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Abstract

In recent years, unmanned aerial vehicles (UAVs), also known as drones, have become
increasingly popular. In particular, small UAVs, such as quadcopters, have gained
attention due to their agility and maneuverability, making them ideal for tasks such
as aerial photography, surveying, and delivery. However, remote controlling such
vehicles requires specific skills that are scarce and expensive to hire, which creates
a demand for automated or assisted flight.

Planning a motion or a trajectory in an uncontrolled environment while avoiding
undesired collisions can hardly be achieved without knowing the distance to
potential obstacles in the way. However, the dedicated sensors typically used in
robotics for estimating distances can hardly be used on small UAVs because of their
size, weight, or power requirement. As drones are usually equipped with one or
several cameras for various purposes, using the visual information to infer distances
to objects in the environment emerged as a compelling, though challenging, option
to replace these sensors.

Depth estimation, the process of determining the distance from a camera to an object
in the environment, is a computer vision task that has varied applications. When
used for autonomous piloting application, depth estimation methods need to fulfill
a series of requirements that are not necessarily needed for other applications, and
that were left unanswered has a whole. This dissertation aims at addressing reliable
monocular depth estimation for UAVs.

Similar to many other computer vision fields, the state of the art in depth estimation
has been led by methods based on deep learning, which require large datasets to be
trained on. In the first part of this work, we note a lack of dataset suitable to train and
test depth estimation methods for outdoor UAV applications, and introduce Mid-Air,
a new multipurpose synthetic dataset of low altitude drone flights in unstructured
environments. The ground-truth data available with this new dataset makes it useful
not only for depth estimation, but also for various other computer vision tasks such
as visual odometry, semantic segmentation, or even surface normal estimation.

In the other parts of this work, we address the challenge of depth estimation itself.
First, we proceed to identify the weaknesses of existing depth estimation methods
when considering a major requirement for UAV applications that is the ability to
handle a wide range of environments, even unseen ones. We use this analysis
to propose a new method, called M4Depth, that makes use of a notion of visual
parallax, that we define, to avoid the weaknesses identified in other methods. Second,
we consider the reliability requirement on depth estimation. To this extent, we
investigate the use of uncertainty as a mean to anticipate erroneous data in the
depth estimates. We then present a new method, called M4Depth+U, that upgrades
M4Depth to jointly estimate depth and its uncertainty, and show that the obtained
uncertainty is indeed representative of the error on the depth estimates.

Our tests on several datasets and in various conditions, including zero-shot cross-
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dataset transfer, show that our methods are robust to visual changes, and generalize
better than existing methods, while being more computationally efficient. With these
results, M4Depth+U emerges as an excellent and reliable joint depth and uncertainty
estimator, and shows that it has the properties expected from a depth estimation
method targeting UAV applications.
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� Overview
What is depth estimation? Why do we need it for small unmanned
aerial vehicles (UAVs)? Why focus specifically on small UAVs? What
are the challenges? These are legitimate questions one may ask
oneself when beginning the reading of this document. In this chapter,
we answer these questions by explaining the context in which this
thesis emerged and the motivations that led to our specific research
topic, i.e., reliable monocular depth estimation for small UAVs.
In addition, this chapter introduces the content of this thesis with a
small summary of each of the following chapters, and it highlights
the original contributions associated to these chapters.





1.1 Depth and unmanned aerial vehicles

Depth
map

RGB
image

Camera

Figure 1.1: Illustration of the concept of depth estimation. Depth estimation is the task of inferring
depth, a specific notion of distance separating the objects of the scene to a camera, for each pixel
of an image captured by this camera. Brighter colors in the depth map correspond to smaller depth
values.

1.1 Depth and unmanned aerial vehicles

Planning a motion or a trajectory in an uncontrolled environment while avoiding
undesired collisions can hardly be achieved without knowing the distance to
potential obstacles in the way. With the development of autonomous vehicles, the
need for accurate and reliable distance estimation becomes increasingly important.
In the nature, vision appeared to be particularly effective for this purpose. Similarly,
in robotics, vision is one of the few options available to estimate distances.

Unmanned aerial vehicles (UAVs), also known as drones, have become increasingly
popular in recent years due to their versatility and potential applications. Small UAVs,
such as quadcopters, have gained attention due to their agility and maneuverability,
making them ideal for tasks such as aerial photography, surveying, and delivery.
However, their size, weight, and power constraints make it difficult to use dedicated
distance sensors, which are often too heavy, bulky, or power-hungry for such small
vehicles. As a result, there is a strong interest in using on-board mounted cameras
as an alternative to these dedicated sensors.

Therefore, depth estimation, the process of determining the distance from a camera
to an object in the environment, has become an attractive solution on small UAVs.
However, achieving accurate depth estimation from a camera is a challenging
problem due to the lack of information about absolute depth in the image. The
development of deep learning algorithms has led to significant advances in this
field, making it possible to estimate depth from images with reasonable accuracy.
Despite these advancements, there are still many unanswered challenges, especially
when considering UAV applications. These challenges include the ability to produce
estimates that can be trusted, the ability to handle a wide range of environments,
even unseen ones, the ability to handle a wide range of lighting conditions, and the
need for efficient computational performance.

In this thesis, we identify the shortcomings of the state of the art and propose original
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1 Introduction

contributions to address them. We first note a lack of suitable datasets to train deep
neural networks for this task and propose, therefore, a new multi-modal dataset
called Mid-Air to address this issue. We then propose a lightweight depth estimation
method designed to work in all types of environments, even unseen ones, which
shows robustness to visual changes and achieves state-of-the-art performance
in several experiments. Finally, we address the requirement for reliability of the
depth estimates by adapting our method to output its own uncertainty in addition to
depth. Our experiments show that our method keeps its strengths while producing
uncertainty estimates that are well correlated with the real error on the depth
estimates.

In the following parts of this chapter, we first explain the background in which this
work started. We then explain the motivations that led to the topic of monocular
depth estimation for small UAVs. Next, we give an overview of the other chapters of
this document and highlight the original contributions associated to them. Finally,
we list the scientific publications linked to this thesis.

1.2 Background

The motivations underlying choices and hypotheses made in this thesis require
introducing some concepts about UAVs, autonomous piloting, and deep learning.
In this section, we introduce and discuss the key concepts on which this thesis is
based.

1.2.1 The popularization of small UAVs

Small UAVs, also known as drones, are small-scale remote-controlled or autonomous
flying vehicles. They are usually equipped with a variety of sensors that enable
them to navigate and perform complex tasks with precision and accuracy. The
emergence of drones as a popular and versatile technology can be traced back to
the late 2000s when advancements in materials science, electronics, sensors, and
navigation technologies made them increasingly accessible and affordable, leading
to a wide range of new possible applications.

Industrial applications. Although the development of drones has been driven by
military and surveillance applications, they have been found useful for several
other applications, often revolving around aerial imagery, that call for different
and specific solutions. For example, they efficiently replace human eyes for building
and structure inspections [88] which otherwise require expensive means such as
full-fledged helicopters, cranes, or professional climbers. This allows for a better
and more frequent monitoring of infrastructures, and therefore for a better planning
of maintenance requirements. When equipped with multi-spectral cameras, drones
are also valuable assets for crop monitoring in agriculture [64]. Indeed, periodic
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1.2 Background

imaging of the fields can be used to detect problematic areas, which allows taking
appropriate and localized actions, therefore leading to a better use of resources such
as water, fertilizers, and pesticides. Aside imaging-related tasks, drones are also
considered for applications in logistic chains, where they can be used for remote
and automated parcel deliveries [21].

On-board sensors

Drones are vehicles loaded with a lot of different sensors. While the exact type and
number of sensors can vary depending on the targeted application, the vast majority
of drones rely on a common set of sensors for their flight and mission. Hereafter, we
list and explain the purpose of these sensors.

Attitude. Maintaining the stability of an airborne vehicle and imposing it a specific
motion can only be achieved by controlling its pose in space, called its attitude.
Controlling the attitude of an aircraft requires having feedback on its state. The
sensors used in drones for this purpose are grouped within a block called the Inertial
Measurement Unit (IMU). An IMU usually includes three different 3-axis sensors that
are a gyroscope, an accelerometer, and a magnetometer. The gyroscope measures the
angular velocity, the accelerometer the linear acceleration, and the magnetometer
the magnetic field. When fused, the measurements of the three sensors can give an
accurate estimation of the attitude of the vehicle.

While the IMU can be used alone to stabilize and control an aircraft, it is not reliable
for long-term spatial localization. Indeed, the successive integration of errors due
to sensor biases and noises leads to drifts in the estimates that are impossible to
correct only with the information provided by the IMU.

Positioning. The absolute spatial position of a vehicle on Earth can be known
thanks to Global Navigation Satellite Systems (GNSS) such as GPS, Galileo, GLONASS,
and BeiDou. Each system has specific characteristics and requires its own dedicated
receiver. However, integrated circuit manufacturers have designed single chips
that embed receivers for multiple systems to take advantage of the satellites from
multiple constellations, therefore increasing the accuracy of the localization estimate.
As opposed to an IMU, the position given by a GNSS is absolute and does not suffer
from error accumulation issues. Without using an external signal for correction, the
positioning error of a GNSS receiver can be expected to be lower than 3m, and falls
to 1m for more expensive devices or for static receivers. By default, GNSS receivers
update their position once every second.

GNNS-based positioning is only possible when the receiver has a direct line of sight
with at least four satellites, its accuracy increasing with the number of visible satellites.
This is a major drawback since any masking of the sky, and therefore of visible
satellites, degrades the accuracy of the positioning. Even worse, the positioning
becomes impossible when there is no direct line of sight between the receiver and
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1 Introduction

à Terminology: Image vs frame 1

Image is the term used to refer to the 2-D array of (grayscale or color) pixels
captured by a camera. When images are captured at regular time intervals, they
make a video stream. A frame specifically refers to one of the temporally ordered
images making a video stream.

satellites. Hence, GNSS-based positioning is not possible, or heavily degraded, in
places where the sky is largely obstructed such as in indoors, in forests, or in canyons.
While natural canyons are really specific edge cases, urban canyons are much more
frequent and are known to be challenging for GNSS-based positioning [18].

Cameras. Drones used for aerial imaging tasks are obviously equipped with the
imaging sensor required for their task. However, cameras are useful for many other
purposes than the primary targeted application. Indeed, the visual information
provided by a camera can be used by the drone during flights. For instance, cameras
can be used to compensate for the weaknesses of attitude and positioning sensors.
Furthermore, visual information can be exploited to extract information that is
simply not available with any other sensors and used for high-level flight control
tasks such as object tracking or obstacle avoidance. As a result, drones are often
equipped with one or several additional cameras whose sole purpose is to provide
additional information to their flight controller.

Vision for precise motion and localization estimation

Despite their weaknesses, an IMU and a GNSS receiver can be used in conjunction
with a camera to get a precise estimate of the motion and localization of the vehicle at
a high frequency. Two types of algorithms, visual odometry (VO) and Simultaneous
Localization and Mapping (SLAM), can be used for this purpose.

Visual odometry. Visual Odometry (VO) algorithms aim at recovering the path of
the vehicle incrementally pose after pose, and at ensuring the local consistency
of the estimated motion [4, 122]. Their principle is to detect and track several
keypoints from a limited number of past frames recorded by the camera up to
the latest one, and to optimize the camera pose estimated for each frame by using
epipolar geometry. Because of their iterative nature and limited temporal memory,
visual odometry algorithms can be lightweight enough to run in real time on small
embedded computers.

VO algorithms can work with visual data alone. In this case, translations can only be
estimated up to an unknown scaling factor because all the information about the
absolute scale of the 3-D scene captured by a camera is lost when it gets projected
into a 2-D image. Using IMU and GNSS measurements allows solving this ambiguity
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1.2 Background

à Epipolar geometry 2

A point in space seen by a camera is projected at specific coordinates on the
camera sensor plane that depends on the camera parameters and the position of
the point with respect to the camera. The epipolar geometry is a set of geometric
relations that describes the constraints linking the projection coordinates of a
point in space seen by two cameras to the relative pose in space of these two
cameras.

accurately, in addition to reducing the error on the estimated poses. However, the
incremental nature of VO algorithms makes the localization estimate prone to drift
over long time windows when corrections thanks to GNSS data are not possible.

SLAM. As for VO, the purpose of Simultaneous Localization and Mapping (SLAM)
algorithms is to accurately estimate the path of a vehicle [2, 130]. However, the
approach used to achieve this purpose is different. Instead of trying to optimize
the pose of the camera with respect to a few past frames, SLAM algorithms localize
themselves within a sparse 3-D point map they build. Each point of this map encodes
some specific visual features that were detected and matched in several camera
frames, and that were projected in the 3-D space using epipolar geometry. As
opposed to VO that forgets features seen previously, features making the points
map of a SLAM algorithm are kept in memory during the whole run of the algorithm.

When a new frame is recorded, feature points are extracted from the image and
compared to features in the map. The camera pose is then optimized using the image
features that match points of the map. SLAM algorithms keep some specific frames,
called keyframes, in memory to build and update their map. A frame is selected as a
keyframe if the corresponding camera pose meets a set of requirements with respect
to the camera pose of the other keyframes. Each time a new keyframe is added
in memory, both the point map and the estimated trajectory are updated using a
process called bundle adjustment that jointly minimizes the error on the estimated
trajectory and the error on the 3-D reprojection of observed feature points. The
global map used in pair with bundle adjustment allows correcting drift when the
camera closes a loop, i.e., when it passes in places seen previously, as the algorithm
should match the latest detected features to features already present in the map.

Being able to correct incremental drift is the key advantage of SLAM over VO. However,
it is worth noting that SLAM algorithms lose this advantage when trajectories do
not make loops, or when bundle adjustment cannot be made reliably in case of
poor feature detection and matching. Moreover, the task of querying and updating
the map gets quickly computationally expensive as the number of tracked points
grows. Hence, maintaining real-time operations can only be achieved by limiting the
number of points in the map, which requires a strategy to discard the less relevant
points. While not being an issue for applications in well delimited places such as
indoors, this requirement reduces the comparative interest of SLAM over VO in
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1 Introduction

large environments where discarding points in the map could lead to a significantly
degraded drift correction ability.

1.2.2 A demand for autonomous piloting

The interest for assisted and automated piloting exists for all types of vehicles. UAVs
are no exception to this interest, and automated flight is already widely used for
applications in the open sky, where the automation simply consists in following
GNSS waypoints. However, automation is more complex when drones fly closer to
the ground and must navigate around obstacles, as this requires dynamic trajectory
adaptations. This is particularly relevant for tasks such as structure inspection,
which requires a close and detailed analysis of structures from multiple perspectives.
Similarly, automated tracking for video capture and the final leg of automated drone
deliveries also require drones to operate among obstacles. Such low-altitude flights
require an in-depth understanding of the environment and a precise trajectory
planning to avoid collisions. In this regard, autonomous flight shares similarities
with autonomous driving. As cars have existed for longer than small UAVs, research
in autonomous driving got a head start over autonomous flight, which is beneficial for
autonomous flight as some progress made for autonomous cars can be transferred
to UAVs.

The first steps towards autonomous driving were achieved in the late 1980s, well
before the emergence of small UAVs, with the first demonstrations of a car able to
follow a road while relying solely on on-board sensors [9]. In a pioneering work of
1989, Pomerleau [111] proposed an autonomous car control algorithm based on
neural networks. In the 2000s, the DARPA contributed to crystallize research in
autonomous vehicles thanks to its Grand Challenges [20]. Finally, the research in this
field exploded in the 2010s thanks to the rise of deep learning. In 2022, full driving
automation remained to be achieved. Indeed, at this time, several car manufacturers
were waiting for regulatory approval for level 3 technology on a scale defined by the
Society of Automobile Engineers (SAE) that ranges from 0 (no driving assistance) to
5 (full driving automation)*, while some level 4 vehicles were tested and driving in
specific and well-defined areas [69].

As research and experiments progressed, the task of fully automated driving revealed
its whole complexity. This led researchers to split the global task into numerous
distinct sub-tasks that have to be successfully addressed individually to tackle fully
automated driving itself. These sub-tasks can be organized in three categories that
can be transferred to all autonomous vehicles, including drones.

1. Low-level tasks. Safely piloting a vehicle is not possible without having accurate
knowledge of its state and position with respect to its direct surroundings. This

*Details on this scale can be found in a survey from Halin et al. [47].
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1.2 Background

requires to gather and process measurements from multiple sensors, which is done
by low-level tasks. For example, the pose and motion of the vehicle can be estimated
thanks to odometry or SLAM algorithms that make use of cameras, IMU sensors,
and GNSS receivers. Autonomous vehicles also have to be equipped with a mix of
distance sensors that allow them to gather spatial information on their surroundings.
Correctly processing the readings of these sensors is crucial since they are parts of
the collision warning system.

2. Intermediate tasks. Taking piloting decisions requires having an in-depth
understanding of the environment in which the vehicle moves. The purpose of
intermediate tasks is to extract high-level information that can be used to take
piloting decisions from the sensors of the car. Most of them are vision related
and involve image analysis. For example, autonomous cars have to follow traffic
regulations, which implies being able to reliably detect and recognize road signs.
This calls for object detection and classification algorithms. Similarly, all other road
users have to be detected, recognized and precisely located. Ideally, their motion
should also be estimated to allow for anticipation in higher level tasks. This in
turn calls for instance and semantic segmentation methods, as well as for tracking
algorithms.

3. High-level tasks. Finally, high-level tasks are the ones in charge of aggregating
all the available information in order to take piloting actions. This implies developing
control strategies that ensure the safety of the vehicle when moving towards the
desired estimation. For high-level tasks to be successful, lower-level ones need
to be addressed properly and reliably, as their performance could directly impact
decisions made by high level-tasks.

1.2.3 The rise of deep learning methods

The progress made in autonomous vehicles has been tightly linked to the one made
in deep learning. If the theoretical basis for neural networks was already laid in the
1980s, they only gained traction in the 2010s when training and inference speeds
became several order of magnitude faster thanks to the use of Graphical Processing
Units (GPUs) in computers. The arrival of AlexNet [70], a Convolutional Neural
Network (CNN) for image classification, in 2012 triggered an unprecedented interest
in deep learning for computer vision tasks. The release of large datasets and the
advances in optimization techniques have led deep learning methods to outperform
other methods for many computer vision tasks, such as image classification, object
detection, semantic segmentation, and image captioning, just to name a few. More
generally, deep learning emerged as a powerful and versatile tool as it has also led
to breakthroughs in many other fields, such as natural language processing, speech
recognition, and game playing.

Deep learning methods are a class of artificial neural networks that are capable of
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1 Introduction

learning from large amounts of data to perform various tasks, including computer
vision. These methods consist of multiple layers of neurons, where each neuron
performs a nonlinear transformation of its inputs. The output of one layer serves as
the input to the next layer, and so on, until the final output is produced. The key
feature of deep learning methods is their ability to automatically learn hierarchical
representations of data, which allows them to capture complex patterns and
relationships in the data.

In practice, a deep neural network is defined by its architecture, a set of parameters
connected in a specific way. The parameters are usually initialized with random
values, and need to be tuned to get the desired output from a given input during an
iterative process referred to as the network training. At each step of this process, an
input is sampled from a dataset that is expected to represent the task the network
has to perform. This input is used to generate an output based on the value of the
network parameters at this step. A loss value that reflects the quality of the generated
output is then computed, a high value reflecting a poor output quality. For example,
the loss value can simply be the error between the output produced by the network
and the expected output when input-output pairs are available in the training dataset.
The network parameters are updated based on the loss value using a process called
backpropagation. This process involves computing the gradient of the loss value with
respect to the model parameters, and then updating the parameters in the direction
that reduces the loss value.

Computing the loss value by using the expected output is called supervised learning and
is not always possible because pairs of input-output training samples are sometimes
not available. However, obtaining a relevant feedback to train the network remains
possible without having access to the expected output values. This is what is done in
semi-supervised, unsupervised and reinforcement learning, for example.

A dependence on large collections of data

One of the main advantages of deep neural networks over other methods is their
ability to learn and generalize from large amounts of data. Unlike traditional machine
learning algorithms that rely on hand-crafted features, deep learning models can
automatically learn features and representations directly from the raw data, leading
to improved performance. However, one of the shortcomings of deep learning
methods is their vulnerability to out-of-distribution data. Since the network is
trained on a specific dataset, it may not generalize well to examples that differ from
the training data. This can lead to inaccurate predictions or even complete failure of
the method. For example, a network trained on daytime images of pedestrians may
not perform well on nighttime images or images with heavy rain or fog.

Avoiding this issue requires training the network on a collection of data that is
diverse enough to faithfully represent the full range of inputs that the method
could encounter for its targeted application. Therefore, the years 2010 have seen a
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surge in the number of available datasets targeting various applications in parallel
to the development of deep learning methods. Many large datasets dedicated to
autonomous driving tasks have been released during this decade [61], while only a
few datasets dedicated to UAVs were released during the same period. Each dataset
targets a well-defined subset of tasks by providing the annotated ground-truth data
required for the training of neural networks [74]. The parameters differentiating
datasets targeting the same tasks can be the location, the weather or the road
condition where the data is recorded as well as the type and placement of sensors
used to record the data [61, 74, 79, 84].

In addition to large datasets, researchers have proposed various techniques such as
data augmentation, domain adaptation, and transfer learning to overcome a lack of
training data for the targeted task. Data augmentation involves artificially increasing
the size of the training set by applying transformations to the existing data, such
as rotations, translations, and scaling for images. Domain adaptation and transfer
learning involve using knowledge from a related but different dataset to improve the
performance on the target dataset.

For some applications, it is impossible to collect data that faithfully represent the
full range of inputs that the method could encounter. This is, for example, the case
of computer vision tasks with drones because they can see a variety of scenes that
would be hard to fully capture. In such case, methods should be designed to be
robust and perform well on unseen data that may have a different distribution than
the training data. Methods can be tested on purpose on data that have a different
distribution than the training set. This is called zero-shot cross-dataset transfer, and it
allows grasping the behavior of a method when exposed to out-of-distribution data.

1.3 Motivations

As for all autonomous vehicles, flight automation requires addressing low-level tasks
before starting to think about higher level automation. Accurate distance estimation
is especially important for drones because they can move in all directions and do
not need to follow a predetermined path. Unlike road vehicles, drones do not have to
detect and follow visual instructions such as road signs, which can limit the possible
trajectories. Moreover, drones have more freedom of motion, making interaction
with other vehicles easier than road vehicles which must share their space with
many other users. Therefore, distance becomes one of the most critical pieces of
information required for planning flight trajectories and avoiding obstacles. However,
gathering information on distance to surrounding objects is more complex for small
UAVs than for other vehicles, and was still an open challenge when we began this
thesis. As awareness to distance to the surroundings is a low-level task, it should be
solved before addressing higher-level tasks. This is why we decided to address this
challenge in this thesis.

11



1 Introduction

à Terminology: Distance vs depth 3

3-D view
P

x

y

z

Distance

Depth

P

Side view

x

y
z

Distance

Depth

Depth is a notion of distance used in computer vision. As illustrated in the
figure hereinabove, the distance separating a point P in space to a camera is the
Euclidean distance between this point and the camera origin, which is defined
as its focal point. The depth of the point P is the z coordinate of its position
when it is expressed within the camera referential. With this definition, the
distance of a point to a camera is greater or equal to its depth. Computer vision
methods often prefer to work with depths instead of distances, as it allows for a
simplification of geometrical operations involving camera projections.

In this section, we first explain why distance sensors such as the ones used in other
autonomous vehicles are not adapted for small UAVs. We then detail how vision
provides multiple cues about distance and how cameras can be a relevant alternative
to dedicated distance sensors. We then list the properties that a depth estimation
method targeting small UAV application should have. Finally, we cover works that
address the task of estimating distance, or depth in computer vision, with a single
camera. We present them in three categories, and highlight their limitations when
considering the task of depth estimation for autonomous flight applications.

