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Motivation
Topology optimization

Complex / evolving
geometry

Multiphysics

High resolution

Additive manufacturing

Fluid-solid interactions Conjugate heat transfer

[Frère, 2015]

[Thomas, 2019] [Das, 2018]

[Alexandersen, 2016]
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Towards high accuracy immersed

Solid

Fluid

Solid

Immersed approach

Cut-cell

Simple mesh generation 
Numerical errors at interface
Lack of resolution near interfaces

How to tackle lack of accuracy?

High-order DG
on cartesian grid

High-order
cut-cells
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Adaptive mesh refinementAdaptive mesh refinement



Discretization of elliptic equations
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∇ ∙ 𝜇∇𝑢 = 0, ∀ 𝑥 ∈ Ω
u = 𝑢∗, ∀ 𝑥 ∈ Γ

Ω

Γ



Discretization of elliptic equations
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∇ ∙ 𝜇∇𝑢 = 0, ∀ 𝑥 ∈ Ω
u = 𝑢∗, ∀ 𝑥 ∈ Γ
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∇𝑣 ∙ 𝜇∇𝑢 𝑑𝑉 −

𝑓

න

𝑓

𝛾 𝑢+, 𝑢−, 𝑣+, 𝑣− 𝑑𝑆 =

𝑓Γ

න

𝑓Γ

𝛾 𝑢+, 𝑢∗, 𝑣+, 0 𝑑𝑆

∀𝑣 ∈ 𝒱, find 𝑢 ∈ 𝒱:

⇔ 𝑎(𝑢, 𝑣) = 𝑏(𝑣)
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∇ ∙ 𝜇∇𝑢 = 0, ∀ 𝑥 ∈ Ω
u = 𝑢∗, ∀ 𝑥 ∈ Γ



𝑒

න

𝑒

∇𝑣 ∙ 𝜇∇𝑢 𝑑𝑉 −

𝑓

න

𝑓

𝛾 𝑢+, 𝑢−, 𝑣+, 𝑣− 𝑑𝑆 =

𝑓Γ

න

𝑓Γ

𝛾 𝑢+, 𝑢∗, 𝑣+, 0 𝑑𝑆

∀𝑣 ∈ 𝒱, find 𝑢 ∈ 𝒱:

Appropriate numerical flux
Weakly impose BCs & solution continuity
Impose flux continuity



Interior penalty method
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𝛾 𝑢+, 𝑢−, 𝑣+, 𝑣− = 𝑣 𝜇∇𝑢 = 𝑣 ∙ 𝜇∇𝑢 + 𝜇∇𝑢 ∙ 𝑣

Impose continuity of flux

𝛾 𝑢+, 𝑢−, 𝑣+, 𝑣− = 𝑣 ∙ 𝜇∇𝑢 + 𝜃 𝑢 ∙ 𝜇∇𝑣 − 𝜎𝑓 𝑣 ∙ 𝑢

Penalty term
Weakly impose
• continuity of solution
• BC
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Penalty factor 𝜎𝑓 to ensure coercivity: ∃𝐶 > 0: 𝑎 𝑣, 𝑣 ≥ 𝐶 𝑣 ², ∀𝑣 ∈ 𝒱

Coercivity violated
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Penalty factor 𝜎𝑓 to ensure coercivity: ∃𝐶 > 0: 𝑎 𝑣, 𝑣 ≥ 𝐶 𝑣 ², ∀𝑣 ∈ 𝒱

Coercivity ensured



Sharp bound on inequality for finding optimal 𝜎𝑓
∗

Trace inverse inequality

Solid
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න

𝑓

𝑣2𝑑𝑆 = 𝐾න

𝑒
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𝐶(𝑝)𝐴(𝑓)
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[Warburton, 2003]
[Hillewaert, 2013]

Pascal 
functional space

Pascal & Tensor product
functional space

𝐶 𝑝 =
𝑝 + 1 𝑝 + 𝑑

𝑑
𝐶 𝑝 = (𝑝 + 1)²



Sharp bound on inequality for finding optimal 𝜎𝑓
∗

Trace inverse inequality

Solid

18

න

𝑓

𝑣2𝑑𝑆 ≤ 𝐾න

𝑒

𝑣2𝑑𝑉, ∀𝑣 ∈ 𝒱

𝐾~𝐶
𝑝²

ℎ
⟶𝐾 =

𝐶(𝑝)𝐴(𝑓)

𝑉(𝑒)
[Warburton, 2003]
[Hillewaert, 2013]

Pascal 
functional space

Pascal & Tensor product
functional space

What about cut elements?

