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ABSTRACT

Many collective systems exist in nature far from equilibrium, ranging from cel-
lular sheets up to flocks of birds. These systems reflect a form of active matter,
whereby individual material components have internal energy. Under specific pa-
rameter regimes, these active systems undergo phase transitions whereby small
fluctuations of single components can lead to global changes to the rheology of
the system. Simulations and methods from statistical physics are typically used to
understand and predict these phase transitions for real-world observations. In this
work, we demonstrate that simulation-based inference can be used to robustly in-
fer active matter parameters from system observations. Moreover, we demonstrate
that a small number (from one to three) snapshots of the system can be used for
parameter inference and that this graph-informed approach outperforms typical
metrics such as the average velocity or mean square displacement of the system.
Our work highlights that high-level system information is contained within the
relational structure of a collective system and that this can be exploited to better
couple models to data.

1 INTRODUCTION

The difference between animate and inanimate matter is fundamental to biological systems. How-
ever, many biological systems behave, over short time periods, in similar ways to classical materials.
For example, confluent sheets of epithelial cells form a rigid substrate with quantifiable stiffness and
murmurations of flocks of starlings can create swirling patterns that mimic the phase transition of
liquid to gas. Collective systems of individual agents that contain their own energy source, also
known as active matter, are always far from equilibrium and cannot be understood using thermody-
namic theory. Instead, a combination of computer simulation and statistical physics has typically
been used to understand these systems and quantify their states.

One of the hallmarks of active matter is the rise of emergent properties, system-wide features that
exist across length-scales much larger than an individual entity. While the exact circumstances that
lead to emergent properties is still an open question, there is some evidence that the connectivity of
a system may be important. In this work, we build our own particle-based active matter model and
use the system connectivity, represented as a contact graph, to infer the simulation parameters using
simulation-based inference. We find that a single snapshot allows for robust inference, highlighting
that high-level properties are contained within the structure of a collective system and that increasing
the number of snapshots improves inference power. This work is the first, to the best of our knowl-
edge, to combine geometric deep learning with simulation-based inference to quantify collective
systems and demonstrates the strength of applying these methods when compared to conventional
approaches.
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1.1 RELATED WORKS

The field of active matter has heavily relied upon computer simulation in order to identify phase
transitions and system features over the last three to four decades. There are several comprehensive
reviews which cover this topic, including Ramaswamy (2010), Shaebani et al. (2020) or Das et al.
(2020). In this work, we consider a 2D system that approximates the properties of collective cell
migration. For other works that consider cellular systems as active matter, see, for example Alert &
Trepat (2020), Henkes et al. (2020) or Stillman & Mayor (2023).

The field of simulation-based inference can refer to both the use of simulation with Bayesian sam-
pling to infer model parameters and the specific application of neural networks to approximate
posterior densities from simulation. Whereas the former meaning reflects a large body of work,
including approximate Bayesian computation and others (see, for example, Marin et al. (2012)), we
refer specifically to the latter. For further details on simulation-based inference see, for example, the
review given in Cranmer et al. (2020).

Finally, this work is, to the best of our knowledge, the first application of simulation-based inference
to active matter. Previous work has used ABC to infer properties of cell migration, and other papers
have used Bayesian inference to quantify model uncertainty (Vo et al., 2015; Ross et al., 2017).
However, none of these works have used recent advances in deep learning to improve the quality
and statistical power of inference. With regards to graph-based learning we refer the reader to Wu
et al. (2020) for an overview and note the recent work of Dyer et al. (2022) on combining simulation-
based inference with graph-based learning for agent-based models.

2 METHODS

2.1 ACTIVE MATTER MODEL

To test the applicability of simulation-based inference for active matter systems, we use a custom-
built simulator to output trajectories of active Brownian particles, with details provided in subsec-
tion A.1. We assume that particles exert mechanical forces on neighbouring particles within some
contact radius, according to an interaction potential that contains both stiff and soft components.
This interaction potential is also detailed in subsection A.1. Example output from our simulations
can be seen in Figure 1. In this work, we consider parameter sets, θ, which vary the active force, v0,
the stiffness of interactions, k, and the persistence timescale for a particle, τ .

2.2 SIMULATION-BASED INFERENCE

We are interested in whether we can determine a set of parameters for an active matter system, given
some observations. In Bayesian terms, this is equivalent to estimating the posterior probability dis-
tribution, p(θ|x), for parameters θ and observations x. Unfortunately, most inference algorithms
require the explicit calculation of the likelihood for the system, which is intractable for our case.
Instead, we use amortized variational inference, or neural posterior estimation (NPE), to learn a
neural density estimator of the posterior from training data generated from the joint distribution

(a)

θ1 = {25, 25, 2.5} θ3 = {30, 50, 2.5} θ4 = {7, 40, 1.5}θ2 = {60, 70, 3.5}

(b) (c) (d)

Figure 1: Example outputs from simulations of active matter representing different phases, where
we alter parameter values, θ, for the active force, v0, stiffness, k, and persistence timescale, τ , of an
active matter model. Hence, θ = {v0, k, τ}.
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p(θ,x) = p(θ)p(x|θ). We use the LAMPE package to perform our simulation-based inference1, us-
ing a masked autoregressive flow network (Papamakarios et al., 2017) as density estimator. Further
details on the different architectures designs are given in subsection A.2.

