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Abstract—Flexibility, and in particular, energy storage is ex-
pected to assume a key role in the efficient and secure operation
of the power system, and thus, in the transition towards a carbon-
free electricity sector. In this paper, we propose a methodology
for exploiting the flexibility existing in water distribution systems
from water storage in reservoirs. The methodology relies first on
a modelling approach, from which an optimization problem is
defined. The resolution of this optimization problem leads to
an operating pattern for the pumps. The methodology assumes
that all the electricity is bought on the day-ahead market, where
the bids are placed by constructing and solving an optimization
problem. The uncertain water consumption and the electricity
market prices are predicted using machine learning techniques.
The methodology is tested on a real-life water distribution
network in Belgium and the results from the pilot project indicate
a cost reduction up to 11%.

Index Terms—Flexibility, Water distribution network, model
predictive control

I. INTRODUCTION

Recent directives and goals in Europe and worldwide for
decarbonisation of the energy sector have resulted in targets
for massive renewable energy sources (RES) integration in
the coming decades [1], [2]. This large-scale RES integration
however entails risks for the secure operation of power sys-
tems. The uncertainty induced by RES due to the inability
to predict accurately its power production is expected to lead
to substantial challenges on handling imbalances in real-time.
Flexibility is essential for achieving effectively the set goals
for decarbonisation [3]. In particular, the use of flexibility
can assist in shifting energy from times that it is produced
to times that it is needed to be consumed [4]. In this way, the
matching of supply and demand of electricity can be realised
more effectively.

In this paper, we consider the case where flexibility is
offered by a large consumer that operates a water distribution
network (WDN). Typically, during the operation of a WDN,
the water pumps are the most energy intensive components.
These pumps are responsible for transferring water between
water reservoirs. The flexibility potential lies on the ability
to exploit the storage capacity of the reservoirs in a way
that allows for scheduling the water pumps in the most cost-
effective manner. In particular, we focus on the flexibility
that can be exploited in the case of a water treatment station
(WTS). In the case of a WTS, the pumping process responsible

for transferring water from the production reservoirs to the
reservoirs that supply the water demand takes up a large share
of the total electricity consumed. In this case, flexibility can be
offered by such a station by shifting the pumping processes in
time, thus benefiting from the capacity of the existing water
reservoirs. This shift leads to effectively placing large parts
of the electrical consumption of the station during periods of
the day that the electricity is cheaper or when there is excess
of local renewable energy production. In this way, the total
electricity cost for the station is reduced and the system is
operated in a more efficient way.

However, in order to properly be rewarded for its flexibility
it is necessary for the WTS operator to have access to an
appropriate market mechanism/structure [5]. An appropriate
market mechanism is such that provides a temporal granularity
that matches with the size of the reservoirs and the pumping
capacity of the WTS. In this paper, we consider that the WTS
has access to all relevant energy markets through its retailer
via a special contract (FLEXI-PROFILE). More specifically,
the participation of the WTS operator in the markets is divided
in three steps:

1) Forward: Reservation of a fixed amount of energy for
the target year in the forward markets. Purchasing 1
MW of product CAL 2023 corresponds to a block of
energy purchase for the year 2023, i.e. 8760 MWh.
Forward markets are used by energy market players as
a hedge against the risk/volatility/uncertainty of the spot
markets, i.e. the day-ahead market. The price at which
energy is traded in the long-term markets is said to be an
expectation of what the average day-ahead market price
will be for the given period.

2) Day-ahead: Nomination of the amount of energy that
will be consumed by the WTS during each quarter-
hour of the next day. In Europe the day-ahead market is
cleared around midday one day in advance and energy
exchanges take place in hourly time-slots. Although,
there is one energy price per hour the retailer requests
for a quarter-hourly nomination in order to manage the
imbalance settlement process.

3) Imbalance settlement: The difference between the
market position (forward and day-ahead) of the WTS
operator and the real/measured consumption for each
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quarter of the day is penalised by the imbalance price.
In this paper, we focus on addressing the short-term energy

management of the WTS. To this end, for the sake of simplic-
ity, in the presented methodology, we do not consider at all
the forward step. More precisely, we consider that there is no
energy reserved in the forward market. We also assume that
the WTS operator does not intend to arbitrage between the
day-ahead market and the imbalance market by speculating
on the price difference between the two markets. This is a
reasonable assumption that is made to reduce the risk/exposure
of the WTS since its core business is not energy trading
but water production. Additionally, the WTS operator in real-
time is assumed to perform all means necessary to avoid any
imbalances between the nominated and the realized energy
consumption regardless of the imbalance prices.

Broadly speaking, the participation of consumers in the
electricity markets, in the context of demand-side management
(DSM) or demand-side response (DSR), for the procurement
of flexibility has been extensively studied in the literature
[6], [7]. An optimal bidding strategy for the participation
of a variety of flexible demand-side resources (e.g. plug-in
electric vehicles and distributed generation and flexible load)
in the day-ahead market is proposed in [8], [9]. The authors
consider explicitly the uncertainties related to the market price,
the renewable generation and the electrical consumption and
solve the problem by constructing robust optimization model
that accounts for risk. Similarly, the strategic participation
of flexible loads in air-conditioned buildings is proposed in
[10]. A detailed model of the building is used to capture
the relationship between the occupant comfort and the electri-
cal consumption for heating, ventilation, and air-conditioning
(HVAC). The optimal bidding strategy and real-time control
of the system is determined using model-predictive control
(MPC).

