
Gapped Binomial Complexities in Sequences
Michel Rigo, Manon Stipulanti, and Markus A. Whiteland

Department of Mathematics, University of Liège, 4000 Liège, Belgium
{m.rigo, m.stipulanti, mwhiteland}@uliege.be

Abstract—We relate the gapped k-deck problem introduced
by Golm et al. (ISIT 2022) to notions arising in the literature of
combinatorics on words. We consider the complexity functions
of infinite sequences that count the number of factors up to
the equivalence relation of strings having equal gapped k-decks.
We show that the Thue–Morse sequence, the fixed point of the
substitution 0 7→ 01, 1 7→ 10, has unbounded 1-gap k-binomial
complexity for k ≥ 2. We also show that for a Sturmian sequence
and g ≥ 1, all of its long enough factors are always pairwise g-gap
k-binomially inequivalent for any k ≥ 2.

I. INTRODUCTION

Many situations in coding theory, bio-informatics, formal
verification, and number theory are modeled by an infinite
sequence s : N → A taking values in a finite alphabet A. It is
also often relevant to gather information about subsequences
or patterns occurring in s. In combinatorics on words, several
counting functions (factor, abelian, pattern complexities) have
been successfully introduced to provide insight and informa-
tion on the combinatorial structure or to capture a measure of
complexity of the sequence of interest [1]–[6].

In this paper, we consider a complexity function based on
gapped binomial coefficients of strings introduced in Golm et
al. [7], which are defined as follows. Let g ∈ N and x =
x1 · · ·xℓ and u be two strings over A. The g-gapped binomial
coefficient of x and u is defined by[

x
u

]
g
:= #

{
i1 < · · · < i|u| | xi1 · · ·xi|u| = u and

ij+1 − ij > g, 1 ≤ j < |u|
}
,

where |u| denotes the length of u. So we count the number
of substring occurrences of u in x with letters spaced by at
least g elements. This is quite a natural concept to consider in
applications such as the just-in-time scheduling problem where
the task is to construct a string with prescribed properties
such as given frequencies of the letters (which encode the
different items on a production line subject to some physical
constraints and ideal production rates) [8], [9]. In arithmetics,
gapped binomial coefficients may also be related to some well-
studied integer sequences. For a letter a,

[
an

ak

]
1

is the number
of subsets of {1, 2, . . . , n} of size k ≤ n and containing
no consecutive integers. This sequence has entry A011973
in the celebrated Sloane’s On-Line Encyclopedia of Integer
Sequences (see also its sibling A102547). For larger gaps,

All the authors contributed equally to the study. M. Stipulanti and M. White-
land are respectively supported by the FNRS Research grant 1.B.397.20F and
the FNRS Research grant 1.B.466.21F.

we have
[
an

ak

]
g
=

(
n−g(k−1)

k

)
where on the right-hand side is

the usual binomial coefficient of integers.
The aforementioned work of Golm et al. considered the

following generalized string reconstruction problem: when
does the knowledge of

[
x
u

]
g

for all strings u of length at most k
uniquely determine the string x? Otherwise stated, what is the
minimal length such that two distinct strings share the same
gapped binomial coefficients of substrings of length at most k?
As pointed out by Golm et al. [7], such knowledge is of
interest in molecular random-access storage systems for which
gaps in readouts arise due to skipping effects with nanopore
sequencers [10], [11]. Similar types of reconstruction problems
have received much attention [7], [12]–[15].

A. Our contributions

We bring tools and results from combinatorics on words
that could be useful to information theorists. In Section II, we
define (g, k)-binomially equivalent strings and then the (g, k)-
binomial complexity function of infinite sequences. A better
understanding of such a function may give insights on the
language L(x) of an infinite sequence x, i.e., the set of finite
strings (factors) made of contiguous letters occurring in x, for
which the reconstruction problem could be solved. The aim
is thus to restrict the reconstruction problem to the language
of an infinite sequence having a (g, k)-binomial complexity
function of the same order as its factor complexity function.

In this paper, we characterize the (1, 2)-binomial equiv-
alence of strings over a 2-letter alphabet. We observe that
Lemma 2.1 allows us to connect two related notions from
combinatorics on words, namely the 2-binomial and 2-abelian
equivalences [16]. In Section III we briefly discuss the fact
that (g, k)-binomial equivalence may be tested in polynomial
time. Then we consider the ubiquitous Thue–Morse sequence
[17]–[21] and Sturmian sequences. Indeed, the authors of [7]
already considered a variation of the Thue–Morse sequence
where gaps are produced by conveniently inserting zeroes.
In Section IV we show that its (1, k)-binomial complexity
function is unbounded for all k ≥ 2. This result is in
striking contrast with the fact that the usual (0-gap) k-binomial
complexity function remains bounded [22]. Nevertheless, we
conjecture that its behavior exhibits some regularities linked
to base-2 expansions of integers and shows a fractal self-
similar structure (see Conjecture 4.3 and Fig. 1). Sturmian
sequences appear in symbolic dynamics as coding of irrational
rotations or in discrete geometry as coding of straight lines
[23]. We study their gapped binomial complexity functions in
Section V. Balancedness of these sequences have, for instance,

applications in routing arriving jobs to parallel queues [24].
Our result shows again some robustness of the factors of a
Sturmian sequence: any two distinct such strings of length
≥ 3 are never 1-gap k-binomially equivalent for any k ≥ 2.
The result also holds for larger gaps and long enough factors.

