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Abstract
Crossed magneto-thermo-electric coefficients are central to novel sensors and spin(calori)tronic
devices. Within the framework of Boltzmann’s transport theory, we calculate the resistivity and
Seebeck coefficients of the most common 3d ferromagnetic metals: Fe, Co, and Ni. We use a fully
first-principles variational approach, explicitly taking electron-phonon scattering into account. The
electronic band structures, phonon dispersion curves, phonon linewidths, and transport spectral
functions are reported, comparing with experimental data. Successive levels of approximation are
discussed: constant relaxation time approximation, scattering for a non-magnetic configuration,
then spin polarized calculations with and without spin–orbit coupling (enabling spin-flips). Spin
polarization and explicit electron–phonon coupling are found to be necessary to reach a correct
qualitative picture: the effect of spin flipping is substantial for resistivity and very delicate for the
Seebeck coefficient. The spin-dependent Seebeck effect is also predicted.

1. Introduction

Thermoelectric effects concern the coupling between heat and electric currents, and the electronic transport
coefficients are among the most commonly used physical properties of materials with free charge carriers,
being central to many other observables as well as applications, e.g. in thermocouples. Bridgman’s
measurements on elemental metals can be dated back to 1918 on several metals such as copper and platinum
[1], followed by theoretical interpretations thanks to the Onsager relations [2]. Although many measured
data on elemental metals have been available for over 60 years, quantitative or even qualitative understanding
of these transport properties may still be non-trivial, due to the various kinds of mechanisms coming into
play, in particular with the involvement of thermal effects.

Expressions for the electronic transport properties, such as resistivity (ρ) and Seebeck coefficient (S, also
called thermopower), can be obtained within the framework of Boltzmann’s transport theory. An intuitive
approach is to solve the semi-classical Boltzmann equation by employing the relaxation time approximation
(RTA), with which all the transport coefficients can be derived. In the degenerate limit, the Mott formula
gives insight to understand the diffusive Seebeck. Before the prevalence of density functional theory (DFT)
calculations, these models achieved some success to qualitatively interpret experimental data, especially for
the temperature dependence of ρ and S due to various scattering mechanisms, e.g. electron–electron,
electron–phonon, electron-impurity, electron–magnon (EM) scatterings etc; however, for quantitative
computation, in particular without empirical parameters, the Mott formula is largely inadequate.

First principles methods have progressed in recent years, and can now yield very accurate predictions for
simple metals, such as alkali and noble metals [3] with the variational approach (VA) developed by Allen [4],
and for a few elemental metals with phonon-limited RTA approach [5–7]. VA takes fully ab initiomicroscopic
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electron–phonon scattering into consideration, by directly calculating the scattering in the variational basis
set of Fermi Surface harmonics (FSH), which is suitable for computing electronic transport properties of
metals with moderate or higher carrier concentrations. It calculates a pertinent average of the fine features of
the Fermi surface, such that transport properties usually converge with less dense k- and q-grids compared
with the full RTA. In practice, constant RTA (CRTA) is often adopted, which is computationally efficient, as
only electron band-structure calculations are needed. However, the relaxation time τ is assumed to be
constant for all k points and bands (and all temperatures) hence the microscopic character of the scattering
mechanisms is completely ignored and treated in an averaged way, which works poorly for metals.

Polyvalent metals present specific challenges for quantitative prediction of their thermopower due to
multiple bands crossing the Fermi level, for instance in aluminum. The situation is undoubtedly more
challenging for transition metals that have partially filled d bands, and even worse for magnetic transition
metals, such as Fe, Co, Ni, and Cr, which are further complicated by electron scattering with the spin degrees
of freedom. Several theoretical works have attempted to compute the temperature-dependent resistivities,
using VA with the elastic lowest-order variational approximation (LOVA) [8, 9] or the
Korringa–Kohn–Rostoker method based on the alloy analogy model employing the coherent potential
approximation and Kubo’s response formalism [10–12] , with the latter being able to consider electron
scatterings with both phonons and magnons. However, first-principles calculations of their thermopower are
still lacking.