Beyond traditional DSM technologies, the coupling of the
WDN with the power system for flexibility procurement has
been proposed recently in the literature [11], [12]. In [13],
[14] the optimal water flow problem is formulated accounting
for the WDN topology and the hydraulic constraints im-
posed by each component (e.g. water pumps, junctions, tanks,
reservoirs). The originally formulated optimization problem
is nonconvex and is subsequently approximated using convex
relaxations. A key assumption for constructing this model is
that we have full knowledge of all the network parameters.
In practice, this task becomes increasingly complex as the
size of the WDN grows. Moreover, the participation of a
WDN in DSR and in particular in offering grid services is
investigated in [15], [16]. In [15] the hydraulic constraints
of each component are modeled explicitly and a linearization
method is employed to reduce the computation time needed,
while price and water demand uncertainty is not considered.
Results demonstrate promising profit opportunities for water
distribution system operators both in DSR and frequency
regulation markets, by co-optimizing the schedule of water
pumps and tanks over the whole network. In [16], flexibility
is offered by a WDN operator in order to procure both voltage

support and frequency regulation to the grid.
The participation of a WDN in the French wholesale energy

market through a specific mechanism (“Notification d’Echange
de Blocs d’Effacement” (NEBEF)) is investigated in [17].
The novelty introduced by the proposed approach is related
to the management of the uncertainty stemming from water
consumption in the network. In order to account for the
water demand uncertainty a chance constrained problem is
formulated to integrate water systems flexibility to power
system operation. A similar approach is followed in [18],
where a chance-constrained optimization framework is used
to account for water demand uncertainty. Results indicate
that the approach is conservative leading to high reliability
at high cost. A machine learning approach is proposed in [19]
for predicting the water consumption. The forecasts are then
used to control water pumps with the goal to smoothen the
electricity consumption and to shave peaks in a remote island
in Greece. Results indicate gains up to 15%.

In this paper, we focus on deriving an optimal bidding
strategy and an optimal real-time control for the operation of
an individual WTS instead of the entire WDN. However, the
proposed modeling framework can be extended to the case
where there is a set of WTS that need to be co-optimized.
Moreover, we implement the proposed approach on a real
WTS located in Belgium and we report results collected during
the pilot phase. In the following, we frame the problem of a
WTS operator maximizing the value of flexibility in the short-
term markets as following. Firstly, the WTS operator needs
to predict the day-ahead market prices, the uncontrollable
water flows (i.e. water demand) and the uncontrollable power
consumption of the WTS for the following day. Based on
these predictions and a model of the WTS, an optimal day-
ahead plan is constructed and is nominated to the retailer. This
plan is created by optimizing the operation of the pumping
processes and the utilisation of the water reservoirs in such a
way that the total cost of energy is minimized while respecting
any operating constraints related to the security of water
supply, protection of equipment, etc. Secondly, once the day-
ahead plan is nominated the real-time controller is responsible
for matching the nominated day-ahead plan to the real-time
consumption of the WTS.

II. PROBLEM DESCRIPTION

In this section, we describe in detail the market participation
of a WTS operator. First, we present the decision-making pro-
cess of the operator in the short-term markets. Subsequently,
we describe the discrete time model used for modelling the
operation of a generic WTS.

A. Water treatment station operation

In this section, we present an abstract framework that is
used to model the operation of a WTS. A schematic of the
generic representation of a WTS is illustrated in Figure 1.
This framework together with data from a real WTS is used to
have a concrete representation of each individual WTS that is
controlled. There are two main building blocks in this generic
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Fig. 1: Schematic of a generic water treatment station. Reser-
voirs are connected with water flows that can be controllable
by a set of pumps or uncontrollable (e.g. water consumption).

WTS model, namely the reservoirs and the water flows that
enter in or exit from the reservoirs.

1) Water flows: Let Qi,t[m
3/h] denote the i-th flow of

water at time step t in the set of water flows Q considered,
with i ∈ Q = {1, 2, .., I}. Water flows are categorised in
two subsets, namely controllable Qc ⊆ Q and uncontrollable
Qu ⊆ Q. For instance, as shown in Figure 1, flows Q1, Q3,
Q4, Q5 are considered to be uncontrollable whereas flow Q2

is considered to be controllable.
Each controllable flow Qi,t are effectively controlled by a

group/set of pumps Gi. The pumps considered in this analysis
are assumed to be driven by a fixed speed motor. Each pump
g ∈ Gi is considered to have a nominal power consumption P̄ g

and a nominal flow Q̄g , with g ∈ {1, 2, ...} ⊂ N. Additionally,
each pump is considered to have a binary status sgt ∈ {0, 1}
that takes the value 0 when the pump is off and the value
1 when the pump is on at each time step t. Additionally, we
consider a number of periods k during which each pump needs
to remain on once it is activated and a number of periods
m during which each pump needs to remain off once it is
deactivated. This allows for limiting the number of activations
and deactivations that could potentially lead to degradation of
the pump or its motor. For example, in the presented Figure 1,
pump group G1 is used to control flow Q2 and is composed
of three pumps namely g ∈ {1, 2, 3}.

At each time step t the water flow Qi,t for each controllable
flow i ∈ Qc can be computed as a function of the status of
each pump in the pump group Gi according to:

Qi,t =
∑
g∈Gi

sgt · Q̄g (1)

At each time step t the power consumption Pi,t that corre-
sponds to controllable water flow i ∈ Qc can be computed
accordingly as:

Pi,t =
∑
g∈Gi

sgt · P̄ g (2)

The total electrical consumption of the WTS Pt at each
time step t is given by the sum of the controllable power,
the uncontrollable power consumption of the station Pupc

t

and the renewable energy sources (e.g. solar photovoltaic etc.)
generation P res

t as:

Pt =
∑
i∈Qc

Pi,t + Pupc
t − P res

t (3)

The term uncontrollable power consumption Pupc
t is used

to denote the set of electrical devices in the WTS such as
electrical motors related to water filtering etc. over which we
do not have any control.