II. PRELIMINARIES

For k ≥ 1 set A≤k :=
⋃

1≤j≤k A
j . For strings u, v ∈

A∗, we let |u|v denote the number of factor occurrences of v
in u. We let prfℓ(u) (resp., sufℓ(u)) denote the length-ℓ prefix
(resp., suffix) of u. We use

(
u
v

)
in place of

[
u
v

]
0

to distinguish
the 0-gapped coefficients from positive gapped coefficients.

Let g, k ∈ N with g ≥ 0, k ≥ 1. Two strings x, y ∈ A∗ are
(g, k)-binomially equivalent, written x ∼(g)

k y, if[x
u

]
g
=

[y
u

]
g

∀u ∈ A≤k. (1)

The (0, k)-binomial equivalence relation is the k-binomial
equivalence relation studied in [22], and we use ∼k to denote
the relation. Observe that for any g ∈ N, ∼(g)

1 is just the
abelian equivalence relation ∼1, relating two words iff they
are permutations of one another. For instance, x = 100110
and y = 011001 are (1, 2)-binomially equivalent: they are
abelian equivalent and the (1, 2)-binomial coefficients are seen
as

[·
00

]
1
= 2,

[·
01

]
1
= 3,

[·
10

]
1
= 3, and

[·
11

]
1
= 2. Also, as

observed in [7], we have 01110 ̸∼(1)
2 10001 even though the

(1, 2)-binomial coefficients are equal; indeed, the strings are
not abelian equivalent. Contrary to the case g = 0 [22], ∼(g)

k is
not a congruence for g ≥ 1, k ≥ 2. For example, xy ̸∼(1)

2 xx
because

[
xx
00

]
1
=

[xy
00

]
1
+ 1.

For a string x of length at least k, summing up gapped
binomial coefficients over all substrings of length k gives∑

u∈Ak

[x
u

]
g
=

[
a|x|

ak

]
g
=

(
|x| − g(k − 1)

k

)
. (2)

Hence if |x| < |u| + g(|v| − 1), then
[
x
u

]
g
= 0. We note that(

x
aa

)
=

(|x|a
2

)
for any letter a. We deduce, using (2) with g = 0

and k = 2, that we have, for any x, y ∈ {0, 1}∗ with x ∼1 y,(
x
aa

)
=

(
y
aa

)
and

(
x
01

)
+
(
x
10

)
=

(
y
01

)
+
(
y
10

)
, (3)

where a ∈ {0, 1}. From (1) we have x ∼(g)
k+1 y implies that

x ∼(g)
k y, so for a fixed g we have the chain of implications

x ∼(g)
1 y ⇐ x ∼(g)

2 y ⇐ · · · ⇐ x ∼(g)
k y ⇐ (4)

A. Complexity functions

For an infinite sequence x over an alphabet A, we let L(x)
denote the set of its factors and Ln(x) denote L(x) ∩ An,
that is, the set of length-n factors of x. The usual factor
complexity function px : N → N counts the number #Ln(x)
of strings of length n occurring in x. It was first introduced
in [1] and the reader may consult [25, §4] for a comprehensive
presentation. For an equivalence relation ∼, we consider the
quotient of the language L(x) by ∼ and the corresponding

complexity function maps n ∈ N to #(Ln(x)/∼). For
example, we let b(g,k)x denote the (g, k)-binomial complexity
function with b

(g,k)
x (n) = #(Ln(x)/∼(g)

k). For shorthand, we
let b(k)x := b

(0,k)
x . From (4), it follows that, for a fixed gap g

and for all n ∈ N,

b(g,1)x (n) ≤ b(g,2)x (n) ≤ · · · ≤ b(g,k)x (n) ≤ · · · ≤ px(n). (5)

For a brief example, consider the Thue–Morse sequence
t = 0110100110010110 · · · , a fixed point of the morphism
φ : 0 7→ 01, 1 7→ 10. One can check that there are 16 different
length-6 factors, hence pt(6) = 16. Among these, the only
∼(1)

2 -equivalent pairs are 010011 ∼(1)
2 001101, 100110 ∼(1)

2

011001, and 110010 ∼(1)
2 101100; hence b

(1,2)
t (6) = 13.

B. Another equivalence relation and a first characterization

We define a family of equivalence relations that appear
in our considerations, introduced in [26] and further studied
in [16]. Let k ≥ 1 be an integer. Two strings u, v are k-abelian
equivalent, written u ≡k v, if |u|w = |v|w for each string w
of length at most k. Observe that ≡k implies ∼1 for all k ≥ 1.

