pricing Figure 46: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

and (D) with CB based on Carnot cycles

Figure 47: Maximum gain for electricity pricing (B) Figure 48: Maximum gain for electricity pricing (B) and (D) with CB based on Lorenz cycles

1.9 Waste heat temparature: 300°C

and (C) with CB based on Carnot cycles

Figure 49: Maximum gain for electricity pricing (A) Figure 50: Maximum gain for electricity pricing (A) and (C) with CB based on Lorenz cycles

Figure 51: Maximum gain for electricity pricing Figure 52: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

and (D) with CB based on Carnot cycles

Figure 53: Maximum gain for electricity pricing (B) Figure 54: Maximum gain for electricity pricing (B) and (D) with CB based on Lorenz cycles

1.10Waste heat temparature: 350°C

Figure 55: Maximum gain for electricity pricing (A) Figure 56: Maximum gain for electricity pricing (A) and (C) with CB based on Carnot cycles

and (C) with CB based on Lorenz cycles

Figure 57: Maximum gain for electricity pricing Figure 58: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

and (D) with CB based on Carnot cycles

Figure 59: Maximum gain for electricity pricing (B) Figure 60: Maximum gain for electricity pricing (B) and (D) with CB based on Lorenz cycles

1.11Waste heat temparature: 400°C

Figure 61: Maximum gain for electricity pricing (A) Figure 62: Maximum gain for electricity pricing (A) and (C) with CB based on Carnot cycles

and (C) with CB based on Lorenz cycles

Figure 63: Maximum gain for electricity pricing Figure 64: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

and (D) with CB based on Carnot cycles

Figure 65: Maximum gain for electricity pricing (B) Figure 66: Maximum gain for electricity pricing (B) and (D) with CB based on Lorenz cycles

1.12Waste heat temparature: 500°C

and (C) with CB based on Carnot cycles

Figure 67: Maximum gain for electricity pricing (A) Figure 68: Maximum gain for electricity pricing (A) and (C) with CB based on Lorenz cycles

Figure 69: Maximum gain for electricity pricing Figure 70: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

and (D) with CB based on Carnot cycles

Figure 71: Maximum gain for electricity pricing (B) Figure 72: Maximum gain for electricity pricing (B) and (D) with CB based on Lorenz cycles

1.13Waste heat temparature: 600°C

and (C) with CB based on Carnot cycles

Figure 73: Maximum gain for electricity pricing (A) Figure 74: Maximum gain for electricity pricing (A) and (C) with CB based on Lorenz cycles

Figure 75: Maximum gain for electricity pricing Figure 76: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

and (D) with CB based on Carnot cycles

Figure 77: Maximum gain for electricity pricing (B) Figure 78: Maximum gain for electricity pricing (B) and (D) with CB based on Lorenz cycles

1.14Waste heat temparature: 700°C

and (C) with CB based on Carnot cycles

Figure 79: Maximum gain for electricity pricing (A) Figure 80: Maximum gain for electricity pricing (A) and (C) with CB based on Lorenz cycles

Figure 81: Maximum gain for electricity pricing Figure 82: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

and (D) with CB based on Carnot cycles

Reduct [%] (T_{waste}=700°C , u=100% , g=50%) 0 -5

Figure 83: Maximum gain for electricity pricing (B) Figure 84: Maximum gain for electricity pricing (B) and (D) with CB based on Lorenz cycles

1.15Waste heat temparature: 800°C

and (C) with CB based on Carnot cycles

Figure 85: Maximum gain for electricity pricing (A) Figure 86: Maximum gain for electricity pricing (A) and (C) with CB based on Lorenz cycles

Figure 87: Maximum gain for electricity pricing Figure 88: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

and (D) with CB based on Carnot cycles

Figure 89: Maximum gain for electricity pricing (B) Figure 90: Maximum gain for electricity pricing (B) and (D) with CB based on Lorenz cycles