The set of uncontrollable flows Qu corresponds to processes
that are not controlled by the operator such as the water
demand of the area or the cleaning of the water filters (which
is a seasonal operation that cannot be interrupted). These
processes will be modelled by means of statistical models,
as described in Section III.

2) Reservoirs: Let SoCr
t denote the state of charge of the

reservoir r ∈ {1, 2, ..., R} ⊂ N time step t, with SoCr
t [m

3] ∈[
SoCr, SoC

r
]
. It is considered that a set of inflows Qr,in ⊆ Q

and outflows Qr,out ⊆ Q are attached to each reservoir r.
For instance, in Figure 1, for reservoir 1 it is considered that
Q1,in = {Q1} and Q1,out = {Q2}, while for reservoir 2
we have Q2,in = {Q2, Q3} and Q2,out = {Q4, Q5}. More
formally, we can define an adjacency matrix with dimension
R × I for grouping together all the inflows and outflows for
all reservoirs.

A =


a11 a12 · · · a1I
a21 a22 · · · a2I

...
...

. . .
...

aR1 aR2 · · · aRI

 (4)

Each element ar,i takes values in {−1, 0, 1} depending on
whether flow Qi is an outflow, not connected or an inflow to
reservoir r respectively.

We can also define the efficiency matrix η with dimen-
sions R × I that represents the losses/leakages for each
inflow/outflow as:

η =


η11 η12 · · · η1I
η21 η22 · · · η2I

...
...

. . .
...

ηR1 ηR2 · · · ηRI

 (5)

Parameters ηr,i represent the losses/leakages for each in-
flow/outflow i for reservoir r. Parameters ηr,i take values
ηr,i ≥ 1 when dealing with outflows and values ηr,i ≤ 1 when
dealing with inflows. Appropriate values for these parameters
can identified by performing a system identification process
using data from the WTS that we intend to model. This process
is described in detail in Section III.

Let Qt denote the vector containing all the flows at timestep
t, defined as:

Qt =
[
Q1,t Q2,t · · · QI,t

]
(6)

The state of charge matrix SoCt can be defined as:

SoCt =
[
SoC1

t SoC2
t · · · SoCR

t

]
(7)
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The evolution of the state of charge in matrix notation is given
by:

SoCt+∆t = SoCt +A⊙ η ·QT
t (8)

The symbol ⊙ is used to denote the Hadamard product, also
known as the element-wise product.

B. Market participation

Let us consider a flexible WTS operator nominating its
consumption for the next day in the day-ahead market and
controls in real-time the consumption of the station.

The decision timeline for the flexible WTS for a day D
is presented in Figure 2. At each time step t ∈ T =
{00 : 00, ..., 23 : 45} the WTS operator takes decisions about
the level of the real-time consumption Pt. The real-time
consumption of the WTS is defined in Section II-A1. For the
sake of simplicity regarding the notation and the indexing, we
will assume that the decision timeline and the actual delivery
of power have the same interval i.e. ∆t = 15min.

In addition to that, one day in advance (D − 1) at 10 a.m.
the WTS operator nominates/submits in the day-ahead market
the 96 values of its net consumption profile for the next day
(D). More formally, the WTS operator decides the day-ahead
profile for day D, denoted by PDA

D =
{
PDA
t , ∀t ∈ T

}
.

When the day-ahead market clears, the prices for each hour
of the next day λDA

D =
{
λDA
t , ∀t ∈ T

}
become known.

While in reality the day-ahead prices have an hourly granu-
larity, in the FLEXI-PROFILE contract its specified that the
WTS operator nominates quarter-hourly profiles. Therefore,
we assume the day-ahead prices to be at a constant level for
each quarter of the same hour. It is stipulated by the contract,
that if the day-ahead nominated power is positive the WTS
buys its energy at the day-ahead market price, whereas if the
day-ahead nominated power is negative (production), the WTS
sells energy to the market at a fixed contractually predefined
price λSell, that does not depend on the time.

The WTS operator can compute its day-ahead cost at each
timestep t ∈ T as:

CDA
t =

{
λDA
t · |PDA

t |, if PDA
t ≥ 0.,

−λSell · |PDA
t |, otherwise.

(9)

The imbalance P IM
t at each timestep t is defined as:

P IM
t = Pt − PDA

t , (10)

The imbalance price λIM
t for each quarter becomes known

at the end of the quarter. The imbalance cost can be computed
as:

CIM
t = λIM

t · P IM
t , (11)

As described in Section I, in this paper we assume that
the WTS operator does not intend to arbitrage between the
day-ahead market and the imbalance market by speculating on
the price difference between the two markets. Additionally, in
real-time, the operator could deviate its consumption from the
day-ahead plan in order to benefit from the imbalance prices.

However, this would imply that the WTS operator has access
to accurate forecasts of the imbalance price. This can be very
risky because imbalance markets are highly volatile. Instead,
at each timestep t in real-time the WTS operator controls its
consumption in order to match its day-ahead nomination while
satisfying the operational constraints of the unit.

C. Problem definition

In this section, we define the problem faced by a WTS
operator that participates in the day-ahead market. The cost
minimization objective for electricity transacted in the day-
ahead market faced by a WTS operator can be summarized
as:

min
{Pt,PDA

t ,∀t∈T}

∑
t∈T

λDA
t · P buy

t − λsell · P sell
t (12)

where at each timestep we ensure that the power consump-
tion/production Pt is bought/sold in the market. Thus, we have:

Pt = PDA
t (13)

PDA
t = P buy

t − P sell
t (14)

P buy
t , P sell

t ≥ 0 (15)

The solution of this optimization model yields the optimal
day-ahead nomination plan and the optimal real-time power
consumption for the WTS. However, in reality, the day-ahead
nomination problem cannot be solved optimally due to the
various sources of uncertainty at the day-ahead stage. More
specifically, at the day-ahead decision stage there is uncertainty
related to the day-ahead prices (λDA

t ), the uncontrollable water
flows (Qi,t, ∀i ∈ Qu), the uncontrollable power consump-
tion (Pupc

t ) and the renewable power generation (P res
t ).