Note that if h is an integer with g < h, then
[
u
v

]
g
≥

[
u
v

]
h

.
More precisely, for any string u and any letters a, b ∈ A,[

u
ab

]
1
=

(
u
ab

)
−|u|ab and

[
u
ab

]
g+1

=
[
u
ab

]
g
−

∑
x∈Ag

|u|axb. (6)

Hence by induction, we have[
u
ab

]
g+1

=
(
u
ab

)
−

∑
x∈A≤g

|u|axb. (7)

As a consequence of the above, if u ∼2 v and u ≡g+1 v,
then u ∼(g)

2 v. The following lemma characterizes the (1, 2)-
binomial equivalence over binary strings. For any letter a ∈
{0, 1}, we let a denote its complement letter, i.e., a = 1− a.

Lemma 2.1: For u, v ∈ {0, 1}∗, we have u ∼(1)
2 v iff

(i) u ∼2 v and u ≡2 v; or
(ii) u ∼1 v and there exists a ∈ {0, 1} such that u = au′a,

v = av′a, and
(
u
aa

)
−

(
v
aa

)
= |u|aa − |v|aa = 1.

Proof: We first show that (i) or (ii) implies u ∼(1)
2 v. If

u and v satisfy (i), then u ∼(1)
2 v follows from (6). Assume

then that u and v satisfy (ii). Since u ∼1 v, it suffices to show
that the four differences

[
u
ab

]
1
−
[
v
ab

]
1
, a, b ∈ {0, 1}, vanish to

find u ∼(1)
2 v. First notice that by (6) and the assumption,[u

aa

]
1
−
[v
aa

]
1
=

(u
aa

)
−
(v
aa

)
−|u|aa+ |v|aa = 1−1 = 0.

Using (3) we get
[
u
aa

]
1
−

[
v
aa

]
1
= |v|aa − |u|aa from (6). We

claim that these quantities vanish. To this end, note that |x|aa+
|x|aa = |x|a − | suf1(x)|a for any binary string x. This fact
and the assumptions in (ii) lead to the desired calculation

|u|aa − |v|aa = |u|aa − |v|aa + |u|aa − |v|aa − 1 = 0. (8)

Consider next
[·
aa

]
1
; now

(
u
aa

)
−
(
v
aa

)
=

(
v
aa

)
−
(
u
aa

)
= −1

from (3) which, together with (6), gives[u
aa

]
1
−
[v
aa

]
1
= |v|aa − |u|aa − 1. (9)

Moreover, using (8), we have

|v|aa − |u|aa = |v|aa − |u|aa + |v|aa − |u|aa = 1,

and plugging this into (9), we have
[
u
aa

]
1
−
[
v
aa

]
1
= 0. Finally,

since the sum of the (1, 2)-binomial coefficients is constant
over strings of the same length (cf. (2)) we conclude that[
u
aa

]
1
=

[
v
aa

]
1

as well, and hence u ∼(1)
2 v, as was claimed.

We now show that, assuming u ∼(1)
2 v, we have (i) or (ii).

We have u ∼1 v. Moreover,
(
u
ab

)
−
(
v
ab

)
= |u|ab−|v|ab for all

a, b ∈ {0, 1} by (6). Using (3), 0 =
(
u
aa

)
−
(
v
aa

)
= |u|aa−|v|aa

for a ∈ {0, 1}. Hence if
(
u
aa

)
=

(
v
aa

)
, then also

(
u
aa

)
=

(
v
aa

)
(by (3)), and we conclude that u ∼2 v and u ≡2 v, whence
(i) holds. If

(
u
aa

)
̸=

(
v
aa

)
, then we may assume by symmetry

of (3) that
(
u
aa

)
−

(
v
aa

)
= |u|aa − |v|aa > 0. We now claim

that (ii) holds. Since |u|aa = |v|aa, we get

0 < |u|aa − |v|aa = |u|aa − |v|aa + (|u|aa − |v|aa)
= |u|a − | suf1(u)|a − |v|a + | suf1(v)|a
= | suf1(v)|a − | suf1(u)|a,

whence suf1(u) = a and suf1(v) = a, and
(
u
aa

)
−

(
v
aa

)
=

|u|aa − |v|aa = 1. It remains to show that prf1(u) = a
and prf1(v) = a. This follows straightforwardly from (3) and
arguments similar to the ones for the suffixes.

III. TESTING GAPPED BINOMIAL EQUIVALENCE

Testing (g, k)-binomial equivalence of strings can be done
in polynomial time adapting the automaton with multiplicities
given by Freydenberger et al. [27].

The idea is to define, for a string u = u1 · · ·uℓ, a non-
deterministic finite automaton Au that accepts the strings
x of length at most k with multiplicity

[
u
x

]
g
. In doing so,

testing (g, k)-binomial equivalence reduces to deciding path-
equivalence of two such automata, which can be done in
polynomial time, see [27], [28]. Here we only sketch the
definition of the automaton Au. There are k|u| + 1 states
represented by pairs of integers (omitting the sink state). The
first component records the position within u and the second
one the length of the considered string x. The initial state is
(0, 0). There is an edge labeled by a from (0, 0) to (i, 1) iff
ui = a for some 1 ≤ i ≤ ℓ. For 1 ≤ j < k, there is an edge
labeled by a from (i, j) to (i′, j+1) iff i′ > i+g and ui′ = a.
States of the form (·, j) with 1 ≤ j ≤ k are accepting.