1.3.1 Physical constraints of UAVs vs distance sensors

Ground autonomous vehicles are often loaded with a significant set of various
distance sensors. While some sensors such as ultrasonic distance sensors or
radars can only give the distance to the closest object within a given detection
cone, only the ones based on light time of flight are able to create accurate 3-D
maps of their environment. These sensors, which consist of an infrared (IR) light
emitter and an IR sensitive receiver, derive the distance to an object from the time
taken by a modulated light pulse to make the round-trip to the sensor after having
bounced on the object [39]. The two existing methods for scanning distances on
multiple dimensions, illustrated in Fig. 1.2, are time-of-flight (ToF) cameras [48]
and LiDARs [92]. Since the former do not have any moving parts, they are more
compact, lighter and cheaper to manufacture compared to the latter. However, ToF
cameras have a significantly lower maximum range than LiDARs because their IR
signal quickly fades with distance, as opposed to the laser-based technology.

One of the differences between ground vehicles and aerial vehicles is the trade-
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Figure 1.2: Comparative illustration of ToF cameras and LiDARs working principles. Both sensors
derive the distance to objects in the environment from the time of flight of an infrared (IR) light pulse.
A ToF camera floods the scene with a single modulated IR pulse, and an IR sensitive camera sensor
detects the time of arrival of the bounced IR rays for each pixel of its sensor. On the other hand, a
LiDAR projects a laser IR pulse on a moving mirror and waits for the light ray to bounce back to the
mirror and hit the IR-sensitive cell. A LiDAR sensor scans the scene by taking several measurements
with different mirror orientations, which creates rolling shutter artifacts that ToF cameras do not have.

off between size and weight. Unlike ground vehicles, any additional weight to the
payload of an aircraft requires adjusting its aerodynamics by increasing its lifting
area and size. Furthermore, adding weight to an aircraft significantly increases its
energy consumption, which ultimately reduces its flight autonomy for a given energy
input.

For drones used in low-altitude applications, size is a critical constraint. They must
be small enough to access all the necessary locations for the intended purpose.
Furthermore, major regulatory bodies have imposed rules and regulations that
vary depending on the weight of the vehicle, with lighter drones having less strict
regulations applicable to them. As a result, this has created a general incentive for
drone manufacturers to reduce the size and weight of their products.

Despite constant improvements, LiDAR units are heavy, bulky, and expensive when
compared to drones. In 2023, available 3-D LiDARs still weight more than 500gr
while costing at least 1,000 USD [52, 91]. In comparison, the upper weight limit for
the most permissive category drones in the European Union is set to 250gr, and
prosumer drones can be found for less than 2,000 USD. Equipping a drone with
just one LiDAR unit significantly reduces the margin for an additional payload while
steeply increasing the price of the vehicle. ToF cameras are sometimes used as an
alternative to LiDARs on autonomous vehicles for collision avoidance. However, their
limited measuring range (10 meters for the best ones) makes them poorly suited for
trajectory planning.

In conclusion, sensors that would typically be used for distance sensing on ground
autonomous vehicles are not adapted for use on small UAVs when costs and weight
need to be limited. Therefore, alternatives to these sensors need to be found before
considering to addressing tasks of higher level for autonomous flight with these
vehicles.
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Figure 1.3: Illustration on how defocus can be used to infer depth. The further away a point is from
the focus distance, the higher is the defocus blur.

1.3.2 Depth perception from vision

When analyzing the context in which this thesis matured (see Section 1.2), we
mentioned that most UAVs are equipped with at least one camera and that visual
data can be used to extract different types of high-level information, including depth.
Indeed, visual data conveys information about depth in three distinct ways that
are the defocus, the visual cues and prior knowledge of the observed scene, and
the multiple observations of the scene from different points of view. Hereafter, we
explain how each source can be used to infer depth along with its advantages and
drawbacks before discussing their potential interest for small UAVs.

Depth from defocus

Defocus is a visual artifact in images captured by a camera that is due to the camera
lens and consists of objects appearing blurred because of their distance to the lens.
The purpose of the lens is to make the light rays coming from objects in the scene
converge on the camera sensor. However, the physics of light and optics is such that
perfect convergence can only be achieved for objects located at a single controllable
distance of the lens called the focus distance. Static objects appear blurred in an image
when the rays of light they emit or reflect do not converge perfectly on the sensor of
the camera because they are not at the focus distance of the lens. The defocus effect
is stronger for objects that are farther away from the focus distance, resulting in a
depth effect that varies depending on the distance of the objects to the camera, as
illustrated in Fig. 1.3. With everything else being equal, the magnitude of this effect
increases with three parameters of the camera setup that are the focal length of the
lens, the aperture of the camera, and the size of the camera sensor.

Depth estimation from defocus works by analyzing the defocus effect in a single
image or in a series of images taken from a single point of view with different focus or
aperture settings [86, 89, 132]. Single image depth from defocus works by analyzing
the defocus pattern created by a lens whose aperture has been modified to produce
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(a) A well-structured environment. © Google Street
View

(b) An unstructured environment. © Michaël Fonder

Figure 1.4: Estimating the relative depth of objects in a scene from a single image relies on multiple
visual cues and prior knowledge of the elements making the scene. Some environments, such as
well-structured ones (a), provide strong visual cues about the relative depth of objects making the
scene. Others, such as unstructured ones (b), display little usable clues, which makes the task of
estimating depth much more complicated.

a specific blur pattern, which is referred to as a coded aperture lens [98, 103, 106,
132]. Methods working with multiple images compare the defocus in the different
images to infer depth [32, 149]. For all methods, lower depth of field, i.e., stronger
defocus effect, allows for better depth discrimination. However, this comes at the
cost of degraded image quality, as a strong blur leads to a significant loss of image
frequencies.

Advantage. Since the magnitude of the defocus effect is directly related to the joint
properties of the camera lens and sensor, this method is able to estimate the absolute
depth of objects in the scene without requiring any external sensor or information.

Drawbacks. Depth from defocus has multiple drawbacks. First, multi-image
methods require a perfectly still camera and scene, while methods based on a
coded aperture lens require a modified camera. Second, depth from defocus does
not work on areas with uniform colors or low-contrasted textures, as defocus is
not measurable in these areas. Finally, since this method requires a measurable
defocus effect to work, the camera setup requires a large sensor, a large aperture
or a long focal length. As larger sensors are more expensive to manufacture and
require more complex optical lenses, the ideal hardware required for depth from
defocus is heavy and expensive. Additionally, a long focal length implies a narrow
field of view, which reduces the area of the scene seen by the camera.

Visual cues and prior knowledge

The visual information in a single image can be rich in cues about the 3-D structure of
the scene. They can be as varied as texture gradients, perspective effects, occlusions,
shadows, or the relative 2-D projected size of objects of known 3-D size [14]. When
detected and interpreted appropriately, these cues can be used to estimate the
relative depth of the elements of the scene. However, the correct detection and
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interpretation of these cues is not possible without some level of prior knowledge of
the elements making the scene, as they are often contextual.

Roads and urban environments are places where estimating the distance of an object
through this method works well because a lot of man-made objects and buildings
have purposes, standard sizes, and well-defined shapes. For example, one can easily
infer the 3-D position of the objects making the scene captured in Fig. 1.4a by using
knowledge about buildings, road vehicles, and trains. For instance, it can be assumed
that the truck is closer to the camera than the car preceding it on the road because
of their relative size in the image. Similarly, train tracks are parallel. The fact that
they appear closer to each other towards the center of the image means that they
are further away from the camera in the center of the image than at the bottom edge
of the image.

Advantages. The main advantage of this method is that it requires only a single
image of the scene to infer depth. Hence, it has no issue with dynamic objects in the
scene. Furthermore, this method does not require specific camera properties nor a
specific camera setup.

Drawbacks. Estimating depth from a single image comes with two major
drawbacks. First, it fails when large areas of the image feature little usable visual
cues or when the scene is made of objects of undefined structure and shape. This is,
for example, often the case in natural environments, such as illustrated in Fig. 1.4b,
where terrain surface can have unpredictable shapes, and where perspectives can
lead to misleading assumptions. Second, this method is not able to reliably estimate
the scale of the scene. This is because scale information is lost when projecting
the 3-D scene on the 2-D camera sensor [49]. Figure 1.4a illustrates perfectly this
issue. It was captured in a miniature city†, and the red truck in this image is a few
centimeters rather than meters away from the camera as most would assume just
by looking at the image.

Multiple points of view

When observing a scene through a camera lens, objects are projected onto
coordinates of the camera sensor that depend on their location in the scene with
respect to the camera. If the same scene is captured from multiple points of view,
the objects are projected at different coordinates in the images. This displacement
between projection coordinates of the same spatial point in images captured from
different points of view is known as the stereo effect. As the distance between the
projection coordinates is proportional to the distance of the object to the camera,
the stereo effect provides valuable information on the 3-D structure of the scene.

†Miniatur Wunderland in Hamburg, Germany.
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Figure 1.5: Illustration of the concept of depth from multiple points of view. When a same scene is
observed from multiple distinct camera poses, it is possible to triangulate the pose of points seen
by two cameras from their projected coordinates in the image (A). However, some parts of the scene
can be occluded, hidden, to some cameras, which prevents their triangulation (B). This method can
also struggle in areas with no or repetitive textures as it makes the image to image point matching,
and therefore the triangulation, unreliable (C).

To estimate the depth of the observed point from its projection coordinates in
different images, triangulation can be used if the camera poses for the different
points of view are known [49]. In this case, the process of estimating the depth from
multiple points of view can be divided into two steps. The first step is finding and
matching pixels that correspond to the same point in space in the images taken from
different points of view. The second step is estimating the depth of this point using
an optimization algorithm to perform triangulation.

Advantages. The point matching and triangulation aspects of depth estimation
from multiple points of view do not suffer from the drawbacks of single image depth
estimation. Indeed, it does no call for prior knowledge of the content or the structure
of the scene to work. Additionally, this method can be used with any camera, and
does not require an active control on their parameters as opposed to depth from
defocus.

Drawbacks. Estimating depth from multiple points of view requires the relative
camera pose to be known, which is a drawback because the precision of the
depth estimation directly depends on the precision of the relative camera pose
estimates. Additionally, as this method relies on image to image point matching, any
imprecision in the coordinates of the matched points directly impacts the precision
of the estimated depth. This is an issue for two reasons illustrated in Fig. 1.5. First,
some areas of the images can be ambiguous for point matching. This is, for example,
the case for areas with uniform colors, or repetitive patterns. Second, difference in
points of view can lead some points to not being visible in both images because of
occlusions. In this case, point matching, and therefore, triangulation is impossible.

Several cameras vs camera motion. Capturing images from different points of
view of the scene can either be done by several cameras simultaneously, or by moving
a single camera over time. Each method has its own advantages and drawbacks.
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Capturing images with several cameras simultaneously is advantageous for two
reasons. First, assuming the cameras are rigidly attached to each other, their relative
pose can be precisely measured and calibrated, which minimizes depth estimation
imprecision due to relative camera pose imprecision. Second, capturing all the
images at the same time means that all moving objects in the scene are observed
in the same pose, which allows performing triangulation even on moving objects.
However, the maximum depth that can be inferred with such a setup increases
with the resolution of the camera sensor and with the spacing between the cameras,
referred to as the baseline, which is a drawback for long-range depth estimation as
the resulting baseline or sensor resolution requirements can be inappropriate for
the targeted application.

As opposed to multi-camera setups, long-range depth estimation is not an issue with
depth estimation from camera motion, as there is no physical constraint limiting
the distance between two temporally spaced camera poses. While this method is
perfectly appropriate for any static scene, the temporal spacing of the images makes
it unreliable for dynamic objects as triangulation assumes the observed point to be
at the same spatial location for all points of view. Additionally, the accuracy of depth
estimation from camera motion directly depends on the accuracy of the method
used to infer the relative camera poses.

Small UAV constraints vs depth from vision

As discussed hereinabove, there are multiple ways to infer depth information from
visual information, with each method having its own advantages and drawbacks.
However, given advantages and drawbacks can have an importance that depends
on the considered application. In the following, we compare the three methods
regarding their potential use for depth estimation in small UAVs.

Depth from defocus is a poor candidate for this task. The cameras used for vehicular
sensing typically have a small sensor, a limited aperture, and a wide field of view,
which implies a short focal length. This is the complete opposite of the ideal camera
for depth from defocus. Hence, the properties of these cameras are the worst for
this task. Finally, blurred areas have fewer details, which is a loss of image quality.
Although methods exist to partially restore details in areas blurred by a coded
aperture lens [86, 132], starting with a reduced signal quality is not ideal for computer
vision tasks in general.

Estimating depth from a single image by using structure and prior knowledge and
estimating depth from multiple points of view is more appropriate for autonomous
vehicle applications since hardware requirements and practical constraints are less
limiting. The depth cues given by structure, prior knowledge, and multiple points of
view can even be used jointly to benefit from their respective advantages.

Acquiring the images from multiple points of view simultaneously from several
cameras has fewer drawbacks than acquiring them over time from a single camera.
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However, the spacing of multiple cameras on board a small UAV is limited by the
size of the vehicle and therefore limits the maximum reliable depth estimation range.
This limitation, which does not apply when capturing the images by using a single
moving camera, reduces the comparative interest of multi-camera setups for small
UAVs.

1.3.3 Requirements of monocular depth estimation for UAVs

In the previous section, we explain that the visual information given by a single
camera could be used to replace dedicated distance sensors by using depth
estimation methods. To be useful for drone applications, a monocular depth
estimation method should feature several important properties listed hereafter.

Generalizability. Thanks to their ability to fly, drones are able to access a wide
variety of places and environments. The depth estimation method should therefore
be able to work reliably in all types of environment, even unexpected ones.

Robustness. The depth estimation method is expected to work in a wide variety of
conditions. The performance of depth estimation should be invariant to changes in
scene lighting and in the visual properties of the environment.

Causality. The purpose of depth estimation being to replace distance sensors for
real-time trajectory planing and adaptation, the depth estimation method should
provide a depth estimate for the latest frame recorded by the camera.

Computational efficiency. The size and weight constraints of small UAVs prevent
the use of power-hungry and heavy computational devices. Therefore, depth
estimation methods designed for use in small UAVs should have limited needs in
terms of computational resources.

1.3.4 Related works

As just discussed, we are looking for a monocular depth estimation method for
UAV application which implies to meet several challenging requirements. Depth
estimation from a single camera is a computer vision task that is already well
established, and that has experienced a fast-paced evolution since the arrival of
convolutional neural networks (CNNs). In this section, we give an overview of the
related works, and analyze how they relate to the requirements we need.

Depth estimation from a single image

While the first attempt at estimating depth from a single picture involved a mix
of handcrafted properties for the structure of depth and machine learning for
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the inference of the 3-D information [118], researchers moved to deep learning
approaches when CNNs showed their efficiency for solving this task with the works
of Eigen et al. [24] and Liu et al. [77]. The works that followed are well covered by
multiple surveys such as the ones of Zhao et al. [160], Xiaogang et al. [145], Ming et al.
[97], and Masoumian et al. [87].

While the first methods were supervised, Garg et al. [35] proposed a semi-supervised
method based on a photometric loss on stereo images to overcome the lack of large
training datasets. Godard et al. [42] improved on this concept by adding a left-right
consistency term to the loss to get better results. Their method, called Monodepth,
became a significant milestone in the field, and led most following works to adopt
a similar semi-supervised training loss. Later, this semi-supervised approach was
adapted to work with monocular image sequences instead of stereo images [40, 80,
83, 107, 135].

The surveys [87, 97, 145, 160] show that the state of the art has been held by CNN-
based method for a long time. However, the advent of methods based on vision
transformers, such as DPT [113] and AdaBins [27], brought a breakthrough in the field
in the early 2020s and pushed the performance for single image depth estimation to
new levels. These methods were the state of the art in the field in 2022.

Single depth estimation methods are usually benchmarked against a mix of indoor
and outdoor datasets. The most commonly seen datasets for this purpose are the
NYU-v2 [124] and the SUN3D [144] indoor datasets. In outdoors, methods are tested
on the KITTI [38] dataset that targets autonomous driving applications.

Depth estimation from an image sequence

As explained in Section 1.3.2, most of the shortcomings encountered with monocular
image depth estimation can be alleviated by using temporal information. A simple
solution that emerged consists of adding time recurrence to specific layers of
standard single image depth estimation methods [71, 107, 135, 143, 157]. However,
this solution is not optimal as the known geometric constraints that link successive
frames are not used explicitly. Watson et al. [139] addressed this issue by proposing
a method that estimates the successive camera poses of the sequence to build a
cost volume with the plane-sweeping method [16, 34]. Xing et al. [146] avoided the
need for explicit motion modeling by using the planar parallax geometry [60, 117].
The latest method, however, consists of a complex pipeline that explicitly relies on
structure in the environment, which makes it unusable in environments where
there is no structure to use.

Other methods, such as the one of Luo et al. [81], use motion-induced constraints to
fine-tune the network at test time to improve the estimates. This is made possible
thanks to a self-supervised loss based on motion estimation. These methods
achieve outstanding performance, but at the cost of a large computational burden.
Furthermore, their design prevents them to estimating depth before the whole
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Cost volumes are pieces of neural networks architecture used in computer vision
methods that have to perform image-to-image point matching for tasks such as
optical flow or stereo matching. They provide a measure of similarity or cost
between different image patches, each of their elements representing the cost of
matching a given pair of patches. For example, computing the cost of matching a
given image patch with several candidates from another image allows finding the
best matching candidate in this other image. Cost volumes can differ between
architectures by the method used to sample the candidates to match and by the
cost function used to make the comparison.
In the illustration hereinabove, the cost volume is used to compare the patches
making a picture to their neighbors in the same picture. At the spatial position
corresponding to a patch A in the image, the cost volume gives the vector of costs
C (A, i) for matching the patch A to its neighbor i . In this example, the neighbor
that is the most similar to the patch A is the patch 4 because the matching cost
is the lowest.

image sequence is available, meaning that it only operates in an offline mode and
makes it inappropriate for autonomous vehicle applications.

Since not all benchmark provide images sequences, depth estimation methods that
work with image sequences are benchmarked against a sightly different selection
of datasets when compared to single image depth estimation methods. The default
benchmark used for these methods is the KITTI [38] dataset. In addition, methods are
sometimes tested on some indoor datasets such as SUN3D [144], TUM RGB-D [127],
or ScanNet [19] for example.

3-D reconstruction from an unordered set of images

Structure from motion (SfM) and multi-view stereo (MVS) are two research fields
that have developed in parallel with depth estimation. The idea is to reconstruct
3-D shapes from a set of RGB images that capture the scene from different points
of view under specific hypothesis (MVS requires camera poses to be known, SfM
does not). Reconstruction is achieved by explicitly expressing the relative camera
position between the images of the set. Surveys, such as the ones of Huang et al. [57]
and Özyeşil et al. [105], show that approaches for performing this task are varied and
are, by their nature, often unsuitable for real-time depth estimation. However, some
methods, such as the ones of Gu et al. [45], Ummenhofer et al. [133], and Yao et al.
[153], are adaptable for depth estimation on sequences.
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Other approaches, such as the ones proposed by Düzçeker et al. [23] and the method
called DeepV2D by Teed and Deng [131], are specifically designed to work on image
sequences in real time. These approaches are similar and both propose a three-stage
network. Their stages are an image-encoding network followed by the computation
of a cost volume that is finally processed by a depth estimation network. The cost
volume of both methods is built by a plane-sweeping method [16, 34].

SFM and MVS methods are sometimes benchmarked against the same datasets
as the ones used for depth estimation from an image sequence. However, these
fields also have their own dedicated datasets consisting of unordered set of images
for 3-D reconstruction. In this category, the “Tanks and Temples” [67] and the

“DTU benchmark” [1] datasets are the most commonly used for comparing the
performance of different methods.

Limitations of existing methods

While showing interesting properties, existing methods also have some limitations
when considering autonomous vehicle applications. Hereafter, we develop the three
main limitations identified for existing monocular depth estimation methods.

Transferability to UAVs. As explained in the previous section, existing depth
estimation methods are only tested on benchmarks targeting autonomous driving
applications or indoor depth estimation. With these benchmarks featuring mostly
structured environments and limited perspective variations, it is unsure how their
performance transfers to data captured by a drone flying with 6 degrees of freedom,
especially for flights in unstructured environments.

Generalizability. The surveys covering single image depth estimation methods [87,
97, 145, 160] observe that estimating depth from a single image remains difficult,
especially for autonomous vehicle applications. Since the problem is ill-posed,
networks have to heavily rely on priors to compute a suitable proposal. Such
dependency on priors leads to a lack of robustness and generalization. Therefore,
methods of this family need to be fine-tuned for every new scenario or environment
encountered in order to produce good estimates. Despite their massive parameter
count, transformers are no exception to these observations.

Scale estimation. Reconstructing 3-D scenes only from 2-D images can be done
up to a projective ambiguity [49]. As a result, methods estimating depth only from
visual information are unable to estimate the proper scale for depth without relying
on any prior knowledge about the structure of the scene. This not only means that
the scale estimated for the outputs may be arbitrary, but also that it is likely to drift
over the sequence, which is problematic for autonomous vehicles.

Cost volumes. As highlighted by Schröppel et al. [120], the multi-frame methods
that rely on plane-sweeping cost volumes share a common shortcoming. They build
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Figure 1.6: A plane-sweeping cost volume gives the cost of matching the pixels of two different
images captured from distinct camera poses. Each cost vector of length N at coordinates (i , j ) of
the cost volume gives the cost of matching the image patch A at the same location (i , j ) in one of the
two images (Image 1 in our example) with N pixels of the other image. The pixels of Image 2 used
for computing the cost values (in blue in the illustration) correspond to the projection coordinates of
the point corresponding to the patch A reprojected in space at regularly spaced depth intervals Δz
along the light ray, up to a maximum depth zmax. Note that some points may be projected outside
of the other image (red points in the illustration) depending on the relative camera pose and the
plane-sweeping parameters, and that a default cost value has to be used for these points.

their cost volumes from depth or disparity intervals, which requires two arbitrary
parameters illustrated in Figure 1.6: (1) the maximum range, and (2) the quantization
step along this range. The maximum range has to be known at the time of training
or fine-tuning, which prevents dynamic adaptations to new depth distributions. The
quantization step, that is the range divided by the number of samples along the
range, is an important parameter to determine the performance of the network. A
large quantization step degrades the depth resolution, hence the performance of a
network, while taking a smaller quantization step will increase the inference time
without any guarantee of improving the final result.

1.4 Thesis outline and original contributions

In the next parts of this work, we develop the research carried to propose answers
to the task of reliable depth estimation from a monocular RGB camera within the
context of autonomous UAVs. The three following chapters are each articulated
around the work presented in a specific scientific publication. Therefore, the content
of the chapters is, for the most part, based on the content of the related publication.

It should be noted that, despite primarily targeting small UAV applications, our work
can be used for depth estimation on any device that features a camera, an IMU, and
sufficient computational power. Indeed, drones have a lot of constraints that other
devices may not have. As a result, transferring our work to less constrained devices
is not a problem, whereas the opposite is not true. Besides, we had the will to make
our work as useful to the community and as reproducible as possible. This is why
we open-sourced most of our work. We give the public link to the data related to the

23



1 Introduction

presented research at the beginning of the corresponding chapter. Hereafter, we
summarize the content of each chapter and their respective contributions.

Chapter 2 gives an overview of datasets that were available in 2019 and suitable
to train deep learning methods for depth estimation for autonomous drones in
outdoors. As we noted a clear lack of appropriate datasets, we introduced Mid-Air,
a new multipurpose synthetic dataset of low altitude drone flights in unstructured
environments. It features synchronized data of multiple sensors for a total of 54
trajectories and more than 420k video frames simulated in various climate conditions.
With the intention of making this dataset as useful as possible, we provide data to
enable the training of deep neural networks for various tasks such as visual odometry,
semantic segmentation, surface normal estimation, etc. In Chapter 2, we motivate
the design choices made for this dataset, explain how the data was simulated, and
detail its content. We then propose a benchmark for positioning and a benchmark
for image generation tasks, and show how Mid-Air can be used to set up a standard
evaluation method for assessing computer vision algorithms in terms of robustness
and generalization. Finally, we showcase the benefits of Mid-Air by pointing out a
few works that made active use of it.