In this paper, we aim to study the thermoelectric properties of paradigmatic ferromagnetic (FM)
elemental metals Fe, Co, and Ni, including resistivity and spin-dependent Seebeck effect. As it will be shown
in section 3, the experimental Seebeck data exhibit rather complex temperature dependence, which is related
to magnon and phonon drag as well as the temperature evolution of the magnetic state and electronic band
structures. Our aim here is not to predict all these behaviors, but to mainly discuss mechanisms involving
electron–phonon scattering with zero-temperature band structures. This will allow us to gain an initial
insight into this central transport mechanism. Within this scheme, the effect of spin flip to the transport
properties is extracted by comparing calculations performed without (spin polarized, or SP) and with
spin–orbit coupling (SOC). The influence of thermal expansion is also qualitatively assessed by considering
different lattice constants, the theoretically relaxed vs. experimental values, which differ by a few percent.

Some clear simplifications should be noted when comparing with experimental data: (1) ab initio
calculation of magnon-drag and phonon-drag at low T are not within the scope of our calculations, but
contributions from EM scattering at low temperature estimated in [13, 14] are considered for better
comparison; (2) an important feature in these metals is that with increasing temperature, in particular for
temperatures close to the Curie point, electron populations of up and down spin channels gradually equalize,
which results in a non-linear increase of resistivity (the magnetic disorder seen by electrons increases) and an
upturn of the Seebeck coefficient [15] (the phase space and entropy accessible to carriers also increase). The
spike in resistivity at high temperature is also known to be related to the increase of the specific heat when
approaching TC. As a first crude approximation, we also investigate the non-magnetic (NM) case of each
metal, which enforces equalized spin-up and -down bands, but it is important to note that in reality, the
metals are paramagnetic (PM)[16].

The reminder of this paper is organized as follows. In section 2, we describe the computational details of
our first-principles calculations. In section 3, we present our first-principles results for the FM elemental
metals Fe, Co, and Ni, including electronic band structures, spin-projected band structures with SOC,
phonon dispersion curves, phonon linewidths, transport spectral functions, resistivity, Seebeck coefficients,
and an extensive discussion of the interaction with the magnetic state. In section 4, we provide a summary of
our most important findings. In the supplementary information (SI), we report the convergence tests,
phonon linewidths for the SOC and NM cases obtained with relaxed lattice constants, resistivity and Seebeck
coefficient for the SP case, the full results with experimental lattice constants, anisotropy in hcp Co, and the
effect of shifting Fermi level on the Seebeck coefficient.

2. Computational details

DFT [17, 18] and density functional perturbation theory (DFPT) [19, 20] are employed to calculate the
electronic band structures, density of states (DOS), phonon dispersion, electron–phonon coupling (EPC)
matrix elements and transport coefficients, as implemented in the ABINIT package [21–23]. The exchange and
correlation functionals are treated within the local density approximation (LDA) for practical reasons, as all
of the non collinear DFPT and transport does not include generalized gradients. It is known that generalized
gradient approximation (GGA) improves the predicted volumes, magnetizations and energies for Fe and Co,
while Ni is fortuitously correct in LDA, but we will see below that reasonable quantitative agreement can be
obtained with LDA as well. All calculations employ optimized norm-conserving Vanderbilt
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pseudopotentials [24] with the following valence configuration: 3s23p63d64s2 for Fe, 3s23p63d74s2 for Co,
and 3s23p63d84s2 for Ni. The LDA fully-relativistic versions have been generated starting from the
scalar-relativistic input files provided by the PseudoDojo project [25].

Unshifted 24× 24× 24 k-point and 8× 8× 8 q-point grids are employed for each metal of the cubic
symmetry (one atom per unit cell). Hcp Co has two atoms in the primitive unit cell, and we use an unshifted
16× 16× 16 k-point and 8× 8× 8 q-point grids, ensuring converged transport properties (see figure S1 in
SI). Plane-wave basis functions with kinetic energy up to 50 Hartree are used in Co and Ni, and 35 Hartree is
used for Fe. Test calculations with 50 Ha of cutoff energy for Fe yield very similar result. To assess the effect of
the magnetic configuration and spin-flip contribution, three magnetic cases are considered for each metal:
(1) SP; (2) with SOC; and (3) NM.