IV. THE (1, 2)-BINOMIAL COMPLEXITY OF THE
THUE-MORSE SEQUENCE

In this section, we consider the Thue–Morse sequence t
defined in Section II. The first few values 1, 2, 3, 6, 10, 12,
13, 16, 12, . . . of b(1,2)t are graphed in Fig. 1.

Theorem 4.1: Let k ≥ 2. The function b
(1,k)
t is unbounded.

Proof: By (5) it suffices to prove the claim for k = 2.
It is known that b(2)t is bounded; in fact in [19] it is shown
that b

(2)
t (1) = 2, b(2)t (2) = 4, b(2)t (3) = 6, and for n ≥ 4:

b
(2)
t (n) = 9 if n ≡ 0 (mod 4) and 8 otherwise. On the other

hand, the 2-abelian complexity of t is unbounded [20], [21].

200 400 600 800 1000

5

10

15

20

25

30

35

Fig. 1. The 1-gap 2-binomial complexity b
(1,2)
t of the Thue–Morse sequence.

The red vertical lines demark powers of 2.

Let M ≥ 0 be an arbitrary integer. Let n ≥ 0 be such
that t contains at least 9M representatives of distinct 2-abelian
equivalence classes of strings of length n. By the pigeonhole
principle, there exists a 2-binomial equivalence class of strings
of length n that contains at least M representatives of distinct
2-abelian equivalence classes. By Lemma 2.1, all these M rep-
resentatives are (1, 2)-binomially inequivalent, thus showing
that b(1,2)t (n) ≥ M .

Remark 4.2: The logarithmic growth behavior of the 2-
abelian complexity of t is known [20], [21], and the above
proof can be modified to get that supi≤n b

(1,2)
t (i) ∈ Θ(log n).

Experiments using E. Rowland’s Mathematica package
IntegerSequences [29] suggest the following conjecture.

Conjecture 4.3: The (1, 2)-binomial complexity b
(1,2)
t

of the Thue–Morse sequence is 2-regular (we refer to [4]
for definitions). More precisely, for all n ∈ N, we have
b
(1,2)
t (n) = L · Md0

· · ·Mdℓ
· R, where dℓ · · · d0 ∈ {0, 1}∗

is the base-2 expansion of n (i.e., n =
∑ℓ

i=0 di2
i), and

L := (1 0 0 0 0 0 0 0 0 0 0 0 0);

R := (1 1 2 1 3 2 6 1 10 3 13 12 16)
⊤
;

M0 :=

0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 −2 0 1 0 0 2 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 −2 5

16 1 − 1
8

17
8 1 −1 − 13

16
1
2

0 0 0 0 2 − 5
16 −1 1

8
7
8 0 0 − 7

16 0

0 0 0 0 −4 21
32 2 − 1

16
25
16

3
2 − 5

2
11
32

5
4

0 0 0 0 −4 5
8 2 − 1

4
9
4 2 −2 − 5

8 1

0 0 0 0 −2 3
8 1 1

4
7
4 0 −2 5

8 1

;

M1 :=

0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 − 13

16 − 1
2

1
8

7
8 0 −1 13

16
1
2

0 0 0 0 2 − 29
16 − 3

2
1
8

7
8 1 0 − 7

16 1

0 0 0 0 1 −1 −1 0 0 1 2 − 1
4 − 1

2

0 0 0 0 1
2 − 19

16 − 1
2 − 1

8
1
8

3
2

1
2 − 15

16
5
4

0 0 0 0 2 −2 −2 0 0 2 2 − 3
2 1

0 0 0 0 −2 − 3
4 2 − 1

2
1
2 2 0 − 5

4 1

.

The conjecture implies, e.g., that b(1,2)t (2n) = 12 for all n ≥ 3.

V. COMPLEXITIES OF STURMIAN SEQUENCES

Sturmian sequences are those infinite sequences s, for
which the factor complexity function ps(n) = n + 1 for all
n ≥ 0. See [31, §2] for a comprehensive introduction of
their theory. They are also characterized as those aperiodic
binary sequences s that are balanced, i.e., for all u, v ∈ L(s),
||u|1−|v|1| ≤ 1 whenever |u| = |v|. The archetypical Sturmian
sequence is the Fibonacci word f = 0100101 · · · , i.e., the
fixed point of the morphism 0 7→ 01, 1 7→ 0. For a Sturmian
sequence s, we have b

(k)
s = ps for all k ≥ 2 [22, Thm. 7],

while b
(1)
s (n) = 2 for all n ≥ 1. In fact, Sturmian sequences

are characterized by the property that, for some k ≥ 2,
b
(k)
s = ps [30]. The main result we show is the following.
Theorem 5.1: For any Sturmian sequence s and any k ≥ 2,

b
(1,k)
s (2) = 2 and b

(1,k)
s (n) = n+ 1 otherwise.

From (5), b(1,2)s (n) ≤ b
(1,k)
s (n) ≤ ps(n) = n + 1, so it is

enough to prove the claim for k = 2.

