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Introduction



Who am I
● Judicael Poumay
● PhD student at the University of Liège
● Research area : Natural Language Processing 

○ The study and development of computational techniques aimed at analysing or generating natural 
language and speech.



My supervisor and grandsupervisor!



Today’s topic
● A paper published in EMNLP 2021

“A Comprehensive Comparison of Word Embeddings 

in Event & Entity Coreference Resolution”



Outline

● Outline
○ Word embeddings
○ Coreference resolution
○ Previous research
○ Results



Word embeddings



The issue

● In NLP, we wish to feed textual data to machine/deep learning models
● Hence, we need a way to represent words
● To manipulate them algebraically 
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A trivial solution : one hot encoding

● Each word has one representation 
○ Basically using dummy variables 

● Issue :
○ Linearly independent vectors

■ Meaning algebraic relationships are 
not possible

○ Size of the vector = size of vocabulary

Vocabulaire Vecteurs

système (1,0,0,0,0,0,...)

données (0,1,0,0,0,0,...)

langage (0,0,1,0,0,0,...)

code (0,0,0,1,0,0,...)

nez (0,0,0,0,1,0,...)
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A better solution : word embeddings

● An essential tool in NLP
● Used to compress one hot encoding
● Produces fixed size vectors called word embeddings

● Trained once on large datasets
● Reusable for many downstream tasks (huge transfer learning ability)
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A better solution : word embeddings

Linear algebra with words : The semantic information is encoded in the algebraic 
relationships between the words

● The resulting vectors carry semantic information 
○ Due to the learned topology of the latent space where the embeddings lies



Any questions?



How does it work?
● Distributional semantic hypothesis

○ “A word is characterized by the company it keeps”
○ Given a word, we can study the distribution of words that tend to surround it 

■ We call this the context of that word
● The hypothesis states that each word has a distribution P(context | word)

○ To create word embeddings, we learn to approximate this distribution

● Example the phrase “A _ meowing loudly”
○ We can predict that the missing word is cat considering the verb meowing 
○ These words tend to appear together
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How does it work?
● We train an encoder-decoder architecture

○ Used for machine translation, sequence to label sequence, …
● These architecture produce encodings as a byproduct of their training
● Both encoder and decoder are trained simultaneously 

○ The link between the encoder and decoder is where the magic happens
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How does it work?
● Tasks : language modelling

○ Using encoder-decoder
○ Predict the correct word given a context
○ Unsupervised learning (no labelled data required)

● Once trained, we can find the embedding of a word in the link between encoder & 
decoder
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Any questions?



Word embeddings families
● Static (dimension typique : 300): 

○ Each word has a unique encoding 
○ E.g. GloVe, Word2Vec, FastText

● Contextual (dimension typique : 1024): 
○ The encoding of words changes depending on their context
○ More powerful as it can help with polysemy 
○ E.g. Elmo, BERT, GPT-*

● Character (dimension typique : 50) :
○ Works at the character level instead of taking words as atomic blocks
○ Robust to spelling mistakes and unknown words
○ However, many words are one letter away from another (e.g. “cat” and “can”)

■ Especially small ones 
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GPT-3
● 175 billion parameters
● $4.6 million training cost
● 45TB dataset

○ 2.5 billion articles
● Trained to generate text

○ Learned a rudimentary arithmetic 
understanding
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Coreference resolution



What are corefences
● Coreferences are different words or phrases that refer to the same thing.

● Two kinds of coreferences
○ Entity (usually a term)
○ Event (usually sentences)

● Two settings for resolution
○ Within documents
○ Across documents



The task of coreference resolution 
● The goal is to cluster corefering mentions or phrases

● There are many challenges
○ Defining what constitutes an entity or event 

■ Many datasets disagree
○ Nested mentions 
○ Overlapping coreference : Julien and I, We would like



Applications of coreference resolution 
● Applications include a wide array of downstream tasks

○ Machine translation
○ Chatbots
○ Question answering
○ Text summarization 
○ Natural language understanding 
○ …



Previous research



The state of the art
● Barhom 2019 : Revisiting joint modeling of cross-document entity and event 

coreference resolution
● This paper proposed a simple method to perform 

○ event and entity 
○ within and cross document 
○ coreference resolution 

● First paper to work on both kind of coreferences in both settings
● They achieved state of the art performance 

○ On a dataset called ECB+ which is a standard in this field



The state of the art
● The model consists of a shallow neural network

○ Trained to cluster events & entities
○ Agglomerative clustering
○ They task is two compare two mentions (or mentions clusters) and decide if they should be merged

■ If the network output > 0.5 , the mentions (or mentions clusters) are merged



The state of the art
● The complexity of the model is in its input

○ Each mention is represented with multiple word embeddings
■ Elmo as a contextual embedding
■ Glove as a static embedding
■ A character embedding

○ In total the input has a dimension of 8522
■ Making the network extremely wide 
■ But also shallow : 2 layers



Any questions?



Our research



Introduction
● Our investigation

○ How various combination of embeddings perform?
○ How do embeddings compare?

■ Within families (static, contextual)
■ Across families (static, contextual, character)

● Embeddings studied
○ Static : GloVe, Word2Vec, FastText (dim : 300)
○ Contextual : ELMo, BERT, GPT-2 (dim : 1024)
○ Character : CNN based (dim : 50)

● We derived 16 models from the original 
○ Using various embeddings combination



Results - Diminishing returns
● Ablation analysis : removing embeddings from the original model

○ Model size ~= input² and input = sum of the length of the word embeddings used
● Contextual model (Only Elmo) 

○ achieves 96%of the Original model performance 
○ with 14.7% of its size

● Character model (Only character embedding) 
○ achieves 86%of the Original model performance 
○ with 1.2% of its size

● Using more than one embedding significantly but modestly increase performance 



Results - Comparing static embeddings 
● Varying static embeddings in the original model

○ No clear difference
● Varying static embeddings alone

○ Word2Vec is clearly the worse 
○ GloVe works best in Event CR
○ FastText works best in Entity CR



Results - Comparing contextual embeddings 
● For a similar reason, we compare them alone
● Elmo is the best overall



Results - Word2vec
● Character embedding > word2vec

○ Not only is the character embedding more accurate
○ It leads to a radically smaller model (~24x)



Results - Runtime
● Original model vs character embedding model

○ Character embedding model is faster to train per epoch and at test time
○ However the original model requires fewer epoch to converge and overall took less time to 

train



Conclusion
● We can get SOTA performance by bloating a model with every possible 

embeddings
○ However, we get diminishing returns
○ Contextual model (Only Elmo) 

■ achieves 96%of the Original model performance 
■ with 14.7% of its size

● When comparing embedding, it is best to isolate them
● Some embeddings are better suited for a specific task

○ GloVe works best in Event CR
○ FastText works best in Entity CR

● Word2vec underperform compared to a character embedding
● Bigger model can converge faster than smaller ones



The end : Any questions?