For comparison, the Seebeck coefficients are calculated using two methods, both within the framework
of Boltzmann’s theory. The first method takes the CRTA solution to the Boltzmann transport equation
(BTE), as implemented in the BOLTZTRAP code [26, 27], and S is independent of the constant lifetime. In
CRTA, an energy-dependent conductivity tensor can be defined as

σαβ(ϵ) = Nse2τ
∑
kj vα(kj)vβ(kj)δ(ϵ− ϵkj) , (1)

where N s is a spin factor of 2 if the bands are spin degenerate and not spinors, and αβ are spatial Cartesian
directions. In the collinear spin case there are two tensors (σ↑,↓

αβ ), one for each spin. The Seebeck coefficient
can be written as

S↑,↓αβ =
1

eT

´
σ↑,↓
αβ (ϵ)(ϵ− ϵF)

(
− ∂f

∂ϵ

)
dϵ

´
σ↑,↓
αβ (ϵ)

(
− ∂f

∂ϵ

)
dϵ

. (2)

The second method adopts the inelastic LOVA to the BTE, as derived by Allen [28]. The formalism of
computing electronic transport properties of a NMmetal due to EPC was detailed in [3]. For a collinear FM
metal with only one chemical species, the EPC matrix has decoupled spin dependence and can be written as
follows:

gqνk+q j ′,kj,σ =
η⃗ qν√
2Mω qν

⟨ψk+qj ′,σ|δVqνσ |ψkj,σ⟩ (3)

where q is the phonon wavevector and ν the branch index.M is the atomic mass, η⃗qν the phonon
eigenvector, and ωqν is the phonon frequency. δVqνσ is the self-consistent DFPT scattering potential, and
ψkj,σ is the wave function at state k, band j and spin channel σ (↑ or ↓).

The scattering operator in terms of the basis functions composed of products of the k- and
spin-dependent FSH Fσα(k) and energy-dependent polynomials can be written as:

(Qnn ′)σαβ =
2πVcellNσ(ϵF)

ℏkBT

ˆ
dϵdϵ ′dω

∑
s,s ′=±1

f(ϵ) [1− f(ϵ ′)]

×{[n(ω)+ 1]δ(ϵ− ϵ ′ − ℏω)+ n(ω)δ(ϵ− ϵ ′ + ℏω)}
×α2

AllenF(s, s
′,α,β,ϵ, ϵ ′,ω,σ)

× J(s, s ′,n,n ′, ϵ, ϵ ′,σ) , (4)

where V cell is the volume of the unit cell, Nσ(ϵF) the DOS at the Fermi level for spin channel σ, ℏ the reduced
Planck constant, n the Bose Einstein distribution, and ω the phonon frequency. α2

AllenF and J are, respectively,
the spin-dependent transport spectral function and the joint energy polynomial, with the former defined as:

α2
AllenF(s, s

′,α,β,ϵ, ϵ ′,ω,σ) =
1

2Nσ(ϵF)

∑
kk ′

jj ′ν

|gqνk+q j ′,kj,σ|
2δ(ϵkj − ϵ)δ(ϵk+qj ′ − ϵ ′)δ(ωqν −ω) (5)

× [Fσα(kj)− sFσα(k+ qj
′)]

[
Fσβ(kj)− sFσβ(k+ qj

′)
]
.

By truncating the upper left 2× 2 part of the Q−1
nn ′ matrix (known as the inelastic LOVA), the electronic

transport coefficients can be found as:

ρσαβ = 1
2e2[(Q−1)00]σαβ

≈ 1
2e2 (Q00)

σ
αβ , (6)
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Sσαβ =−π kB√
3e

[(Q−1)01]
σ
αβ

[(Q−1)00]σαβ

≈ π kB√
3e

∑
γ

(Q01)
σ
αγ(Q

−1
11 )

σ
γβ . (7)

Within the SP case, it is assumed that the two spin channels are independent and conduct in parallel;
therefore, the overall resistivity can then be written as:

ραβ =
ρ↑αβρ

↓
αβ

ρ↑αβ + ρ↓αβ
. (8)

In the same spirit, the overall Seebeck coefficient can be expressed as the following:

⟨Sαβ⟩=
σ↑
αβS

↑
αβ +σ↓

αβS
↓
αβ

σ↑
αβ +σ↓

αβ

. (9)

On the other hand, a spin-dependent Seebeck coefficient can be defined as the difference between the
two spin channels [29–33].

∆Sαβ = S↑αβ − S↓αβ . (10)

This is not to be confused with the ‘Spin-Seebeck’ effect [34, 35] explained in [36]. The latter (1) can occur in
insulators as well since it is not related to the diffusion of carriers, but rather to that of magnons and/or to
indirect phonon-drag type effects, and (2) can be both longitudinal and transverse to the temperature
gradient.

When including SOC, the Hamiltonian is no longer diagonal in spin space, and the EPC matrix
(neglecting band indices) becomes

gqνkk ′ =
η⃗ qν√
2Mω qν

∑
σσ ′⟨ψkσ|δVqνσσ ′ |ψk ′σ ′⟩ , (11)

while the rest of the formulae are similar to the NM case [3].
Each state can be an arbitrary spinor, and the SOC contribution to δV qν

σσ ′ allows transitions which
change (even flip) the spin.

