Word Embeddings in Coreference Resolution.

 $\bullet \bullet \bullet$

A Comprehensive Comparison

Judicaël Poumay (<u>judicael.poumay@uliege.be</u>) Ashwin Ittoo (<u>ashwin.ittoo@uliege.be</u>)

Introduction

Who am I

- Judicael Poumay
- PhD student at the University of Liège
- Research area : Natural Language Processing
 - The study and development of computational techniques aimed at analysing or generating natural language and speech.

My supervisor and grandsupervisor!

Today's topic

• A paper published in EMNLP 2021

"A Comprehensive Comparison of Word Embeddings

in Event & Entity Coreference Resolution"

EMNLP 2021 The 2021 Conference on Empirical Methods in Natural Language Processing Vh – 11th November 2021 Online and in the Barcelo Bovaro Convention Centre, Punta Cana, Dominican Republic

Outline

• Outline

- Word embeddings
- Coreference resolution
- Previous research
- Results

Word embeddings

- In NLP, we wish to feed textual data to machine/deep learning models
- Hence, we need a way to represent words
- To manipulate them algebraically

A trivial solution : one hot encoding

- Each word has one representation
 - Basically using dummy variables
- Issue :
 - Linearly independent vectors
 - Meaning algebraic relationships are not possible
 - Size of the vector = size of vocabulary

Machine learning system		Answer
	Vocabulaire	Vecteurs
	système	(1,0,0,0,0,0,)
	données	(0,1,0,0,0,0,)
	langage	(0,0,1,0,0,0,)
	code	(0,0,0,1,0,0,)
	nez	(0,0,0,0,1,0,)

A better solution : word embeddings

- An essential tool in NLP
- Used to compress one hot encoding
- Produces fixed size vectors called word embeddings

- Trained once on large datasets
- Reusable for many downstream tasks (huge transfer learning ability)

A better solution : word embeddings

- The resulting vectors carry semantic information
 - Due to the learned topology of the latent space where the embeddings lies

Linear algebra with words : The semantic information is encoded in the algebraic relationships between the words

Any questions?

How does it work?

- Distributional semantic hypothesis
 - "A word is characterized by the company it keeps"
 - Given a word, we can study the distribution of words that tend to surround it
 - We call this the context of that word
- The hypothesis states that each word has a distribution P(context | word)
 - To create word embeddings, we learn to approximate this distribution

- Example the phrase "A _ meowing loudly"
 - We can predict that the missing word is *cat* considering the verb *meowing*
 - These words tend to appear together

How does it work?

- We train an encoder-decoder architecture
 - \circ Used for machine translation, sequence to label sequence, ...
- These architecture produce encodings as a byproduct of their training
- Both encoder and decoder are trained simultaneously
 - The link between the encoder and decoder is where the magic happens \sim

How does it work?

• Tasks : language modelling

• Using encoder-decoder

decoder

- Predict the correct word given a context
- Unsupervised learning (no labelled data required)
- Once trained, we can find the embedding of a word in the link between encoder &

Any questions?

Word embeddings families

- Static (dimension typique : 300):
 - Each word has a unique encoding
 - E.g. GloVe, Word2Vec, FastText
- Contextual (dimension typique : 1024):
 - The encoding of words changes depending on their context
 - More powerful as it can help with polysemy
 - E.g. Elmo, BERT, GPT-*
- Character (dimension typique : 50) :
 - Works at the character level instead of taking words as atomic blocks
 - Robust to spelling mistakes and unknown words
 - However, many words are one letter away from another (e.g. "cat" and "can")
 - Especially small ones

Example

- Let's have a drink in the bar
- I have to study for the bar
- Bring me a chocolate bar

GPT-3

- 175 billion parameters
- \$4.6 million training cost
- 45TB dataset
 - 2.5 billion articles
- Trained to generate text
 - Learned a rudimentary arithmetic understanding

What is twenty divided by four?

5

What is sixty divided by eight?

7.5

What is one hundred and five divided by three? 35.6666666666666

Coreference resolution

What are corefences

• Coreferences are different words or phrases that refer to the same thing.

SpaceX launched a South Korean Military satellite

South Korea's first military satellite was delivered by SpaceX

- Two kinds of coreferences
 - Entity (usually a term)
 - Event (usually sentences)
- Two settings for resolution
 - Within documents
 - Across documents

The task of coreference resolution

• The goal is to cluster corefering mentions or phrases

She tried again. "I need	this code. I	'll take	your code	and add	it to	mine.
Don't you understand?",	she asked	Mark a	nd Amy.			