1.16Waste heat temparature: 900°C

and (C) with CB based on Carnot cycles

Figure 91: Maximum gain for electricity pricing (A) Figure 92: Maximum gain for electricity pricing (A) and (C) with CB based on Lorenz cycles

Figure 93: Maximum gain for electricity pricing Figure 94: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

and (D) with CB based on Carnot cycles

Reduct [%] (T_{waste} =900°C , u=100% , g=50%) 0 -5 ∑ -10 Cmin/Cmax -15 -20 -25 -10° 101 10² 103

Figure 95: Maximum gain for electricity pricing (B) Figure 96: Maximum gain for electricity pricing (B) and (D) with CB based on Lorenz cycles

 E_{gas}/E_{el} [%]

Ambient temperature: -5°C $\mathbf{2}$

2.1Waste heat temparature: 40°C

Reduct [%] (T_{waste} =40°C , u=100% , g=50%) 100 90 80 //C_{max} [%] 70 60 50 40 30 101 102 100 103 E_{gas}/E_{el} [%]

and (C) with CB based on Carnot cycles

Figure 97: Maximum gain for electricity pricing (A) Figure 98: Maximum gain for electricity pricing (A) and (C) with CB based on Lorenz cycles

Figure 99: Maximum gain for electricity pricing Figure 100: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles

Figure 101: Maximum gain for electricity pricing Figure 102: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

 (C^*) and (D^*) with CB based on Lorenz cycles

2.2Waste heat temparature: 60°C

Figure 103: Maximum gain for electricity pricing Figure 104: Maximum gain for electricity pricing (A) and (C) with CB based on Carnot cycles

(A) and (C) with CB based on Lorenz cycles

Figure 105: Maximum gain for electricity pricing Figure 106: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Figure 107: Maximum gain for electricity pricing Figure 108: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

$\mathbf{2.3}$ Waste heat temparature: 80°C

(A) and (C) with CB based on Carnot cycles

Figure 109: Maximum gain for electricity pricing Figure 110: Maximum gain for electricity pricing (A) and (C) with CB based on Lorenz cycles

Figure 111: Maximum gain for electricity pricing Figure 112: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Figure 113: Maximum gain for electricity pricing Figure 114: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

$\mathbf{2.4}$ Waste heat temparature: 100°C

(A) and (C) with CB based on Carnot cycles

Figure 115: Maximum gain for electricity pricing Figure 116: Maximum gain for electricity pricing (A) and (C) with CB based on Lorenz cycles

Figure 117: Maximum gain for electricity pricing Figure 118: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Figure 119: Maximum gain for electricity pricing Figure 120: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

$\mathbf{2.5}$ Waste heat temparature: 120°C

(A) and (C) with CB based on Carnot cycles

Figure 121: Maximum gain for electricity pricing Figure 122: Maximum gain for electricity pricing (A) and (C) with CB based on Lorenz cycles

Figure 123: Maximum gain for electricity pricing Figure 124: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Figure 125: Maximum gain for electricity pricing Figure 126: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

$\mathbf{2.6}$ Waste heat temparature: 150°C

(A) and (C) with CB based on Lorenz cycles

Figure 129: Maximum gain for electricity pricing Figure 130: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Figure 131: Maximum gain for electricity pricing Figure 132: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

2.7Waste heat temparature: 200°C

(A) and (C) with CB based on Lorenz cycles

Figure 135: Maximum gain for electricity pricing Figure 136: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Figure 137: Maximum gain for electricity pricing Figure 138: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

$\mathbf{2.8}$ Waste heat temparature: 250°C

(A) and (C) with CB based on Lorenz cycles

Figure 141: Maximum gain for electricity pricing Figure 142: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Figure 143: Maximum gain for electricity pricing Figure 144: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

$\mathbf{2.9}$ Waste heat temparature: 300°C

(A) and (C) with CB based on Lorenz cycles

Figure 147: Maximum gain for electricity pricing Figure 148: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Figure 149: Maximum gain for electricity pricing Figure 150: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