The uncertainty related to the the uncontrollable water
flows, the uncontrollable power consumption and the renew-
able power generation may result in discrepancies between
the real-time consumption and the day-ahead plan. Therefore,
during real-time operation, the WTS operator needs to solve
an optimization problem with the objective to minimimize de-
viations (∆Pup

t , ∆P down
t ) from the day-ahead plan according

to:

min
{Pt∀t∈T}

∑
t∈T

C · (∆Pup
t +∆P down

t ), (16)

where we have:

Pt = PDA
t +∆Pup

t −∆P down
t (17)

∆Pup
t ,∆P down

t ≥ 0 (18)

The objective presented in equation (16) aims at penalizing
by a factor C any deviations (∆Pup

t , ∆P down
t ) between the

real-time consumption of the WTS Pt and the day-ahead
nominated schedule PDA

t . At the real-time stage uncertainty
is mostly related to the uncontrollable water flows. In the
following we develop a methodology that creates forecasts
of the various sources of uncertainty. Moreover, we decouple
the optimization problem in two distinct models. One that is
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Fig. 2: Decision timeline for day-ahead nomination and real-time control.

solved at the day-ahead stage and one that is solved in real-
time at each timestep t in order to correct any discrepancies
between the predicted and the realized plan. The methodology
for generating predictions for the uncertain variables, as well
as, the optimization models solved for taking optimal decisions
in day-ahead and real-time are presented in the following
section.

III. METHODOLOGY

As detailed in Section II, the decision making problem of a
flexible WTS operator participating in the short-term markets
consists in two stages, namely i) the day-ahead nomination
of the amount of energy that will be consumed during each
quarter of the next day and ii) the real-time control of the
controllable flows. In this section, we describe the method-
ology used for solving the aforementioned problem. We first
describe the methodology used to estimate the parameters of
the WTS through a system identification process that relies on
historical data. Subsequently we describe the methods used to
create predictions of the prices, the uncontrollable flows and
the residual consumption at the day-ahead stage. We proceed
by presenting the optimization model used at the day-ahead
stage to determine the optimal power nomination. Finally, we
present the optimization model that is solved during real-time
in order to generate the optimal control of the pumps that
matches the nominated day-ahead plan.

A. System identification

As described in Section II-A2, in order to have a realistic
model for estimating the state of charge for reservoir r ∈ R at
each time step t, the values of the efficiency parameters η need
to be identified. To achieve that, we use the model presented
in equation (8) and historical data regarding the matrices of
the flows Qt and the state of charge of the reservoirs SoCt.
The historical dataset containing H sequential data samples
can be defined as:

B = {{ ˜SoC0, ˜SoC1, · · · , ˜SoCH}, {Q̃0, Q̃1, · · · , Q̃H}}.

We use each sample ˜SoCh, Q̃h in the historical dataset and
the model presented in equation (8) to produce estimates of
the state of charge matrix ˆSoCh+1 at the next timestep. Subse-
quently, we aim at finding the parameters η that minimize the

error between the estimates of the model ˆSoCh+1 of equation
(8) and the historical data ˜SoCh+1. We have:

η = argmin
η

1

H

∑
h∈{1,··· ,H}

( ˆSoCh − ˜SoCh)
2 (19)

s.t. ˆSoCh+1 = ˜SoCh +A⊙ η · Q̃T
h , (20)

∀h ∈ {0, · · · , H − 1}.

B. Day-ahead price forecasting

The WTS operator every day D at 10 a.m. needs to
nominate the power that will be consumed for the operational
needs of the WTS during the next day. The WTS operator
schedules most of its consumption during periods of the
day that the price of electricity is at the lowest levels. To
identify these periods of the day the WTS operator creates
predictions of the day-ahead price for the following N days.
We define the look-ahead horizon at day D that is denoted
by T̄ = {D 00 : 00, D 00 : 15..., D + N 23 : 45}. We
denote as λ̂DA

D =
{
λ̂DA
t , t ∈ T̄

}
, the forecast of the day-

ahead market prices for the the following N days.
In order to generate predictions for the day-ahead prices of

the following days we use an auto-regressive time-series model
predDA that relies on historical values of the day-ahead price
of the past M days. We denote as λDA

D−1 the 96 quarter-hourly
values of the day-ahead price for day D − 1. The prediction
task can be described by:

λ̂DA
D = predDA(λ

DA
D−1, ..., λ

DA
D−M ) (21)

More specifically, the model predDA is an instance of Face-
book Prophet, that is a decomposition time-series framework
that decomposes the signal in its trend, its seasonality and
the holidays [20]. The parameters of the model predDA are
tuned using a large dataset of historical values of the day-ahead
prices.

The motivation behind using such a model lies on the fact
that the day-ahead price formation depends on the strong daily
seasonality of the electricity demand. In addition to that, in
this particular application, we are not necessarily interested to
obtain high accuracy on the precise value of the prediction of
the absolute day-ahead price. Instead, we are more interested
in predicting the spread and the time periods of peak versus
off-peak prices, because this information is in essence what
will lead the WTS to schedule its controllable consumption.

C. Uncontrollable water flow forecasting

There are two different types of flows that can be considered
uncontrollable in the context of a WTS. The first type refers
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to flows that correspond to water demand from the users. The
latter corresponds to water inflows/outflows that originate from
or are directed towards some internal process of the station e.g.
water production, filter cleaning etc.