Clusters - each cluster is problematic in a different way

1)[she,	<mark> , ,</mark> r	nine,	she]	
2)[you,	your,	Mar	k and	Amy
3) [this o	code ,	your	code,	it]

lack of a meaningful mention

cataphora

nested coreferent mentions

- There are many challenges
 - Defining what constitutes an entity or event
 - Many datasets disagree
 - Nested mentions
 - Overlapping coreference : <u>Julien</u> and <u>I</u>, <u>We</u> would like

Applications of coreference resolution

- Applications include a wide array of downstream tasks
 - Machine translation
 - Chatbots
 - Question answering
 - Text summarization
 - Natural language understanding
 - o ...

Previous research

The state of the art

- Barhom 2019 : Revisiting joint modeling of cross-document entity and event coreference resolution
- This paper proposed a simple method to perform
 - event and entity
 - within and cross document
 - coreference resolution
- First paper to work on both kind of coreferences in both settings
- They achieved state of the art performance
 - \circ On a dataset called ECB+ which is a standard in this field

The state of the art

• The model consists of a shallow neural network

- Trained to cluster events & entities
- Agglomerative clustering
- They task is two compare two mentions (or mentions clusters) and decide if they should be merged
 - If the network output > 0.5, the mentions (or mentions clusters) are merged

The state of the art

• The complexity of the model is in its input

- Each mention is represented with multiple word embeddings
 - Elmo as a contextual embedding
 - Glove as a static embedding
 - A character embedding
- \circ $\,$ $\,$ In total the input has a dimension of 8522 $\,$
 - Making the network extremely wide
 - But also shallow : 2 layers

Any questions?

Our research

Introduction

• Our investigation

- How various combination of embeddings perform?
- How do embeddings compare?
 - Within families (static, contextual)
 - Across families (static, contextual, character)

• Embeddings studied

- Static : GloVe, Word2Vec, FastText (dim : 300)
- Contextual : ELMo, BERT, GPT-2 (dim : 1024)
- \circ Character : CNN based (dim : 50)
- We derived 16 models from the original
 - Using various embeddings combination

Model	Stat.	Ctx.	Char.			
Group 1: Across family study						
Original (2019)	GloVe	ELMo	\checkmark			
Contextual/Static	GloVe	ELMo	X			
Contextual/Char	X	ELMo	\checkmark			
Static/Char	GloVe	X	\checkmark			
Static	GloVe	X	X			
Contextual	X	ELMo	X			
Char	X	X	\checkmark			
No word embed	X	X	X			
Group 2: Within family study: Static						
GloVe	GloVe	ELMo	\checkmark			
Word2Vec	Word2Vec	ELMo	\checkmark			
FastText	FastText	ELMo	~			
Only GloVe	GloVe	X	X			
Only FastText	Word2Vec	X	X			
Only Word2Vec	FastText	Х	X			
Group 3: Within family study: Contextual						
ELMo	GloVe	ELMo	\checkmark			
BERT	GloVe	BERT	\checkmark			
GPT-2	GloVe	GPT-2	\checkmark			
Only ELMo	X	ELMo	X			
Only BERT	X	BERT	X			
Only GPT-2	Х	GPT-2	Х			
			-			

Results - Diminishing returns

- Ablation analysis : removing embeddings from the original model
 - \circ Model size ~= input² and input = sum of the length of the word embeddings used
- Contextual model (Only Elmo)
 - achieves 96% of the Original model performance
 - \circ ~ with 14.7% of its size
- Character model (Only character embedding)
 - achieves 86% of the Original model performance
 - with 1.2% of its size
- Using more than one embedding significantly but modestly increase performance

Results - Comparing static embeddings

- Varying static embeddings in the original model
 - No clear difference
- Varying static embeddings alone
 - Word2Vec is clearly the worse
 - \circ ~ GloVe works best in Event CR ~
 - \circ ~ FastText works best in Entity CR ~

Results - Comparing contextual embeddings

- For a similar reason, we compare them alone
- Elmo is the best overall

Results - Word2vec

- Character embedding > word2vec
 - Not only is the character embedding more accurate
 - It leads to a radically smaller model (\sim 24x)

Results - Runtime

- Original model vs character embedding model
 - \circ Character embedding model is faster to train per epoch and at test time
 - However the original model requires fewer epoch to converge and overall took less time to train

Conclusion

- We can get SOTA performance by bloating a model with every possible embeddings
 - However, we get diminishing returns
 - Contextual model (Only Elmo)
 - achieves 96% of the Original model performance
 - with 14.7% of its size
- When comparing embedding, it is best to isolate them
- Some embeddings are better suited for a specific task
 - GloVe works best in Event CR
 - FastText works best in Entity CR
- Word2vec underperform compared to a character embedding
- Bigger model can converge faster than smaller ones

The end : Any questions?