ÿ Contributions 1

• We propose the first multi-modal dataset for deep learning dedicated to
UAVs flying in unstructured environments;

• Our dataset features ground-truth data, such as surface normals, not
present in other major datasets;

• We propose a benchmark to test the robustness of computer vision
methods to visual changes;

• Mid-Air has proven its value to the community as various original works
made active use of it.

Chapter 3 addresses the challenge of estimating depth in unstructured
environments from RGB images captured by a camera that has a motion with
six degrees of freedom. We first formalize this task and introduce the metrics
used to evaluate the performance of a depth estimation method. We then propose
a new method, called M4Depth, that is designed to address the shortcomings
observed in existing methods when considering depth estimation in outdoors and
in unstructured environments. Finally, we perform an extensive set of experiments
which allow us to assess the performance of our method in various setups, and to
compare it to a representative baseline of existing methods. This baseline implied
to retrain and test existing methods on UAV-oriented datasets, including Mid-Air,
for assessing their transferability to depth estimation for UAV applications. This set
of experiments, which allows us to highlight the strengths and limitations of our

24



1.4 Thesis outline and original contributions

method, shows that M4Depth is superior to other methods on UAV datasets while
performing similarly to the baseline on standard depth estimation baseline.

ÿ Contributions 2

• We define a notion of visual parallax between two frames from a generic
six-degree-of-freedom (6-DoF) camera motion, and present a way to build
cost volumes with this parallax;

• We present a novel lightweight multi-level architecture, called M4Depth,
that is based on these cost volumes, designed to perform end-to-end depth
estimation on video streams acquired in unstructured environments, and
suitable for real-time applications;

• It is shown that M4Depth, is state-of-the-art on our Mid-Air dataset, that it
has good performances on the KITTI dataset [38], and that it outperforms
existing methods in zero-shot transfer on the TartanAir dataset [137].

Chapter 4 explores the possibility to predict the uncertainty on depth estimates
produced by M4Depth and presents M4Depth+U, a method to jointly estimate depth
and uncertainty based on the architecture of M4Depth. In a first part, we formalize
the problem of uncertainty estimation, and explore the related works. We then
explain why getting an uncertainty estimate related to depth from the parallax values
produced by M4Depth is not trivial, and why the purely probabilistic approach,
which would be the natural solution to this problem, is suboptimal. We then
proceed to identify and detail a new custom-tailored strategy, called M4Depth+U, to
convert the uncertainty estimates related to parallax generated by the network into
uncertainty estimates related to depth. Our tests in various conditions, including
zero-shot cross-dataset transfer, and on various publicly available datasets show
that M4Depth+U consistently outperforms the purely probabilistic approach. In
addition, the proposed method performs consistently on the robustness benchmark
of the Mid-Air dataset, therefore showing its low sensitivity to visual changes. Finally,
the performance obtained on a zero-shot cross-dataset transfer benchmark for
multi-view depth (MVD) estimation methods shows the value of our method, as it
performs similarly to existing multi-view stereo methods while being 2.5 times
faster and causal.

ÿ Contributions 3

• We propose the first method that addresses joint monocular depth and
uncertainty estimation for the specific constraints of autonomous vehicles;

• We test our method on three public datasets and show that the
uncertainty estimate performs consistently in zero-shot transfer in
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ÿ Contributions continued 3

different environments, therefore showing its generalization capability to
unseen environments;

• We test our method on a benchmark for MVS and show that, despite being
causal as opposed to other methods, its performance is on par with existing
MVS methods for joint depth and uncertainty estimation. In addition, our
method is 2.5 times faster.

Chapter 5 summarizes the research presented in this work and concludes on its
contributions. This chapter also discusses some further research ideas and open
questions.

1.5 Publications

This thesis is based on the three following publications:

• M. Fonder and M. Van Droogenbroeck, “Mid-Air: A Multi-Modal Dataset for
Extremely Low Altitude Drone Flights,” in IEEE Int. Conf. Comput. Vis. Pattern
Recognit. Work. (CVPRW), UAVision, Long Beach, CA, USA: Inst. Electr. Electron.
Eng. (IEEE), 2019, pp. 553–562. DOI: 10.1109/cvprw.2019.00081
The content of Chapter 2 is adapted from this publication.

• M. Fonder et al., “Parallax Inference for Robust Temporal Monocular Depth
Estimation in Unstructured Environments,” Sensors, vol. 22, no. 23, pp. 1–22,
2022. DOI: 10.3390/s22239374
The content of Chapter 3 is adapted from this publication.

• M. Fonder and M. Van Droogenbroeck, “A technique to jointly estimate depth
and depth uncertainty for unmanned aerial vehicles,” in IEEE Int. Conf. Syst.
Signals Image Process. (IWSSIP), Ohrid, North Macedonia, 2023, pp. 1–5
The content of Chapter 4 is an extended version of this submitted article.
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� Overview
In this chapter, we introduce Mid-Air, a multipurpose synthetic
dataset of low altitude drone flights in unstructured environments
which features synchronized data of multiple sensors for a total of 54
trajectories and more than 420k video frames simulated in various
climate conditions.We first present related and existing datasets and
show how they compare to Mid-Air. Then, we motivate our design
choices, explain how the data was simulated, and detail the content
of our dataset. Finally, we propose recommended train/test splits for
standardized method evaluations. We also introduce benchmarks
for positioning and for image generation tasks, and show how Mid-Air
can be used to set up a standard evaluation method for assessing the
performance of computer vision algorithms in terms of robustness
and generalization. Finally, we show the value Mid-Air has already
brought to the scientific community by highlighting works that made
active use of it.

Data availability. The dataset presented in this chapter is publicly
available under the CC BY-NC-SA 4.0 license and can be downloaded
on the following website: https://midair.ulg.ac.be/.

https://midair.ulg.ac.be/




2.1 Introduction

Figure 2.1: Sample from our Mid-
Air dataset. The data simulated
when flying our drone in a scene
includes, among others and from
left to right in the illustration, an
RGB image under foggy weather,
the depth map, an RGB image
for a spring sunset, the map of
surface normals, an RGB image of
a clear sky weather during fall, the
semantic segmentation map, and
an RGB image in a cloudy winter.

2.1 Introduction

Currently, the best methods for flying drones autonomously rely on machine learning
algorithms and, for vision-related tasks, involve deep neural networks. The success
of machine learning methods is often due to their ability to learn complex patterns
from examples by bypassing the need for an explicit analytic model. However, a
common shortcoming of deep learning methods lies in the direct relation that exists
between their final performance and the quality of the data used for their training.
Indeed, if the training data does not completely represent the task, there is a risk of
experiencing poor performance in practice. Stated otherwise, a deep neural network
trained with insufficiently varied samples will not generalize properly.

At the start of this thesis, no dataset was available for training deep learning methods
for depth estimation on outdoor data recorded by a drone, and we began our research
by using datasets that target autonomous car applications. However, our first results
hinted at probable generalization issues to drone data. Indeed, as opposed to drones,
cars are non-holonomic vehicles that move in constrained environments, i.e., roads.
Therefore, sensors mounted on them only encounter a limited subset of motion types,
and cameras do not completely explore their 3D environment. As a result, these
datasets do not represent drone flights well enough and depth estimation methods
trained on these datasets seemed to be strongly biased towards autonomous cars
applications. At this point, the need to be able to train and test methods on drone
data became blatant and asked for the development of a dataset specific to flying
drones.

This motivated us to build a new dataset, named Mid-Air, with has a particular
focus on applications for autonomous flight. Our main motivation for its design
was to provide a large multi-modal dataset, as illustrated in Table 2.1, that enable
the training of most machine learning tasks required for autonomous piloting
such as visual odometry, simultaneous localization and mapping, depth estimation,
semantic segmentation, or stereo disparity estimation. The synchronicity of the
data allows targeting these tasks individually or simultaneously in a multitask setup.
In addition to providing a basis for training and benchmarking algorithms, we also
wanted to push innovation forward, by providing a new type of data, surface normals,
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2 Mid-Air: A multi-modal dataset for extremely low altitude drone flights

Datasets Mid-Air [30] Kitti [31, 37, 38, 94] Virtual Kitti [33] Synthia [51, 116] RGB-D SLAM [127] EuRoC MAV [11]
Number of trajectories 54 71 50 7 19 11
Number of frames 119k* (@25Hz) 44k (@10Hz) 21k* (@10Hz) 7k* (@5Hz) 48k (@30Hz) 27k (@20Hz)
Total duration 79 min 73 min 35 min 23 min 27 min 22 min
Resolution 1024 × 1024 1382 × 512 1242 × 375 960 × 720 640x480 752 × 480
Data type synthetic real synthetic synthetic real real
Camera motion drone flight car drive car drive car drive hand-held drone flight
Environment type unstructured city city city indoor indoor
Climate variations yes no yes yes no no
IMU data yes yes no no yes yes
GPS yes yes no no no no
Depth map dense sparse dense dense dense sparse
Stereo disparity map yes yes no no no no
Surface normals yes no no no no no
Semantic segmentation yes yes yes yes no no
Instances segmentation no yes yes yes no no
Optical flow no yes yes no no no

Table 2.1: Comparison between our Mid-Air dataset and similar datasets usable for multi-task
learning. The symbol * denotes that several additional RGB videos, for different conditions, are
available for a same trajectory.

that is not present in any other similar dataset.

In this section, we first present the datasets that existed when we designed Mid-Air,
and that are related to our need. We then briefly introduce our dataset and explain
how it compares to existing ones. Finally, we detail the content of this chapter and
highlight our main contributions.

Existing datasets. In 2019, various datasets existed for developing computer vision
tasks [12, 17, 90, 104, 118, 119, 123], but only a few of them were large enough for
machine learning algorithms or provide the data of several sensors for multitask
learning. The KITTI dataset [31, 37, 38, 94] was probably the most complete one and
has been a reference in the field for training and benchmarking methods addressing
various computer vision tasks. Due to a lack of alternatives, most methods that jointly
estimate two types of information, such as image depth and camera ego-motion [83,
155] for example, had to be trained and/or tested on this dataset alone.

Table 2.1 summarizes some common multi-modal datasets that were available at
the time and compares them to our Mid-Air dataset (first column), according to
the number of samples, the acquisition conditions, and types of data. This table
also shows that the largest and most complete datasets were mainly designed for
autonomous car applications, as they provide data from sensors mounted on a car
driving in urban environments.

Mid-Air: a new synthetic dataset. The dataset we introduce features synthetic, i.e.,
simulated, data of navigation and vision sensors mounted on board of a quadcopter
flying in unstructured environments. Its main characteristics are summarized in
Table 2.1. Our aim was not only to offer an alternative to existing datasets for flying
drones, but also to provide material to develop algorithms for autonomous vehicles
which could be generalizable to a wide variety of situations. For example, the choice
of recording the dataset in unstructured environments was guided by the fact that
these environments are the most challenging for some computer vision tasks, such
as depth estimation. In addition, using a drone allows recording a variety of camera
motions and poses which would not be possible with a car, which makes tasks such
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as visual odometry or SLAM more complex.

The content of the dataset was generated using the Unreal Engine 4 [25], a game
engine software with realistic-looking real-time image rendering, with Airsim [121],
a plugin for this engine that offers an API-controlled multi-rotor drone simulation
framework. As opposed to real data capture, working with a simulator offers a full
control on the data to be recorded. We leveraged this advantage in two different
ways. First, we recorded each flight trajectory several times with varying climate
conditions (different seasons, time of day, and weather conditions), which allows
training networks for robustness to visual changes. Second, generating data
synthetically also allows recording ground-truth data, which is more reliable or
even impossible to capture with real sensors.

In Mid-Air, we do not only provide common dense ground-truth visual maps such as
depth maps, but also introduce surface normal maps, a new type of dense ground-
truth data previously unseen in a dataset. This innovates by paving the way for
the development of methods for surfaces normal estimation tasks. In addition, we
introduce two unique benchmarks, a first for positioning tasks and a second for
image generation tasks, to test the robustness and generalization capabilities of
computer vision methods.

This chapter first presents the models used to simulate the sensors whose data
are given in the dataset. We then detail the content of the dataset itself. For this, we
explain the setup used for simulating the drone and the visual environments. We
also explain the methodology used to generate the data making the dataset, and
the limitations induced by our setup. Next, we make a train/test split suggestion
for our dataset and introduce two distinct benchmarks to test the robustness of
methods trained on our dataset. Finally, we conclude this chapter and make a concise
retrospective on the value brought by Mid-Air to the scientific community. Our main
contributions for this chapter are as follows:

• We propose the first public multi-modal dataset for deep learning dedicated to
UAVs flying in unstructured environments;

• Our dataset features ground-truth data, such as surface normals, not present
in other major datasets;

• We propose a benchmark to test the robustness of computer vision methods to
visual changes;

• Mid-Air has proven its value to the community as various original works made
active use of it.

2.2 Sensors simulation

Building a synthetic dataset for flying drones in unstructured environments requires
a precise model of the drone and its sensors. For the physics of the drone, we rely
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2 Mid-Air: A multi-modal dataset for extremely low altitude drone flights

on the default quadcopter drone model provided by the Airsim simulator. However,
due to some shortcomings of the simulator, we had to re-implement some sensor
models from scratch or to tweak others to gain more control on the generated data
and increase their accuracy. Hereafter, we detail the modifications which were made
to the default models provided by Airsim and elaborate on the reasons which led us
to make these modifications.

2.2.1 Accelerometer and gyroscope

The accelerometer and the gyroscope, two sensors constituting the core of the inertial
measurement unit (IMU), are essential for stabilization and more generally for flying
a drone. Unfortunately, both are not free of imperfections; they are prone to bias, bias
drift, and measurement noise. It is commonly assumed that the bias, bt , behaves
as a Gaussian random walk process, and that the measurement noise follows a
Gaussian (or normal) distribution with a zero mean. Accordingly, for a sampling
period dt , the relationship between the ground-truth measurement mGT and the
sensor measurement msens for one axis is as follows:

msens = mGT + νn + bt where νn ∼ N (0,n) and

bt = bt−1 + νb where νb ∼ N

(︄
0, b0

√︃
dt
t a

)︄
,

(2.1)

where n, b0 and t a are parameters that can be determined by carrying an Allan
diagram analysis (see [142]) and which differ for each individual sensor.

These parameters can, however, not be modified by the API of Airsim. Since we
wanted to generate trajectories with different IMU settings, we reimplemented this
model. Before each flight, a new set is drawn randomly within bounds that are
representative of the variations typical for different IMU models. The choice of the
order of magnitudes to use was guided by experimental measurements given in
different studies of various sensor models [58, 100, 101, 112].

It is important to note that both the accelerometer and the gyroscope are also prone to
axis misalignment and scaling factor issues. Unfortunately, these two imperfections
appear to be far less studied experimentally. For this reason, we preferred to rely on
a model commonly adopted for control applications, even though it neglects these
parameters.

2.2.2 GPS receiver

GPS receivers are heavily used for positioning in the context of autonomous driving
and driving assistance. They can indeed regress their absolute position based on
the satellites that are in line of sight. The regression process is in three steps. First,
the sensor computes the delay between the time of emission of GPS signals by each
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satellite and their time of arrival to the sensor. This delay is derived from the data
encoded in the signals. After that, the sensor uses these delays to estimate the
distance separating it from each satellite. These distances are called pseudo-ranges.
Eventually, the sensor can triangulate its position with an optimization method
based on the positioning knowledge it has about GPS satellite positions and the
pseudo-ranges estimated during the previous step.

A GPS model. GPS positioning would be perfect if pseudo-ranges could be
computed precisely. Perfect distances would be obtained if all clocks were perfectly
synchronized and if the speed of light was known all along the path between a
satellite and the receiver. However, this is not the case in practice. Clocks have
indeed small, but measurable offsets. Furthermore, the atmosphere is composed
of several layers which interact differently with the light and therefore modify its
speed and path. Without loss of generality, the relationship between the estimated
and real pseudo-range for a given satellite and a given carrier frequency, ρe and ρr
respectively, can be expressed as follows (see [3]):

ρe = ρr + c (δi − δR ) + ΔI + ΔT + ν , (2.2)

where c is the speed of light, δi and δR are the satellite signal inaccuracy and the
receiver clock offset respectively, ΔI andΔT are the delays induced by the ionosphere
and the troposphere respectively, and ν is the receiver measurement noise. Since the
ionosphere induces a delay which is inversely proportional to the frequency [3], ΔI
can be estimated only by using several carrier frequencies. Other inaccuracies and
delays cannot be estimated by the receiver. For those reasons, a good GPS receiver
simulation can only be obtained when these imperfections are accurately modeled.

Shah et al. [121] do not provide any detail on the model built in Airsim, which makes
it hardly reliable when trying to simulate real-world conditions. For this reason, we
developed our own model and had to choose between a model for a single-frequency
or a dual-frequency receiver. As the latter are currently not widespread, we built a
custom single-frequency receiver model derived from the dual-frequency model and
implementation given by Agarwal and Hablani [3]. The adaptation is straightforward
and consists of simply removing all the corrections enabled by the use of several
carrier frequencies. More precisely, we removed the ionosphere delay correction
term from the estimated pseudo-ranges used for the optimization process.

Satellites visibility. To assess the satellites which are in line of sight, Agarwal
and Hablani [3] make the assumption that the Earth is a perfect, smooth ellipsoid
and that there are no obstacles. This is hardly acceptable for drones that fly at low
altitudes. Hence, we decided to refine the model by considering the shape of the 3D
environment generated by the simulator. Our idea consists in adding a wide-angle
depth camera to the drone that points upwards. This creates a map of areas of the
sky which are occluded by obstacles. Assuming that the starting position of the
drone was mapped to an arbitrary location on the Earth surface, and since we know
perfectly the position and the attitude of the drone, it is then possible to project
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Figure 2.2: Illustration of the method used to determine which GPS satellites are in line of sight. The
left picture shows a 3D perspective of the scene. The right picture shows what is seen by the receiver.
Green and red dots correspond to projected satellites positions, which are respectively in line of sight
or not according to our method. Areas overlaid with red do not contain any pixel belonging to the sky.

the satellite positions on this map and determine if some satellites are occluded
by the presence of obstacles. A simple rule would be to discard a satellite as soon
as it is occluded by an obstacle along the path. This rule therefore assumes that
all obstacles are perfectly stopping the signals. However, several studies [8, 73]
contradict this assumption for trees. Since the environments used for our database
contain a lot of them, another rule was developed. Because sky occlusion maps are
missing information about the amount of GPS signal absorption and availability, we
defined an empirical rule, illustrated in Fig. 2.2. It basically consists of dividing the
sky in several areas. A satellite is considered as occluded if no sky portion is visible
in the whole area on which it is projected.

2.2.3 RGB camera image rendering

As mentioned previously, we used the Unreal Engine for rendering the images of
our dataset because it offers a good trade-off between rendering time and visual
accuracy. Hereafter, we discuss the consequences on the visual accuracy in terms of
shading, geometrical limitations, and level of details. It is important to elaborate on
the consequences of our choices, as they might have an impact on the generalization
of learning algorithms to real-life scenarios. We also explain why we believe they
are acceptable.

Rendering. The Unreal Engine 4 uses an enhanced version of the deferred
rendering algorithm. This means that shadings are not rendered with physically
accurate equations, but rather with simplified models which were targeting a
good visual likelihood. Such models are well suited for diffuse surfaces, but have
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à Deferred rendering 5

Deferred rendering is a technique used in computer graphics to render 3D
scenes efficiently, often in real time. As optically accurate rendering, as done
with ray tracing, is computationally expensive, deferred rendering techniques
use approximations and simplifications to speed up renderings. Therefore, the
target of deferred rendering is good visual likelihood at the expense of physical
accuracy.
Initially, such techniques were only designed for surfaces with diffuse, also
called Lambertian, reflectance, but have later been improved to accommodate
for more complex surface properties. Any material with reflective or refractive
properties has to be simulated with arbitrary tricks. For example, the preferred
method for faking reflections in this context consists of projecting and capturing
the surrounding of an arbitrary area on a cube map, and of projecting this
cube map on the surface of all objects present within this area. With this
method, reflections are skewed and light rays do not bounce on reflective objects.
Refractions, on the other side, are often approximated by simple transparent
materials and will not deflect light rays as in the real world.

difficulties dealing with surfaces which interact with light rays in other fashions.
This is especially true for reflective and refractive materials. Therefore, these
inaccuracies could lead to biases in deep learning methods when used as training
data, and hinder their generalization capabilities.

Fortunately, most natural elements, with the notable exception of water bodies, can
be faithfully approximated by deferred rendering. Water is an element with complex
optical properties which are challenging for all rendering techniques, and dynamic
water is probably the natural feature that is the most poorly approximated by deferred
rendering. Large bodies of still water such as lakes can nonetheless be decently
approximated by a mix of reflective and transparent material. Therefore, synthetic
datasets featuring still natural environments should induce limited risks of poor
generalization for deep neural networks trained on them.

Geometrical limitations. In addition to shading limitations, there are some
geometrical limitations. Since computers have a finite amount of memory, it is
unrealistic to populate a virtual world with an infinite amount of different objects.
What is done in practice is to use a limited subset of assets and to replicate it with
basic modifications (scale and orientation) over the environment where needed.
This has obvious implications for semantic segmentation algorithms, and must
therefore be kept in mind when using synthetic datasets in general.

Eventually, game engines come with a further memory and computation cost-saving
feature that is called the “Level of Details” (LoD). This feature reduces the number
of faces to be displayed by simplifying the geometry of objects more and more
aggressively as the distance to the camera increases. This simplification is dynamic
and leads to object re-instantiation during runtime. It could therefore be harmful
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π Algorithm: Occlusion mask generation 1

1 For each pixel pi , j of depthCamera 1:
2 Compute 3D position of pi , j with respect to Camera 1;
3 Express 3D position of pi , j relatively to Camera 2;
4 Project pi , j on the sensor plane of Camera 2;
5 Get coordinates [k , l ] of the corresponding projection;
6 if depthCamera 1 [i , j ] > depthCamera 2 [k , l ]:
7 The surface corresponding to pi , j is hidden to Camera 2;

for computer vision learning algorithms relying on video streams. As this feature is
mandatory for large environments, we took special care in tuning it such that the
re-instantiation only occurs past a distance at which the visual impact on the RGB
capture becomes minimal.

2.2.4 Synthetic sensors / 3D and semantic sensors

Working with a simulator enables to gather information about the environment and
the 3D world scene which is not possible to capture with real sensors. For example,
we can think about perfect dense depth maps, perfect and automatically annotated
segmentation maps or even normal maps.

They can be created by exploiting features implemented for deferred shading and
gathered through the Airsim API. The only major difficulty is that objects using
transparency do not appear on normal maps. This is due to the intrinsic design of
the deferred rendering pipeline. Since the only transparent objects present in our
datasets are water planes, we decided to solve this issue by assigning a perfectly
vertical normal to all pixels of the map belonging to a water plane.

Stereo ground truths. Since we know perfectly the virtual environment, it is also
possible to generate ground truths for stereo disparity maps and occlusion masks.
The disparity d expressed in pixels can indeed be inferred from a single planar depth
map Z expressed in meters by using the following equation:

d =
f b
Z

, (2.3)

where f is the focal length of the corresponding camera in pixels, and b is the baseline
between the two cameras expressed in meters.

To calculate the occlusion mask, we have to determine the areas of a picture taken
by one of the two cameras which are not visible by the second camera. This mask
can be inferred using the planar depth maps corresponding to the scene seen by
each camera and is detailed in Algorithm 1. It is important to note that the disparity
map and occlusion mask are always specific to one of the two cameras.
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Figure 2.3: Sensor locations on the drone used to generate our dataset. Cameras are represented
by the pyramids; the blue cube shows the IMU and the GPS receiver locations.