𝐶 𝑝 =
𝑝 + 1 𝑝 + 𝑑

𝑑
𝐶 𝑝 = (𝑝 + 1)²

𝑒′

[Kummer, 2016]

For 2D elements

𝐾 = 𝜂0
𝑝²𝐴(𝜕𝑒′)

𝑉(𝑒′)
with 𝜂0 = 4 (empirical)
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𝑒
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ℎ
⟶𝐾 =

𝐶(𝑝)𝐴(𝑓)

𝑉(𝑒)
[Warburton, 2003]
[Hillewaert, 2013]

Pascal 
functional space

Pascal & Tensor product
functional space

What about cut elements?

For 2D elements

𝐾 = 𝜂0
𝑝²𝐴(𝜕𝑒′)

𝑉(𝑒′)
with 𝜂0 = 4 (empirical)

𝐶 𝑝 =
𝑝 + 1 𝑝 + 𝑑

𝑑
𝐶 𝑝 = (𝑝 + 1)²

𝑒′

[Kummer, 2016]

Does it always ensure coercivity?
Is it a sharp bound?

Can we find one if not?



Trace inverse inequality for straight cut

Solid
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Simplify  the set-up
2D quadrangle equipped with Tensor product functional space of order 𝑝
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Simplify  the set-up
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A

B

Type IIType I Type III

Simplify  the set-up
2D quadrangle equipped with Tensor product functional space of order 𝑝
Straight cut from level-set

Search for 𝐶(𝑝) and ℎ
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Simplify  the set-up
2D quadrangle equipped with Tensor product functional space of order 𝑝
Straight cut from level-set

Search for 𝐶(𝑝) and ℎ, and verify with Owen’s numerical approach:

Type IIType I Type III

න

𝑓′

𝑣2𝑑𝑆 ≤ 𝐾 න

𝑒′

𝑣2𝑑𝑉 , ∀𝑣 ∈ 𝒱 → 𝐾 = max 𝜆 : 𝑴𝒇′ − 𝜆𝑴𝒆′ 𝒙 = 0

[Owens, 2017]
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Simplify  the set-up
2D quadrangle equipped with Tensor product functional space of order 𝑝
Straight cut from level-set

Search for 𝐶(𝑝) and ℎ, and verify with Owen’s numerical approach:

න

𝑓′

𝑣2𝑑𝑆 ≤ 𝐾 න

𝑒′

𝑣2𝑑𝑉 , ∀𝑣 ∈ 𝒱 → 𝐾 = max 𝜆 : 𝑴𝒇′ − 𝜆𝑴𝒆′ 𝒙 = 0

Still need to separate geometric contribution to functional space

Type IIType I Type III

𝑒′
𝑓′

[Owens, 2017]
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Simplify  the set-up
2D quadrangle equipped with Tensor product functional space of order 𝑝
Straight cut from level-set

Search for 𝐶(𝑝) and ℎ, and verify with Owen’s numerical approach:

න

𝑓′

𝑣2𝑑𝑆 ≤ 𝐾 න

𝑒′

𝑣2𝑑𝑉 , ∀𝑣 ∈ 𝒱 → 𝐾 = max 𝜆 : 𝑴𝒇′ − 𝜆𝑴𝒆′ 𝒙 = 0

Why not using this approach
“on the fly” for any cut?

Type IIType I Type III

𝑒′
𝑓′

Computationally more expensive
Might be ill-conditioned

[Owens, 2017]
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A A’

B

B’ Pascal p functional space
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A A’
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A A’

B

B’ Pascal p functional space

Integrand remains in same functional space
Geometric factor appears naturally with mapping

ℎ =
𝑉(𝐴𝐵𝐶)

𝐴(𝐴𝐵)
and  𝐶 𝑝 of reference element

𝐶 𝑝 =
𝑝 + 1 𝑝 + 𝑑

𝑑

C C’
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A A’

B

B’ Tensor p functional space

Integrand remains in same functional space
Geometric factor appears naturally with mapping

ℎ =
𝑉(𝐴𝐵𝐶)

𝐴(𝐴𝐵)
and  𝐶 𝑝 of reference element

𝐶 𝑝 = ?

C C’
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A A’

B

B’ Pascal  2p functional space

Integrand remains in same functional space
Geometric factor appears naturally with mapping

ℎ =
𝑉(𝐴𝐵𝐶)

𝐴(𝐴𝐵)
and  𝐶 𝑝 of reference element

𝐶 𝑝 =
2𝑝 + 1 2𝑝 + 2

2

It ensures coercivity but 
is this value not too large?

