

Doctoral Seminars on Sustainability Research in the Built Environment Project SurChauffe: Overheating Indicator and Calculation Method for Walloon Buildings

Deepak AMARIPADATH

1. CONTEXT

Since the exceptional summer of 2003, extreme events like heatwaves are likely to become more frequent by the end of this century & there is a growing opportunity for the designers to improve the thermal comfort & energy efficiency of the Belgian buildings.

Solutions to improve building performance should minimize maintenance & operational costs. Hence, the Belgian construction sector can generate new income streams by providing climate adaptation expertise, frameworks, & cooling solutions for retrofit & construction projects.

3. THERMAL COMFORT

ASHRAE 55 (2020) defines thermal comfort as "the condition of mind that expresses satisfaction with the thermal environment & is assessed by subjective evaluation". The external & internal parameters that influence indoor thermal comfort & their respective measurement devices are shown in the figure. The figure includes PMV/PPD & adaptive thermal comfort model parameters according to EN 16798 (2019).

2. OBJECTIVES

To increase the competitiveness of the building service sector in Wallonia.

- Design a climate change-sensitive overheating indicator.
- Create a framework & protocol with low input uncertainty & high-risk assessment.
- Develop cost effective measurement method & lacksquarefield measurement kit.

5. ANALYSIS

Indoor operative temperature (T_{op}) & outdoor air temperature (T_{out}) from a free-running apartment located in Outremeuse, Liege, Belgium, are overlaid on upper & lower limits of categories I & II as per EN 16798 for 2020. T_{op} range exceeds the PMV/PPD & adaptive thermal comfort limits.

4. STUDIES

For Liege & Belgium (average), HDDs are studied & show a decreasing trend from 1980 to 2020. In addition, HDD for Liege is lower compared to Belgium average & indicates warmer winters.

CDDs for Liege & Belgium (average), are studied & show an increasing trend from 1980 to 2020. In addition, CDD for Liege is higher compared to Belgium average & indicates hotter summers.

Another important effect to be noted here is that the adaptive model limits tend to exceed 30 °C & more. These limits in real scenarios are not comfortable as per existing studies. This drawback is to be considered in detail for future developments.

DISCUSSIONS

The climate & weather patterns in Liege indicate warmer winter & hotter summer in the future.

There is a significant need to develop an overheating calculation 2 method & discomfort indicator.