2.3 Dataset presentation

After the details related to the simulation environment, we now present the design
and content of our Mid-Air dataset. In particular, this section explains the different
design rules. We first introduce the drone setup that has been used to record the
trajectories. Then, we provide some details about the environments used for the
flights. Finally, we present an overall view of the dataset content.

2.3.1 Drone setup

The physical drone model used for the flights is the default quadcopter model of
Airsim with customized sensors types and placements. We used three different
cameras: a front-looking camera placed on the X-axis of the drone, another front-
looking camera with a 1-meter baseline compared to the first for stereo applications,
and a last camera looking downward. The latter can be especially useful for visual
odometry and SLAM algorithms [6], and was therefore added to the common front-
looking cameras. The left-stereo camera, the IMU, the GPS receiver and the down-
looking camera are placed exactly at the same location (see Fig. 2.3 for a schematic
view of the drone setup). This choice, even if unrealistic, should not have any impact
on the learning algorithms and greatly eases the use of the dataset since no additional
translations are required when working with several sensors at the same time.

The cameras use the pinhole camera model to capture images. They are therefore
perfectly calibrated by default. This is once again an advantage since it enables to
remove the camera calibration method out of the equation when comparing different
algorithms. Due to render engine limitations, cameras act as global shutter cameras
and do not present any motion blur. They are all set to capture images at a rate
of 25 Hz with a field of view of 90 degrees. In addition to RGB data, the left stereo
camera captures a semantic segmentation map, a depth map, a normal map, a stereo
disparity map, and a stereo occlusion mask. All images have a size of 1024 × 1024
pixels, except the normal maps that have a size of 512 × 512 pixels.

The IMU measurements refresh rate is set to 100 Hz and the GPS receiver updates
its position every second. The parameters of the IMU are randomly drawn before
each flight, and the initial bias is logged for each trajectory. The same yields for the
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Figure 2.4: Samples of our dataset illustrating the variety of environments used to generate the
visual information.

initial GPS position. The latitude, longitude and altitude are drawn uniformly in the
ranges of [0, 60] degrees, [−180, 180] degrees and [−500, 500] meters respectively.
The GPS satellites having an orbital period of 12 hours, we also randomized the
initial trajectory time to get different satellite positions.

2.3.2 Environments setup

As stated earlier, our dataset aims to provide data to train and test algorithms for
robustness. This goal can only be achieved if the data is varied. To guarantee enough
variety, we used two different large-scale environments displaying varied features
(see Fig. 2.4) and different climate setups. The following subsections present the
setups in which we flew our drone.

Landscapes

The first environment used is the map given in the Kite demo of the Unreal Engine. It
features a mountain landscape with several lakes and forests (see the first row of Fig.
2.4). Its size, which reaches almost 100 km2, guarantees to find places with varied
characteristics and features. Its topography makes it perfect for training algorithms
to deal with uneven grounds and height variations.

The second environment is made up of the two demo maps provided by the PLE
plugin for the Unreal Engine. Together, they cover an area of roughly 10 km2 and
feature a hilly landscape with forests and some lakes, as for the first environment.
In addition, both maps are crossed by a road (with signs, barriers, ...) and a railway
track. The specificity of these maps lies in the possibility to change the season and
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2.3 Dataset presentation

Figure 2.5: Samples of our dataset showing the different climate setups. The top row shows the
four simulated weathers. The bottom row illustrates the seasons.

therefore to change the visuals of the environment. Samples of these maps are
shown in the second row of Fig. 2.4.

Climate conditions

For the climate settings, we have two tunable modalities: the weather and the season.
The weather parameter mainly affects the sky color as well as the illumination of the
scene. The season parameter, on the other hand, mostly affects the colors present in
the environment. Since nature is extremely varied, the possibilities of configurations
are endless. In order to keep a tractable size for the dataset, we restricted ourselves
to a carefully chosen subset of scenarios.

We chose to simulate four distinct weathers and three seasons. To generate the
different weathers, we use the TrueSky plugin for the Unreal Engine. It allows
creating volumetric and dynamic clouds able to cast shadows on the map. They
therefore have a realistic behavior, which is important for video applications. For
the season setups, we relied on the presets of the PLE plugin. Hereafter, we give a
brief description of the visual properties of each setup:

Clear sky at midday. The illumination is typical for a normal use case in sunny
weather. The shadows are harsh, and the color of the sky is mainly blue.

Overcast sky. The illumination is dim, and the shadows are almost absent. This
and the gray sky color provide a realistic representation of cloudy weather.
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Figure 2.6: Distribution of the angular velocities of the drone recorded in our dataset for each axis
of the drone.
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Figure 2.7: Distribution of the angular velocities of the car recorded in the KITTI dataset for each
axis of the car.
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Figure 2.8: Distribution of the velocities of the drone recorded in our dataset for each axis of the
drone.
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Figure 2.9: Distribution of the velocities of the car recorded in the KITTI dataset for each axis of the
car.
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Sunset. This weather was chosen for its challenging illumination conditions. The
shadows are indeed heavily elongated. This creates areas which are completely
shadowed and therefore require good illumination robustness to be parsed correctly.
In addition, the sun is low and can enter the field of view, which creates simulated
sun glares.

Fog. This weather is challenging for algorithms targeting visual odometry. Since
visual features fade with distance, algorithms have less visual cues to rely on to
correct the state estimation, leading to less accurate state corrections. This weather
is also valuable for testing the robustness of image generation tasks, since it tends to
desaturate colors.

Seasons. For the season setups, we relied on the presets of the PLE plugin. We
found out that all seasons do not contribute equally to the diversity of the dataset.
Summer was discarded due to its resemblance with spring and fall. Including it
would not have added any significant variety to the dataset, while discarding it allows
reducing the dataset size. We kept the spring, fall, and winter seasons. Spring
features trees with green leaves and luxuriant ground vegetation. Fall differentiates
itself from spring with trees with yellow leaves and dried ground vegetation. Finally,
winter is interesting for its trees without leaves and an environment covered with
snow.

2.3.3 Scenarios and format

After having properly defined the environments and setups, we manually flew the
drone in the simulator using an RC controller connected to the computer through
USB and recorded 5 hours of flight. We then extracted 79 minutes out of it. These 79
minutes correspond to 54 trajectories of equal length, i.e., 1.47 minute each. The first
30 are captured in the Kite demo environment and the remaining ones in the PLE
environment. As visible in Figures 2.6 to 2.9, the motion of the drone recorded in our
dataset is much more varied than the motion typically found in dataset captured with
a car. Indeed, with the exception of the yaw angular velocity and the forward velocity,
which are similar, the motion of the drone displays a much wider distribution of
velocity values than the one of the car.

Each trajectory record is rendered several times, once for every climate scenario.
In practice, this translates into rendering trajectories belonging to the Kite
demo environment once for each weather setup and once for each season for
those belonging to the PLE environment. Since there can be some differences
due to objects animation between each render, all data streams are recorded
simultaneously at each run.

The data includes the ground-truth positioning information, i.e., the position, velocity,
acceleration, attitude and angular velocity, the IMU sensor measurements, the
estimated GPS position along with complementary information on the GPS signal
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such as its dilution of precision and the number of visible satellites, and finally the
camera data, i.e., the left, right, and down-looking RGB images, and the segmentation,
depth, normals, disparity, and occlusion maps corresponding to the left camera.
Our semantic segmentation dataset contains a total of 12 different classes (animal,
tree, dirt ground, rocky ground, ground vegetation, boulder, water plane, man-made
construction, road, train track, road sign, other man-made objects).

Sensor data is stored in a common hdf5 dataset file, while the pictures are saved
independently in several subdirectories. This enables a good dataset handling and
eases data access. RGB pictures are stored in JPEG files and maps are stored as
16-bit float matrices encoded with a lossless PNG format. On average, the set of 8
images recorded at each frame weights less than 2.5 MB. This is roughly 6 times less
than the space required for the same data stored in uncompressed raw format. All
additional information about data layout and organization is given on the website of
our dataset. To ease the data layout understanding and parsing process, we provide
several example scripts with the dataset.

2.3.4 Overall limitations

Despite all our efforts, we did not address two specific situations which might be
important for generalization.

The first one is that our dataset contains only a few moving objects. Motion is present
only through the agitation of the vegetation due to the wind and through the few
animals present in the environments. It means that a learning algorithm working
on video sequences will be poorly prepared for image changes which are not due to
perspective and camera motion.

A second limitation is that the used simulator does not model wind nor drone
vibrations. However, these two parameters have a significant impact on the IMU.
The former creates accelerations which are not induced by the drone propellers,
while the latter adds additional noise terms to the measurements made by the
sensors. Both can have an impact on the generalization of algorithms relying on
IMU data. Our dataset should nonetheless be useful to get a reliable performance
score for simple scenarios, and therefore to get a first overview of the potential of
any tested method.

2.4 Benchmarking modalities

Since comparing and interpreting the performance of different methods on a dataset
can only be achieved when they all have been developed and tested using the same
data split, it is important to clearly define the train and test splits to be used with Mid-
Air. Therefore, we propose to allocate one in three of the 192 trajectories featured in
the dataset to the test set. Practically, we allocate each trajectory whose last two id
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numbers make a multiple of 3 to the test set. This creates a two-third/one-third split
for the train and test sets, which should guarantee similar data distribution between
sets. It should be said that other splits between training, validation and test data are
possible, but any use of a different split should be clearly documented to allow for
research reproducibility.

Besides the definition of the split, we propose two additional sets for benchmarking
methods. The first set was recorded in an environment not available in other sets
and aims at providing a benchmark to test the performance of positioning estimation
methods such as visual odometry in generalization. The second set aims at testing
the robustness of visual map generation methods to visual changes. These additional
sets use the same sensor models and provide the same data as the one defined for
the main dataset.

2.4.1 Benchmark for positioning tasks

To test the performance on positioning tasks such as visual-inertial odometry
or SLAM algorithms in generalization, we provide three additional trajectories
recorded in an unseen environment. To assess the robustness of tested algorithms,
all trajectories were recorded for three weather conditions, i.e., clear sky, fog, and
sunset. As explained in the next paragraphs, each trajectory has its own specificity
so that performance scores should ideally be reported independently for all nine
possible scenarios.

Ideally, generic positioning algorithms have to be robust to visual novelties. That is
why we recorded our trajectories in an environment with strong visual differences
compared to the training data. For this, we used a modified version of the Landscapes
Mountain demo map for the Unreal Engine.

The first trajectory has a length of 5 minutes and was generated by manually flying
the drone, as for the training data. The two other trajectories have a length of 10
minutes and were generated synthetically. They follow both the same path except
that, for one of them, the drone is looking towards where it is going and, on the other,
the yaw of the drone is shifted by 90 degrees. This allows to have a scenario where
the visual features are moving towards the camera, and another where they are
scrolling from left to right in the frame.

The synthetic path was chosen to be challenging and consists of a circular trajectory
with a varying height, radius and angular velocity with no periodicity. This is
an extreme case because the aircraft experiences almost constant acceleration.
Therefore, failing to use visual cues properly to correct the state estimate will lead
to significant drift when loop closure is not used to periodically correct the state
estimation.
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2.4.2 Robustness benchmark for visual map generation tasks

For most computer vision tasks, different visual inputs can lead to the same intended
output. Take a picture of a city scene on a sunny summer day, for example. A picture
of the same scene could have been taken during a gloomy winter day, therefore
leading to radically different visual information being captured. However, a computer
vision algorithm such as a semantic segmentation or a depth estimation method is
expected to produce exactly the same output map for both pictures as they represent
the same scene, but may not do so consistently because of the differences in the
visual data. To be trusted for autonomous vehicle applications, a computer vision
algorithm ideally has, among other factors, to be insensitive to such visual changes.

In order to test the robustness of computer vision methods to visual changes in
their input, we provide eleven additional 13-second long trajectories recorded in
unseen parts of our virtual environments, with five of them belonging to the Kite
map and the six remaining ones to the PLE maps. The trajectories recorded in the
Kite environment were rendered four times, once for each weather condition, and
the ones in the PLE environment three times, once for each season. To analyze the
robustness of a method to visual changes, we recommend testing and reporting its
performance separately for each weather and season setup. If the scores are similar
for all scenarios, the method will be assumed to be robust to visual changes. On the
other hand, a difference in performance will highlight some robustness deficiencies.

( Baseline example 1

We actively used Mid-Air for in our following works to train and test depth
estimation methods, and used the robustness benchmark to compare some
properties of different methods. Therefore, a typical example of the intended
use for this benchmark can be found in Section 3.5.4.

2.5 Conclusion

In 2019, we introduced a new synthetic dataset, named Mid-Air, featuring 79
minutes of drone flight recorded several times with different climate conditions. The
content of our dataset consists of multiple synchronized modalities providing data
for positioning tasks such as SLAM or visual odometry as well as for pure computer
vision tasks such as depth estimation, semantic segmentation, or surface normal
estimation. While being specifically designed for flying drones in unstructured
environments, its size (more than 420k individual frames) and content makes it also
useful for training and testing machine learning algorithms for other applications
than UAVs.

Large datasets such as ours pave the way for building new benchmarks to evaluate
single or multitasks algorithms in complex environments. Hence, after discussing
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the sensor models and elaborating on the generated data, we propose a train/test split
for this dataset alongside two distinct benchmarks. The purpose of the first proposed
benchmark is to test visual odometry or SLAM methods in an environment different
from the ones present in the training set to test their generalization capabilities.
The purpose of the second is to test the robustness of computer vision methods to
changes in visual inputs.

The dataset and all relevant practical details regarding its use are publicly available
on the following website: https://midair.ulg.ac.be/

Uses of Mid-Air by the scientific community

The Mid-Air dataset has been available for download since June 2019, and has been
downloaded by more than 500 researchers around the world by the beginning of
2023. Its multi-modal aspect led it to be used for various original contributions,
which confirms its value to the scientific community.

Among the varied uses of our dataset, we find the following contributions. Miclea
and Nedevschi [95, 96] used it to train methods aiming at very long-range depth
estimation for UAVs. Ercolino et al. [26] used it to test the robustness of visual
transformers to adversarial attacks on depth estimation. Song et al. [125] targeted a
different use by training a deep visual odometry method with our dataset. Haggart
and Aitken [46] made use of the different climate conditions to test the dependence
of a SLAM method on the visual quality of the image. A last example is the use of
Mid-Air by Mason et al. [85] to test their method for remote tracking of UAVs swarms
using Long Range Wide Area Network (LoRaWAN).
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� Overview
In this chapter, we consider the task of estimating depth in
challenging environments, such as unstructured ones, from RGB
images captured by a camera that has a known motion with six
degrees of freedom. We first mathematically formalize this task.
We then propose a new method, called M4Depth, that is designed
to address the shortcomings observed in existing methods when
considering depth estimation in unstructured environments, and in
generalization. Finally, we perform an extensive set of experiments
which allows us to assess the performance of our method in various
setups, including both structured and unstructured environments,
and to compare it to existing methods. This set of experiments also
allows us to discuss the strengths and limitations of our method.

Data availability All the code written to get the results presented
in this chapter, which includes the implementation of our method,
has been made publicly available and can be found on the following
GitHub repository: https://github.com/michael-fonder/M4Depth.

https://github.com/michael-fonder/M4Depth




3.1 Introduction
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Figure 3.1: State-of-the-art
depth estimation methods such as
DPT [113, 114] or ManyDepth [139]
struggle to produce accurate
estimates in cluttered and natural
environments. Our method, called
M4Depth, outperforms existing
methods in these instances and
generalizes well to unknown
environments.

3.1 Introduction

One of the key advantages of UAVs over other vehicles is their flight capability
that allows them to reach places inaccessible by other means. As a result,
UAVs are expected to work in a wide variety of environments, and to see these
environments from a multitude of different points of view. However, due to a lack
of alternatives, existing depth estimation methods targeting outdoor applications
are exclusively benchmarked against datasets designed for autonomous driving
in urban environments, which makes their transferability to UAV-related depth
estimation unknown for two distinct reasons.

First, as explained in Section 1.3.2, some environments display richer visual
cues about depth than others. This is particularly the case of urban areas, which
contain many objects with a specific structure (cars, roads, signs, buildings, etc.)
that indirectly provide cues about depth. In contrast, natural environments display
much weaker visual cues about depth by their inherent lack of structure. As a result,
estimating depth in unstructured environments, such as natural landscapes, is
more challenging than in structured environments. Since existing methods were
exclusively trained and tested in structured environments with strong visual cues
about depth, their ability to deal with weaker visual cues is unknown.

Second, the motion of a car on a road is strongly constrained when compared to
that of a drone flight. Therefore, a camera mounted on a drone, which moves with
six degrees of freedom (6-DoF), sees its surrounding with points of view never seen
by a camera mounted on a car. As a result, it is unsure if existing depth estimation
methods that perform well on autonomous driving benchmarks perform equally
well when the camera is allowed to see its surrounding from more points of views.
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3 M4Depth: a network for robust and generalizable depth estimation

We suspect that two design characteristics of existing methods could hinder their
generalization capability. First, existing methods are all designed to directly infer
depth or its inverse, known as disparity. As such, networks are trained to reproduce
an output distribution that is directly related to the content of the training data, which
is problematic as the distribution of depth can change from one place to another. As
a result, existing methods have a limited generalization capability to environments
where the depth distribution differs from the one used for training. Second, methods
relying on plane-sweeping cost volumes build them from depth or disparity intervals,
which requires choosing two arbitrary parameters during the design of the method.
These parameters are chosen according to the expected depth distribution of the
environment, which constraints the performance and the generalization properties
of the underlying network, as highlighted by Schröppel et al. [120].

In this chapter, we present a method, called M4Depth, designed to address the
task of generalizable depth estimation in challenging environments such as
unstructured ones, where visual cues about depth are scarce. To overcome one
of the shortcomings of existing methods, that is their generalization capability to
different depth distributions, we introduce a deep neural network that is designed
to infer a notion of visual parallax, with the visual parallax being the perceived
frame-to-frame displacement of a pixel in an image sequence. In our formulation,
we decouple the visual parallax from the depth values by using the known camera
motion. This allows us to decouple the distribution learned by the network from
the specific depth distribution of the dataset used for its training, which proved
effective to achieve better performance in generalization. In addition, we base
our architecture on plane-sweeping cost volumes built from parallax intervals,
which contributes to further improve the generalization capability of our network
in two distinct ways. First, cost volumes are architectural elements that convert
visual information into spatial information. Second, building our cost volumes
from parallax intervals instead of depth intervals frees us from the limiting need to
choose the arbitrary parameters highlighted by Schröppel et al. [120].

This chapter is structured as follows. In Section 3.2, we formalize the task of depth
estimation for UAVs. Then, in Section 3.3, we present the notion of visual parallax
used to build a new depth estimation method, M4Depth. In Section 3.4, we describe
our M4Depth method. We test M4Depth with several experiments presented in
Section 3.5. This section describes the experimental setups which are aimed at
evaluating methods on unstructured environments as illustrated in Fig. 3.1, in
generalization, and on the visual robustness benchmark introduced with Mid-Air.
In that section, we also present our results, and discuss our method. Finally, Section
3.6 concludes the chapter.

The main contributions of this chapter can be summarized as follows:

1. We define a notion of visual parallax between two frames from a generic six-
degree-of-freedom (6-DoF) camera motion, and present a way to build cost
volumes with this parallax;
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2. We present a novel lightweight multi-level architecture, called M4Depth, that is
based on these cost volumes, designed to perform end-to-end depth estimation
on video streams acquired in unstructured environments, and suitable for real-
time applications;

3. It is shown that M4Depth, is state-of-the-art on our Mid-Air dataset, that it has
good performances on the KITTI dataset [38], and that it outperforms existing
methods in a generalization setup on the TartanAir dataset [137].

3.2 Problem Statement

We now present the technicalities of the problem we want to solve. We consider a
camera rigidly attached to a vehicle moving within an unknown static environment.
The intrinsic parameters of the camera are supposed to be known and constant. We
introduce the following components and notations:

• I t is an RGB image of size H ×W recorded by the camera at time step t . Images
have the following properties: (1) motion blur and rolling shutter artifacts are
negligible; (2) the camera focal length f is known and constant during a flight;
(3) the camera shutter speed and gain are unknown, and can change over time.

• Tt is the transformation matrix encoding the motion of the optical center of
the camera from time step t − 1 to t . As this matrix is computed for monitoring
the state of the vehicle, we assume that it is available for our method as well.

• zi j ,t is the z coordinate (in meters) of the point recorded by the pixel at
coordinates (i , j ) of the frame I t with respect to the camera coordinate system.

Using these notations, a depth map dt is an array of zi j ,t values with i j ∈ {1, . . . ,W }×
{1, . . . , H }.

We denote by ht the complete series of image frames and camera motions up to
time step t . We define a set D of functions D that are able to estimate a depth map d
from ht , that is dt̂ = D(ht ), such that D ∈ D, with ht = [I 0 , [I 1 , T1], ... , [I t , Tt ]]. Our
objective is to find a function D in this set that best estimates dt . This definition
implies that depth has to be estimated for the latest available image, and prevents
the use of upcoming information. As a result, our problem has a causality constraint
that generic SfM or MVS methods do not have.

Since collision avoidance is essential for autonomous vehicle applications, errors
in the estimate of distance for closer objects should have a higher impact than
equivalent errors occurring for objects in the background of the scene. This is taken
care of by constructing a dedicated loss function for training and by minimizing the
error relative to the distance of the object.
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3.2.1 Performance metrics

The performance of a depth estimation method can be summarized by a set of seven
metrics that were introduced by Eigen et al. [24] and that have been widely adopted
by the field of research. These metrics are the absolute relative error (Abs Rel), the
squared relative error (Sq Rel), the root-mean-square-error (RMSE), the root-mean-
square error on the logarithm (RMSE log), and three threshold values. We will use
the same set of metrics for assessing the performance of depth estimation methods
in this work. Each metric of this set is defined for ground-truth depths zi j and depth
estimates ẑi j belonging to a depth map d of size H × W pixels. When considering
multiple depth maps, the global performance is averaged over all the maps.

For all error metrics, lower scores mean better performances —which we later remind
by putting the symbol ↓ next to a metric— since the distance between estimates and
their respective ground truths is lower. The expression of the error metrics are as
follows:

Abs Rel = 1
HW

∑︂
zi j ∈d

|︁|︁zi j − ẑi j
|︁|︁

zi j
, (3.1)

Sq Rel = 1
HW

∑︂
zi j ∈d

(︂
zi j − ẑi j

)︂2

zi j
, (3.2)

RMSE =

⌜⃓⎷ 1
HW

∑︂
zi j ∈d

(︂
zi j − ẑi j

)︂2
, (3.3)

RMSE log =

⌜⃓⎷ 1
HW

∑︂
zi j ∈d

(︂
log(zi j ) − log(ẑi j )

)︂2
. (3.4)

A threshold metric counts the fraction of pixels for which the ratio δ between the
ground-truth and the estimate is below a given threshold. By construction, such
a metric provides scores that are always between zero and one, with scores closer
to one meaning better performances. Eigen et al. [24] propose to use three distinct
thresholds that are δ < 1.25, δ < 1.252, and δ < 1.253. The threshold metric, as
defined by Eigen et al. [24], is formalized as follows:

[δ < thresh] = 1
HW

∑︂
zi j ∈d

F
(︂
zi j , ẑi j

)︂
, (3.5)

with F (z, ẑ) = 1 if max
(︂

z
ẑ ,

ẑ
z

)︂
< thresh, 0 otherwise.