2.10Waste heat temparature: 350°C

(A) and (C) with CB based on Carnot cycles

Figure 151: Maximum gain for electricity pricing Figure 152: Maximum gain for electricity pricing (A) and (C) with CB based on Lorenz cycles

Figure 153: Maximum gain for electricity pricing Figure 154: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Figure 155: Maximum gain for electricity pricing Figure 156: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

Reduct [%] (T_{waste}=350°C , u=100% , g=50%)

102

 E_{gas}/E_{el} [%]

10

101

2.11Waste heat temparature: 400°C

Figure 157: Maximum gain for electricity pricing Figure 158: Maximum gain for electricity pricing (A) and (C) with CB based on Carnot cycles

Cmin/Cmax [%]

(A) and (C) with CB based on Lorenz cycles

Figure 159: Maximum gain for electricity pricing Figure 160: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Figure 161: Maximum gain for electricity pricing Figure 162: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

2.12Waste heat temparature: 500°C

(A) and (C) with CB based on Carnot cycles

Figure 163: Maximum gain for electricity pricing Figure 164: Maximum gain for electricity pricing (A) and (C) with CB based on Lorenz cycles

103

Figure 165: Maximum gain for electricity pricing Figure 166: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Figure 167: Maximum gain for electricity pricing Figure 168: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

2.13Waste heat temparature: 600°C

(A) and (C) with CB based on Carnot cycles

Figure 169: Maximum gain for electricity pricing Figure 170: Maximum gain for electricity pricing (A) and (C) with CB based on Lorenz cycles

Figure 171: Maximum gain for electricity pricing Figure 172: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Figure 173: Maximum gain for electricity pricing Figure 174: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

2.14Waste heat temparature: 700°C

(A) and (C) with CB based on Carnot cycles

Figure 175: Maximum gain for electricity pricing Figure 176: Maximum gain for electricity pricing (A) and (C) with CB based on Lorenz cycles

Figure 177: Maximum gain for electricity pricing Figure 178: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Reduct [%] (T_{waste} =700°C , u=100% , g=50%) 101 102 103 E_{gas}/E_{el} [%]

Figure 179: Maximum gain for electricity pricing Figure 180: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

2.15Waste heat temparature: 800°C

(A) and (C) with CB based on Carnot cycles

Figure 181: Maximum gain for electricity pricing Figure 182: Maximum gain for electricity pricing (A) and (C) with CB based on Lorenz cycles

Figure 183: Maximum gain for electricity pricing Figure 184: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Figure 185: Maximum gain for electricity pricing Figure 186: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

10²

103

2.16Waste heat temparature: 900°C

(A) and (C) with CB based on Carnot cycles

Figure 187: Maximum gain for electricity pricing Figure 188: Maximum gain for electricity pricing (A) and (C) with CB based on Lorenz cycles

Figure 189: Maximum gain for electricity pricing Figure 190: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Figure 191: Maximum gain for electricity pricing Figure 192: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

Ambient temperature: 15°C 3

3.1Waste heat temparature: 40°C

(A) and (C) with CB based on Carnot cycles

10

Figure 195: Maximum gain for electricity pricing Figure 196: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Reduct [%] (T_{waste}=40°C , u=100% , g=50%) 0 -5 ∑ -10 Cmin/Cmax -15 -20 -25 101 102 100 103 Egas/Eel [%]

Figure 197: Maximum gain for electricity pricing Figure 198: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles

(B) and (D) with CB based on Lorenz cycles

3.2Waste heat temparature: 60°C

Figure 199: Maximum gain for electricity pricing Figure 200: Maximum gain for electricity pricing (A) and (C) with CB based on Carnot cycles

(A) and (C) with CB based on Lorenz cycles

Figure 201: Maximum gain for electricity pricing Figure 202: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Figure 203: Maximum gain for electricity pricing Figure 204: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