For the prediction task of the first type of uncontrollable
water flows that corresponds to user water demand we use an
auto-regressive seasonality model. The motivation behind the
use of such a model lies on the fact that generally speaking,
the water demand has strong daily and yearly seasonality
components. To this end, we denote the forecast of the
uncontrollable seasonal flows as Q̂i,D =

{
Q̂i,t, t ∈ T̄

}
,

where i ∈ Qu. Similar to the day-ahead forecasting process
we define a water flow forecasting model predQ that relies
on the historical realizations of the uncontrollable flow of the
past M days as:

Q̂i,D = predQ(Qi,D−1, ..., Qi,D−M ) (22)

The parameters of the model predQ are tuned using a large
dataset of historical values of each flow Qi. We denote as
Qi,D−1 the 96 quarter-hourly values of the flow for day D−1.

For the prediction task of the second type of uncontrollable
water flows a detailed analysis on the nature of the process
is necessary. Depending on the underlying physical task, a
custom model can be constructed in order to predict its
values for the considered look-ahead horizon. For the case
study presented in this paper, the methodology for tackling
the prediction task of these flows is detailed in Section
IV-C. However, there is no generic methodology that can be
abstracted and used in every setting and it is therefore case-
sensitive.

D. Uncontrollable consumption & RES generation forecasting

As described in Section II-A1, the uncontrollable power
consumption consists of any uncontrollable processes at
the WTS that consume electrical power. The prediction
of the uncontrollable consumption denoted as P̂upc,DA

D ={
P̂upc
t t ∈ T̄

}
. The prediction of the renewable generation

is denoted as P̂ res,DA
D =

{
P̂ res
t t ∈ T̄

}
. The prediction

of both the uncontrollable power consumption and the RES
generation is also performed by means of an auto-regressive
model similar to the two previous prediction tasks presented
in equations (21) and (22).

E. Day-ahead optimization model

As described previously, the WTS operator every day at
10 a.m. nominates the consumption level for each quarter of
the next day D, denoted by PDA

D =
{
PDA
t , ∀t ∈ T

}
. As

described in Section II-A1, the day-ahead nomination for the
consumption at each time step t of the next day can be split
into two parts, namely the day-ahead estimate of the control-
lable consumption and the forecasts of the uncontrollable part
and the RES generation as:

PDA
t = P̂upc

t − P̂ res
t +

∑
i∈Qc

Pi,t.

In order to construct its nomination, the WTS operator
solves an optimization model to determine the optimal control-
lable consumption plan. After the system identification and the
prediction steps described above, the flexible WTS operator
constructs the optimization model as shown in Algorithm 1
for determining the controllable part∑

i∈Qc

Pi,t, ∀t ∈ T


of the day-ahead nomination that is submitted each day D to
the retailer.

It is important to note that, equations (30) - (34) are used
to model the minimum time on/off constraints for protecting
the pumps from frequent activations and deactivations. More
specifically, binary variables bgt and egt are used to indicate
whether pump g is activated or deactivated at timestep t re-
spectively. Equation (31) denotes that if pump g was activated
at timestep t, i.e. bgt = 1, it cannot be deactivated in the
following k timesteps, i.e. egt = egt+∆t = · · · = egt+k∆t = 0.
Similarly, equation (32) denotes that if pump g was deactivated
at timestep t, i.e. egt = 1, it cannot be activated in the following
m timesteps, i.e. bgt = bgt+∆t = · · · = bgt+k∆t = 0. Addition-
ally, equation (33) imposes a specific order with which pumps
are activated in a group of pumps. This constraint is introduced
by the technical operation of the WTS. More specifically,
the control action transmitted to the operating system of the
WTS is the total number of pumps that should be active. The
decision about which pumps will be active at each point is a
decision made by the operators.

After solving the optimization problem described, we obtain
a day-ahead estimate of the values of the flows ({Qi,D}i∈Qc )
and the state of charge of the reservoirs ({SoCr

D}r∈R). A little
subtlety regarding the look-ahead horizon versus the actual
day-ahead nomination horizon is that since we are considering
the control of water reservoirs it is important to consider a
look-ahead horizon longer than one day. The reason for that
is that at the end of the horizon the state of the reservoirs
would end up at the minimum allowed level. To avoid that we
instead consider a longer than one day look-ahead horizon and
we only keep for the day-ahead nomination only the results
we obtained for the following day.

F. Real-time optimization model

As described previously, after the day-ahead plan is nomi-
nated PDA

D , the WTS operator is responsible to control the
real-time controllable consumption in such a way that it
follows as close as possible the day-ahead plan. To achieve
that, the operator would generate new forecasts in real-time
for the uncontrollable water flows as described above. The
look-ahead horizon for the real-time decision is defined as
T̃ (t) = {t, ..., t+K·∆t}. Based on these updated forecasts that
depend on the realization of the flows close to real-time, the
operator solves the optimization model described in Algorithm
2. The output of this optimization model is the activation or
deactivation of the pumps {sgt ,∀g ∈ Gi,∀i ∈ Qc} considered
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Algorithm 1: Day-ahead optimization model.