A. Preparatory results on Sturmian sequences

Let s be a Sturmian sequence that contains 00; thus any
occurrence of 1 is isolated. There then exists k ∈ N such that
each 1 is followed by 0k1 or 0k+11. Letting µ : 0 7→ 0k1, 1 7→
0k+11, there is a sequence s′ such that µ(s′) = 0js for some
j ≤ k+1. A remarkable result tells us that s′ is also a Sturmian
sequence (see, e.g., [23, §2]). It follows that any factor x of s
can be written in the form 0r10k+ϵ01 · · · 0k+ϵm−110s, where
r, s ≤ k + 1, and ϵ = ϵ0 · · · ϵm−1 is a factor of s′. See [22,
Cor. 9] for details. For such a binary string ϵ, we define for
each 0 ≤ ℓ < m the quantities

Sϵ(ℓ) :=

ℓ∑
i=0

(m− i)ϵi and Sϵ := Sϵ(m− 1). (10)

Then for a string x = 0r10k+ϵ01 · · · 0k+ϵm−110s, we find(x
01

)
= r(m+ 1) + Sϵ + km(m+1)

2 . (11)

(See [22, Rem. 4] for details.)
For two binary strings x and y of equal length, we let

∆x,y(i) := |prfi(x)|1 − | prfi(y)|1 for each 1 ≤ i ≤ |x|.
For the sake of conciseness, when the strings x and y are
clear form the context, we write ∆(i) instead.

Lemma 5.2: If x and y are length-m factors of a Stur-
mian sequence, then |∆x,y(i)| ≤ 1 for each i = 1, . . . ,m.
Furthermore, all non-zero ∆x,y(i) have the same sign.

Proof: If x ̸= y, there is a minimal i ≤ m such that xi ̸=
yi. Without loss of generality, we may assume that ∆(i) = 1.
Then ∆(j) ≥ 0 for all j ≥ i, as otherwise

|y[i+ 1, j]|1 − |x[i+ 1, j]|1 ≥ 2,

contradicting the balancedness of the Sturmian sequence. By
symmetric arguments, ∆(j) ≥ 0 for all j ≤ i as well.

The next lemma is key in our forthcoming arguments.
Lemma 5.3: Let ϵ and ϵ′ be distinct length-m factors of

a Sturmian sequence. Then we have 0 < |Sϵ − Sϵ′ | ≤ m. If
moreover ϵ ∼1 ϵ′, then 0 < |Sϵ − Sϵ′ | < m.

Proof: The first part of the statement is shown within the
proof of [22, Lem. 10]. We give a sketch of the proof here, as
a careful analysis allows also to conclude the second claim.

Assume without loss of generality that Sϵ−Sϵ′ ≥ 0. Hence
the minimal index at which the strings differ is positive (i.e.,
ϵ has a 1 while ϵ′ has a 0). It can be shown that, if i0, . . . ,
it, with t ≥ 0, are the indices in {0, . . . ,m− 1} at which the
strings ϵ = ϵ0 · · · ϵm−1 and ϵ′ = ϵ′0 · · · ϵ′m−1 disagree, then

Sϵ−Sϵ′ =

⌈t/2⌉−1∑
r=0

(i2r+1−i2r)+

{
m− it if t is even
0 if 2 is odd,

(12)

where we understand the first sum as empty if t = 0. Using
the bounds 1 ≤ i2r+1 − i2r < i2r+2 − i2r, one can show that
⌊t/2⌋ < Sϵ−Sϵ′ ≤ m− i0−⌈t/2⌉, and the first claim follows
immediately. For the second claim, we notice that ϵ ∼1 ϵ′

implies that t must be odd. Hence the above bounds show
that Sϵ − Sϵ′ < m.

B. Proof of the (1, 2)-binomial complexity

Proof of Theorem 5.1: Without loss of generality, we
may assume that 00 appears in the Sturmian sequence s but
11 does not. The claim holds for n ≤ 2 by straightforward
inspection (and observing that 01 ∼(1)

2 10). Let then n ≥ 3
and let u, v be distinct length-n factors of s. Assume, towards
a contradiction, that u ∼(1)

2 v. By [22, Thm. 7], u ̸∼2 v.
Therefore, Lemma 2.1 implies that u ∼1 v and, without loss
of generality, u = 0u′1 and v = 1v′0. Notice that u must
contain at least two 1’s; otherwise

[
v
01

]
1
= 0 ̸=

[
u
01

]
1
. Write

u = 0r10k+ϵ01 · · · 0k+ϵm−11; v = 10k+ϵ′01 · · · 0k+ϵ′m−110s

with r, s > 0, ϵ = ϵ0 · · · ϵm−1, and ϵ′ = ϵ′0 · · · ϵ′m−1. By
Lemma 2.1(ii) on the one hand and (11) on the other, we find

1 =
(u
01

)
−
(v
01

)
= r(m+ 1) + Sϵ − Sϵ′ . (13)

By Lemma 5.3, we have 0 < |Sϵ −Sϵ′ | ≤ m, so we conclude
that r = 1 and Sϵ−Sϵ′ = −m. It can be similarly shown that
also s = 1.