During our experiments, we noticed that some of these metrics are redundant to
compare the performance of different methods. For a purely comparative purpose,
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Method Supervision Multi-frame Recurrent Cam. pose Pre-trained on KITTI
Monodepth [42] Self-sup. No No No Available
Monodepth2 [40] Self-sup. No No No Available
ST-CLSTM [157] Self-sup. No Yes No Not available
Wang [135] Self-sup. No Yes No Not available
ManyDepth [139] Self-sup. Yes No Self-est. Available
DeepV2D [131] Supervised Yes No Self-est. Available
Our method (M4Depth) Supervised Yes Yes Given Not applicable

Table 3.1: Main characteristics of a selection of depth estimation methods used for comparison in
this thesis.

a subset of three metrics is sufficient. However, to be representative of the whole set
of metrics, this subset of metrics must include a relative error metric, a root-mean-
square error metric, and a threshold. In the following, we use such a subset to present
performances in instances where appropriate. The subset we use in such instances
comprises (1) the absolute relative error (Abs rel), (2) the root-mean-square-error
on the logarithm (RMSE log), and (3) the δ < 1.25 threshold.

3.2.2 Our Baseline

Based on the related work presented in Section 1.3.4, we have selected a
representative set of existing methods for which the training code is available, as
given in Table 3.1; they will constitute the baseline for our performance tests. In this
table, we indicate for each method, respectively, the nature of its supervision mode,
if it is based on a single or multiple frames, if it is recurrent, how it deals with the
camera pose, and if weights for the KITTI are provided by the authors.

3.3 Deriving the bijective relation between depth
and visual parallax

The apparent displacement of static objects between images captured with a moving
camera is the parallax effect. Parallax is defined for a generic frame-to-frame
transformation, and degenerates into standard stereo disparity when the frame-
to-frame transformation amounts to a translation along the camera x or y axis. Like
disparity, parallax conveys information about the distance of objects from the camera,
but for an unconstrained camera baseline.

Previous works using parallax geometry [60, 117, 146] assume that frame-to-frame
point correspondence, hence parallax, is known to derive 3-D rigidity constraint
between pairs of points for recovering the 3-D scene structure without using the
camera motion. In this work, we want to do the opposite; we want to use the
constraints imposed by motion, whose parameters are provided by the on-board
inertial measurement unit, and geometry to guide the inference of parallax along
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the epipolar lines. In the following, we establish that depth is a linear function of the
inverse of the parallax when the latter is defined in a specific way.

3.3.1 Camera model

In this work, we formalize the concept of parallax for the standard pinhole camera
model. We remind its main characteristics in this section.

In the pinhole camera model, the camera is represented by a sensor plane and a
focal point, which is the optical center of the camera, taken as the origin (see Fig.
3.2). The focal point is located somewhere along the principal axis that intersects
the sensor plane perpendicularly at its central point. The distance separating the
focal point from the sensor plane is the focal length; this is expressed as a multiple
of a sensor pixel width.

Figure 3.2: A diagram of the pinhole camera model with axes and notations.

In its simple expression, the pinhole model of a camera is characterized by five
intrinsic parameters:

• f x and f y , the focal lengths along the x and y axes, respectively;

• s , the skew factor of a pixel, and

• (c x , c y ), the coordinates of the principal point on the camera sensor.

These parameters can be regrouped in a matrix K, called the projection matrix, as
follows

K =

⎡⎢⎢⎢⎢⎣
f x s c x

0 f y c y
0 0 1

⎤⎥⎥⎥⎥⎦ . (3.6)

The pixel coordinates (i , j ), in the camera plane, of the projection of a point located
at (x , y , z) in the 3-D scene are obtained by using the camera intrinsic matrix K and
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Figure 3.3: Illustration of moving the camera from position C 1 to C 2.

the right-angle theorem as follows:
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(︃
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z

)︃
with

⎡⎢⎢⎢⎢⎢⎢⎣
α

β

z
1

⎤⎥⎥⎥⎥⎥⎥⎦ =

[︃
K 0
0 1

]︃ ⎡⎢⎢⎢⎢⎢⎢⎣
x
y
z
1

⎤⎥⎥⎥⎥⎥⎥⎦ . (3.7)

When the camera moves, the 3-D coordinates of a point can be expressed with respect
to the coordinate system of the first frame instead of the one of the current frame.
In this system, if we express the current camera position by a vector p of size 3 and
its orientation by a 3 × 3 rotation matrix R, then, the position of a point (X ,Y , Z ) in
space can be obtained by the following transformation

⎡⎢⎢⎢⎢⎢⎢⎣
X
Y
Z
1

⎤⎥⎥⎥⎥⎥⎥⎦ =

[︃
R p
0 1

]︃
⏞ˉ̄ ˉ⏟⏟ˉ̄ ˉ⏞

T

⎡⎢⎢⎢⎢⎢⎢⎣
x
y
z
1

⎤⎥⎥⎥⎥⎥⎥⎦ , (3.8)

3.3.2 The geometry of a multi-view setup

The visual parallax is only computable when a moving camera sees a same point
from different poses. It is therefore necessary to define the constraints that link
the projection coordinates on the camera sensor of this same point seen from two
distinct camera poses before defining our notion of visual parallax.

Let us assume that some visual information, a point P for instance, is visible from two
different camera points of view. We denote the pose corresponding to each point of
view by C1 and C2, and express the pose C2 relative to the pose C1, which is encoded
by the transformation matrix T2 with

T2 =

[︃
R t
0 1

]︃
. (3.9)
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3 M4Depth: a network for robust and generalizable depth estimation

As illustrated in Fig. 3.3, the point P seen by C1 is projected on the sensor plane
in (i 1 , j 1) while being projected at a different location on the sensor of C2, that is
(i 2 , j 2).
As we are only considering rigid camera motions, the camera-intrinsic parameters
are the same for C1 and C2. Therefore, it is possible to simplify the notations by
expressing the coordinates (i , j ) relative to the principal point (c x , c y ). This leads
the expression of the camera-intrinsic matrix K to simplify into

K = diag( f x , f y , 1) , (3.10)

if we also assume that the skew parameter s is negligible, which is common in
practice.

Our notion of visual parallax requires to first express the relation that links (i 1 , j 1)
to (i2 , j 2). From Eq. (3.7), it can be seen that recovering the 3-D coordinates of a
point whose projection coordinates (i , j ) and depth z are known is simple if the
intrinsic matrix is known (which is a common hypothesis in computer vision as long
as the camera is not zooming). Assuming that P is located at a depth z2 of C2, its 3-D
coordinates with respect to C2 are given by

PC2 =

⎡⎢⎢⎢⎢⎣
i2/ f x
j 2/ f y

1

⎤⎥⎥⎥⎥⎦ z2 , (3.11)

These coordinates are expressed with respect to the C2 referential. Their expression
in C1 is given by

PC1 = [R |t]
[︃
PC2

1

]︃
= RPC2 + t . (3.12)

Computing the projection coordinates (i1 , j 1) in C1 for P is obtained by applying the
camera projection equation (Eq. (3.7)), that is

z1

⎡⎢⎢⎢⎢⎣
i1
j 1
1

⎤⎥⎥⎥⎥⎦ = KPC1 . (3.13)

By combining Eq. (3.11), (3.12), and (3.13), we have

z1

⎡⎢⎢⎢⎢⎣
i 1
j 1
1

⎤⎥⎥⎥⎥⎦ = K
⎛⎜⎜⎝R z2

⎡⎢⎢⎢⎢⎣
i 2/ f x
j 2/ f y

1

⎤⎥⎥⎥⎥⎦ + t
⎞⎟⎟⎠ . (3.14)

Equation (3.14) gives us the relation between the two coordinates (i1 , j 1) and (i 2 , j 2)
for a given location in the 3-D space
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3.3 Deriving the bijective relation between depth and visual parallax

3.3.3 Definition of the visual parallax

Our notion of parallax denoted by ρ is established as follows. The transformation
matrix Tt formalizing the known physical camera motion with 6 DoF between
consecutive frames of the video stream can be broken down into a rotation matrix
Rt and a 3-D translation vector tt =

[︁
tx ty tz

]︁T . Thanks to Eq. (3.14), we know
that a point P in space seen by the camera at two different time instants t and t − 1,
and projected at coordinates (it , jt ) in the current frame t , is linked to its previous
coordinates (it−1 , jt−1) in frame at time t − 1 by the motion Tt as follows

zit−1 j t−1

⎡⎢⎢⎢⎢⎣
it−1
jt−1

1

⎤⎥⎥⎥⎥⎦ = K
⎛⎜⎜⎝Rt zit j t

⎡⎢⎢⎢⎢⎣
it/ f x
jt/ f y

1

⎤⎥⎥⎥⎥⎦ + tt
⎞⎟⎟⎠ , (3.15)

where zit j t
= dt (it , jt ) is the depth of the point P at time t , and K is the simplified

version of the camera-intrinsic matrix described in Eq. (3.10).

To define our visual parallax, we first rewrite Eq. (3.15) as

zit−1 j t−1

⎡⎢⎢⎢⎢⎣
it−1
jt−1

1

⎤⎥⎥⎥⎥⎦ = zV zit j t

⎡⎢⎢⎢⎢⎣
iV
jV
1

⎤⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎣

f x tx
f y ty
tz

⎤⎥⎥⎥⎥⎦ , (3.16)

with

[zV iV , zV jV , zV ]T = K R [it/ f x , jt/ f y , 1]T . (3.17)

From this equation, we can see that (iV , jV ) are the coordinates of the point P in the
plane of a virtual camera V whose origin is the same as the camera at time t but with
the orientation of the camera at time t − 1.

We now introduce our the parallax map ρt , where the pixelwise parallax ρit j t
=

ρt (it , jt ) is defined as the Euclidean norm

ρit j t
=

√︂
Δ2

it
+ Δ2

j t
(3.18)

where [︄
Δit
Δ j t

]︄
=

[︃
it−1 − iV
jt−1 − jV

]︃
. (3.19)

With this definition, the parallax is only a function of perceived pixel motion. It is
therefore invariant to the particular combination of depth and camera motion.

After reorganization, using Eq. (3.16) and simplification, we get:
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3 M4Depth: a network for robust and generalizable depth estimation

[︄
Δit
Δ j t

]︄
=

1
zit j t

zV + tz

[︃
f x tx − tz iV
f y ty − tz jV

]︃
. (3.20)

It can be shown that zit j t
zV + tz should rarely be negative when considering the

physics of a scene and the camera motion of an autonomous vehicle. As a result, the
parallax ρit j t

can be computed as follows:

ρit j t
=

√︃
( f x tx − tz iV )2 +

(︂
f y ty − tz jV

)︂2

zit j t
zV + tz

.
(3.21)

This bijective expression links the parallax for a pixel to the depth of the
corresponding point in space. Since parallax can be estimated from the RGB content
of two consecutive images, we have a mean to estimate the depth by inverting the
equation, yielding:

zit j t
=

√︃
( f x tx − tz iV )2 +

(︂
f y ty − tz jV

)︂2

ρit j t
zV

− tz
zV

. (3.22)

As expected, this expression becomes identical to the definition of the standard
stereo disparity when the camera only moves along the x or y axis.

In practice, there are different ways to estimate ρit j t
, and in the method proposed in

the next section, we build various proposals for ρit j t
and let the network use them to

compute the best estimate. Note that, once a parallax map ρt has been estimated,
the (it−1 , jt−1) coordinates are given by a function Ψ, parametrized as follows

(it−1 , jt−1) = Ψ(it , jt , Tt , ρt ) . (3.23)

These (it−1 , jt−1) coordinates are defined on a continuous space instead of a discrete
grid.

3.4 Description of a new method for depth
estimation

Like other previous works, our method, named Motion for Depth (aka M4Depth), is
based on a multi-level architecture that relies on cost volumes and that is trainable
in an end-to-end fashion. The key novelty is that the network is designed to infer a
parallax map, which is converted into a depth map by using motion information. The
parallax map has several interesting properties that should make M4Depth more
robust in generalization. This is described in the next section.
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Figure 3.4: Architecture overview of M4Depth (with three levels here), fed by two consecutive
frames and the camera motion. Each parallax refiner produces a parallax estimate and learnable
parallax features. All convolutions are followed by a leaky ReLU activation unit [147], except for the
ones producing a parallax estimate. To ease the convergence, parallax values are encoded in the
log-space. Details of the preprocessing unit are given in Fig. 3.5.

3.4.1 Definition of the architecture

Our primary motivation for inferring parallax rather than depth directly is driven by
the need to produce a method that is robust, even in unseen environments. Training
a network to infer depths drawn from a given data distribution will tie it to this
distribution. Our formulation for the parallax consists of decoupling the value to infer
from depth thanks to motion, and allows one to map many depth values to a same
parallax value. As a result, a single learned parallax distribution can represent many
depth distributions, which is a desirable ability for robustness and generalization.

As for optical flow, estimating the parallax can be done iteratively. Instead of simply
iterating on a full network as proposed by Ummenhofer et al. [133], we approach the
iterative process as a multi-scale pyramidal network, as PWC-Net [129]. By doing
so, we embed the iterative process in the architecture itself. This architecture is an
adaptation of the U-Net encoder-decoder with skip connections [115], where each
level l of the decoder has to produce an estimate for the desired output, which in
our case is a parallax map. In the decoder, the estimate produced at one level is
forwarded to feed the next level to be refined. The levels of this type of architecture
are generic and can be stacked at will to obtain the desired network depth.

Our architecture, illustrated in Fig. 3.4, uses the same standard encoder network
as PWC-Net [129] with the only exception that we add a Domain-Invariant
Normalization layer (DINL) [156] after the first convolutional layer. We use it to
increase the robustness of the network to varied colors, contrasts and luminosity
conditions without increasing the number of convolutional filters.

At each level L of the decoder, a small convolutional subnetwork is in responsible
for refining the parallax map. We named it the parallax refiner. Its inputs are the
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Figure 3.5: Details of the
operations performed by our
preprocessing units. Its building
blocks do not feature any learnable
parameters; they are detailed
in Section 3.4.2. The split layer
subdivides feature vectors into K
sub-vectors to be processed in
parallel in subsequent steps. We
give the value of K that we use for
an architecture with six levels.

upscaled parallax estimate made by the previous decoder level in the architecture
and a series of preprocessed data generated by a preprocessing unit.

The preprocessing unit is illustrated in Fig. 3.5. It is made of fixed operations and
has no learnable parameters. Its purpose is to prepare the input for the next parallax
refiner.

In short, the preprocessor has two main purposes. First, it adapts the vectors of the
feature maps produced by the encoders to make the network robust to unknown
visual inputs. For that, it uses these data alongside camera motion to build two
distinct cost volumes, the Parallax Sweeping Cost Volume (PSCV) and the Spatial
Neighborhood Cost Volume (SNCV). Second, it recomputes the parallax estimate
obtained for the previous time by adjusting it to the camera motion. These data are
then concatenated and forwarded to the parallax refiner.

3.4.2 Building blocks of the preprocessing unit

In the following, we describe the components of the preprocessing unit and motivate
their use.

Split and Normalize layers. The use of leaky ReLU activation units in the encoder
can lead to feature maps containing plenty of small values. While classification
or segmentation networks rely on the raw value of each entry in a feature vector,
our network relies on the relative differences between neighboring feature vectors
through the use of cost volumes. To achieve good generalization properties, this
relative difference should remain significant in all situations. The split and normalize
layers ensure that this is the case.

The split layer subdivides feature vectors into K sub-vectors to be processed in
parallel in subsequent layers. It provides the network with the ability to decouple
the relative importance of specific features within a same vector by assigning them
to different sub-vectors.
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3.4 Description of a new method for depth estimation

The normalize layer normalizes the features of a same sub-vector and therefore
levels the difference in magnitude of different sub-vectors. This is beneficial for the
parallax refiner layers as this normalization leads the outputs of the cost volumes
to span to a known pre-defined range. It also allows a full use of the information
embedded in sub-vectors whose magnitude is small because of the leaky ReLU
activation units.

Recompute layer. The parallax values estimated by the network are specific to
the motion occurring between two given frames. By using the set of equations
developed in Section 3.3.3 and if the camera motion is known, it is possible to
compute the parallax values that should be observed at a given time step from a
previous parallax estimate. The purpose of the recompute layer is to update the
parallax values estimated for the previous frame to provide a hint in the form of a
first estimate of the parallax values for the current frame.

Spatial Neighborhood Cost Volume (SNCV). This cost volume is computed from
a single feature map f and is a form of spatial autocorrelation. Each pixel of the
cost volume is assigned the cost of matching the feature vector located at the same
location in the feature map with the neighboring feature vectors located within a
given range r of the considered location

SNCVr (f)(i , j ) = [ cost (f(i , j ), f(i + p , j + q)) ∀ p , q ∈ {−r , . . . , r } ] , (3.24)

where the cost of matching two vectors x1 and x2 of dimension N is defined as their
correlation [22, 148]

cost(x1 , x2) =
1
N

xT
1 x2 . (3.25)

The SNCV gives an indication about the two-dimensional spatial structure of the
scene captured by the features of the encoder. Such a design makes it impossible
to recover the feature vectors that led to a given cost value. Network parameters
trained with this cost metric will therefore be invariant to changes in the input feature
vectors if they lead to the same cost value. This can help us to obtain a robust and
generalizable depth estimation network, which was not achievable by forwarding
the feature map directly.

Parallax Sweeping Cost Volume (PSCV). This cost volume is computed from two
consecutive feature maps ft−1 and ft , and a parallax map estimate ρ̂t (see left of Fig.
3.5). For each pixel, the cost volume assigns the cost of matching the feature vector
located at the same place in ft with the corresponding reprojected feature vectors
from ft−1 according to:

PSCVδ(ft , ft−1 , ρ̂t )(i , j ) =
[︂
cost

(︂
ft (i , j ), freproj(i , j ,Δρ)

)︂
∀ Δρ ∈ {−δ, . . . , δ}

]︂
. (3.26)
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In that expression, the feature map ft−1 is reprojected for a range δ of parallax values
equally distributed around a given estimate, that is

freproj(i , j ,Δρ) = ft−1
(︁
Ψ

(︁
i , j , Tt ,max

(︁
ε, ρ̂t + Δρ

)︁ )︁ )︁
, (3.27)

where Ψ is given by Eq. (3.23), and ε > 0. In this expression, freproj is interpolated
from ft−1 since Ψ returns real coordinates , and max

(︁
ε, ρ̂t + Δρ

)︁
ensures the

positiveness of the parallax used for computing the reprojection. Each vector
element of the cost volume corresponds to one given parallax correction with
respect to the provided estimate. Browsing through a range of parallax values for
each pixel creates a series of candidates for the corresponding reprojected point.
By searching for the reprojected candidate that is the most similar to the visual
information observed at time step t , it is possible to assess which parallax is the
most likely to be associated with each pixel.

Building the cost volumes from parallax intervals eliminates the contextual and
arbitrary choices required otherwise (i.e. the range and the quantization step). As the
parallax is defined within the image space, it is indeed bound to the image resolution.
A good step size is therefore always 1 (pixel) and the maximum parallax value that
can be encountered is equal to the diagonal of the image (in pixels). Since we are
using a pyramidal architecture, a range δ at the L-th level is equivalent to a range
δ2L in the original image. By stacking N levels, our architecture can theoretically
cover a range of δ(2N+1 − 2) pixels while needing a total of only N (2δ + 1) samples to
obtain a pixelwise resolution.

3.4.3 Definition of the loss function

Since the levels of our architecture are stackable at will, the architecture can have
any depth. We now detail our loss function for a network that is made of M levels.

As in previous works [15, 56, 78], we use a multi-scale loss function. For each frame
and each level, we compute the L1 distance on the logarithm of the depths resulting
from the conversion of parallax estimates using Eq. (3.22). The logarithm leads
to a scale invariant loss function [24] and the use of an L1 distance is motivated
by its good convergence properties [13]. Since intermediate depth maps have a
lower resolution, ground truths are resized by bilinear interpolation to match the
dimensions of the estimates. The resulting terms are aggregated through a weighted
sum, yielding

Lt =
1

HW

M∑︂
l=1

∑︂
zi j ∈dl

t

2l+1 |︁|︁log(zi j ) − log(ẑi j )
|︁|︁ . (3.28)

The total loss for the sequence is defined as the average of the loss computed for
each of its time steps.
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3.5 Experiments

3.5 Experiments

In this section, we present four experiments to analyze the performance of our
method. For each of them, we detail the chosen dataset, the training (if appropriate),
and discuss the results. Our first and second series of experiments aim to assess the
performance in unstructured environments, as driven by our problem statement,
and on a standard benchmark, respectively. For our last experiment, we test all
the methods on the visual robustness benchmark introduced with Mid-Air in the
previous chapter. The experiments present comparisons with baseline methods
that might significantly differ, in terms of training procedure, number of parameters,
etc. In order to disentangle the intrinsics of the training phase, we have devoted our
third series of experiments to generalization tests.

We use the metrics from [24] for depth maps capped at 80m to compare the
performance of each method. Additionally, we replicate the experiments performed
on M4Depth with PWC-Net [129] to evaluate the benefits of our proposal over its
parent. As PWC-Net is an optical flow network, we use Eq. (3.15) to obtain the
frame-to-frame optical flow from depth and motion for training the network. During
testing, we compute depth by assuming that the length of the optical flow vectors
corresponds to the visual parallax.

Please note that we provide the codes used for baseline methods on GitHub*, both
for training and testing modes. Besides, we use the default test code given with the
methods, which often rescale the estimated output depth maps to match the scale of
the corresponding ground truth. We do not use such rescaling during the evaluation
of our method. Finally, we made other multi-view methods causal by evaluating
them on the last frame of the input sequence rather than on the frame in the middle.

3.5.1 Unstructured Environments

For our first experiment, we compare the performance of our method with those of
the state of the art on a dataset featuring unstructured environments.

Mid-Air dataset. For this experiment, we use our Mid-Air dataset since it is the
only one that meets all the assumptions of our problem statement (see Section
3.2) and whose train and test splits feature different places. This latter point is
important because this will allow us to test methods in places that have the same
data distribution than the train set, but that were not seen during their training. The
first performance reported on Mid-Air for depth estimation was provided in 2022
by Miclea and Nedevschi [95]. However, they did not provide the details required to
reproduce their train and test splits, and their results. As a result, we will use the
splits defined in the previous chapter (see Section 2.4). Nonetheless, we subsample

*See https://github.com/michael-fonder/M4Depth-Baselines.
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Method Test size Abs Rel ↓ SQ Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
Monodepth [42] 384 × 384 0.314 8.713 13.595 0.438 0.678 0.828 0.895
Monodepth2 [40] 384 × 384 0.394 5.366 12.351 0.462 0.610 0.751 0.833
ST-CLSTM [157] 384 × 384 0.404 6.390 13.685 0.438 0.751 0.865 0.911
Wang [135] 384 × 384 0.241 5.532 12.599 0.362 0.648 0.831 0.911
ManyDepth [139] 384 × 384 0.203 3.549 10.919 0.327 0.723 0.876 0.933
PWCDC-Net [129] 384 × 384 0.095 2.087 8.351 0.215 0.887 0.938 0.962
M4Depth-d6 (Ours) 384 × 384 0.105 3.454 7.043 0.186 0.919 0.953 0.969

Table 3.2: Performance comparison on our test set of Mid-Air. Here, a 6-level version of M4Depth is
compared to the baseline methods. Scores correspond to the best performance obtained out of five
individual network trainings. The best score for a metric is highlighted in bold and the second best
is underlined.

the frame rate by a factor of four (from 25 to 6.25 fps) to increase the apparent motion
between two frames. Besides, for all our experiments, images and depth maps were
resized to a size of 384 × 384 pixels. We used bilinear interpolation to resize color
images and the nearest-neighbor method for depth maps.

Training. We use the He initialization [50] for our variables and the Adam
optimizer [65] for the training itself. We used the default moment parameters for
the latter (β1 = 0.9, β2 = 0.999). The learning rate was set to 10−4. We trained
our network with six levels. All our trainings are performed on sequences of four
time steps and with a batch size of three sequences. The network was trained on a
GPU with 16 GB of VRAM for 220 k iterations. After each epoch, we computed the
performance of the network on the validation set of the KITTI dataset to avoid any
overfitting, and kept a copy of the best set of weights to be used for the tests after the
training.