Input: T̄ : look-ahead horizon,
λ̂DA
D : day-ahead price forecast,
{Q̂i,D}i∈Qu : uncontrollable water flows forecast,
{P̄ g}g∈{Gi}i∈Qc : nominal power for all pumps,
{Q̄g}g∈{Gi}i∈Qc : nominal water flow for all
controllable flows,
η: efficiencies matrix,
A: adjacency matrix,
SoC, SoC: reservoir lower and upper limits.
Output: PDA

D : day-ahead nomination,
{Qi,D}i∈Qc : controllable flows plan,
SoCD}: day-ahead plan for the state of charge of all
reservoirs,
{sgD}g∈{Gi}i∈Qc : day-ahead plan for the status of all
pumps
Solve:

min
∑
t∈T̄

λ̂DA
t ·∆t · P buy

t − λsell · P sell
t (23)

s.t. ∀t ∈ T̄ :

PDA
t = P̂upc

t − P̂ res
t +

∑
i∈Qc

Pi,t (24)

PDA
t = P buy

t − P sell
t (25)

Pi,t =
∑
g∈Gi

sgt · P̄ g, ∀i ∈ Qc (26)

Qi,t =
∑
g∈Gi

sgt · Q̄g, ∀i ∈ Qc (27)

SoCr
t+∆t = SoCr

t +
∑
i∈Qu

ar,i · ηr,i · Q̂i,t

+
∑
i∈Qc

ar,i · ηr,i ·Qi,t

∀r ∈ R (28)

SoCr ≤ SoCr
t ≤ SoC

r
, ∀r ∈ R, (29)

sgt − sgt−1 = bgt − egt ,∀g ∈ Gi, ∀i ∈ Qc (30)

bgt +

t+k·∆t∑
t

egt ≤ 1,∀g ∈ Gi, ∀i ∈ Qc (31)

egt +

t+m·∆t∑
t

bgt ≤ 1,∀g ∈ Gi, ∀i ∈ Qc (32)

s1t ≤ s2t ≤ · · · ≤ s
|Gi|
t , ∀i ∈ Qc (33)

sgt , b
g
t , e

g
t ∈ {0, 1} ,∀g ∈ Gi, ∀i ∈ Qc (34)

P buy
t , P sell

t ≥ 0 (35)

(a) Schematic representation of the Stembert water treatment station.

(b) Schematic representation of the subsystem of Stembert water
treatment station that is controlled during the pilot phase.

Fig. 3: Schematic representation of Stembert water treatment
station.

in order to control optimally the water flows and the electrical
consumption of the WTS. While we compute values in the
entire look-ahead horizon T̃ (t) only the values computed at
time step t are applied to the real system. It is important to
note that, similar to the day-ahead problem, equations (42) -
(46) are used to ensure the minimum time on/off constraints
during the real-time operation as well.

IV. CASE STUDY: STEMBERT TREATMENT STATION

In the context of a real-life pilot project, the described
methodology is used for the day-ahead nomination and real-
time control of the Stembert water treatment station located
in Verviers, Wallonia, Belgium (50°36’06.6”N 5°54’14.3”E).
More specifically, the presented algorithms for the prediction
and control of a WTS are implemented in the AMEO1 (Ad-
vance Management of Energy Operations) platform, developed
by Haulogy2. AMEO allows for data collection and pro-
cessing from various sources and runs intelligent forecasting
and decision-making algorithms to optimize the economic
and technical operations of energy systems. AMEO provides
advanced monitoring solutions tailored to the considered use
case and allows for rapid prototyping and implementation.

1https://www.haulogy.net/en/2021/12/17/successful-go-live-in-the-context-
of-the-hydroflex-project/

2https://haulogy.net/software-platforms/platform-for-new-energy-markets/
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Algorithm 2: Real-time optimization model.

Input: T̃ (t): look-ahead horizon,
PDA
D : day-ahead nomination,

C: deviation penalty,
{Q̂i,T̃ (t)}i∈Qu : uncontrollable water flows forecast,
{P̄ g}g∈{Gi}i∈Qc : nominal power for all pumps,
{Q̄g}g∈{Gi}i∈Qc : nominal water flow for all
controllable flows,
η: efficiencies matrix,
A: adjacency matrix,
SoC, SoC: reservoir lower and upper limits.
Output: {sgt }g∈{Gi}i∈Qc : activation signal for all

pumps,
{Qi,T̃ (t)}i∈Qc : real-time estimation of the controllable
flows,
SoCT̃ (t)}: real-time estimation of the state of charge
of all reservoirs
Solve:

min
∑

t∈T̃ (t)

C · (∆Pup
t +∆P down

t ) (36)

s.t. ∀t ∈ T̃ (t) :∑
∀i∈Qc

Pi,t + P̂upc
t − P̂ res

t = P̄DA
t +∆Pup

t −∆P down
t

(37)

Pi,t =
∑
g∈Gi

sgt · P̄ g, ∀i ∈ Qc (38)

Qi,t =
∑
g∈Gi

sgt · Q̄g, ∀i ∈ Qc (39)

SoCr
t+∆t = SoCr

t +
∑
i∈Qu

ar,i · ηr,i · Q̂i,t

+
∑
i∈Qc

ar,i · ηr,i ·Qi,t

∀r ∈ R (40)

SoCr ≤ SoCr
t ≤ SoC

r
, ∀r ∈ R, (41)

sgt − sgt−1 = bgt − egt ,∀g ∈ Gi, ∀i ∈ Qc (42)

bgt +

t+k·∆t∑
t

egt ≤ 1,∀g ∈ Gi, ∀i ∈ Qc (43)

egt +

t+m·∆t∑
t

bgt ≤ 1,∀g ∈ Gi, ∀i ∈ Qc (44)

s1t ≤ s2t ≤ · · · ≤ s
|Gi|
t , ∀i ∈ Qc (45)

sgt , b
g
t , e

g
t ∈ {0, 1} ,∀g ∈ Gi, ∀i ∈ Qc (46)

∆Pup
t ,∆P down

t ≥ 0., ∀t ∈ T̃ (t) (47)

During this pilot project the station of Stembert was operated
automatically by AMEO for a period of 16 days.