The magnitude of the Seebeck coefficient can often be interpreted by using the Mott formula, which
relates S to the energy derivative of the electrical conductivity according to:

S=
π2k2BT

3e

[
1

σ

dσ(ϵ)

dϵ

]
ϵ=ϵF

=
π2k2BT

3e

[
1

N

N(ϵ)

dϵ
+

1

µ

µ(ϵ)

dϵ

]
ϵ=ϵF

, (12)

in which the Drude model σ(ϵ) = N(ϵ)eµ(ϵ) is assumed, with µ(ϵ) being the energy dependent mobility.

3. Results and discussion

For the three FM 3dmetals, we consider the following stable phases within about 1200 K, viz., the
body-centered cubic (bcc) phase for Fe, the face-centered cubic (fcc) phase for Ni, and both the hexagonal
close-packed (hcp) and fcc phases for Co, since cobalt transforms from hcp to fcc at 700 K. It is also worth to
mention their Curie temperatures, i.e. 1043 K for Fe, 1396 K for Co, and 629 K for Ni, as the transport
properties are strongly affected by the magnetic ordering.

The calculated basic structural and magnetic properties are listed in table 1, with three magnetic cases
(SP, SOC, and NM) and two geometries (relaxed and experimental lattice constants). The experimental
values are also shown for comparison. The lattice constants are underestimated by between−6.15 and
−2.78%, which is typical for LDA. The treatment of magnetism is found to affect the lattice constant, which
reflects the spin-lattice interactions. SP and SOC yield similar lattice constants except for fcc Co. NM gives
smaller values in general. The calculated magnetic moments are in good agreement with measurements, with
an underestimation between−12.47% and−0.37%. Using the experimental lattice constant, the agreement
in magnetization is slightly improved, except for fcc Ni.
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Table 1. Calculated lattice constant alatt (in Bohr) and magnetic momentM (in µB) for Fe, Co, and Ni, in comparison with experimental
values. For magnetic moments, cases with relaxed and experimental lattice constants are considered.

Fe (bcc) Co (hcp) Co (fcc) Ni (fcc)

alatt (SP) 5.206 a= b= 4.590 c= 7.402 6.315 6.469
alatt (SOC) 5.195 a= b= 4.589 c= 7.415 6.474 6.470
alatt (NM) 5.097 a= b= 4.533 c= 7.293 6.373 6.460
alatt (Expt. [37]) 5.41 a= b= 4.73 c= 7.69 6.708 6.65
M (Relaxed alatt, SP) 2.062 1.550 1.537 0.618
M (Relaxed alatt, SOC) 2.044 1.566 1.579 0.616
M (Expt. alatt, SP) 2.264 1.638 1.683 0.679
M (Expt. alatt, SOC) 2.261 1.635 1.679 0.676
M (Expt. [37]) 2.335 1.72 1.72 0.62

Figure 1. Calculated band structures and density of states (DOS) for (a) Fe, (b) Ni, (c) hcp Co, and (d) fcc Co, with LDA relaxed
lattice constants. Top to bottom panels are: spin polarized, spin–orbit coupling, and non-magnetic, resp. The Fermi level is set as
E= 0.

3.1. Band structure
The electronic band structures and corresponding DOS are shown in figure 1, which are essential to
understand the transport properties [3]. For all three metals, the SP and SOC band structures are almost
identical (see figure S2 in the SI for the spin projected SOC bands), and are consistent with the results in
[38–40] for the SOC case of Fe and Co, and the SP case of Ni. Minor differences can be ascribed to the
difference in exchange correlation functionals or pseudopotentials. For NM, the picture is significantly
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Figure 2. Calculated phonon dispersion curves for (a) Fe, (b) Ni, (c) hcp Co, and (d) fcc Co, with LDA relaxed lattice constants.
The discrete symbols denote experimental data [41–43]. For each metal, FMSP, FMSOC, and NM represent the spin-polarized (SP)
ferromagnetic, spin–orbit coupling (SOC) ferromagnetic, and non-magnetic (NM) cases, respectively.

different as each band is doubly degenerate: the NM band energies are close to be the averages of the up and
down spin bands from SP or SOC. At a temperature significantly below TC, the band structure is expected to
be close to the 0 K results from SP or SOC. The NM electronic structure will be used to estimate the PM state
above TC, but one should note the difference in the local magnetic moments and thermal effects in
comparison with the true PM state.