C C’

𝐶 𝑝 = (2𝑝 + 1)(𝑝 + 1)



Type I: Sub-triangle verification

SolidSolid
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On reference triangle

Numerical results limited to 𝑝 = 7 because of available quadrature rule
Closer to experiments than Kummer
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Trace inverse inequality on hypothenuse
Order 𝑝 = 1

A

B

𝑒′

C Numerical results
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Trace inverse inequality on hypothenuse
Order 𝑝 = 1

A

B

𝑒′

C 𝐾 = (2𝑝 + 1)(𝑝 + 1)
𝐴(𝐴𝐵)

𝑉(𝐴𝐵𝐶)
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Trace inverse inequality on hypothenuse
Order 𝑝 = 1

A

B

𝑒′

C 𝐾 = 4𝑝²
𝐴(𝜕𝑒′)

𝑉(𝑒′)
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Trace inverse inequality on cathetus
Order 𝑝 = 1

A

B

𝑒′

C Numerical results
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Trace inverse inequality on cathetus
Order 𝑝 = 1

A

B

𝑒′

C 𝐾 = (2𝑝 + 1)(𝑝 + 1)
𝐴(𝐵𝐶)

𝑉(𝐴𝐵𝐶)
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Trace inverse inequality on cathetus
Order 𝑝 = 1

A

B

𝑒′

C 𝐾 = 4𝑝²
𝐴(𝜕𝑒′)

𝑉(𝑒′)
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Trace inverse inequality on hypothenuse
Order 𝑝 = 4

A

B

𝑒′

C Numerical results
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Trace inverse inequality on hypothenuse
Order 𝑝 = 4

A

B

𝑒′

C 𝐾 = (2𝑝 + 1)(𝑝 + 1)
𝐴(𝐴𝐵)

𝑉(𝐴𝐵𝐶)
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Trace inverse inequality on hypothenuse
Order 𝑝 = 4

A

B

𝑒′

C 𝐾 = 4𝑝²
𝐴(𝜕𝑒′)

𝑉(𝑒′)
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A

B

CD

1st approach: largest triangle in sub-quadrangle

Mapping without crossed-terms

න

𝐵𝐶

𝑣2𝑑𝑆 ≤ (𝑝 + 1)(2𝑝 + 1)
𝐴(𝐵𝐶)

𝑉(𝐷𝐵𝐶)
න
𝐷𝐵𝐶

𝑣2𝑑𝑉
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A

B

CD

1st approach: largest triangle in sub-quadrangle

Mapping without crossed-terms

න

𝐵𝐶

𝑣2𝑑𝑆 ≤ (𝑝 + 1)(2𝑝 + 1)
𝐴(𝐵𝐶)

𝑉(𝐷𝐵𝐶)
න
𝐷𝐵𝐶

𝑣2𝑑𝑉

≤ න
𝐴𝐵𝐶𝐷

𝑣2𝑑𝑉



Type II: Sub-quadrangle

45

න

𝐴𝐵

𝑣2𝑑𝑆 ≤ (𝑝 + 1)(2𝑝 + 1)
𝐴(𝐴𝐵)

𝑉(𝐴𝐵𝐶)
න
𝐴𝐵𝐶

𝑣2𝑑𝑉
A

B

CD

1st approach: largest triangle in sub-quadrangle

Mapping with crossed-terms
≤ න

𝐴𝐵𝐶𝐷

𝑣2𝑑𝑉
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න

𝐴𝐵

𝑣2𝑑𝑆 ≤ (𝑝 + 1)(2𝑝 + 1)
𝐴(𝐴𝐵)

𝑉(𝐴𝐵𝐶)
න
𝐴𝐵𝐶

𝑣2𝑑𝑉
A

B

CD

1st approach: largest triangle in sub-quadrangle

Mapping with crossed-terms
≤ න

𝐴𝐵𝐶𝐷

𝑣2𝑑𝑉

After mapping, integrand
is no longer in the same
functional space

𝐶 𝑝 =
(4𝑝 + 1)(4𝑝 + 2)

2
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A

B

C

Trace inverse inequality on AB
Order 𝑝 = 1

Does ℎ =
𝑉(𝐴𝐵𝐶)

𝐴(𝐴𝐵)
a good definition for geometric factor?