A. Reservoir operation

In this section, we will focus on the operation of the two
large reservoirs, called Louveterie and Bronde, with 30, 000m3

capacity each, as depicted in Figure 3a. Water from the
treatment plant is gathered in a small reservoir called Cisternes
with capacity 5, 000m3. Water from this reservoir is treated
and then pumped through five low-pressure pumps and into
Bronde. Subsequently, four high-pressure water pumps are
responsible for pumping water either towards Louveterie, or
directly towards the water network. Each one of these high-
pressure pumps, when operated, consumes 250kW and creates
a flow of 1, 000m3/h. Alternatively, water stored in Louveterie
can be directed towards the water network that is supplying
the area of Liège.

Conventionally, the operating strategy of both pump groups
is based on thresholds of the water level in the reservoirs
upstream and downstream. More precisely, when the water
level of Bronde is between 2.8m and 4.2m one pump is oper-
ating. If the water level is higher than 4.2m then an additional
pump starts operating in parallel. When the water level drops
below 2.8m then the water pump towards Louveterie stops.
Additionally, pumping water towards Louveterie is suspended
in case the water level in Louveterie is higher than 4.78m. The
operating strategy of the low-pressure pumps responsible for
pumping water from the Cisterns to Bronde is the following.
When the water level of Cisterns is between 2.2m and 3.45m
one pump is operating. If the water level is higher than 3.45m
then two pumps are operating in parallel. When the water
level drops below 2.2m then the water pump towards Bronde
stops. Due to restrictions related to the chemical composition
of the water gathered in the reservoir of Cisternes we assume
that the WTS operator cannot change the conventional control
strategy for the low-pressure pumps. These rule-based control
strategies for the conventional operation of both pump groups
together with the model of the station detailed in Section II-A
are used to simulate the conventional operation and power
consumption of the station during the 15-day period of the
pilot phase.

In the following we consider that the WTS operator can
benefit from its flexibility potential by adapting the operation
of the high-pressure pump group G3 as illustrated in Figure
3b. The set of flows that appear in the selected system is Q =
{Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8}. Out of the set of all flows
we distinguish between the controllable flows Qc = {Q3} and
the uncontrollable ones Qu = {Q1, Q2, Q4, Q5, Q6, Q7, Q8}.
The controllable flow Q3 is controlled by pump group that
consists of 3 individual pumps, i.e. G3 = {1, 2}. Each of these
pumps is able to generate a flow of Q̄1, Q̄2 = 1000m3/h and
its power consumption is P̄ 1, P̄ 2 = 250kW .

There are two reservoirs involved in our study so we
consider R = {Br,Lou}. The adjacency matrix used for this
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case study is:

A =

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8[ ]
Brou 0 1 −1 0 −1 −1 0 0
Lou 0 0 1 −1 0 0 0 0

The inflow to Bronde is QBr,in = {Q2} and the outflows
are QBr,out = {Q5, Q6}. The considered reservoir security
limits for Bronde are SoCBr = 12, 000m3, SoC

Br
=

27, 000m3. The inflow for Louveterie is QLou,in = {Q3} and
the outflow is QLou,out = {Q4}. The considered reservoir
security limits for Louveterie are SoCLou = 15, 000m3,
SoC

Lou
= 28, 000m3.

B. System identification

As described in Section III-A, in order to have a working
model of the WTS we need to identify the efficiencies of the
input/output flows for each water reservoir (η). To this end,
we use historical data of water flows and state of charge for
each of the two reservoirs namely, Bronde and Louveterie. The
average error achieved was ∼4%. The values of the obtained
parameters are the following:

η =

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8[ ]
Brou 0 0.95 1 0 1.01 1.01 0 0
Lou 0 0 0.96 1.05 0 0 0 0

C. Producing forecasts

In this section, we present the results for the generation
of forecasts that are used in the day-ahead nomination and
the real-time control decision processes. It is important to
note that, there was no RES production considered during the
period of the pilot project. For the day-ahead nomination step
we need to predict the day-ahead prices in order to optimize
the WTS consumption pattern. As described in Section III-B,
we use an instance of Facebook prophet. The day-ahead
optimization horizon is selected to be N = 2 days. It is
important to note, that accuracy in terms of absolute values is
not the main goal at this step. Instead, a forecaster that can
predict well the shape of the day-ahead price curve, i.e. the
periods of low and high prices, is sufficient for producing an
optimal day-ahead nomination.

Additionally, as described above, in both the day-ahead
and the real-time stage we need to produce forecasts for the
uncontrollable flows (Qu = {Q1, Q2, Q4, Q5, Q6}) of the
system presented in Figure 3b. Out of the set of uncontrollable
flows, during the exploratory data analysis there were two
flows, namely Q4 (Adduction) and Q5 (Restitution) that were
categorised to have strong daily seasonality. For each one of
these two flows we use a Facebook prophet instance.

The rest of the uncontrollable flows do not have some
daily seasonality and mainly depend on the cleaning processes
of the filters (Lavage). In order to obtain a forecast for
flows {Q1, Q2, Q6, Q7, Q8} we work as following. For the
prediction of the inflow to the Bronde Q2 and the flow from
the Bronde to Lavage Q6, we need to simulate the conventional

Algorithm 3: Rule-based control of Cisterns.

1: Inputs: Q̂0,t, ˆSoC
Cis

t

2: if 2.2m < ˆSoC
Cis

t < 3.45m then
3: Q̂1,t ← 1000m3

4: else if 3.45m < ˆSoC
Cis

t then
5: Q̂1,t ← 2000m3

6: else
7: Q̂1,t ← 0m3

8: end if
9: Output: Q̂1,t

Algorithm 4: Rule-based water-flow prediction.