3.2. Phonon dispersion curves
The DFPT calculated phonon dispersion curves are shown in figure 2. For Fe (figure 2(a)), SP and SOC
phonons with relaxed lattice constant are reasonably consistent with the experimental data, despite some
slight overestimation of the frequencies due to underestimated lattice constant. For the NM case,
interestingly, there are strong vibrational instabilities at various q points, which can be at least partly related
to the artificial Kohn anomaly arising from the flat bands crossing the Fermi level, in particular near the
middle point between Γ and N (see figure 1(a)) that yields the largest softening at N. These results are clearly
unphysical and, for this reason, we do not report transport properties for the NM configuration. For Ni
(figure 2(b)) and Co (figures 2(c) and (d)), no vibrational instability is observed for all three magnetic cases,
and the agreement with experiment is reasonable. The relative differences in frequencies can be mainly
attributed to the lattice constants, which are very close for the three magnetic cases. However, the electronic
and magnetic structures can also influence phonons, as it was already pointed out in previous studies (see
e.g. [43]), and is visible in the subtle qualitative differences in our results, such as the softening atM for hcp
Co with SOC (figure 2(c)) and the softening at the X and L points for fcc Co (figure 2(d)). On the other
hand, using experimental lattice constants yields qualitatively similar dispersion curves but with reduced
phonon frequencies (figure S8), as the lattice constant is slightly larger. The discrepancies between
computations and experiments can also be attributed to thermal effects, as the measurements are carried out
at room (or at least finite) temperatures.

3.3. Phonon linewidths and transport spectral function
The EPC can be informatively visualized in the phonon linewidths and the transport spectral function. For
clarity, we only show the linewidths for the SP case in figure 3, and the other cases are included in the SI (see
figures S3, S9, and S10). In Fe, both the up and down spins contribute to the linewidth away from the Γ
point, whereas in the other two metals only the spin-down has significant contribution. This can be related
to the band structures, since both spin channels have considerable intersections with the Fermi level in Fe,
for either s or d bands, while in other cases only the spin-up has its s band crossing the Fermi level, which
results in a small DOS and weak Fermi nesting.

The transport spectral function α2
AllenF for the SP case shares many features with the phonon linewidths:

both spin channels contribute in Fe but the spin-down dominates in Co and Ni (figure 4). α2
AllenF of the SOC

and NM cases are shown as well. For Fe, it is interesting that the SOC curve is almost the same as that from
the spin-down; for Co and Ni, it is as expected that the SOC results roughly reproduce those from the
spin-down, except that for fcc Co the SOC curve is shifted to slightly lower frequencies due to the overall

6
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Figure 3. Calculated phonon linewidths for (a) Fe, (b) Ni, (c) hcp Co, and (d) fcc Co in FMSP case, with LDA relaxed lattice
constants. All linewidths have been multiplied by a factor of five for visibility.

Figure 4. Calculated spin-dependent transport spectral function for (a) Fe, (b) Ni, (c) hcp Co, and (d) fcc Co, with LDA relaxed
lattice constants. The NM case for Fe is excluded, since there are strong instabilities.

softening (see figure 2(d)). Without magnetism (NM), α2
AllenF is slightly reduced. Furthermore, the transport

spectral functions calculated using the experimental lattice constants (figure S11 in SI) are qualitatively
similar to those from the relaxed lattice constants.

3.4. Electrical resistivity
Before discussing the more subtle Seebeck coefficient, we first examine the electrical resistivity ρ, which is a
transport property that rather directly reflects the effect of EPC. As shown in figure 5, for all three metals, the
experimentally measured resistivity increases with temperature, and the slope gradually increases with
temperature until an abrupt decrease at TC (e.g. figures 5(a) and (b)). This can be explained by the magnetic
transition from ferromagnetism to paramagnetism: increasing magnetic disorder leads to more electron-spin
or EM scattering, which saturates in the PM phase and is additive with the electron–phonon scattering. We
obtain close to linear behavior for temperatures above∼100 K, which is typical for a normal metal
considering only EPC. For Fe, only SP and SOC calculated ρ are shown, as the NM case is unstable.
Resistivity from SOC is larger than that of SP, and agrees better with experimental values, especially for
temperatures below∼200 K, and it agrees well with the resistivity calculated based on the alloy analogy
model and Kubo’s response formalism due to thermal vibrations [10]. The discrepancy widens as
temperature increases, which can be attributed to the neglect of spin scattering and of temperature effects in
the band structure, i.e. 0 K theoretical band structure is adopted. In the case of Ni, the SOC prediction is
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Figure 5. Calculated electrical resistivity as a function of temperature for (a) Fe, (b) Ni, (c) hcp Co, and (d) fcc Co, with LDA
relaxed lattice constants. The discrete symbols denote experimental data [44–46]. For each metal, FMSP, FMSOC, and NM
represent the spin-polarized (SP) ferromagnetic, spin–orbit coupling (SOC) ferromagnetic, and non-magnetic (NM) cases,
respectively. For hcp Co, an average of the xx, yy, and zz components is shown. For Co, also note that full color is used for
temperatures that the respective phase is stable according to the experimental Ttr. The insets show the same data zoomed around
low temperatures.