A series of data augmentation steps were performed on each sequence during the
training to boost the robustness of our trained network to visual novelties. More
precisely, we applied the same random brightness, contrast, hue, and saturation
change to all the RGB images of a sequence and the colors of a sequence were inverted
with a 50% probability. Finally, we randomly rotated the data of the sequence by a
multiple of 90 degrees around the z-axis of the camera when training on Mid-Air.
With these settings, a training takes approximately 30 hours.

Because of the lack of reproducible performances reported on Mid-Air, we had to
train a selection of state-of-the-art methods drawn in Table 3.1 to build a baseline.
The training details for the chosen methods are given in Section B.1 of the Appendix.
We could not guarantee to get the best performance out of DeepV2D [131] because
of the importance of its hyperparameters and the excessive duration of its training
time. We, therefore, decided to discard it for this experiment.

Results. The results are reported in Table 3.2. In this table and following tables,
the best score for a metric is highlighted in bold, and the second best is underlined.

Globally, it appears that M4Depth outperforms the baseline methods. However, it
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(a) RGB image (b) Ground truth (c) Ours:M4Depth (d) ManyDepth (e) Wang (f) ST-CLSTM (g) Monodepth (h) Monodepth2

Figure 3.6: Comparison of the depth maps estimated by M4Depth and baseline methods. M4Depth
recovers depth details more accurately than baseline methods.

slightly underperforms on the relative performance metrics when compared to
PWC-Net. This observation, compared with the excellent performances on other
metrics, indicates that our network tends to overestimate depth more often than
other methods. A qualitative comparison of the outputs of the different methods is
shown in Fig. 3.6. From this figure, we observe that although M4Depth lacks details
in areas with sharp depth transitions, it recovers depth details more accurately
than baseline methods, even for challenging scene elements such as forests or
unstructured terrain.

3.5.2 Standard Depth Estimation Benchmark

The purpose of the second experiment is to assess the performance on a standard
depth estimation benchmark.

KITTI dataset [38]. Most real datasets that provide RGB+D and motion data focus
on cars driving in partially dynamic urban environments [38, 116, 127]. In this field,
KITTI is the reference benchmark dataset when evaluating the performance of a
depth estimation method. KITTI is not fully compliant with our problem statement:
it has incomplete depth maps, there are some moving objects, and the camera has
only three degrees of freedom, etc. Despite that, it is a good practical choice for
performing tests on real data.

We used the dataset split proposed by [24]. The camera pose is estimated by a
combined GPS-inertial unit and is therefore subject to measurement imperfections.
Since a few samples were recorded in urban canyons where poor GPS reception
induced erratic pose estimates, and as our method requires reliable pose estimates,
we discarded these problematic samples from the splits. Additionally, we also
subsampled the frame rate by a factor of two (from 10 to 5 fps) to roughly match the
one of our Mid-Air sets. Finally, images were resized to 256 × 768 pixels.
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Method Test size Abs Rel ↓ SQ Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
Monodepth [42] 256 × 512 0.114 0.898 4.935 0.206 0.861 0.949 0.976
Monodepth2 [40] 320 × 1024 0.106 0.806 4.630 0.193 0.876 0.958 0.980
ST-CLSTM [157] 375 × 1240 0.104 N/A 4.139 0.131 0.833 0.967 0.988
Wang [135] 128 × 416 0.077 0.205 1.698 0.110 0.941 0.990 0.998
ManyDepth [139] 320 × 1024 0.087 0.685 4.142 0.167 0.920 0.968 0.983
DeepV2D [131] 300 × 1088 0.037 0.174 2.005 0.074 0.977 0.993 0.997
PWCDC-Net [129] 256 × 768 0.152 2.015 5.883 0.251 0.828 0.920 0.956
M4Depth-d6 (Ours) 256 × 768 0.095 0.7084 3.515 0.146 0.898 0.962 0.982

Table 3.3: Performance of M4Depth (best of 5 trainings) on the KITTI dataset. The scores reported
for reference methods are the ones published by their respective authors.

Training. For tests on KITTI, we reuse the weights of the network with 6 levels
trained on Mid-Air and fine-tune them for 20 k additional iterations on a 50 − 50%
mix of KITTI and Mid-Air samples. The fine-tuning is required to train our network
to deal with large areas with poor textures and frame-to-frame illumination changes,
as these characteristics are not present in Mid-Air. As the ground-truth depth maps
for KITTI were generated from Lidar measurements, they are sparse and fine details
are missing in the ground truths. Shortcomings created by these imperfections
can be mitigated by fine-tuning on both datasets. During the fine-tuning, we also
performed random color augmentation on the sequences. With these settings, the
fine-tuning takes three hours.

Results. The performance of M4Depth with six levels on the KITTI dataset is
reported in Table 3.3.

We observe that M4Depth has similar performances to current state-of-the-art
methods. As expected, instances with dynamic elements or poor GPS localization
lead to degraded performances. These results, however, prove that M4Depth also
works with real data despite their imperfections. An overview of the outputs of our
method on KITTI is shown in Fig. 3.7. Despite being trained in a supervised fashion
on sparse data, our network manages to make accurate predictions on the whole
image.

Fig. 3.7a shows the quality of the outputs of M4Depth in environments that meet all
our hypotheses. M4Depth appears to preserve fine details and sharp edges. Fig. 3.7b
shows that the network can also correctly estimate the depth of shiny or reflective
surfaces and textureless areas. However, these surfaces remain challenging for the
network and are not always handled as well as shown in these examples.

In our problem statement, we made the hypothesis that environments are static. Fig.
3.7c shows the behavior of M4Depth when this hypothesis is not met. The depth
estimated for mobile objects is either largely under- or over-estimated depending
on the relative motion perceived by the camera. As we use a pyramidal architecture,
the reduction of the spatial dimension in the deeper layers of the architecture can
lead to depth estimation artifacts that bleed around mobile objects, as seen in the
fifth row.
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RGB image Ours: M4Depth Ground truth

(a) Example of depth estimate produced by M4Depth in environments meeting all hypothesis.

RGB image Ours: M4Depth Ground truth

(b) Example of environment featuring adverse visual properties.

RGB image Ours: M4Depth Ground truth

(c) Effect of the presence of camera independent motion in the RGB image on the depth estimate.

Figure 3.7: Comparison of depth maps estimated by M4Depth on the KITTI dataset with the
corresponding interpolated ground truth.

3.5.3 Generalization

In this next experiment, we want to evaluate the generalization capabilities of all
the methods. For this, we want to use static scenes that are semantically close to
either the Mid-Air dataset (natural unstructured environments) or the KITTI dataset
(urban environments), and test the performance of the method trained on Mid-Air
(respectively KITTI) on the selected unstructured (respectively urban) scenes without
any fine-tuning.

As we wanted to focus only on the generalization performance for depth estimation,
we bypassed the pose estimation network for ManyDepth and DeepV2D, and used the
ground-truth motion to generate the depth maps with these methods. Additionally,
the depth maps produced by baseline methods are not guaranteed to be at the correct
scale. To alleviate this issue in performance tests, we applied a median scaling to
the depth maps of baseline methods.
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Method Test size Abs Rel ↓ SQ Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
Monodepth [42] 384 × 512 0.929 21.950 19.116 0.992 0.231 0.430 0.590
Monodepth2 [40] 384 × 384 0.922 19.274 18.527 0.799 0.310 0.507 0.651
ST-CLSTM [157] 384 × 384 2.967 51.305 32.453 0.978 0.375 0.517 0.626
Wang [135] 384 × 512 0.761 25.459 31.875 1.482 0.209 0.313 0.411
ManyDepth [139] 384 × 384 0.776 16.551 16.822 0.746 0.326 0.538 0.684
PWCDC-Net [129] 384 × 512 0.343 7.645 17.731 0.684 0.584 0.716 0.786
M4Depth-d6 (Ours) 384 × 512 0.281 5.348 11.875 0.524 0.715 0.806 0.856

Table 3.4: Performance for the generalization test on the gascola unstructured environment from
TartanAir. Scores were generated by using the same network weights as the ones used to report the
performance on Mid-Air in Table 3.2.

Method Test size Abs Rel ↓ SQ Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
Monodepth [42] 384 × 512 1.765 147.3026 33.162 1.118 0.224 0.384 0.516
Monodepth2 [40] 384 × 384 1.651 67.815 24.543 1.058 0.286 0.437 0.561
ST-CLSTM [157] 384 × 384 2.552 40.452 27.338 0.878 0.370 0.518 0.609
Wang [135] 384 × 512 0.776 29.138 28.332 1.260 0.259 0.353 0.442
ManyDepth [139] 384 × 384 1.383 63.285 23.607 0.974 0.374 0.544 0.654
PWCDC-Net [129] 384 × 512 0.516 18.459 30.028 1.160 0.463 0.568 0.632
M4Depth-d6 (Ours) 384 × 512 0.537 17.040 16.937 0.694 0.663 0.746 0.798

Table 3.5: Performance for the generalization test on the season forest winter unstructured
environment from TartanAir. Scores were generated by using the same network weights as the ones
used to report the performance on Mid-Air in Table 3.2.

Method Test size Abs Rel ↓ SQ Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
Monodepth [42] 384 × 512 1.041 54.683 30.957 0.843 0.261 0.465 0.620
Monodepth2 [40] 320 × 1024 0.810 27.904 21.011 0.732 0.412 0.603 0.715
ManyDepth [139] 320 × 1024 0.942 42.846 22.508 0.757 0.432 0.607 0.714
DeepV2D [131] 384 × 512 1.5157 77.063 21.546 0.769 0.335 0.527 0.641
PWCDC-Net [129] 384 × 512 0.376 12.66 23.782 0.788 0.535 0.652 0.723
M4Depth (Ours) 384 × 512 0.509 24.283 13.150 0.502 0.749 0.827 0.872

Table 3.6: Performance for the generalization test on the neighborhood structured environment
from TartanAir. Scores were generated by using the same network weights as the ones used to report
the performance on KITTI in Table 3.3.

Method Test size Abs Rel ↓ SQ Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
Monodepth [42] 384 × 512 0.909 30.616 19.203 0.782 0.267 0.489 0.655
Monodepth2 [40] 320 × 1024 0.775 17.973 15.800 0.727 0.322 0.540 0.692
ManyDepth [139] 320 × 1024 0.759 20.895 15.604 0.649 0.351 0.583 0.730
DeepV2D [131] 384 × 512 0.694 18.777 7.551 0.498 0.494 0.722 0.830
PWCDC-Net [129] 384 × 512 0.338 8.679 16.760 0.703 0.627 0.741 0.800
M4Depth (Ours) 384 × 512 0.256 6.759 7.211 0.370 0.804 0.880 0.918

Table 3.7: Performance for the generalization test on the old town structured environment from
TartanAir. Scores were generated by using the same network weights as the ones used to report the
performance on KITTI in Table 3.3.
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TartanAir dataset [137]. For this experiment, we use TartanAir. It is a synthetic
dataset consisting of trajectories recorded by a free-flying camera in a series of
different environment scenes. With each scene being relatively small in size, there is
a lot of overlap in the visual content recorded for different trajectories within a same
scene. As such, assembling clearly separated train and test sets drawn from the same
data distribution is not possible. Despite this drawback, the diversity of the scenes
makes TartanAir an interesting choice for testing the generalization capabilities of
methods.

For the generalization test from the Mid-Air dataset, we selected the “Gascola” and
“Season forest winter” scenes of TartanAir and used the weights trained for the
baseline. For the one from the KITTI dataset, we selected the “Neighborhood” and

“Old Town” scenes and used the pre-trained weights released by the authors of the
methods.

We resized the images of this dataset to 384 × 576 pixels and subsampled the frame
rate by a factor of two. Additionally, some scenes appear to have large, underexposed
areas where there is no color information in the RGB frames. Having large pitch-black
areas in an RGB image is unrealistic in practice, since cameras dynamically adapt
their shutter speed depending on the exposure of the scene. To prevent the errors
made by depth estimation methods in these areas from dominating the performance
analysis, we discarded all the pixels for which the color in the RGB image had a value
equal to zero.

Results. The results of our experiments are reported in Tables 3.4 to 3.7. Overall,
M4Depth outperforms the other methods with a significant margin both for
structured and unstructured environments. As on Mid-Air, PWC-Net slightly
outperforms M4Depth on some relative metrics, but not for both sequences. It
is worth noting that the hierarchy of the performances has completely changed
between the test on KITTI and the one in generalization, since our method
outperforms DeepV2D [131] on the latter. These results therefore show the better
generalization capability of M4Depth when compared to state-of-the-art methods.

Images obtained in generalization on TartanAir are shown in Fig. 3.8 and 3.9. It
can be seen that the visual quality of the outputs in generalization is similar to that
of the outputs produced on the dataset used for training. This confirms the strong
performance of M4Depth in generalization as established with metrics.

Some general observations on the weaknesses of M4Depth can also be made from
these outputs. First, the network cannot resolve all the details when the scene is
too cluttered. This is especially visible in forest environments where tree branches
overlap. Second, sometimes there are issues with sky recognition. This, however,
is to be expected as our network mostly relies on perceived frame-to-frame pixel
displacement to produce estimates. Finally, small and isolated structures such as
cables are not always detected (see the outputs on urban scenes).
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RGB image Ours: M4Depth Ground truth

(a) Gascola scene.

RGB image Ours: M4Depth Ground truth

(b) Season forest (winter) scene.

Figure 3.8: Samples of depth maps produced in generalization on unstructured scenes of the
TartanAir dataset by M4Depth with six levels trained on Mid-Air. Black areas in the ground truths
correspond to pixels with no color information in the RGB image.
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RGB image Ours: M4Depth Ground truth

(a) Neighborhood scene.

RGB image Ours: M4Depth Ground truth

(b) Old town scene.

Figure 3.9: Samples of depth maps produced in generalization on urban scenes of the TartanAir
dataset by M4Depth with six levels trained on Mid-Air and fine-tuned on KITTI. Black areas in the
ground truths correspond to pixels with no color information in the RGB image.
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Method Test size Abs Rel RMSE log δ < 1.25
Mean ↓ Rel. std ↓ Mean ↓ Rel. std ↓ Mean ↑ Rel. std ↓

Monodepth [42] 384 × 384 0.329 0.064 0.365 0.036 0.666 0.019
Monodepth2 [40] 384 × 384 0.281 0.039 0.340 0.030 0.637 0.044
ST-CLSTM [157] 384 × 384 0.428 0.097 0.553 0.005 0.522 0.022
Wang [135] 384 × 384 0.241 0.075 0.418 0.065 0.602 0.053
ManyDepth [139] 384 × 384 0.177 0.008 0.266 0.006 0.739 0.010
PWCDC-Net [129] 384 × 384 0.083 0.036 0.192 0.027 0.885 0.006
M4Depth-d6 (Ours) 384 × 384 0.097 0.022 0.166 0.011 0.887 0.003

Table 3.8: Performance comparison on the weather variation sets of the visual robustness
benchmark introduced with Mid-Air. The scores were generated by using the same network weights
as the ones used to report the performance on Mid-Air in Table 3.2. The best score for the relative
standard deviations of each metric is highlighted in bold, and the second best is underlined.

Method Test size Abs Rel RMSE log δ < 1.25
Mean ↓ Rel. std ↓ Mean ↓ Rel. std ↓ Mean ↑ Rel. std ↓

Monodepth [42] 384 × 384 0.424 0.152 0.553 0.033 0.629 0.030
Monodepth2 [40] 384 × 384 0.491 0.013 0.626 0.025 0.520 0.012
ST-CLSTM [157] 384 × 384 0.524 0.010 0.598 0.001 0.496 0.007
Wang [135] 384 × 384 0.399 0.066 0.496 0.141 0.504 0.165
ManyDepth [139] 384 × 384 0.186 0.063 0.334 0.015 0.720 0.020
PWCDC-Net [129] 384 × 384 0.075 0.015 0.187 0.006 0.912 0.002
M4Depth-d6 (Ours) 384 × 384 0.110 0.020 0.184 0.015 0.913 0.002

Table3.9:Performance comparison on the season variation sets of the visual robustness benchmark
introduced with Mid-Air. The scores were generated by using the same network weights as the ones
used to report the performance on Mid-Air in Table 3.2. The best score for the relative standard
deviations of each metric is highlighted in bold, and the second best is underlined.

Ablation Abs Rel ↓ SQ Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑
MA OT MA OT MA OT MA OT MA OT

SNCV 0.118 0.609 4.392 26.870 7.730 9.469 0.203 0.608 0.912 0.738
Normalize 0.099 0.583 3.179 23.495 7.032 9.019 0.185 0.496 0.920 0.770
DINL 0.104 0.521 3.480 19.378 7.182 8.826 0.189 0.536 0.915 0.763
fl−1
ρ,t 0.113 0.435 4.007 14.445 7.382 8.732 0.196 0.517 0.916 0.771

Split 0.113 0.366 4.074 9.937 7.424 7.900 0.196 0.478 0.914 0.762
ρ

l
t−1 0.107 0.435 3.482 15.071 7.201 8.836 0.197 0.437 0.911 0.788

M4Depth-d2 0.108 0.660 3.164 30.091 8.141 13.743 0.230 0.618 0.903 0.742
M4Depth-d4 0.114 0.330 4.124 12.569 7.405 8.391 0.196 0.399 0.916 0.809
M4Depth-d6 0.109 0.434 3.724 14.087 7.169 8.875 0.190 0.494 0.917 0.778

Table 3.10: Performance of M4Depth (trained on Mid-Air, averaged over 4 runs) for various
architecture depths and ablations (on a network with 6 levels), and for a full architecture with 2,
4, and 6 levels, when tested on Mid-Air (MA) as well as in generalization on the old town scene (OT)
of TartanAir.
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3.5.4 Visual robustness benchmark

In this last experiment, we test the robustness of all the methods to visual changes.
For this, we test all the methods trained on the Mid-Air dataset on the robustness
benchmark for visual tasks introduced in the previous chapter (see Section 2.4.2).
All the methods are tested on each climate setup separately. In order to get readable
reports, we summarize the scores obtained for the sets belonging to a same
environment (Kite for the weather variation, and PLE for the season variation) with a
mean and a relative standard deviation. While the mean simply gives us the average
performance of a method on a series of sets, the relative standard deviation gives
an indication of the stability of the scores obtained over different sets, with higher
stability translating into lower relative standard deviation.

Results. We report the results obtained for the tests on the weather variation sets
and the season variation sets in Tables 3.8 and 3.9 respectively. No method emerges
as being clearly better than all the others regarding the robustness to visual changes.
With the exception of Monodepth [42] and the method of Wang et al. [135] that display
comparatively poor robustness, we can note that the relative standard deviation
of the other methods is relatively contained, as it is usually lower than 5%. In the
best instances, it even drops below 1%, which can be considered as a sign of strong
robustness to visual changes.

With relative standard deviations ranging between 0.2% and 2.2% over all the scores,
M4Depth is the method that shows the best consistency over all metrics. These scores
also show an overall low sensitivity to visual changes, which is a further strength of
our method.

3.5.5 Discussion on the Architecture

Ablation study. We report the average performance over four trainings for ablated
versions of our architecture in Table 3.10. The results indicate that the SNCV is the
block that leads to the best performance boost. This highlights the benefits of giving
some spatial information to the parallax refiners. The other blocks contribute to
improving either test or generalization performances, but not both at the same time.
As expected, the main contributors to generalization performances are the DINL
and the normalization layer.

Increasing the number of levels in the architecture improves the performance. It
should be noted, however, that the network tends to overfit the training dataset,
therefore leading to worse generalization performance if the network gets too deep.

Overall, this ablation study indicates that a compromise between performance on
the training dataset and performance in generalization has to be made.

Limitations. With our approach, large areas with no repetitive textures are prone
to poor depth estimates. The feature matching performed by our cost volumes
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matching can indeed become unstable if large areas share the same features. This
can therefore lead to bad depth estimates.

We mitigated this issue by using a multi-scale network and by including an SNCV at
each of its levels, but these solutions do not make our network totally immune to
this issue.

Inference speed. Our network has 4.5 million parameters and requires up to
500 MB of GPU memory to run with six levels. At inference time on Mid-Air, an
NVidia Tesla V100 GPU needs 17 ms to process a single frame for a raw TensorFlow
implementation. This corresponds to 59 frames per second which is roughly
twenty-times faster than DeepV2D, the best-performing method on KITTI. According
to NVidia’s technical overview [102], this should translate to 5 fps, at least, on
their Jetson TX2 embedded GPU. Such inference speed is compatible with the
real-time constraints required for robotic applications, and can even be improved
with inference optimizers such as TensorRT.

Interpretation of the results. As opposed to other methods, our network is
designed exclusively to use the relative difference between feature vectors rather
than relying on the raw semantic cues, i.e., the raw value of the feature vectors,
to estimate depth. All reference methods, even the ones based on cost volumes,
forward the feature maps generated by their encoder directly to their depth
estimation subnetwork. Doing so gives networks the ability to use semantic cues
directly to estimate depth. This ability is only valuable for instances where the set of
features possibly encountered can be encoded by the network and associated to a
specific depth.

Our experiments indicate that reference methods perform well —better than
M4Depth for some— on KITTI, the dataset with constrained and structured scenes.
However, they fall behind in unstructured environments when the link between
semantic cues and depth is weak, and in generalization when semantic cues are
different from the reference. This tends to imply that baseline networks rely on the
raw feature values to derive depth.

All these observations lead us to believe that severing the direct link between the
encoder and the decoder of the architecture while proposing relevant substitute data
through the preprocessing unit is the key factor that allows M4Depth to perform so
well overall in our experiments.

3.6 Conclusion

In this chapter, we introduced M4Depth, a novel method for estimating depth
from RGB image sequences acquired in unknown environments using a camera
moving with six degrees of freedom. M4Depth is designed to be motion- and
feature-invariant by relying on a notion of visual parallax which we have introduced
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and defined for generic camera motion. We showed how the visual parallax can be
used to estimate depth without tying our network to a specific depth distribution,
and presented an alternate way of building plane-sweeping cost volumes that uses
the properties of parallax to solve shortcomings of traditional plane-sweeping
cost volumes. Additionally, we introduced the Spatial Neighborhood cost volume
to decouple the depth estimation from the specific values of the feature vectors
encoding the images.

Our experiments on the Mid-Air and TartanAir datasets showed that the performance
of M4Depth is superior to the baseline both in unstructured environments and
in generalization. This proves its interest for monocular depth estimation in
unstructured and unknown environments. Testing M4Depth on the standard KITTI
dataset showed that it performs similarly to existing methods, which highlights its
ability to also perform well in structured environments despite being primarily
designed for unstructured ones. Furthermore, the results on the visual robustness
benchmark of Mid-Air showed that the design of our method is robust to visual
changes. Finally, the memory requirements and inference speed of our method are
such that M4Depth can be considered for real-time applications on embedded GPUs,
which is an asset for real-world applications.
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� Overview
In this chapter, we show how M4Depth can be enhanced to perform
joint depth and uncertainty estimation. As the enhanced method,
referred as M4Depth+U, also works with parallax values, we present a
custom-tailored solution to convert the uncertainty estimates related
to the generated parallax values into uncertainty estimates related
to depth, and show that it outperforms the standard probabilistic
approach. Our experiments on various public datasets demonstrate
that our method performs consistently, even in zero-shot cross-
dataset transfer, and is robust to visual changes. Besides, our method
offers compelling value when compared to existing multi-view depth
estimation methods, as it performs similarly on a multi-view depth
estimation benchmark despite being 2.5 times faster and causal, as
opposed to other methods.

Data availability. All the code written to get the results presented
in this chapter, which includes the implementation of our method,
will be made publicly available on the following GitHub repository:
https://github.com/michael-fonder/M4DepthU.

https://github.com/michael-fonder/M4DepthU




4.1 Introduction

Uncertainty MapDepth Map
Network Outputs True Error

RGB Image
Input Frame

Figure 4.1: In this chapter, we present M4Depth+U, an adaptation of M4Depth, to jointly output
an estimate for the most likely depth value and an uncertainty on this estimate for each point of
the input frame. The purpose of the estimating uncertainty is to get a mean to anticipate erroneous
depth estimates by having a function that behaves similarly to a performance metric without having
access to ground-truth data. In the displayed maps, lighter colors correspond to higher uncertainty
and error values.