Now we show ϵ ∼1 ϵ′. Indeed, (6) together with u ∼(1)
2 v

and u ∼1 v yield 0 =
(
u
00

)
−

(
v
00

)
= |u|00 − |v|00. Recalling

r = s = 1, by straightforward counting we get

|u|00 = m(k−1)+
m−1∑
i=0

ϵi and |v|00 = m(k−1)+
m−1∑
i=0

ϵ′i.

Since these quantities are equal, we conclude that
∑m−1

i=0 ϵi =∑m−1
i=0 ϵ′i, i.e., ϵ ∼1 ϵ′ as desired.
The second part of Lemma 5.3 implies Sϵ − Sϵ′ > −m,

however, contrary to the assertion that Sϵ − Sϵ′ = −m. This
contradiction suffices for the proof of the theorem.

C. On larger gaps in Sturmian sequences

Let us consider larger gaps in Sturmian sequences. Take
g ≥ 2. For factors of length at most g+1, the (g, 2)-binomial
equivalence is determined by abelian equivalence, and hence
the (g, 2)-complexity of a Sturmian sequence is constant 2

up to length g + 1. At length g + 2, we see that the (g, 2)-
binomial equivalence is determined by abelian equivalence
together with the first and last letters (which determine exactly
one occurrence of a (g, 2)-binomial coefficient). This implies
that at length g + 2 ≥ 4, the (1, 2)-complexity coincides with
the 2-abelian complexity, which in turn is known to be 4 in a
Sturmian sequence (cf. [16]). For longer factors, the situation
becomes slightly more complicated. We can show that there
exist distinct length-2g factors u, v of a Sturmian sequence s

for which u ∼(g)
2 v. Indeed, there exist arbitrarily long factors

z such that z01z and z10z appear in s (cf. [16]). Letting
|z| ≥ g − 1 and setting x = prfg−1(z), y = sufg−1(z), the
factors y01x and y10x are (1, 2)-binomially equivalent: the
central letters 01 (or 10) do not appear as part of a g-gapped
substring, and the strings are otherwise equal.

We have the following result pertaining to long factors.
Theorem 5.4: Let g, k ≥ 2. For a Sturmian sequence s

which does not contain 11, b(g,k)s (n) = ps(n) = n + 1 for
all n such that any length-n factor of s contains more than g
occurrences of 1.
Again it is sufficient to prove the claim for k = 2 for any g. It
is a well-known fact that for a length-n factor of a Sturmian
sequence of slope α such that ⌊αn⌋ > g, its interpretation as
a mechanical sequence intersects the horizontal lines of the
unit grid more than g times and thus contains more than g
1’s. Hence, the above theorem can be reformulated as: For a
Sturmian sequence sα of slope α < 1/2, b(g,k)sα (n) = ps(n)
for all n such that ⌊αn⌋ > g.

Proof sketch of Theorem 5.4: Towards a contradiction,
assume that there exist two distinct such factors u, v of s
such that u ∼(g)

2 v. Hence, for all a, b ∈ {0, 1} we have(
u
ab

)
−

(
v
ab

)
=

∑
x∈A<g |u|axb − |v|axb by (7). When a = b

we have
(
u
ab

)
−

(
v
ab

)
= 0 by (3). Therefore, we can add 0 =∑

x∈A<g |u|1x1 − |v|1x1 to
(
u
01

)
−

(
v
01

)
without changing its

value (which is positive without loss of generality, and not
vanishing, as otherwise u = v by [22, Thm. 7]). Hence we
find that(u
01

)
−
(v
01

)
=

∑
x∈A<g

|u|0x1 − |v|0x1 +
∑

x∈A<g

|u|1x1 − |v|1x1

=
∑

1≤|y|≤g

|u|y1 − |v|y1 =

g∑
i=1

∆v,u(i) ≤ g,

where in the last equality we use the facts that u ∼1 v and∑
|y|=i |v|y1 = |v|1 − | prfi(v)|1. The bound g follows from

u and v being factors of s, so we may use Lemma 5.2. By a
similar argument, we also find

(
u
01

)
−

(
v
01

)
=

∑g
i=1 ∆ũ,ṽ(i)

(where x̃ is the reversal of the string x).
We thus have three formulas to count

(
u
01

)
−
(
v
01

)
; the above

two and one obtained by applying (11) to u and v (with
suitable factorizations):

(
u
01

)
−
(
v
01

)
= (r−r′)(m+1)+Sϵ−Sϵ′ ,

where m + 1 > g. By carefully examining
∑g

i=1 ∆v,u(i),
we can express its value as a sum similar to (12). To have
equality between

∑g
i=1 ∆v,u(i) and the aforementioned sum,

we conclude that it, the last position where ϵ and ϵ′ differ,
must appear within the first m/2 letters of ϵ and ϵ′ due to the

assumption on g < m + 1. This means that we cannot see
a difference in the last g letters of u and v, which renders∑g

i=1 ∆ũ,ṽ(i) = 0 contrary to it being positive.