again better than that of SP. The NM result overestimates at low T, but it agrees better at high T, which may
be related to the fact that the effective PM band structure is close to the NM case.

For all three metals, the SOC calculated resistivities are considerably larger than those from SP. Since the
band structures are almost identical between these two schemes, the larger resistivity should be attributed to
the spin-flip scatterings allowed in SOC, whereas for SP the two spin channels are independent. For Co, its
stable structure below Ttr = 700 K is hcp, and it transforms to the fcc structure above Ttr. We predict the
resistivity for both structures, as shown in figures 5(c) and (d). The experimental data show an overall
increasing resistivity with temperature, except a small abrupt drop at Ttr. Interestingly, the calculated
resistivity is also smaller in the fcc phase than the average of the xx, yy, and zz components of the hcp phase,
which is consistent with the drop at the transition point. For instance, at Ttr in the SOC (SP) calculations, the
average resistivities are 36.10 (5.38)×10−8Ωm in the hcp phase, and 34.77 (3.11)×10−8Ωm in fcc,
respectively. Note that for the hcp structure, the resistivity tensor has equal xx and yy component, and a
larger zz component.

In the SP case, two spin channels are present. The SP resistivity is calculated based on equation (8), and
the individual contributions from up and down spin channels are shown in figure S4. The spin-up has a lower
resistivity than that of the spin-down, especially for Ni and Co, in which ρ↑ is about one order of magnitude
smaller than ρ↓. This is consistent with the transport spectral function where the spin-down has a much
larger magnitude. According to equation (8), the overall resistivity is close to ρ↑, with slightly smaller values.

With experimental lattice constants (figures S12 and S13 in SI), the resistivity is generally larger than
those calculated using the relaxed lattice constant, thus giving a better agreement with measured data at high
temperature and suggesting that thermal expansion also plays a role in determining the transport properties.

3.5. Seebeck coefficient
The temperature dependence of the Seebeck coefficient is more complex than resistivity in many materials,
and even more so in these FM metals. The calculated temperature dependence of the Seebeck coefficients
with both CRTA and VA approaches are compared with experimental data (discrete points) in figure 6. The
Curie temperatures and phase transition temperatures up to 1200 K are also drawn. The measured S all have
non monotonic T dependences and are electron like (negative) at high T. We discuss in detail the different
features and limits of our calculations of the electron–phonon-driven diffusive Seebeck effect, explaining
additional features due to magnon- and phonon-drag, the spin disorder produced at the PM transition and
the structural disorder at solid–solid phase transitions.

In iron, S shows a broad positive peak at low temperature (∼200 K) which has been ascribed to magnon
drag [48], the MacInnes–Schröder model of anisotropic scattering due to SOC [49], or to phonon drag
[15, 50]. S reaches an extremum at about 800 K, when the drag contributions subside, and then increases
until TC. Such an upturn is due to electron scattering by spin disorder associated with the decrease of
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Figure 6. Calculated Seebeck coefficient as a function of temperature for (a) Fe, (b) Ni, (c) hcp Co, and (d) fcc Co, with LDA
relaxed lattice constants. The discrete symbols denote experimental data [47]. For each metal, FMSP, FMSOC, and NM represent
the ferromagnetic, spin–orbit coupling (SOC) ferromagnetic, and non-magnetic (NM) cases, respectively. The solid and
dash-dotted lines represent results from VA and CRTA, respectively. For hcp Co, an average of the xx, yy, and zz components is
shown. For Co (c and d), also note that full color is used for temperatures at which the respective phase is stable according to the
experimental Ttr.

magnetic moment approaching the PM phase. |S| increases again beyond TC with the onset of the transition
to the γ phase, but this is beyond the scope of the present work. The main region where we can compare our
diffusive electron-phonon scattering S is around 800 K at the minimum, and the full SOC value is in very
good agreement. CRTA has the wrong sign, with incorrect weighting of the different electron- and hole-like
bands. The SP calculation develops the correct sign at high T, but remains too low in magnitude, showing
the importance of spin-mixing scatterings in the full representation of diffusion in FM metals.

