Fundamental Groups and Dendricity

Pierre Stas (pierre.stas@uliege.be) Département de Mathématiques, Université de Liège, Belgium Joint work with J. Leroy and F. Gheeraert

	_	_	
Dend			

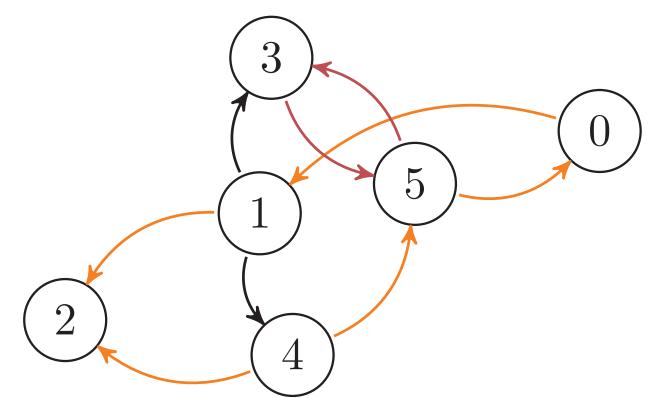
A *shift space* X is a closed subset of $A^{\mathbb{Z}}$ stable under the shift action of \mathbb{Z} .

The extension graph $\mathbf{E}_X(u)$, or $\mathbf{E}(u)$, of a factor u of X is the bipartite graph for which the left (resp. right) vertices are the letters a such that au (resp. ua) is a factor of X and (a, b) is an edge if aub is a factor of X.

X is *dendric* if for any factor u, $\mathbf{E}_X(u)$ is a tree. The *return words of* u are the nonempty factors v of X such that uv is a factor in which u occurs exactly twice, once as a prefix and once as a suffix.

Fundamental groups

A directed graph G coupled with one of its vertices v define a *fundamental group* as its set of loops (where directed edges can be used in both directions) endowed with concatenation.



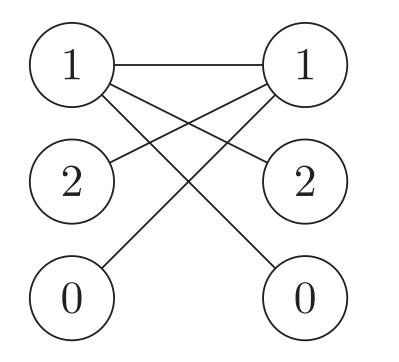
1. Example

The Tribonacci shift

 $\dots 01020100102010102010010201020\dots$

is the fixed point of the morphism $\varphi: 0\mapsto 01, 1\mapsto 02, 2\mapsto 0.$

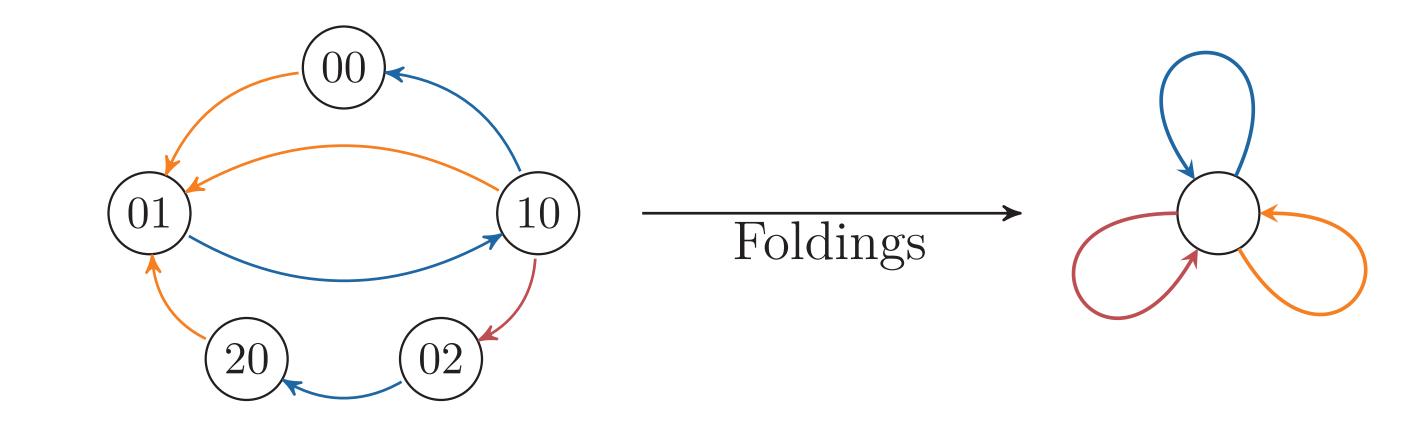
Its extension graph $\mathbf{E}(0)$ is given by



The set of return words of 01 in the Tribonacci shift is $\{0102, 010, 01\}$.