3.3Waste heat temparature: 80°C

Figure 205: Maximum gain for electricity pricing Figure 206: Maximum gain for electricity pricing (A) and (C) with CB based on Carnot cycles

(A) and (C) with CB based on Lorenz cycles

Figure 207: Maximum gain for electricity pricing Figure 208: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Figure 209: Maximum gain for electricity pricing Figure 210: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

$\mathbf{3.4}$ Waste heat temparature: 100°C

Figure 211: Maximum gain for electricity pricing Figure 212: Maximum gain for electricity pricing (A) and (C) with CB based on Lorenz cycles

Figure 213: Maximum gain for electricity pricing Figure 214: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Figure 215: Maximum gain for electricity pricing Figure 216: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

3.5Waste heat temparature: 120°C

Figure 217: Maximum gain for electricity pricing Figure 218: Maximum gain for electricity pricing (A) and (C) with CB based on Carnot cycles

(A) and (C) with CB based on Lorenz cycles

Figure 219: Maximum gain for electricity pricing Figure 220: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Figure 221: Maximum gain for electricity pricing Figure 222: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

3.6 Waste heat temparature: 150°C

(A) and (C) with CB based on Lorenz cycles

Figure 225: Maximum gain for electricity pricing Figure 226: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Figure 227: Maximum gain for electricity pricing Figure 228: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

3.7Waste heat temparature: 200°C

Figure 229: Maximum gain for electricity pricing Figure 230: Maximum gain for electricity pricing (A) and (C) with CB based on Carnot cycles

(A) and (C) with CB based on Lorenz cycles

Figure 231: Maximum gain for electricity pricing Figure 232: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Figure 233: Maximum gain for electricity pricing Figure 234: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

$\mathbf{3.8}$ Waste heat temparature: 250°C

Figure 235: Maximum gain for electricity pricing Figure 236: Maximum gain for electricity pricing (A) and (C) with CB based on Lorenz cycles

Figure 237: Maximum gain for electricity pricing Figure 238: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Figure 239: Maximum gain for electricity pricing Figure 240: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

3.9 Waste heat temparature: 300°C

(A) and (C) with CB based on Lorenz cycles

10²

10

Figure 243: Maximum gain for electricity pricing Figure 244: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

 E_{gas}/E_{el} [%] Figure 245: Maximum gain for electricity pricing Figure 246: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

3.10Waste heat temparature: 350°C

Figure 247: Maximum gain for electricity pricing Figure 248: Maximum gain for electricity pricing (A) and (C) with CB based on Carnot cycles

(A) and (C) with CB based on Lorenz cycles

Figure 249: Maximum gain for electricity pricing Figure 250: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Figure 251: Maximum gain for electricity pricing Figure 252: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

3.11Waste heat temparature: 400°C

Figure 253: Maximum gain for electricity pricing Figure 254: Maximum gain for electricity pricing (A) and (C) with CB based on Carnot cycles

(A) and (C) with CB based on Lorenz cycles

Figure 255: Maximum gain for electricity pricing Figure 256: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Reduct [%] (T_{waste}=400°C , u=100% , g=50%) 101 10² 10 E_{gas}/E_{el} [%]

Figure 257: Maximum gain for electricity pricing Figure 258: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

3.12Waste heat temparature: 500°C

Figure 259: Maximum gain for electricity pricing Figure 260: Maximum gain for electricity pricing (A) and (C) with CB based on Carnot cycles

(A) and (C) with CB based on Lorenz cycles

Figure 261: Maximum gain for electricity pricing Figure 262: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

101 102 103 E_{gas}/E_{el} [%]

Figure 263: Maximum gain for electricity pricing Figure 264: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

3.13Waste heat temparature: 600°C

(A) and (C) with CB based on Carnot cycles

Figure 265: Maximum gain for electricity pricing Figure 266: Maximum gain for electricity pricing (A) and (C) with CB based on Lorenz cycles