4.1 Introduction

Since one of the many applications of depth estimation is to replace depth sensors
in autonomous vehicles for path planning [99] or obstacle avoidance [134, 152], it is
essential to anticipate potentially erroneous data in order to take action accordingly.
Indeed, unpredicted errors on depth estimates can lead to collisions resulting in
damage to the vehicle, or even harm people. While no method is completely error
free, several works [59, 62, 120, 158] showed that anticipating the error on estimates
produced by a deep neural network can be achieved by estimating the uncertainty
on the outputs.

In 2017, Kendall and Gal [63] explained how the global uncertainty on the outputs
of deep neural networks arises from two independent factors: (1) the uncertainty
linked to the learned weight distribution, called the epistemic uncertainty, and (2)
the uncertainty linked to noise in the input data, called the aleatoric uncertainty.
They then proceeded to show that it is possible to get a pixel-wise estimate of these
uncertainties for deep neural computer vision methods. Following works showed
that uncertainty estimates are well correlated to the error observed on the outputs
for various tasks [59, 62, 120, 158], therefore meaning that the uncertainty is a
good estimate of the imprecision of the method. As a result, uncertainty can be
used to anticipate potentially erroneous data and take action accordingly. For
example, Yang et al. [150] leveraged uncertainty to perform visual odometry, and
Yang et al. [151] proposed an algorithm that uses depth maps with the corresponding
uncertainty as inputs to perform obstacle avoidance with UAVs. However, to the
best of our knowledge, the task of joint depth and uncertainty estimation for the
specific constraints of autonomous vehicles such as being robust to a wide variety of
conditions and environments while being computationally lightweight enough to be
able to run in real-time on limited hardware has not been addressed yet.

In Chapter 3, we presented M4Depth, a depth estimation method specifically
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designed for unstructured environments and UAV applications. In this chapter, we
propose a strategy to perform a joint depth and uncertainty estimation, as shown in
Fig. 4.1, by adapting the architecture of M4Depth. We detail the underlying problem
statement in Section 4.2. Section 4.3 discusses the related works for uncertainty
estimation. In Section 4.4, we detail our adaptation of M4Depth for joint depth
and uncertainty estimation, referred to as M4Depth+U, and a strategy to convert
the uncertainty estimates related to the parallax inferred by the network into
uncertainty estimates related to depth. Our experiments are presented in Section 4.5.
Our proposal is tested in various conditions including zero-shot cross-dataset
transfer, and is compared to multi-view depth (MVD) estimation methods on an
existing benchmark. Section 4.6 concludes this chapter.

Our main contributions are:

1. We propose the first method that addresses joint monocular depth and
uncertainty estimation for the specific constraints of autonomous vehicles;

2. We test our method on three public datasets and show that the uncertainty
estimate performs consistently in zero-shot cross-dataset transfer in different
environments;

3. We test our method on a benchmark for MVS and show that its performance is
on par with existing MVS methods for joint depth and uncertainty estimation.
In addition, our method is causal, as opposed to these methods, and is 2.5
times faster.

4.2 Problem statement

In the previous section, we expressed the need to assess the quality of the estimate
during inference, and explained that uncertainty maps are used for this purpose.
We now formulate the related problem statement.

As for depth estimation, we consider a camera rigidly attached to a vehicle moving
in an unknown static environment. The intrinsic parameters of the camera are
supposed to be known and constant. Before formalizing the notion of uncertainty, we
remind the following contextual elements that were introduced for depth estimation
(see Section 3.2):

• I t is an RGB image of size H ×W recorded by the camera at time step t . Images
have the following properties: (1) motion blur and rolling shutter artifacts are
negligible; (2) the camera focal length f is known and constant during a flight;
(3) camera shutter speed and gain are unknown, and can change over time.

• Tt is the transformation matrix encoding the motion of the optical center of the
camera from time step t − 1 to t . This matrix is assumed to be known, which is
realistic when the camera motion is monitored, such as with drones.

• zi j ,t is the z coordinate (in meters) of the point recorded by the pixel at
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coordinates (i , j ) of the frame I t with respect to the camera coordinate system.

• dt is the depth map corresponding to the array of zi j ,t values with
i j ∈ {1, . . . ,W } × {1, . . . , H }. With M4Depth, we have a function D that
is able to estimate a depth map d from ht , the complete series of image frames
and camera motions up to time step t :

dt̂ = D(ht ), with ht = [I 0 , [I 1 , T1], ... , [I t , Tt ]] . (4.1)

Without any loss of generality, we can assume that the performance of the depth
estimator D can be evaluated by a set E of error metrics E that are functions of the
ground-truth depth zi j and the estimate ẑi j , and that increase with the real error in
each pixel location i j .

Using these notations, an uncertainty map ut is an array of real positive values ui j ,t
with i j ∈ {1, . . . ,W } × {1, . . . , H }. We want to find a function ut =U (ht ) that has the
same properties as these error metrics E in that they increase with the real error in
each pixel location i j , but that does solely rely on the inputs of the method without
knowing the ground truth. By doing so, the uncertainty map can be computed during
inference to provide an estimate of the network performance.

In practice, the requirement for an uncertainty estimate to be strictly increasing
with the local error is hardly achievable because several phenomena that affect
depth estimation behave differently on a local basis. Therefore, it is more realistic
to require the average error to increase with uncertainty. Mathematically, for two
positive thresholds µa and µb such that 0 < µa ⩽ µb , we require that:

ε
{︁

i j ∈ dt |ui j ⩽ µa
}︁
⩽ ε

{︁
i j ∈ dt |ui j ⩽ µb

}︁
, (4.2)

where P = {i j ∈ dt | . . .} denotes a set of pixel P on which we calculate the average
error ε{P} according to a metric E , as defined by

ε{P} = 1
#(P)

∑︂
i j∈P

E (zi j , ẑi j ) , (4.3)

with #(P) being the cardinality of the set.

Uncertainty estimate performance metric

In order to exploit an uncertainty map in a practical application, we need to trust
the given values. The quality of an uncertainty estimate is computed by using
so-called sparsification plots. While having been first introduced for optical flow
uncertainty analysis [68, 72, 82, 138], sparsification plots have become a standard
tool for analyzing the performance of uncertainty estimates for other tasks including
depth estimation. They show how a performance metric for the considered task,
depth estimation in our case, changes when pixels with the largest uncertainty are
progressively removed from its computation, as illustrated on Fig. 4.2. Formally,
a sparsification curve S () is parameterized by a fraction factor x applied to an
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Figure 4.2: Example of sparsification curves obtained from experiments with the KITTI dataset. The
area highlighted in the graph on the left is the Area under the Sparsification Error (AuSE), a value
commonly used to assess the performance of a given uncertainty estimate. The Absolute Relative
(Abs. Rel.) error is one of the performance metrics introduced by Eigen et al. [24] for depth estimation.
The pictures on the bottom right illustrate how pixels are selected in the uncertainty map according
to a given sparsification fraction.

uncertainty map, and is defined as:

S (dt , x ,ut ) = ε{i j ∈ dt |ui j ⩽ P(1−x)∗100 (ut )}, with x ∈ [0, 1[ , (4.4)

where Pi (ut ) denotes the i-th percentile of the histogram of the uncertainty map ut .

As a result of our requirement on ut , S should be decreasing with the parameter x
for a given uncertainty map ut (see top curve of Fig. 4.2), and the best uncertainty
measure is the one with the lowest area under its sparsification plot. However, it
must be noted that this area is always lower bounded by the sparsification curve of
the ground-truth error on the estimate. This curve is given by S (dt , x , ot ) where ot
is referred to as the oracle map in the literature and gives the ground-truth error on
the depth estimate for each of its pixels oi j :

oi j = E (zi j , ẑi j ) . (4.5)

Ilg et al. [59] proposed to summarize the performance of an uncertainty estimate with
a single number to be minimized, the Area under the Sparsification Error (AuSE),
that is the area between the sparsification plots of an uncertainty map and the oracle:

AuSE =

∫ 1

0
(S (dt , x ,ut ) − S (dt , x , ot ))d x . (4.6)

As the evaluation of the performance of a depth estimation method usually relies
on the set of metrics defined by Eigen et al. [24], the AuSE should be computed for
each of them. The best uncertainty estimate for a given depth estimation network
is then the one with the smallest AuSE for the largest number of depth estimation
performance metrics. An uncertainty estimate that performs and generalizes well
should have a low AuSE even on datasets that have a data distribution different from
the training set.
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4.3 Related works

As uncertainty in neural networks in general is already well covered in the survey
of Gawlikowski et al. [36] , we focus this section on works addressing uncertainty
assessment for pixel-wise computer vision regression tasks. With the architecture of
M4Depth being close to some methods for optical flow or stereo disparity estimation,
uncertainty estimation methods developed for these tasks can find their use in our
setup. Hence, we also consider them when reviewing the related works. This section
is structured in three parts that each present distinct strategies, illustrated in Fig.
4.3, to get uncertainty estimates.

4.3.1 Posterior uncertainty assessment

The first proposals for quantifying uncertainty in optical flow or stereo matching [5,
7] long preceded AlexNet Krizhevsky et al. [70] and the deep learning revolution that
followed. The first uncertainty measures proposed were handcrafted and consisted
in comparing the maps produced by the algorithms to the inputs and to deriving an
uncertainty measure from their combined features. For instance, Hu and Mordohai
[54] conducted a review and comparison of 17 confidence measures for stereo
matching, all based on image patches, that are computed directly from the cost
of matching RGB values between the two input images. In another work, Bruhn and
Weickert [10] analyzed confidence measures for variational optical flow and proposed
an energy-based confidence measure. This measure is based on the use of the inverse
of a global energy function to detect violations, and by extension low confidence
areas, of their flow computation model. They showed that this measure works better
than the then-standard image-gradient-based confidence measure introduced by
Barron et al. [7]. Kondermann et al. [68] noticed that confidence measures for optical
flow were often tied to a specific flow computation model and proposed a confidence
measure based on sub-space projections of the flow fields that does not rely on a
specific flow computation model.

While these methods showed concrete results, they all share a common drawback:
they were crafted based on assumptions on the properties of the expected outputs,
which makes them specific to a particular use case. Furthermore, the modeling of
these properties, while being based on observations, remains arbitrary and may be
incomplete or inaccurate. As a result, researchers turned towards machine learning
to learn confidence measures [82, 109, 110]. As opposed to some handcrafted
measures, learned ones are not built for a specific algorithm, which makes them
generic and usable for any method addressing the same task. The extensive review
of confidence measures for stereo disparity observation performed by Poggi et al.
[110] showed that learned measures generally yield better results than handcrafted
ones on specific datasets, but have no clear advantage over handcrafted methods in
generalization.
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Figure 4.3: Schematic overview of the different categories of uncertainties used in the literature.
Posterior uncertainty is inferred from both the input and output of the method. Epistemic uncertainty
models the uncertainty of the underlying neural network and is computed from different weight
distributionsΩi of a same network. Finally, aleatoric uncertainty models the uncertainty on the input
data, and is inferred solely from the input of the method.

Assessing the uncertainty only from the inputs and outputs of a method comes,
however, with a computational cost. It indeed requires waiting for the output to be
available before computing the uncertainty, which can be an issue for real-time
applications depending on the joint complexity of the chosen methods.

4.3.2 Multiple model samplings for epistemic uncertainty

Deep learning-based methods led to significant performance improvements for
various computer vision tasks when compared to previous algorithms. One key
aspect of deep learning is that, unlike previous deterministic algorithms, the output
of a deep learning model for a given input can change depending on the training setup.
This variation of the outputs at inference can be leveraged to obtain the uncertainty
of the model on its output, known as epistemic uncertainty. In practice, estimating the
epistemic uncertainty is achieved by performing variational inference, i.e., by using
different weight distributions of the same architecture to generate varying outputs
for a same input. The variance between outputs then serves as a direct indicator of
the model uncertainty [59, 63, 108]. Variational inference can be done either with
ensemble methods or with Bayesian networks.

Ensemble methods use several distinct instances of the same architecture to
get different weight distributions. A first example of an ensemble method is the
Monte Carlo dropout [126], which consists of sampling multiple networks from
the weights of a same trained architecture by applying random dropouts during
inference. Another ensemble method is bootstrapping [75], which involves training
multiple randomly initialized instances of the same architecture on different
subsets of a same dataset. The variation in initialization and training sets yields
multiple networks with different weights, therefore leading to variational inference.
Finally, the snapshot ensemble method [55] takes advantage of cyclic learning rate
schedules for obtaining several snapshots of a single a network during its training.
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This allows to obtain multiple pre-converged instances of the network without
having to train them all from scratch, as with bootstrapping.

Bayesian Neural Networks (BNN) replace the deterministic network’s weight
parameters with probabilistic distributions over these parameters and are
optimized by marginalizing over all possible weights rather than choosing a point
estimate [63]. In such networks, the epistemic uncertainty can theoretically be
directly derived from the posterior probabilistic distribution of the output, but it
unfortunately cannot be computed analytically in practice. However, Graves [44]
showed that it can be approximate by a simpler distribution thanks to variational
inference by using the probabilistic nature of the parameters.

As these methods can be applied to all neural networks, the epistemic uncertainty
can be estimated in the same way for all architectures. However, getting the epistemic
uncertainty is computationally expensive as it requires generating multiple output
samples at inference. Therefore, the time required to get an uncertainty measure
increases linearly with the number of samples to generate, which is unpractical for
real-time applications.

4.3.3 Training a model for aleatoric uncertainty inference

While part of the uncertainty on the output of a method can be attributed to the
parameters of the underlying model, it can also be due to noise in the input data.
Kendall and Gal [63] refer to this part of the uncertainty as the aleatoric uncertainty.
Assuming that the observation noise can vary depending on the input, its impact on
the output can be captured by parametrizing the output as a probabilistic distribution
that models the possible output values for a given input. For example, the outputs for
a regression task can be modeled as being corrupted by Gaussian random noise. In
this case, the output distribution is represented by its mean and variance. The task
of a regression method then shifts into inferring the two parameters simultaneously
to capture this distribution, the uncertainty on the output being directly linked to
the variance of the estimated distribution.

Unlike epistemic uncertainty assessment, estimating the aleatoric uncertainty does
not rely on variational inference. Instead, it can be estimated by teaching a network
to learn the parameters of a probabilistic distribution that is assumed to represent
the noise in the output. A network trained to estimate these parameters infers them
in a single forward pass, which is more computationally efficient than variational
inference. As a result, most works addressing uncertainty for computer vision tasks
focus on the aleatoric part of the uncertainty.

Usually, regression methods rely on a L1 loss function to train their neural network
because of its better performance. The output noise of a method trained on the L1
distance is assumed to follow a Laplace distribution [59, 62, 120, 158] as it allows
learning the parameters of this distribution with a Maximum Log-Likelihood loss
function [59, 63, 108]. The main factor differentiating methods that infer aleatoric
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uncertainty with this assumption is the architecture used to estimate the parameters
of the Laplace distribution, i.e., the location and the scale. A common practice consists
of estimating the location with an existing method suitable for a standard Maximum
A Posteriori (MAP) regression and of adding a distinct additional output for the scale.
The simplest way to achieve this is to simply add a channel for the second parameter
at the output of the network [76, 93, 108, 158, 161]. In this case, the layers of the
network have to learn parameters that are relevant for the inference of both the
location and the scale. This can potentially lead to sub-optimal performance if
the number of parameters available in the last layers is not sufficient to learn the
additional features required for the new output. To avoid this issue, other methods
create separated heads for the location and the scale by duplicating the last layers
of their network [53, 66, 151]. Zhang et al. [159] even go as far as allocating a full
sub-network to learn the scale back from the cost volume of their method. Ke et al.
[62] proceed differently by using a two-step method that first estimates an optical
flow map along several confidence measures before post-processing them alongside
the original input to produce the distribution estimate. Finally, Su et al. [128] propose
a multi-level MVS architecture that embeds uncertainty at its core to adapt the
computation of its cost volumes.

4.4 Uncertainty estimation using M4Depth

Existing works showed that inferring the aleatoric uncertainty is an efficient way
to get an uncertainty estimate when it is integrated within an existing method. In
this section, we first show how the architecture of M4Depth, the depth estimation
method presented in Chapter 3, can be adapted to perform joint depth and aleatoric
uncertainty estimation. Then, we explain how uncertainty estimates related to depth
can be obtained from this architecture, and how the network should be trained for
this purpose.

4.4.1 M4Depth working principles and adaptation

M4Depth is a multi-level pyramidal architecture, illustrated in Fig. 4.4, where each
level has the same structure and outputs a parallax estimate. The parallax ρ is a real
positive value defined on the camera sensor plane that gives the distance between
the projection coordinates of a same point P in the scene seen from two successive
camera poses. This value is linked to the depth z of the point P by the motion of the
camera between the two poses:

z =

√︃
( f x tx − tz iV )2 +

(︂
f y ty − tz jV

)︂2

ρ zV
− tz

zV
, (4.7)
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Figure4.4:Architecture overview of M4Depth (with three levels here) fed by two consecutive frames
and the camera motion. Each level L of the decoder has to upscale and refine an estimate for the
parallax, ρ. The preprocessing units take the feature maps of two consecutive frames to compute two
cost volumes used as input for the parallax refiner alongside the parallax estimate of the previous
level. Each parallax refiner produces a parallax estimate ρ and learnable parallax features fρ. For
uncertainty inference, we modified the parallax refiner part of the network by creating a separate
head for the uncertainty u at each level.

where f x and f y are the respective focal lengths along the x and y camera axes,[︁
tx ty tz

]︁
expresses the known translation of the camera between the two

poses, and where iV , jV and zV are solely functions of the projection coordinates
(i , j ) of P and the rotation of the camera between the two poses (see Section 3.3.3).
By design, the network starts with a first rough low-resolution parallax estimate
and then refines it progressively at higher resolutions to get the final estimate. Each
intermediate parallax map can be converted into a depth map using Eq. (4.7) for
each pixel.

As we need a dedicated output for the uncertainty, the architecture of M4Depth has to
be adapted. For this purpose, we create a distinct head dedicated to the uncertainty
in the parallax refiner sub-network of each level, the uncertainty being passed to
the next level for refinement alongside depth. As shown in Fig. 4.4, the structure of
the heads for depth and uncertainty is identical, but each can specialize for its own
output. The number of layers to be assigned to different heads is a hyperparameter
that needs to be chosen.

4.4.2 Correspondence between depth and parallax
uncertainties

In the previous chapter, we trained M4Depth on a weighted sum of the L1 distance
of the logarithm of the depth for each architecture level l :

Lt =
1

HW

M∑︂
l=1

∑︂
zi j ∈dl

t

2−l |︁|︁log(zi j ) − log(ẑi j )
|︁|︁ , (4.8)

where depth estimates ẑi j are obtained from parallax estimates ρ̂i j using Eq. (4.7).
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4 M4Depth+U: a network for joint depth and uncertainty estimation

This loss function needs to be adapted for training the network to jointly infer depth
and an associated uncertainty estimate. To be able to get uncertainty estimates
related to depth, we need to find the equivalent of Eq. (4.7) for uncertainty values.
Stated otherwise, we need to find the relation linking uncertainty estimates on the
parallax to uncertainty estimates on the depth.

In this section, we first detail the baseline approach, referred as M4Depth+UB ,
which relies on the standard probabilistic framework to get depth uncertainties
from M4Depth. We then present a new and more elaborate method, referred as
M4Depth+U, to get depth uncertainty estimates from the parallax ones which, as
confirmed by experiments, is better at evaluating the depth uncertainty.

To simplify the notations in the following, we rewrite Eq. (4.7) for a given pixel and a
given camera motion as:

z = Z (ρ) = a
ρ
+ c , (4.9)

where

a =

√︃
( f x tx − tz iV )2 +

(︂
f y ty − tz jV

)︂2

zV
> 0 and c = − tz

zV
(4.10)

are independent of the depth of the considered point and can, therefore, be
considered as constants in the upcoming mathematical reasoning.

Baseline: the probabilistic framework

Since the aleatoric uncertainty is assumed to be proportional to the variance of the
estimated output distribution, the natural solution to get the uncertainty on depth is
to find the relation between the variance of the parallax output distribution and the
variance of depth. From the literature, we know that training a network as the log-
likelihood of the L1 distance makes the assumption that its outputs follow a Laplace
distribution. We can translate this to our depth estimation problem by training the
network directly on depth with the loss function LU z :

LU z =
|z − µ̂ (z)|

σ̂ (z) + log (σ̂ (z)) , (4.11)

which amounts to assume that the depth z follows a Laplace distribution whose mean
and standard deviation are equal to µ̂ (z) and σ̂ (z), respectively.

Since M4Depth works with parallax values, we are looking for a relation linking the
variance of the Laplace distribution on depth, 𝕍 (z) = σ2 (z), and the variance 𝕍 (ρ) =
σ2 (ρ) of the corresponding distribution on the parallax. Unfortunately, parallax and
depth are linked by an inverse relation, which creates issues when converting a
distribution from one domain to the other. Indeed, the variance may not be finite
in both domains at the same time when inverting a distribution. In addition, the
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Figure 4.5: Illustration of the correspondence between a Laplace distribution (blue curve) and its
inverse (orange curve) when applied to the relation linking parallax to depth for different standard
deviations of the Laplace distribution. The modes of the distributions do not match for large standard
deviation values. Therefore, we propose to use δρ as an uncertainty measure on the parallax whose
correspondence for depth is δz.

mode of the corresponding distributions may not be the same in both domains, as
illustrated in Fig. 4.5, which is an issue for training the network. However, with the
variable change ζ = 1/ρ, Eq. (4.9) becomes:

z = aζ + c , (4.12)

and leads to a trivial link between the variance of the distribution on z and the one on
ζ. Indeed, the variance 𝕍 of a random variable affected by an affine transformation
is given by:

𝕍 (z) = 𝕍 (aζ + c) = a2𝕍 (ζ) ⇔ 𝕍 (ζ) = 𝕍 (z)
a2 . (4.13)

This relation is convenient because of its simplicity. Training the network directly
on depth with the loss function LU z then amounts to assuming that the inverse of the
parallax, ζ, also follows a Laplace distribution whose mean and standard deviation
are equal to µ̂(z)−c

a and σ̂(z)
a respectively. With this workaround, the network simply

needs to jointly infer the inverse of the parallax ζ and the standard deviation σ (ζ) to
compute the distribution on the depth estimate.

Training loss function. During our experiments, we found out that M4Depth
learns poorly when trained directly on the L1 distance in the linear space. Therefore,
training M4Depth+U directly on LU z , as expressed by Eq. (4.11), also leads to
poor results. Consequently, we propose a modified loss function that consists of
learning the maximum a posteriori value for depth using Eq. (4.8), while learning
the uncertainty in a separate term of the loss function by using Eq. (4.11). Since the
maximum a posteriori value for the output of a network should correspond to the
mode of the underlying distribution, we can assume that it corresponds to the mean
of the Laplace distribution.

In practical terms, we train the network to infer the uncertainty related to the inverse

89



4 M4Depth+U: a network for joint depth and uncertainty estimation

parallax using the following loss function:

Lz,t = Lt +
1

HW

M∑︂
l=1

∑︂
zi j ∈dl

t

g i j 2−l

⎡⎢⎢⎢⎢⎢⎣
⊘

(︂|︁|︁zi j − ẑi j
|︁|︁)︂

aui j
+ β log

(︂
aui j

)︂⎤⎥⎥⎥⎥⎥⎦ , (4.14)

where gradients are not propagated to the variables enclosed in the ⊘ () expression
to avoid interference with the gradients generated by the Lt term of the loss, and
where β is an arbitrary weighting factor for the uncertainty (we use the value β = 0.02
in our experiments). We noticed that the network does not converge properly if the
uncertainty is trained on pixels belonging to the sky because of the large induced
error terms. For this reason, we exclude these pixels from the uncertainty part of
the loss thanks to g i j where:

g i j = 1 if zi j ⩽ 400, 0 otherwise . (4.15)

In the following, we will refer at our modified version of M4Depth trained on this
loss function as M4Depth+UB .