Numerical results
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A

B

C 𝐾 = (4𝑝 + 1)(2𝑝 + 1)
𝐴(𝐴𝐵)

𝑉(𝐴𝐵𝐶)

Trace inverse inequality on AB
Order 𝑝 = 1

Does ℎ =
𝑉(𝐴𝐵𝐶)

𝐴(𝐴𝐵)
a good definition for geometric factor?
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A

B

CD

න

𝐴𝐵

𝑣2𝑑𝑆 ≤
𝐶(𝑝)

ℎ
න
𝐴𝐵𝐶𝐷

𝑣2𝑑𝑉

2nd approach: entire sub-quadrangle

Mapping with crossed-terms 𝐶 𝑝 = 2𝑝 + 1 2 <
(4𝑝 + 1)(4𝑝 + 2)

2

Is ℎ =
𝑉(𝐴𝐵𝐶𝐷)

𝐴(𝐴𝐵)
a good definition for geometric factor?
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A

B

CD

Trace inverse inequality on AB
Order 𝑝 = 1

Numerical results
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A

B

CD

Trace inverse inequality on AB
Order 𝑝 = 1

𝐾 = (2𝑝 + 1)²
𝐴(𝐴𝐵)

𝑉(𝐴𝐵𝐶𝐷)
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A

B

CD

Trace inverse inequality on AB
Order 𝑝 = 1

𝐾 = 4𝑝²
𝐴(𝜕𝑒′)

𝑉(𝑒′)

𝑒′
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A

B

CD

Trace inverse inequality on AB
Order 𝑝 = 4

Numerical results
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A

B

CD

Trace inverse inequality on AB
Order 𝑝 = 4

𝐾 = (2𝑝 + 1)²
𝐴(𝐴𝐵)

𝑉(𝐴𝐵𝐶𝐷)
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A

B

CD

Trace inverse inequality on AB
Order 𝑝 = 4

𝐾 = 4𝑝²
𝐴(𝜕𝑒′)

𝑉(𝑒′)

𝑒′
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?

No sharp estimation, for both 𝐶 𝑝 and ℎ
Trace inverse inequality on AB
Order 𝑝 = 1

A

B

Numerical results
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?

No sharp estimation, for both 𝐶 𝑝 and ℎ
Trace inverse inequality on AB
Order 𝑝 = 4

A

B

Numerical results
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A

B

C

No sharp estimation, for both 𝐶 𝑝 and ℎ
Trace inverse inequality on AB
Order 𝑝 = 1

[Cangiani, 2014]

Numerical results
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A

B

C

No sharp estimation, for both 𝐶 𝑝 and ℎ
Trace inverse inequality on AB
Order 𝑝 = 4

Numerical results
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A

B

C

No sharp estimation, for both 𝐶 𝑝 and ℎ
Trace inverse inequality on AB

Numerical results, scaled

Geometric factor depends on order
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A

B

C

No sharp estimation, for both 𝐶 𝑝 and ℎ
Trace inverse inequality on AB

Numerical results, scaled

Geometric factor depends on order

Bounding by above with

ℎ =
𝑉(𝐴𝐵𝐶)

𝐴(𝐴𝐵)
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A

B

C

No sharp estimation, for both 𝐶 𝑝 and ℎ
Trace inverse inequality on AB

Numerical results, scaled

Geometric factor depends on order

Scale back with

to bound by above experimental results

𝐶 𝑝 = (𝑝 + 1)(2𝑝 + 1)
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Trace inverse inequality on AB
Order 𝑝 = 1

𝐾 = (𝑝 + 1)(2𝑝 + 1)
𝐴(𝐴𝐵)

𝑉(𝐴𝐵𝐶)

A

B

C
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Trace inverse inequality on AB
Order 𝑝 = 4

𝐾 = (𝑝 + 1)(2𝑝 + 1)
𝐴(𝐴𝐵)

𝑉(𝐴𝐵𝐶)

A

B

C



𝑒′
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Trace inverse inequality on AB
Order 𝑝 = 4

𝐾 = 4𝑝²
𝐴(𝜕𝑒′)

𝑉(𝑒′)
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To guarantee coercivity of interior penalty method & minimize conditioning

for 2D tensor product elements of order 𝑝, implicitly cut by a level-set 

• Numerical results using Owen’s approach
• Kummer’s definition for 𝐾: though simple, too safe → higher conditioning 
• Proposed new 𝐶(𝑝) and ℎ expressions, case-dependent & better calibrated 

න

𝑓′

𝑣2𝑑𝑆 ≤ 𝐾 න

𝑒′

𝑣2𝑑𝑉 , ∀𝑣 ∈ 𝒱
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What’s next
• Consider curved cut with parameterized level-set
• Going to 3D tensor product elements
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