2.3 GRAPH-INFORMED SIMULATION-BASED INFERENCE

The output from the simulator includes position and velocity data of individual particles. We keep
the number of particles fixed at 200 and output 100 snapshots of the system. Hence, output from
the simulator is relatively small in the context of active matter models but still must be summarised
for simulation-based inference. Typical approaches for summarising active matter systems includes
metrics such as the average velocity and the mean square displacement (MSD). In this work, we
compare these classical approaches to summarising active matter with graph-based learning.

Specifically, we assume that the state of the system for each timestep can be represented by a graph
constructed from a set of nodes and edges, namely Gt = {Nt, Et}, where nodes are given by the
particles spatial position and velocities and edges represent where two particles are within a specified
contact radius, as described in subsection 2.1. Example graphs for different states of the system
are given in Figure 2. For all nodes, we include position and velocity data. We use graph neural
networks (GNNs) to embed specific timesteps of the system into low dimensional graph embedding,
ht, where we use graph convolutional networks (GCNs, Kipf & Welling, 2016), with global mean
pooling. We consider two different cases, where we have only the final timestep, GT , and where we
have the initial, final and a ‘halfway’ timestep, G{0,T/2,T}. We then pass these graph embeddings
to the neural network used for estimating the posterior. In practice, both embedding and density
estimator networks are trained in parallel.

hT

t = Tt = 0 

x
y

t = T/2 

h{0,T/2,T}

Figure 2: We use spatio-temporal interaction networks to create our embeddings, where spatial
interactions are based on a cutoff and where we connect the same particles between timesteps.
Graph embeddings are constructed using either single snapshots, such as hT above, or all snapshots,
as in h{0,T/2,T}. Here, we show interaction network for simulation output in Figure 1(b).

3 RESULTS

We find that using the interaction information of particles, described by an interaction graph, is
sufficient to infer parameters for active matter models. In Figure 3, we show the the estimated
posterior using three different summarising approaches for the simulation output, where we take the
simulation output shown in Figure 1(b) and Figure 2 as ground truth. First, we find that we are able to
correctly identify the true parameters using the average velocity and MSD as summary statistics but
with high uncertainty, as shown in green where the probability density is spread across, for example,
the prior distribution of interaction stiffness values. When we use only the last time step, shown in
orange, the probability mass becomes much more centered around the true parameter values, marked
as dashed lines and black dots. These results demonstrate that even a single snapshot of interactions
can outperform classical methods for summarising small systems of interacting particles.

1Package details can be found here: https://lampe.readthedocs.io
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Figure 3: Comparing (a) posterior pairplots for SBI using summary statistics, final interaction graph,
and three snapshots of the interaction graph, and (b) a comparison of coverage tests for the different
summarising methods.

As we use more timesteps as summarising features, our posterior estimation becomes increasingly
tighter around the true parameter values, as shown as blue curves in Figure 3. Here, we use only
three timesteps, the initial structure of the system, the final structure of the system (as in orange), and
halfway between these two timesteps. The overall increase in accuracy is relatively small compared
to a single timestep but considerably tighter than using average velocity and MSD. In order to assess
how well-calibrated our posteriors are, we compute the expected coverage, which quantifies the
probability that a set of parameters will be included in the highest density region of probability of a
posterior (for further details see Hermans et al. (2021)). This is shown in Figure 3.b. We observe that,
while the estimated posterior calculated using summary statistics (average velocity and MSD) has
larger spread of uncertainty, the expected coverage is above the diagonal implying that the posterior
distributions are over-dispersed. On the other hand, the expected coverage for posteriors calculated
using the interaction graph are lower, indicating they are under-dispersed. We see relatively little
difference in the impact of the number of snapshots used. Future work will investigate how to
improve the expected coverage of these graph-informed posteriors.

4 DISCUSSION

We have demonstrated that using relational data in place of summary statistics provides a method for
inferring parameters of active matter. Active matter systems, ubiquitous in biology, are especially
difficult to couple to mathematical models as they generate high-dimensional stochastic trajectories.
These systems can exhibit a range of rheologies, from fluid to crystalline, which are thought to be
important for many biological processes including during embryonic development and cancer pro-
gression. Quantifying active matter systems requires simulating large systems over long timescales
and comparing point summaries of system statistics to observations.

