
Word Embeddings in Coreference
Resolution.

A Comprehensive Comparison

Judicaël Poumay (judicael.poumay@uliege.be)
Ashwin Ittoo (ashwin.ittoo@uliege.be)

mailto:judicael.poumay@uliege.be
mailto:ashwin.ittoo@uliege.be

Introduction

Who am I
● Judicael Poumay
● PhD student at the University of Liège
● Research area : Natural Language Processing

○ The study and development of computational techniques aimed at analysing or generating natural
language and speech.

My supervisor and grandsupervisor!

Today’s topic
● A paper published in EMNLP 2021

“A Comprehensive Comparison of Word Embeddings

in Event & Entity Coreference Resolution”

Outline

● Outline
○ Word embeddings
○ Coreference resolution
○ Previous research
○ Results

Word embeddings

The issue

● In NLP, we wish to feed textual data to machine/deep learning models
● Hence, we need a way to represent words
● To manipulate them algebraically

8

A trivial solution : one hot encoding

● Each word has one representation
○ Basically using dummy variables

● Issue :
○ Linearly independent vectors

■ Meaning algebraic relationships are
not possible

○ Size of the vector = size of vocabulary

Vocabulaire Vecteurs

système (1,0,0,0,0,0,...)

données (0,1,0,0,0,0,...)

langage (0,0,1,0,0,0,...)

code (0,0,0,1,0,0,...)

nez (0,0,0,0,1,0,...)

... ... 9

A better solution : word embeddings

● An essential tool in NLP
● Used to compress one hot encoding
● Produces fixed size vectors called word embeddings

● Trained once on large datasets
● Reusable for many downstream tasks (huge transfer learning ability)

10

A better solution : word embeddings

Linear algebra with words : The semantic information is encoded in the algebraic
relationships between the words

● The resulting vectors carry semantic information
○ Due to the learned topology of the latent space where the embeddings lies

Any questions?

How does it work?
● Distributional semantic hypothesis

○ “A word is characterized by the company it keeps”
○ Given a word, we can study the distribution of words that tend to surround it

■ We call this the context of that word
● The hypothesis states that each word has a distribution P(context | word)

○ To create word embeddings, we learn to approximate this distribution

● Example the phrase “A _ meowing loudly”
○ We can predict that the missing word is cat considering the verb meowing
○ These words tend to appear together

13

How does it work?
● We train an encoder-decoder architecture

○ Used for machine translation, sequence to label sequence, …
● These architecture produce encodings as a byproduct of their training
● Both encoder and decoder are trained simultaneously

○ The link between the encoder and decoder is where the magic happens

14

How does it work?
● Tasks : language modelling

○ Using encoder-decoder
○ Predict the correct word given a context
○ Unsupervised learning (no labelled data required)

● Once trained, we can find the embedding of a word in the link between encoder &
decoder

15

Any questions?

Word embeddings families
● Static (dimension typique : 300):

○ Each word has a unique encoding
○ E.g. GloVe, Word2Vec, FastText

● Contextual (dimension typique : 1024):
○ The encoding of words changes depending on their context
○ More powerful as it can help with polysemy
○ E.g. Elmo, BERT, GPT-*

● Character (dimension typique : 50) :
○ Works at the character level instead of taking words as atomic blocks
○ Robust to spelling mistakes and unknown words
○ However, many words are one letter away from another (e.g. “cat” and “can”)

■ Especially small ones

17

GPT-3
● 175 billion parameters
● $4.6 million training cost
● 45TB dataset

○ 2.5 billion articles
● Trained to generate text

○ Learned a rudimentary arithmetic
understanding

18

Coreference resolution

What are corefences
● Coreferences are different words or phrases that refer to the same thing.

● Two kinds of coreferences
○ Entity (usually a term)
○ Event (usually sentences)

● Two settings for resolution
○ Within documents
○ Across documents

The task of coreference resolution
● The goal is to cluster corefering mentions or phrases

● There are many challenges
○ Defining what constitutes an entity or event

■ Many datasets disagree
○ Nested mentions
○ Overlapping coreference : Julien and I, We would like

Applications of coreference resolution
● Applications include a wide array of downstream tasks

○ Machine translation
○ Chatbots
○ Question answering
○ Text summarization
○ Natural language understanding
○ …

Previous research

The state of the art
● Barhom 2019 : Revisiting joint modeling of cross-document entity and event

coreference resolution
● This paper proposed a simple method to perform

○ event and entity
○ within and cross document
○ coreference resolution

● First paper to work on both kind of coreferences in both settings
● They achieved state of the art performance

○ On a dataset called ECB+ which is a standard in this field

The state of the art
● The model consists of a shallow neural network

○ Trained to cluster events & entities
○ Agglomerative clustering
○ They task is two compare two mentions (or mentions clusters) and decide if they should be merged

■ If the network output > 0.5 , the mentions (or mentions clusters) are merged

The state of the art
● The complexity of the model is in its input

○ Each mention is represented with multiple word embeddings
■ Elmo as a contextual embedding
■ Glove as a static embedding
■ A character embedding

○ In total the input has a dimension of 8522
■ Making the network extremely wide
■ But also shallow : 2 layers

Any questions?

Our research

Introduction
● Our investigation

○ How various combination of embeddings perform?
○ How do embeddings compare?

■ Within families (static, contextual)
■ Across families (static, contextual, character)

● Embeddings studied
○ Static : GloVe, Word2Vec, FastText (dim : 300)
○ Contextual : ELMo, BERT, GPT-2 (dim : 1024)
○ Character : CNN based (dim : 50)

● We derived 16 models from the original
○ Using various embeddings combination

Results - Diminishing returns
● Ablation analysis : removing embeddings from the original model

○ Model size ~= input² and input = sum of the length of the word embeddings used
● Contextual model (Only Elmo)

○ achieves 96%of the Original model performance
○ with 14.7% of its size

● Character model (Only character embedding)
○ achieves 86%of the Original model performance
○ with 1.2% of its size

● Using more than one embedding significantly but modestly increase performance

Results - Comparing static embeddings
● Varying static embeddings in the original model

○ No clear difference
● Varying static embeddings alone

○ Word2Vec is clearly the worse
○ GloVe works best in Event CR
○ FastText works best in Entity CR

Results - Comparing contextual embeddings
● For a similar reason, we compare them alone
● Elmo is the best overall

Results - Word2vec
● Character embedding > word2vec

○ Not only is the character embedding more accurate
○ It leads to a radically smaller model (~24x)

Results - Runtime
● Original model vs character embedding model

○ Character embedding model is faster to train per epoch and at test time
○ However the original model requires fewer epoch to converge and overall took less time to

train

Conclusion
● We can get SOTA performance by bloating a model with every possible

embeddings
○ However, we get diminishing returns
○ Contextual model (Only Elmo)

■ achieves 96%of the Original model performance
■ with 14.7% of its size

● When comparing embedding, it is best to isolate them
● Some embeddings are better suited for a specific task

○ GloVe works best in Event CR
○ FastText works best in Entity CR

● Word2vec underperform compared to a character embedding
● Bigger model can converge faster than smaller ones

The end : Any questions?