Figure 267: Maximum gain for electricity pricing Figure 268: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Reduct [%] (T_{waste}=600°C , u=100% , g=50%) 0 -5 ∑ -10 -15 -20 -25 -10⁰ 101 102 103 E_{gas}/E_{el} [%]

Figure 269: Maximum gain for electricity pricing Figure 270: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

3.14Waste heat temparature: 700°C

(A) and (C) with CB based on Carnot cycles

Figure 271: Maximum gain for electricity pricing Figure 272: Maximum gain for electricity pricing (A) and (C) with CB based on Lorenz cycles

Figure 273: Maximum gain for electricity pricing Figure 274: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Reduct [%] (T_{waste}=700°C , u=100% , g=50%) 0 -5 ∑ -10 -15 -20 -25 -10⁰ 101 102 103 E_{gas}/E_{el} [%]

Figure 275: Maximum gain for electricity pricing Figure 276: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

3.15Waste heat temparature: 800°C

(A) and (C) with CB based on Carnot cycles

Figure 277: Maximum gain for electricity pricing Figure 278: Maximum gain for electricity pricing (A) and (C) with CB based on Lorenz cycles

Figure 279: Maximum gain for electricity pricing Figure 280: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Figure 281: Maximum gain for electricity pricing Figure 282: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

3.16Waste heat temparature: 900°C

(A) and (C) with CB based on Carnot cycles

Figure 283: Maximum gain for electricity pricing Figure 284: Maximum gain for electricity pricing (A) and (C) with CB based on Lorenz cycles

103

Figure 285: Maximum gain for electricity pricing Figure 286: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Figure 287: Maximum gain for electricity pricing Figure 288: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

Ambient temperature: 35°C 4

4.1Waste heat temparature: 40°C

Figure 289: Maximum gain for electricity pricing Figure 290: Maximum gain for electricity pricing (A) and (C) with CB based on Carnot cycles

 (C^*) and (D^*) with CB based on Carnot cycles

Reduct [%] (T_{waste} =40°C , u=100% , g=50%) 100

(A) and (C) with CB based on Lorenz cycles

Figure 291: Maximum gain for electricity pricing Figure 292: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Lorenz cycles

Figure 293: Maximum gain for electricity pricing Figure 294: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles

(B) and (D) with CB based on Lorenz cycles

4.2Waste heat temparature: 60°C

Figure 295: Maximum gain for electricity pricing Figure 296: Maximum gain for electricity pricing (A) and (C) with CB based on Carnot cycles

(A) and (C) with CB based on Lorenz cycles

Figure 297: Maximum gain for electricity pricing Figure 298: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Figure 299: Maximum gain for electricity pricing Figure 300: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

4.3 Waste heat temparature: 80°C

Figure 301: Maximum gain for electricity pricing Figure 302: Maximum gain for electricity pricing (A) and (C) with CB based on Carnot cycles

(A) and (C) with CB based on Lorenz cycles

Figure 303: Maximum gain for electricity pricing Figure 304: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Figure 305: Maximum gain for electricity pricing Figure 306: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

Waste heat temparature: 100°C 4.4

Figure 307: Maximum gain for electricity pricing Figure 308: Maximum gain for electricity pricing (A) and (C) with CB based on Carnot cycles

(A) and (C) with CB based on Lorenz cycles

Figure 309: Maximum gain for electricity pricing Figure 310: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Figure 311: Maximum gain for electricity pricing Figure 312: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

4.5Waste heat temparature: 120°C

Figure 313: Maximum gain for electricity pricing Figure 314: Maximum gain for electricity pricing (A) and (C) with CB based on Carnot cycles

(A) and (C) with CB based on Lorenz cycles

Figure 315: Maximum gain for electricity pricing Figure 316: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Figure 317: Maximum gain for electricity pricing Figure 318: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