The lattice constant is found to affect S quantitatively, as shown in figure S14(a) of the SI, which can be
attributed to the differences in band structure, phonon dispersion and EPC. It is also worth to mention that
our results do not support the MacInnes–Schröder model since including SOC yields negative S, which
hardly resemble the positive peak around 200 K.

For Ni S turns up, then slightly changes slope at TC: at temperatures above TC the system becomes PM,
and a fraction of the entropy contributing to S is no longer available. Ni is very sensitive to the magnetic
state, with strong peaks in the DOS whose position with respect to the Fermi level depends on the volume
and exchange correlation functional. The negative maximum around 500 K is believed to be caused by
magnon-drag [14], which would be consistent with our low SP or SOC values below TC. However our NM S
is very close to experiment, suggesting an alternative simpler scenario, that the SOC and SP Fermi levels are
simply not correctly placed in DFT. As shown in figure S22 of the SI, shifting up the Fermi energy (equivalent
to adding extra electrons) in the SOC case indeed cause an increase of the magnitude of S. The spin flip
transitions seem unimportant for S while they had a strong effect on ρ. Again the influence of thermal
expansion (lattice constant) is quantitative, as shown in figure S14(b) of the SI.

The Seebeck coefficient in cobalt has a simple initial linear trend, then an inflection and jump at the
structural phase transition, and a gradual decrease of the magnitude in the fcc phase. Calculated in-plane
(xx) and out-of-plane (zz) components do not differ very much (see figure S19), and the average of the xx, yy
and zz components (figure 6(c)) qualitatively capture but underestimate experiment, both for SP and SOC,
while the NM bands yield the wrong sign of S at all T. At higher T in the fcc phase the SP solution continues
increasing in magnitude, while the SOC S is significantly smaller. The gradual decrease of the experimental
|S| stems from the approach to the PM phase (TC = 1396 K), as in Fe and Ni. The predictions for fcc Co
should be taken with caution, since the phase is above the magnetic turning point, which would require the
consideration of gradual equalization of spin-up and spin-down channels with increasing temperature.
Nevertheless, a smaller magnitude of S than that of the hcp phase at Ttr is predicted with SOC, and for the SP
case as well if the experimental lattice constant is used (figures S14(c) and (d) of the SI).

To better understand the contributions from the up and down spins, we further show the calculated S of
these two independent channels in figure S5. The overall Seebeck of the SP case is evaluated based on
equation (9). The small magnitude of S in Fe can be seen as a cancellation between negative S↑ and positive
S↓. Importantly, these signs are opposite to those predicted by CRTA, which can be simply explained by the
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Figure 7. Calculated spin-dependent Seebeck coefficient as a function of temperature for (a) Fe, (b) Ni, (c) hcp Co, and (d) fcc
Co, with LDA relaxed lattice constants (without SOC). The discrete symbols denote experimental data of permalloy (Ni80Fe20)
and Co [51]. For each metal, S↑, S↓, and∆S represent the spin-up, spin-down, and spin-dependent Seebeck, respectively. For hcp
Co, an average of the xx, yy, and zz components is shown. For Co, also note that full color is used for temperatures that the
respective phase is stable according to the experimental Ttr.

DOS (figure 1(a)) based on the Mott formula of equation (12). The correct sign of the overall S from VA and
the wrong sign from CRTA imply that explicit consideration of EPC is critical for Fe. For Ni and Co, the signs
from VA and CRTA are consistent in general. In addition, the contribution from the spin-up is dominant due
to the much larger magnitude of S and much smaller resistivity (larger conductivity, see figure S4) from this
spin channel.

The spin-dependent Seebeck coefficient∆S calculated via equation (10) is reported in figure 7, and
enables the generation of a (in general not pure) spin current from a thermal gradient.∆S is found
experimentally to also be negative in these three metals, and decreases monotonously as temperature
increases (which is expected, as the spin splitting is reduced). The VA predicted magnitude can reach−26.45,
−37.43,−65.57 and−9.74 µVK−1, for Fe, hcp Co, fcc Co and Ni, respectively, at around 600 K (for hcp Co
we show the average of the three components xx, yy, and zz). We see that∆S can be larger than the full
Seebeck coefficient if the sign of up and down spin S are opposite (Fe, Ni) or comparable if one Sσ is almost
0. This is an advantage for spintronics, favoring spin currents and minimizing charge currents and Ohmic
losses.