1: Inputs: Q̂1,t, Q̂8,t

2: if Q̂8,t > 0 then
3: if Q̂8,t > Q̂1,t then
4: Q̂2,t ← 0
5: Q̂6,t ← Q̂8,t − Q̂1,t

6: Q̂7,t ← Q̂1,t

7: else
8: Q̂2,t ← 0
9: Q̂6,t ← 0

10: Q̂7,t ← Q̂1,t

11: end if
12: else
13: Q̂2,t ← Q̂1,t

14: Q̂6,t ← 0
15: Q̂7,t ← 0
16: end if
17: Output: Q̂2,t, Q̂6,t, Q̂7,t

operation for the part of the station that we do not control i.e.
upstream of the low-pressure pumps. First, we predict based
on historical data the water consumption for Lavage Q̂8 and
the inflow rate at Cisterns Q̂0. Next, we simulate the state of
charge of Cisterns using the pumping strategy described in
Section IV-A, as presented in Algorithm 3, in order to predict
the flow Q̂1.

The predictions of the water flows Q̂1 and Q̂8 serve as input
to the rule-based algorithm presented in Algorithm 4, in order
to predict flows Q̂2,t, Q̂6,t, Q̂7,t. In case that, we predicted that
at timestep t the filters are being washed (Q̂8,t > 0), then flow
Q̂1,t is used entirely for this purpose, i.e. Q̂2,t = 0 and Q̂7,t =
Q̂1,t. If the water flow needed for filter cleaning Q8 is larger
than the water flow Q̂1,t (i.e. Q̂8,t > Q̂1,t), additional water
flows from Bronde Q̂7,t = Q̂8,t− Q̂1,t. In the case that, there
is no water needed for filter cleaning we have Q̂2,t = Q̂1,t.

D. Day-ahead nomination & Real-time control

As described in Section III, the WTS operator makes two
decision steps in order to valorize its flexibility in the short-
term market. The first step takes place one day in advance
by nominating the WTS consumption plan for the next day.
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TABLE I: Cost reduction in Stembert water treatment station
in the pilot 15-days period.

Conventional Flexible Reduction
High-pressure pumps cost (C) 22,614 20,195 10.7%
Pumping cost (C) 51,667 48,182 6.7%
Total cost (C) 97,385 93,900 3.6%

The second step takes place in real-time and it consists in
matching the day-ahead plan to the real-time consumption.
The day-ahead plan (orange) and the real-time value (blue) of
the power consumed by the high-pressure pumps is presented
in Figure 4a. It can be observed that, there are really minor
differences between the two which indicates that the WTS can
be securely operated based on the day-ahead plan with minor
corrections necessary in real-time.

In effect, small deviations (errors) between day-ahead flow
predictions and realisations can be dampened due to the
reservoirs and in particular the one of Bronde. This can be
observed by the day-ahead estimation (orange) versus the
real-time operation (blue) of the state of charge (i.e. water
volume) of Bronde illustrated in Figure 4b. We can see that
while the shapes of the two curves are very similar there are
discrepancies that are attributed to the imperfect forecasts of
water flows that enter and leave Bronde ({Q1, Q5, Q6}). As
can be seen in Figure 4f the seasonal flow of Restitution (Q2)
can be predicted with high accuracy.

On the other hand, as it can be observed in Figure 4c, the
day-ahead estimation (orange) versus the real-time operation
(blue) of the state of charge of Louveterie are practically
identical. This occurs due to the fact that the predictions
related to the water demand (Q4) are quite accurate, as it can
be seen in Figure 4e and the pumping is exactly the same as
the day-ahead pumping plan. Finally, we can see in Figure 4d
that the day-ahead price forecast is able to successfully capture
the peak versus off-peak periods of the day.

The flexible consumption of the Stembert WTS during the
pilot project versus the previous non-flexible consumption is
illustrated in Figure 5a. More precisely, we can see clearly
in Figure 5b that part of the consumption related to the
controllable high-pressure pumps is shifted from periods of
the day with high prices to periods where the price is low.
The cost reduction achieved during the 15-days period of the
project is presented in Table I. We can see a substantial cost
reduction (∼11%) on the cost related to the operation of the
high-pressure pumps and 6.7% cost reduction considering all
pumping processes. This reduction is related to the fact that the
changes in the operation of the high-pressure pump may affect
indirectly the pumping process in the low-pressure pumping
group. Finally, a 3.6% was achieved when taking into account
the total consumption of the WTS.

V. CONCLUSIONS

Flexibility is key for enabling the large-scale penetration of
RES in the context of the energy transition. In this paper, we
exploit the value of flexibility coming from water treatment
stations. We present a generic modelling framework for the

(a) Day-ahead (orange) nomination versus the real-time oper-
ation (blue) of the controllable high-pressure pumps.

(b) Day-ahead estimation (orange) versus the real-time opera-
tion (blue) of the state of charge (i.e. water volume) of Bronde.

(c) Day-ahead estimation (orange) versus the real-time op-
eration (blue) of the state of charge (i.e. water volume) of
Louveterie.

(d) Day-ahead price forecast (orange) versus the realisation
(blue).

(e) Day-ahead forecast of flow Q4 (orange) versus the reali-
sation (blue).

(f) Day-ahead forecast of flow Q2 (orange) versus the realisa-
tion (blue).
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(a)

(b)

Fig. 5: The flexible consumption of the Stembert WTS during
the pilot project versus the conventional non-flexible consump-
tion during the pilot phase.

energy market participation and the real-time operation of a
WTS. We apply this framework to a real-life pilot project in
Wallonia, where the operation of a WTS has been adapted
and consumption from the high-consuming pumping processes
is shifted during the day. The results from the pilot project
indicate cost reduction up to 11% and a large potential for
flexible WTS.
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