VI. CONCLUSIONS

As stated in the introduction, the concept of (g, k)-binomial
equivalence has some potential applications in information
theory while, as we have shown in this article, it also allows to
make links between several notions arising in combinatorics
on words. From a theoretical point of view, gapped binomial
coefficients and gapped binomial complexity functions open
the way to study new concepts such as Pascal-like triangles,
applications in formal language theory (generalizing piecewise
testable languages or Simon congruence [32] by introducing
a gapped support), links to Parikh matrices, etc. Another
interesting direction is to efficiently generate the strings of an
equivalence class. Inspired by [33], [34], we search for string
manipulations preserving the (1, 2)-binomial equivalence. To
this end, it is straightforward to check the following assertions.

Lemma 6.1: For binary strings u, v, x, y, z ∈ {0, 1}∗ and
a, b ∈ {0, 1}, we have

1) xa10bya01bz ∼(1)
2 xa01bya10bz;

2) xa10a01ay ∼(1)
2 xa01a10ay;

3) xa10aya01az ∼(1)
2 xa01aya10az.

Proposition 6.2: Let u, v, x, y ∈ {0, 1}∗ and a ∈ {0, 1}. If
1u1 ∼2 0v0, |1u1|00 = |0v0|00 + 1, and |1u1|01 = |0v0|01,
then xa1u1ay ∼(1)

2 xa0v0ay. In particular, xa1001ay ∼(1)
2

xa0110ay.
Proof: Since 1u1 ∼2 0v0, the letters a and a playing the

role of a buffer, it is enough to show that w = a1u1a ∼(1)
2

a0v0a = z. Using (6), either a or a contributes to |u|0
substrings 00 occurring in w, so[

w
00

]
1
=

(
w
00

)
− |w|00 = |u|0 +

(
1u1
00

)
− |1u1|00

and similarly,[z
00

]
1
=

(z
00

)
− |z|00 = 2+ |v|0 +

(0v0
00

)
− |0v0|00 − 1.

The two coefficients are equal since 1u1 ∼1 0v0 and thus
|u|0 = 2 + |v|0. We may show in the same way that[
w
01

]
1
=

[
z
01

]
1
. Since 1u1 and 0v0 start and end with equal

letters, |1u1|10 = |1u1|01 = |0v0|01 = |0v0|10 and the same
conclusion holds for

[
w
10

]
1
=

[
z
10

]
1
. From (2), there is no need

to compute the fourth coefficient for 11.
For instance, the following strings comprise a full ∼(1)

2 -
equivalence class and we have underlined the substrings that
are manipulated thanks to the above results to highlight
equivalence from one string to the next:

00001110101, 00010110011, 00011001011, 00101000111,

01000100111, 01000011011, 00100011101.

ACKNOWLEDGMENTS

The authors wish to thank the anonymous reviewers for
their valuable suggestions which greatly helped to clarify the
exposition of the results and to improve the quality of the text.

REFERENCES

[1] A. Ehrenfeucht, K. P. Lee, and G. Rozenberg, “Subword complexities
of various classes of deterministic developmental languages without
interactions,” Theoret. Comput. Sci., vol. 1, no. 1, pp. 59–75, 1975.

[2] M. Rigo, “Relations on words,” Indag. Math. (N.S.), vol. 28, no. 1, pp.
183–204, 2017.

[3] T. Kamae and L. Zamboni, “Sequence entropy and the maximal pattern
complexity of infinite words,” Ergodic Theory Dynam. Systems, vol. 22,
no. 4, pp. 1191–1199, 2002.

[4] J.-P. Allouche and J. Shallit, Automatic sequences: Theory, applications,
generalizations. Cambridge University Press, Cambridge, 2003.

[5] L. Schaeffer and J. Shallit, “String attractors for automatic sequences,”
2021, (preprint). [Online]. Available: https://arxiv.org/abs/2012.06840

[6] A. Restivo, G. Romana, and M. Sciortino, “String attractors and infinite
words,” in LATIN 2022: Theoretical informatics, ser. Lecture Notes in
Comput. Sci. Springer, Cham, 2022, vol. 13568, pp. 426–442.

[7] R. Golm, M. Nahvi, R. Gabrys, and O. Milenkovic, “The gapped k-
deck problem,” in 2022 IEEE International Symposium on Information
Theory (ISIT), 2022, pp. 49–54.

[8] N. Brauner and Y. Crama, “The maximum deviation just-in-time
scheduling problem,” Discrete Appl. Math., vol. 134, no. 1-3, pp. 25–50,
2004.

[9] N. Brauner and V. Jost, “Small deviations, JIT sequencing and symmetric
case of Fraenkel’s conjecture,” Discrete Math., vol. 308, no. 11, pp.
2319–2324, 2008.

[10] S. Yazdi, R. Gabrys, and O. Milenkovic, “Portable and error-free dna-
based data storage,” Sci. Rep., vol. 7, no. 1, pp. 1–6, 2017.

[11] L. C. Meiser, P. L. Antkowiak, J. Koch, W. D. Chen, A. X. Kohll, W. J.
Stark, R. Heckel, and R. N. Grass, “Reading and writing digital data in
dna,” Nat. Protoc., vol. 15, no. 1, pp. 86–101, 2020.