Here, we demonstrate that geometric deep learning, combined with simulation-based inference,
which we refer to as graph-informed SBI, allows for the estimation of the posterior distribution for
small active matter systems over short timescales. This is the regime where the descriptive power
of classical methods for summarising these systems, such as through calculating intermediate scat-
tering functions or velocity correlations, are restricted by the small size of the system. Surprisingly,
we find that even the relational data contained in the final timestep of simulation output has suffi-
cient descriptive power to estimate parameter values. This finding is empirically supported by other
work, for example in (Bapst et al., 2020), which linked structure to dynamics in glassy systems
using GNNs. Importantly, our work has significant value for the field of cell biology, as our results
demonstrate that in vitro experiments can be used to determine rheological impacts of changes in
density even when the number of cells observed is small.
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Finally, we note that our work is an exciting yet preliminary step on the path towards combining
geometric deep learning with collective interacting systems. In this work, we use a GCN and embed
temporal information through a spatio-temporal adjacency matrix. We expect further improvements
of our method through the introduction of concepts such as attention or memory. We look forward
to work in this progression and applying our approach to real experiment data.
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A APPENDIX

A.1 ACTIVE MATTER MODEL

In this work, we use a custom-built simulator for active matter simulations in 2D. Taking motivation
from collective cell migration, we assume that motion is over-damped. For each timestep, we update
the position, according to

ṙi = v0n̂i +
1

ζ

∑
j

Fij (1)

where r is the position of each particle, v0 is the active force, n is the normal to the particle, ζ is the
friction in the system, and where Fij is the interaction potential between particles i and j. We also
update an angular variable, θr, which is described by

θ̇ri = ηi, 〈ηi〉 = 0, 〈ηi(t)ηj(t′)〉 =
1

τ
δijδ(t− t′). (2)

This variable causes the particle to perform a random walk with diffusion constant Dr =
1
2τ , where

τ is the persistence timescale and is one of the parameters that we investigate. The noise, η is
assumed to be Gaussian and where δ is the Kronecker delta.

At each timestep, we also update the position based on distance-based interactions between other
particles. The interaction forces are described by a linear piecewise force law which decreases
linearly as a function of distance. We refer to the slope of decrease as the stiffness of interactions
and denote this by k. This is also one of the parameters that we investigate, along with the persistence
timescale, τ , and the active propulsion force of the particle, v0. For two particles i and j separated
by a distance r = |rj − ri| and with radii Ri and Rj , where we denote the sum of radii with bij , we
calculate the forces using the following interaction force law,

Fij(r) =


k (r − bij) if r

Ri+Rj
< 1 + ε

−k (r − bij − 2εbij) if 1 + ε < r
Ri+Rj

< 1 + 2

0 otherwise
(3)

Here, ε is a dimensionless parameter that reflects the attraction strength of interactions or the adhe-
sion. This interaction force is calculated for particles within a contact radius given by their radius
and a cutoff region equal to 1 + 2ε

In this work, we take cell migration as inspiration. Our interaction dynamics is inspired by
biological cells, as in (Matoz-Fernandez et al., 2017), and we dimensionalise simulation units to be
appropriate for modelling cell assays. Hence, cell radius is 10 microns and the velocity of cells is
in units microns/hour. To generate simulation output, we sample from a uniform prior distribution
where both v0 and k are between 0 and 150 and τ is between 0 and 10. we construct the system
such that particles have polydispersity of 0.3. Finally, we assume that the number of particles
remains unchanged and that the system domain is open.
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A.2 NEURAL POSTERIOR ARCHITECTURES

We consider three different inference approaches to estimate the posterior distribution of our. For
all three, we use neural posterior estimation (NPE) with a masked autoregressive flow (MAF) (Pa-
pamakarios et al., 2017; Greenberg et al., 2019). For all architectures, we pass the NPE network
observational features of size 100. Where we use only summary statistics, this is the average ve-
locity and mean square displacement and for graph-informed statistics, we embed the interaction
networks into graph-embeddings of size 100.

We first consider the influence of architecture size for the inference of the posterior using only
summary statistics. We find that we get best performance, as measured by the negative log-likelihood
for MAFs with four layers of size 256, where we also consider fewer (3) and smaller (64,128) layers.
Having found the best performance for summary statistics, we fix the inference network shape to
allow for fair comparison against embedding architectures.

For the embedding network, we use a graph-convolutional network (Kipf & Welling, 2016) with 3
steps of message passing and with batch normalisation before each step. We also compute the unified
graph embeddings as a final step using global (mean) pooling. As we discuss in section 4, further
work will explore different architectures. Here, we alter only the relative size for each message pass-
ing layer (between 64,128 and 256). We find that large networks (256) give the best performance.

Finally, we pass the graph embedding networks the position and velocity for all particles. In this
work, temporal interaction data is encoded in the adjacency matrix. We construct block diagonal
matrices, where each block reflects the spatial interaction network between particles i and j at a
single timestep. The off-diagonals are also block matrices but connect individual particles between
timesteps t and t+ 1. An annotated spatio-temporal adjacency matrix is shown in Figure 4.

Figure 4: Annotated spatio-temporal adjacency matrix where each diagonal block represents an
interaction network for single time snapshot and where off diagonals represent tracked particle po-
sitions between t to t+ 1.
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