4.6 Waste heat temparature: 150°C

(A) and (C) with CB based on Lorenz cycles

Figure 321: Maximum gain for electricity pricing Figure 322: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Figure 323: Maximum gain for electricity pricing Figure 324: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

4.7Waste heat temparature: 200°C

(A) and (C) with CB based on Lorenz cycles

Figure 327: Maximum gain for electricity pricing Figure 328: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Figure 329: Maximum gain for electricity pricing Figure 330: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

Waste heat temparature: 250°C **4.8**

(A) and (C) with CB based on Lorenz cycles

Figure 333: Maximum gain for electricity pricing Figure 334: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Figure 335: Maximum gain for electricity pricing Figure 336: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

4.9 Waste heat temparature: 300°C

Figure 337: Maximum gain for electricity pricing Figure 338: Maximum gain for electricity pricing (A) and (C) with CB based on Lorenz cycles

Figure 339: Maximum gain for electricity pricing Figure 340: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Figure 341: Maximum gain for electricity pricing Figure 342: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

4.10Waste heat temparature: 350°C

Figure 343: Maximum gain for electricity pricing Figure 344: Maximum gain for electricity pricing (A) and (C) with CB based on Carnot cycles

(A) and (C) with CB based on Lorenz cycles

Figure 345: Maximum gain for electricity pricing Figure 346: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Figure 347: Maximum gain for electricity pricing Figure 348: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

4.11Waste heat temparature: 400°C

Figure 349: Maximum gain for electricity pricing Figure 350: Maximum gain for electricity pricing (A) and (C) with CB based on Carnot cycles

(A) and (C) with CB based on Lorenz cycles

Figure 351: Maximum gain for electricity pricing Figure 352: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Figure 353: Maximum gain for electricity pricing Figure 354: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

4.12Waste heat temparature: 500°C

Cmin/Cmax [%]

(A) and (C) with CB based on Lorenz cycles

Figure 357: Maximum gain for electricity pricing Figure 358: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Figure 359: Maximum gain for electricity pricing Figure 360: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

10

10

4.13Waste heat temparature: 600°C

Figure 361: Maximum gain for electricity pricing Figure 362: Maximum gain for electricity pricing (A) and (C) with CB based on Carnot cycles

(A) and (C) with CB based on Lorenz cycles

Figure 363: Maximum gain for electricity pricing Figure 364: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Figure 365: Maximum gain for electricity pricing Figure 366: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

4.14Waste heat temparature: 700°C

Figure 367: Maximum gain for electricity pricing Figure 368: Maximum gain for electricity pricing (A) and (C) with CB based on Carnot cycles

(A) and (C) with CB based on Lorenz cycles

Figure 369: Maximum gain for electricity pricing Figure 370: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Figure 371: Maximum gain for electricity pricing Figure 372: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

4.15Waste heat temparature: 800°C

(A) and (C) with CB based on Carnot cycles

Figure 373: Maximum gain for electricity pricing Figure 374: Maximum gain for electricity pricing (A) and (C) with CB based on Lorenz cycles

Figure 375: Maximum gain for electricity pricing Figure 376: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Reduct [%] (T_{waste} =800°C , u=100% , g=50%) 101 103 10 E_{gas}/E_{el} [%]

Figure 377: Maximum gain for electricity pricing Figure 378: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles

4.16Waste heat temparature: 900°C

(A) and (C) with CB based on Carnot cycles

Figure 379: Maximum gain for electricity pricing Figure 380: Maximum gain for electricity pricing (A) and (C) with CB based on Lorenz cycles

103

Figure 381: Maximum gain for electricity pricing Figure 382: Maximum gain for electricity pricing (C^*) and (D^*) with CB based on Carnot cycles (C^*) and (D^*) with CB based on Lorenz cycles

Figure 383: Maximum gain for electricity pricing Figure 384: Maximum gain for electricity pricing (B) and (D) with CB based on Carnot cycles (B) and (D) with CB based on Lorenz cycles