1. Application to dendric shifts

The order-m Rauzy graph of a language is the di-graph for which the vertices are the length m factors and the b-labelled edges are between au and ub if aub is a factor. On the Tribonacci shift, we have G_2 and its folding given bellow:



The *Rauzy group of u* for u in the language is projection of the fundamental group of $G_{|u|}$ with base point u on the free group F_A . An example of such a projection is given below.

2. Return theorem

Let X be a minimal dendric shift. For any factor u, the group generated by the return words of u (called the *return group of u*) is free of rank |A|. Sketch of the proof

2. Eventually dendric shifts

A shift is *eventually dendric* if there is a threshold N such that $\mathbf{E}(u)$ is a tree if $|u| \ge N$. These are stable under dynamical isomorphisms which corrects a major drawback of dendric shifts.

- Prove that the return words of u form a basis of the loops of the Rauzy group of u. Hence, our study of return groups can be reduced to a study of Rauzy groups.
- Using the combinatorial restrictions of dendric shifts, prove that we can find a trivial path between two vertices having the same proper suffixes.
- Show that the previous item allows us to iteratively reduce the order of the Rauzy graph. Once the order is 1, the graph is a bouquet of circles and we know its fundamental group.

Return theorem for eventually dendric shifts

Let X be a minimal eventually dendric shift with threshold N. The return groups of all factors u such that $|u| \ge N$ are conjugate of rank lower or equal to

 $p_X(N) - \sum_{v \in \mathcal{L}_{N-1}(X)} C(v) + 1,$

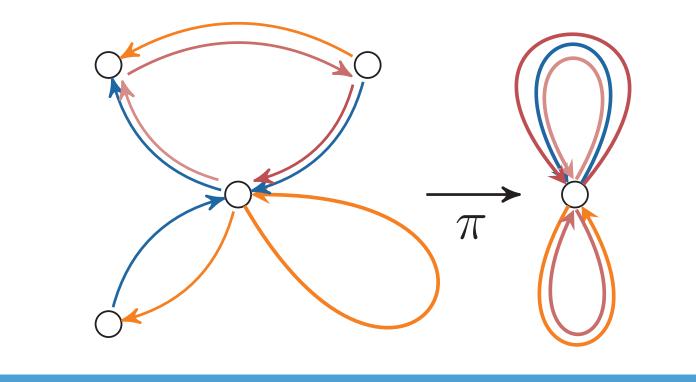
where C(v) is the number of connected components of $\mathbf{E}_X(v)$.

Sketch of the proof

- We apply the conjugacy $\varphi : u_1 \dots u_N \mapsto (u_1, \dots, u_N)^T$ to X. This provides an eventually dendric shift $X^{(N)}$ (called the N^{th} higher block code) of threshold 1.
- In [4], tools are provided to study the return groups of such shifts. For instance, these groups

Projection of a fundamental group

The purple loop in the fundamental group of (G, v) is sent by the projection on F_2 to the purple loop on the bouquet of two circles.



are free of rank S - C + 1, where S is the size of the alphabet of $X^{(N)}$ and C the number of connected components of $\mathbf{E}_{X^{(N)}}(\varepsilon)$.

• Exploiting the equivalence between Rauzy groups and return groups, we see that any folding occurring in a Rauzy graph of $X^{(N)}$ will also occur in the corresponding Rauzy graph of X. Thus, the rank in X is bounded by the announced value.

Example

We consider the eventually dendric shift X of threshold 2 obtained by applying the morphism $0 \mapsto 0, 1 \mapsto 012, 2 \mapsto 022$ and $3 \mapsto 02$ to the 4-bonacci shift:

$\dots 0102010301020100102010301020101020103010\dots$

The shift space X has the property that $X^{(2)}$ has return groups of rank 4, whereas X has return groups for words of length bigger than 2 of rank 3. We can conclude that the rank of the return groups of eventually dendric shifts is not a conjugacy invariant.

Bibliography

 V. Berthé et al. Acyclic, connected and tree sets. Monatsh. Math., 176(4), 2015.

[2] M. Clay and D. Margalit. Office Hours with a Geometric Group Theorist. Princeton University Press, 2017.

[3] F. Dolce and D. Perrin. Eventually dendric shift spaces. *Ergodic Theory Dyn. Syst.*, 41(7):2023-2048, 2021.

[4] H. Goulet-Ouellet. Suffix-connected languages. *Theor. Comput. Sci.*, 2022.