[12] L. I. Kalašnik, “The reconstruction of a word from fragments,” in
Numerical mathematics and computer technology, No. IV (Russian).
Akad. Nauk Ukrain. SSR Fiz.-Tehn-Inst. Nizkih Temperatur, Kharkov,
1973, pp. 56–57, 137.

[13] B. Manvel, A. D. Meyerowitz, A. J. Schwenk, K. W. Smith, and P. K.
Stockmeyer, “Reconstruction of sequences,” Discrete Math., vol. 94,
no. 3, pp. 209–219, 1991.

[14] P. Fleischmann, M. Lejeune, F. Manea, D. Nowotka, and M. Rigo,
“Reconstructing words from right-bounded-block words,” Int. J. Found.
Comput. Sci., vol. 32, no. 6, pp. 619–640, 2021.

[15] G. Richomme and M. Rosenfeld, “Reconstructing words using
queries on subwords or factors,” 2023. [Online]. Available: https:
//arxiv.org/abs/2301.01571

[16] J. Karhumäki, A. Saarela, and L. Q. Zamboni, “On a generalization of
abelian equivalence and complexity of infinite words,” J. Comb. Theory,
Ser. A, vol. 120, no. 8, pp. 2189–2206, 2013.

[17] J.-P. Allouche and J. Shallit, “The ubiquitous Prouhet–Thue–Morse
sequence,” in Sequences and their Applications, C. Ding, T. Helleseth,
and H. Niederreiter, Eds. London: Springer London, 1999, pp. 1–16.

[18] J.-P. Allouche, “Thue, combinatorics on words, and conjectures inspired
by the Thue-Morse sequence,” J. Théor. Nombres Bordeaux, vol. 27,
no. 2, pp. 375–388, 2015.

[19] M. Lejeune, J. Leroy, and M. Rigo, “Computing the k-binomial com-
plexity of the Thue–Morse word,” J. Comb. Theory, Ser. A, vol. 176,
p. 44, 2020.

[20] A. Parreau, M. Rigo, E. Rowland, and É. Vandomme, “A new ap-
proach to the 2-regularity of the ℓ-abelian complexity of 2-automatic
sequences,” Electron. J. Comb., vol. 22, no. 1, 2015.

[21] F. Greinecker, “On the 2-abelian complexity of the Thue–Morse word,”
Theoretical Computer Science, vol. 593, pp. 88–105, 2015.

[22] M. Rigo and P. Salimov, “Another generalization of abelian equivalence:
binomial complexity of infinite words,” Theor. Comput. Sci., vol. 601,
pp. 47–57, 2015.

[23] M. Lothaire, Combinatorics on Words. Cambridge Mathematical
Library. Cambridge University Press, 1997.

[24] A. Hordijk and D. A. van der Laan, “Bounds for deterministic periodic
routing sequences,” in Integer programming and combinatorial optimiza-
tion (Utrecht, 2001), ser. Lecture Notes in Comput. Sci. Springer,
Berlin, 2001, vol. 2081, pp. 236–250.

[25] V. Berthé and M. Rigo, Eds., Combinatorics, automata and number the-
ory, ser. Encyclopedia of Mathematics and its Applications. Cambridge
University Press, Cambridge, 2010, vol. 135.

[26] J. Karhumäki, “Generalized Parikh mappings and homomorphisms,”
Inform. and Control, vol. 47, no. 3, pp. 155–165, 1980. [Online].
Available: https://doi.org/10.1016/S0019-9958(80)90493-3

[27] D. D. Freydenberger, P. Gawrychowski, J. Karhumäki, F. Manea, and
w. Rytter, “Testing k-binomial equivalence,” in Multidisciplinary Cre-
ativity: homage to Gheorghe Paun on his 65th birthday. Bucharest,
Ed. Spandugino, 2015, pp. 239–248.

[28] W.-G. Tzeng, “A polynomial-time algorithm for the equivalence of
probabilistic automata,” SIAM J. Comput., vol. 21, no. 2, pp. 216–227,
1992.

[29] E. Rowland, https://ericrowland.github.io/packages.html.
[30] M. Rigo, M. Stipulanti, and M. A. Whiteland, “Characterizations of

families of morphisms and words via binomial complexities,” 2022.
[Online]. Available: https://arxiv.org/abs/2201.04603

[31] M. Lothaire, Algebraic combinatorics on words, ser. Encyclopedia
of Mathematics and its Applications. Cambridge University Press,
Cambridge, 2002, vol. 90. [Online]. Available: https://doi.org/10.1017/
CBO9781107326019

[32] I. Simon, “Piecewise testable events,” in Automata Theory and Formal
Languages, H. Brakhage, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1975, pp. 214–222.

[33] S. Fossé and G. Richomme, “Some characterizations of Parikh matrix
equivalent binary words,” Inform. Process. Lett., vol. 92, no. 2, pp. 77–
82, 2004.

[34] J. Karhumäki, S. Puzynina, M. Rao, and M. A. Whiteland, “On cardi-
nalities of k-abelian equivalence classes,” Theoretical Computer Science,
vol. 658, pp. 190–204, 2017.