Only a few measurements of∆S are available, which are for permalloy (Ni80Fe20) and Co at room T [51]
(shown as discrete data in figure 7). The permalloy composition is relatively close to pure Ni, and its
experimental∆S at 300 K agrees remarkably well with our prediction for Ni. On the other hand, the
magnitude of the theoretical value (−10.34 µVK−1) is much larger than the measurement (−1.68 µVK−1)
for Co. The discrepancy can be related to the anisotropy in hcp Co, for instance,∆S is−16.52 µVK−1 for the
in-plane (xx or yy) components, but it becomes 2.03 µVK−1 in the out-of-plane (zz) direction (see figure
S21), and the experimental value lies in between. Thermal expansion effect, EM scattering, and extrinsic
effect may also contribute.

3.6. Contribution of EM scattering
Magnon resistivity and magnon-drag Seebeck due to EM scattering were theoretically estimated in [13, 14]
for low T. In figure 8, we include them and compare the experimental data with the sum of EPC and EM
contributions. For resistivity below 400 K, the EM contributed ρ (also called magnetic resistivity) varies as T2

within the low-T limit [52], which better captures the T dependence of the measured data than the linear
dependence from EPC. The total ρ including both EP and EM scatterings is in excellent agreement with
experiment for Fe (figure 8(a)), indicating that these two mechanisms dominate and are accurately
calculated in this T range. For Ni and Co (figures 8(b) and (c)), the total ρ show slight and moderate
overestimation, respectively, which may suggest that the computed EPC contribution is too large, at least for
Co. The EM resistivity for T> 400 K is unavailable as the underlying model is no longer valid.

As shown in figure 8(d), the magnon-drag Seebeck from [14] slightly overestimates the measured S in Fe
below∼100 K, while the agreement is improved after adding the negative EPC contribution. The overall
good agreement considering these two contributions is in accord with [48] where phonon drag was argued to
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Figure 8. Comparison with experimental data by considering additional contribution from electron–magnon scattering at low
temperature. Electrical resistivity of (a) Fe, (b) Ni, and (c) hcp Co. Seebeck coefficient of (d) Fe, (e) Ni, and (f) hcp Co. The black
discrete points denote measured data [44–47]. The red solid lines are calculated EPC contribution in the SOC case, denoted as
electron–phonon (EP). The red dashed lines are estimated contributions from electron–magnon (EM) scatterings from [13, 14].
The black solid lines are sum of the EP and EM contributions.

be unimportant. In Ni (figure 8(e)), both the magnon-drag and EPC contributions to S are negative, but
their sum largely underestimates the magnitude of experiment. We suggest the difference (negative bump at
∼20 K) may be ascribed to the phonon drag effect. On the other hand, magnon-drag and EPC contributions
are comparable in Co (figure 8(f)), and the calculated total S agrees very well with measurement, which again
implies that phonon drag effect is negligible in Co.

4. Conclusions

In summary, we have studied the spin-dependent thermoelectric properties of three FM metals, i.e. bcc iron,
fcc nickel, hcp and fcc cobalt, via a fully ab initio approach considering EPC, three magnetic configurations
(SP, with SOC, and NM) and two sets of lattice constants (DFT relaxed and experimental). Excepting the NM
case, the calculated electronic and phonon bands are in good agreement with experiments or calculations
reported in the literature. For transport properties (resistivity and Seebeck coefficient as a function of T), the
agreement with measured data is reasonable, and differences are analyzed in detail accounting for other
mechanisms beyond electron–phonon scattering, such as magnon-drag, phonon-drag, and the increase in
spin disorder and scattering, with the gradual equalization of the up and down spin bands toward the Curie
temperature. The Seebeck coefficients are also calculated using the CRTA method, which are found to yield
less satisfactory results than the VA, due to the oversimplification of constant relaxation time for these
magnetic metals. We also predict the so-called spin-dependent Seebeck effect in these three metals, which
can give rise to a SP current via a thermal gradient, and opens new opportunities for spintronics
applications. Importantly, we hope this study will help to benchmark fully first-principles methodologies for
the quantitative computation of transport coefficients in magnetic materials, for which the phonon-drag and
magnon-drag effect can be developed in the future by solving the coupled BTEs for the distribution
functions of electrons, phonons, and magnons [53, 54].
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