Custom-tailored conversion of the uncertainty

One of the strengths of M4Depth is the direct link that exists between the parallax
and the disparity sweeping cost volumes, which are the main sources of information
available to infer the parallax. We assume that, as the cost volumes provide valuable
information on the parallax, they should also provide valuable information on the
related uncertainty. In addition, we assume that this information is best used if
there is a trivial relation between the distribution to learn and the cost volumes.
However, such trivial relation does not exist when learning the distribution of the
inverse parallax because of the inversion process. As a result, the probabilistic
approach is not well suited for M4Depth, and we propose another approach to get
depth uncertainty estimates from the parallax domain.

In order to make the link between the uncertainty and the cost volumes, we propose,
as an alternative to LU z , to learn the uncertainty directly from the parallax as :

LU ρ
=

|ρ − µ̂ (ρ)|
σ̂ (ρ) + log (σ̂ (ρ)) . (4.16)

Similar to LU z , this amounts to assume that the underlying data, parallax in this
case, follows a Laplace distribution. In this case, µ̂ (ρ) is the mode of the distribution
and corresponds to the estimated parallax ρ̂. The corresponding estimated depth
ẑ can be computed thanks to Eq. (4.9). We then need to convert the uncertainty
estimate represented by σ̂ (ρ) to the depth domain. More precisely, we want to find
a value Δz > 0 in the depth domain that represents the uncertainty carried by σ̂ (ρ)
or, stated otherwise, for any corresponding pair (σ (ρ) ,Δz) and with everything else
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being equal, we want:
σ1 (ρ) < σ2 (ρ) ⇔ Δz1 < Δz2 . (4.17)

Assuming that σ̂ (ρ) is a valid indicator for the uncertainty, we derive a notion of
relative uncertainty Δρ defined as follows:

Δρ =
σ̂ (ρ)

ρ̂
> 0 . (4.18)

This relative uncertainty can be used to define a factor δρ such that:

ρ̂ + σ (ρ) = δρρ̂, with δρ = 1 + Δρ > 1 , (4.19)

which allows us to derive a range of values that is representative of the uncertainty
as it monotonously increases with uncertainty:[︃

ρ̂

δρ

, ρ̂

]︃
=

[︃
ρ̂

1 + Δρ

, ρ̂

]︃
. (4.20)

As shown in Fig. 4.5, the equivalent of this range in the depth domain can be defined
as

[︁
ẑ, δρẑ

]︁
where ẑ = Z (ρ̂). With the expression δρẑ being similar to Eq. (4.19), we

pose:
δz = 1 + Δz > 1 . (4.21)

With this definition, Δz has properties similar to that of Δρ, and is also representative
of the uncertainty on the parallax since Eq. (4.17) is verified.

To find the relation between Δz and Δρ, we use Eq. (4.9) by substituting its variables
values as follows:

δzẑ =
δρa

ρ̂
+ c . (4.22)

By rewriting this equation and taking into account that a
ρ

= z − c , we derive the
following relation between δρ and δz, that also gives a relation between the relative
uncertainties Δρ and Δz:

δz =
c
ẑ
+ δρ

(︂
1 − c

ẑ

)︂
> 1 . (4.23)

Since δρ > 1 and ẑ > 0, the inequality is verified if:

c
ẑ
= − tz

zV ẑ
< 1 ⇔ zV ẑ + tz > 0 , (4.24)

which is the same condition of existence than for the parallax itself (see Section 3.3.3).
Therefore, our δz and, by extension, Δz exist and are defined for any value of the
parallax. The uncertainty on depth can then be simply associated to Δz. As such, the
pair of values ẑ and Δz has lost the probabilistic interpretation provided by µ (ρ) and
σ (ρ) since ẑ is not always the mode of the inverse Laplace distribution (see Fig. 4.5).
However, Δz still represents perfectly the uncertainty information carried by σ (ρ)
since Eq. (4.17) is verified.
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Training loss function. Similarly to M4Depth+UB , training the network directly
with LU z yields poor results in practice, and for the same reasons, we use an adapted
loss function. Here, we train the network using the following loss function:

Lρ,t = Lt +
1

HW

M∑︂
l=1

∑︂
ρi j ∈ρ

l
t

2−l

⎡⎢⎢⎢⎢⎢⎣
⊘

(︂|︁|︁|︁ρi j − ρ̂i j

|︁|︁|︁)︂
ui j

+ β log
(︂
ui j

)︂⎤⎥⎥⎥⎥⎥⎦ , (4.25)

where gradients are not propagated to the variables enclosed in the ⊘ () expression,
and where β is an arbitrary weighting factor for the uncertainty (we chose β = 0.05
in our experiments). The ground-truth parallax ρi j used in this equation is obtained
from the ground-truth depth using Eq. (4.7). In the following, we will refer to our
modified version of M4Depth trained on this loss function as M4Depth+U.

In a nutshell, getting joint depth and uncertainty estimates with M4Depth+U amounts
to training the network to infer the parallax and its related uncertainty, then to
convert them into depth z and its related uncertainty Δz by using Eq. (4.9) and (4.23)
respectively.

4.5 Experiments

In this section, we test the performance of M4Depth+U, our joint depth and
uncertainty estimation method. We start by introducing the setup used for our
performance analysis. We then assess the impact of the number of dedicated layers
in the heads of the network, and compare our method to the probabilistic baseline,
M4Depth+UB , in zero-shot cross-dataset transfer on various datasets. Finally, we
test it on two benchmarks proposed in the literature. The first aims at comparing
our method to an existing baseline for MVS methods, and the second aims at testing
the robustness of our method to visual changes.

4.5.1 Experimental setup

Datasets. The experiments presented in this section are all based on the same
selection of datasets as the one used for M4Depth, that is Mid-Air [30], KITTI [38], and
TartanAir [137]. Unless stated otherwise, we use strictly the same train and test splits,
as well as the same resolution for the input images. Here, we use Mid-Air to train and
test the method in unstructured environments, KITTI for zero-shot cross-dataset
transfer tests on real data in urban environments, and TartanAir for further tests
either in urban or unstructured environments.

Performance evaluation. We base our performance analysis on the subset of the
metrics from Eigen et al. [24], namely the absolute relative error (Abs Rel), the root-
mean-square error in the log domain (RMSE log), and the δ < 1.25 threshold. Similar
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Method # head Abs Rel RMSE log δ < 1.25
layers Perf. ↓ AuSE ↓ Perf. ↓ AuSE ↓ Perf. ↑ AuSE ↓

M4Depth N/A 0.127 − 0.185 − 0.907 −
M4Depth+UB 1 0.145 0.028 0.190 0.084 0.906 0.009
M4Depth+UB 2 0.132 0.027 0.186 0.084 0.908 0.008
M4Depth+UB 3 0.137 0.046 0.185 0.131 0.907 0.011
M4Depth+UB 4 0.132 0.039 0.183 0.103 0.908 0.011
M4Depth+U 1 0.134 0.007 0.188 0.020 0.906 0.006
M4Depth+U 2 0.141 0.007 0.193 0.019 0.901 0.006
M4Depth+U 3 0.138 0.006 0.191 0.018 0.905 0.006
M4Depth+U 4 0.141 0.007 0.193 0.019 0.901 0.006

Table 4.1: Ablation study of the impact on the number of layers dedicated to different heads.
Reported performances correspond to the average of five networks trained and tested on the Mid-Air
dataset.

to related works, distant points (points for which ground-truth depth is greater
than 80m) are excluded from the performance metric computations. This allows to
exclude pixels that belong to the sky, which is desired since they take up a large part
of the image while being of little interest for the analysis of uncertainty performance.

As mentioned in the problem statement (Section 4.2, the quality of an uncertainty
estimate can be computed by using so-called sparsification plots [68, 72, 82, 138] and
summarized with a single value to minimize, the Area under the Sparsification Error
(AuSE). In the following, we report the AuSE for the three chosen depth estimation
performance metrics.

Network training. All the performance tests reported and analyzed in this section
are based on networks with six levels trained on the train set of the Mid-Air dataset.
We use the same hyperparameters and the same data augmentation steps as the
ones used for M4Depth. However, we let the network train on more iterations (250 k
steps). We compute the performance of the network in validation after each epoch
and use the set of weights that performed the best in validation for our performance
analysis.

Ablation study. In order to review the performance with the best possible
architecture, we first analyze the impact of the number of layers allocated to
distinct heads on the performance of the network. We train five instances of both
M4Depth+UB and M4Depth+U with six levels and for heads with up to four dedicated
layers. The averaged performances are reported in Table 4.1. Results show that the
number of dedicated layers allocated to each head has no significant impact on the
performance of the network. Therefore, in the rest of this work, we proceed with the
performance analysis for architectures with a single dedicated head layer since it is
the most computationally efficient.

Inference statistics. In this configuration, both methods have 5.7M parameters,
and require up to 840Mo of VRAM to run. On a NVidia V100 GPU, depth and

93
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Set Method Abs Rel RMSE log δ < 1.25
Perf. ↓ AuSE ↓ Perf. ↓ AuSE ↓ Perf. ↑ AuSE ↓

K
IT

TI M4Depth 0.193 − 0.224 − 0.849 −
M4Depth+UB 0.140 0.025 0.195 0.046 0.858 0.021
M4Depth+U 0.147 0.021 0.195 0.041 0.858 0.019

Tt
A-

G M4Depth 0.292 − 0.433 − 0.726 −
M4Depth+UB 0.274 0.049 0.448 0.173 0.725 0.029
M4Depth+U 0.274 0.041 0.466 0.170 0.718 0.029

Tt
A-

W M4Depth 0.614 − 0.593 − 0.652 −
M4Depth+UB 0.618 0.176 0.597 0.217 0.636 0.031
M4Depth+U 0.478 0.058 0.592 0.157 0.646 0.028

Tt
A-

N M4Depth 0.658 − 0.537 − 0.699 −
M4Depth+UB 0.748 0.101 0.573 0.176 0.688 0.021
M4Depth+U 0.614 0.039 0.530 0.144 0.700 0.020

Tt
A-

T M4Depth 0.446 − 0.355 − 0.793 −
M4Depth+UB 0.468 0.077 0.410 0.155 0.776 0.020
M4Depth+U 0.268 0.032 0.382 0.122 0.789 0.020

Table 4.2: Comparison of the performance of M4Depth+UB and M4Depth+U when trained on the
Mid-Air dataset and tested in zero shot transfer on various datasets. The four following environments
of the TartanAir dataset are used: gascola (TtA-G), seasons forest winter (TtA-W), neighborhood (TtA-
N), and old town (TtA-T). Performances are reported for each set and they correspond to the best of
five trained networks. The best AuSE scores for each set are highlighted in bold.

uncertainty maps are jointly estimated in 18ms for input samples with a size
of 384 × 384 pixels, which is 1ms slower than M4Depth alone. The overhead of
uncertainty estimation on the inference speed of the network is therefore limited
and negligible for the joint task.

4.5.2 M4Depth+U vs the baseline

In Section 4.4, we propose a custom-tailored method, M4Depth+U, to train a modified
architecture of M4Depth for joint depth and uncertainty estimation. We also explain
why this method should perform better at estimating uncertainty than the standard
probabilistic baseline, referred as M4Depth+UB . We trained our network with both
methods on the Mid-Air dataset. In this section, we compare their performance for
various datasets.

Performance analysis

The performance of both M4Depth+UB and M4Depth+U on the test set of Mid-Air
is reported in Table 4.1. Their performance in zero-shot cross-dataset transfer
on KITTI and the chosen environments of TartanAir are reported in Table 4.2. As
hypothesized, the probabilistic framework underpinning the M4Depth+UB baseline
is sub-optimal while our elaborate uncertainty conversion method, M4Depth+U,
consistently performs better. Also, the AuSE score for M4Depth+U varies less
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Figure 4.6: Sparsification error (S.E.) curves on the Absolute Relative and the RMSE log performance
metrics for the best of five M4Depth+UB networks tested in zero-shot cross-dataset transfer on the
KITTI dataset and four environments of the TartanAir (TtA) dataset.
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Figure 4.7: Sparsification error (S.E.) curves on the Absolute Relative and the RMSE log performance
metrics for the best of five M4Depth+U networks tested in zero-shot cross-dataset transfer on the
KITTI dataset and four environments of the TartanAir (TtA) dataset.

between datasets when compared to M4Depth+UB , therefore hinting at more
consistent generalization performances. Finally, it is worth noting that both
approaches for estimating depth and its uncertainty preserve the raw performance
for depth estimation of M4Depth. Further performance reports for the two strategies,
given in Section B.2 of the Appendix, lead to the same observations.

Sparsification error curves for all datasets used in zero-shot cross-dataset transfer in
our experiments, displayed in Fig. 4.6 and Fig. 4.7 for M4Depth+UB and M4Depth+U
respectively, show that the sparsification errors for M4Depth+UB are much higher
than for M4Depth+U. For most datasets, the sparsification error is large for high
uncertainty values and low for low uncertainty values, which means that the network
is better at accurately discriminating depths with a low error than depths with a
higher error. The upward trend at the very end of the sparsification error curve for
M4Depth+UB on the TartanAir set hints that the network is very confident in some
areas with higher errors, which is not desired. This behavior is not observed with
M4Depth+U which further motivates its interest over the baseline.
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Figure 4.8: Joint overview of the observed Absolute Relative (Abs. Rel.) error on the depth estimate
and of the estimated uncertainty produced by M4Depth+UB on different datasets when sorted
depending on the estimated parallax. All graphs are generated using a network trained on the
Mid-Air dataset. The lines highlight the median value for the samples falling within the considered
parallax range. The areas surrounding the lines give the envelope that contains these samples. In
order to ease the comparison between the uncertainty and the error, uncertainty values are rescaled
according to the median of absolute relative errors observed in the considered dataset.
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Figure 4.9: Joint overview of the observed Absolute Relative (Abs. Rel.) error on the depth estimate
and of the estimated uncertainty produced by M4Depth+U on different datasets when sorted
depending on the estimated parallax. All graphs are generated using a network trained on the
Mid-Air dataset. The lines highlight the median value for the samples falling within the considered
parallax range. The areas surrounding the lines give the envelope that contains these samples. In
order to ease the comparison between the uncertainty and the error, uncertainty values are rescaled
according to the median of absolute relative errors observed in the considered dataset.
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RGB input Est. depth Est. uncertainty Relative error

Figure 4.10: Illustrations of outputs produced by M4Depth+U on the Mid-Air dataset. Lighter colors
correspond to higher uncertainty and error values.

RGB input Est. depth Est. uncertainty

Figure 4.11: Illustrations of outputs produced by M4Depth+U in zero-shot cross-dataset transfer
on the KITTI dataset. Lighter colors correspond to higher uncertainty values.

RGB input Est. depth Est. uncertainty Relative error

Figure 4.12: Illustrations of outputs produced by M4Depth+U in zero-shot cross-dataset transfer on
the “Gascola” environment of the TartanAir dataset. Lighter colors correspond to higher uncertainty
and error values.
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Error distribution analysis

In order to get further insights on the performance of the network, we plotted absolute
relative errors and uncertainty estimate values as a function of estimated parallax
values. The resulting graphs are shown in Fig. 4.8 and 4.9 for M4Depth+UB and
M4Depth+U respectively.

The distribution of the absolute relative error on depth is similar for both
M4Depth+UB and M4Depth+U, which validates the similarities seen in Table 4.2
for depth estimation. In addition, the shape of these distributions is similar for all
datasets. The relative error, high for small parallax values, decreases to reach a low
error plateau for parallax values larger than 10 pixels, and then increases steeply at
the end of this plateau, which is located between parallax values of 50 and 100 pixels
depending on the considered dataset. This typical U shape shows that M4Depth
works best over a given subset of parallax values, which can be explained by the
discrete nature of pixels and the finite dimensions of pictures. These observations
suggest that implementing a dynamic temporal sampling of reference points to be
used for parallax estimation could lead to a reduction of the average error on depth
estimates produced by M4Depth+U.

The uncertainty curves highlight the differences between M4Depth+UB and
M4Depth+U. While the median uncertainty values closely follows the median
of the absolute relative errors for most datasets, the shape of the envelope of
estimated uncertainties significantly differs from the shape of the envelope of
relative errors for M4Depth+UB whereas both shapes match for M4Depth+U. Also,
neither M4Depth+UB or M4Depth+U is able to accurately estimate uncertainty for
pixels with high parallax values, even though the latter performs slightly better than
the former in this regard.

Overall, these graphs show that the uncertainty estimated with our proposed
strategies is well correlated with the absolute relative error. In addition, they confirm
that the uncertainties estimated by M4Depth+U are better estimates of the error
than the ones estimated by M4Depth+UB .

Qualitative overview of M4Depth+U uncertainty samples

We provide illustrations of the outputs produced by M4Depth+U on the datasets
used for our experiments in Figures 4.10 to 4.15. A general observation that can
be made is that the uncertainty is visually well correlated with the relative error.
The network is typically uncertain around sharp depth transitions, especially in
cluttered places such as foliage, and in areas that are not visible simultaneously
from the two camera point of views (see the left side in the last row of Figure 4.10).
The network is also generally less certain of its outputs for distant objects, where
parallax values are smaller. However, Figures 4.12 and 4.13 show that the network
can erroneously state to be certain of its output in places with many details, both
in the RGB and the depth domains, such as for tree branches. On the another hand,
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RGB input Est. depth Est. uncertainty Relative error

Figure 4.13: Illustrations of outputs produced by M4Depth+U in zero-shot cross-dataset transfer
on the “Seasons forest winter” environment of the TartanAir dataset. Lighter colors correspond to
higher uncertainty and error values.

RGB input Est. depth Est. uncertainty Relative error

Figure 4.14: Illustrations of outputs produced by M4Depth+U in zero-shot cross-dataset transfer
on the “Neighborhood” environment of the TartanAir dataset. Lighter colors correspond to higher
uncertainty and error values.

RGB input Est. depth Est. uncertainty Relative error

Figure 4.15: Illustrations of outputs produced by M4Depth+U in zero-shot cross-dataset transfer on
the “Old Town” environment of the TartanAir dataset. Lighter colors correspond to higher uncertainty
and error values.
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Method Causal Abs Rel ↓ AuSE ↓ Time [ms] ↓
MVSNet [153] % 0.140 0.025 150
Fast-MVSNet [154] % 0.121 0.034 350
Vis-MVSNet [158] % 0.103 0.028 820
Robust MVD [120] % 0.071 0.017 60
M4Depth+U ! 0.086 0.020 26

Table 4.3: Comparison of the performance of M4Depth+U on the uncertainty benchmark proposed
by Schröppel et al. [120] for MVS methods. Performances are reported in zero-shot cross-dataset
transfer on the 93-images test set for the KITTI dataset used for this benchmark. Inference timings
are reported for full-size KITTI images. Note that M4Depth+U is causal and only uses a sequence of
frames that precedes the frame considered for depth inference, while SFM methods are anti-causal
as they also use upcoming frames.

the second row of Figure 4.11 shows that the network is able to correctly detect
errors induced by dynamic objects in most instances, which is unexpected since the
method assumes static scenes. Finally, Figure 4.14 and 4.15 show that the network
can reliably evaluate its own error in problematic areas such as low-textured surfaces
(see the barn in the first row of Figure 4.14), and fine transitional details (see the
wires in the second row of Figure 4.15).

4.5.3 M4Depth+U on benchmarks

In this section, we test our network on two benchmarks proposed in the literature.
We only focus on the performance of M4Depth+U since it systematically outperforms
the baseline.

Robust MVD

As our method targets autonomous UAV applications, it has to produce estimates for
the latest available frame. Therefore, it cannot use future information as opposed
to generic multi-view depth estimation methods which can use past as well as
upcoming frames of the sequence. Since we are the first to target this specific
use case, there is no existing baseline to compare to directly. Nonetheless, we
assess the value proposition of M4Depth+U over some other existing methods on
the benchmark proposed by Schröppel et al. [120] for joint multi-view depth and
uncertainty estimation. Results on the KITTI set of the benchmark are reported
in Table 4.3. Despite working with fewer data than other methods, M4Depth+U
outperforms most of the baseline and comes close to the state of the art on this
benchmark. This, combined with the fact that M4Depth+U is at least 2.5 times faster
than other methods, leads us to conclude that our method performs on par with
existing methods tested on this benchmark, and that M4Depth+U has a real benefit
for practical use.
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Visual Method Abs Rel RMSE log δ < 1.25
variation Mean ↓ Rel Std ↓ Mean ↓ Rel Std ↓ Mean ↑ Rel Std ↓

Weather M4Depth 0.097 0.022 0.166 0.011 0.887 0.003
M4Depth+U 0.087 0.015 0.159 0.014 0.890 0.001

Season M4Depth 0.110 0.020 0.184 0.015 0.913 0.002
M4Depth+U 0.098 0.027 0.176 0.019 0.917 0.002

Visual Method Abs Rel AuSE RMSE log AuSE δ < 1.25 AuSE
variation Mean ↓ Rel Std ↓ Mean ↓ Rel Std ↓ Mean ↓ Rel Std ↓
Weather M4Depth+U 0.006 0.006 0.019 0.058 0.005 0.002
Season M4Depth+U 0.007 0.024 0.022 0.179 0.007 0.028

Table 4.4: Performance of M4Depth+U on the weather and season robustness benchmarks of the
Mid-Air dataset. Results correspond to the performance of the network that had the best validation
performance over five trained candidates. The relative standard deviation should be as small as
possible.

Mid-Air robustness benchmark

Similar to the analysis carried in Section 3.5.4, we test the robustness of our method
on the benchmark we introduced with Mid-Air. The results obtained by M4Depth+U
on this benchmark are given in Table 4.4. First, we note that the performance of
M4Depth on depth estimation is not affected by our modifications. Second, we note
that the uncertainty estimates feature a comparable level of robustness to visual
changes than the depth estimate for the absolute relative error and on the threshold
metrics. However, their performance is comparably worse on the RMSE log metric.
This difference in robustness could be explained by the fact that our uncertainty
metric is a relative metric that may be best compared to the absolute relative error.
Overall, these results indicate that the uncertainty has a good robustness to visual
changes since its performance on the benchmark is similar to one of depth estimates,
which was shown to be good in Section 3.5.4.

4.6 Conclusion

In this chapter, we showed that it is possible to adapt M4Depth, the depth estimation
method presented in the previous chapter, for joint depth and uncertainty estimation
at minimal cost. We also demonstrated that converting the uncertainty values
produced by the network into uncertainty values related to depth is better done
with a custom-tailored conversion method, referred as M4Depth+U, than with the
standard probabilistic approach. Our performance tests on the Mid-Air dataset and
in zero-shot cross-dataset transfer on the KITTI dataset and four environments of
the TartanAir dataset show that M4Depth+U emerges as an excellent uncertainty
estimator. These tests also show that this new method has the same performance for
depth estimation than M4Depth, while having a negligible computational overhead
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when compared to the fast inference speed of M4Depth.

Besides, the results obtained by M4Depth+U on two benchmarks show that a perfect
fit for depth uncertainty estimation for autonomous vehicle applications. Indeed, the
robustness benchmark of Mid-Air shows that our method is robust to visual changes,
while the Robust MVD benchmark in zero-shot cross-dataset transfer shows that it
generalizes well when compared to other methods. M4Depth+U has, indeed, similar
performance than multi-view depth estimation methods on this benchmark, while
being 2.5 times faster and causal, as opposed to existing methods.
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About our research

Throughout this thesis, we explored the challenge of achieving reliable monocular
depth estimation to replace dedicated distance sensors for UAV flight automation.
In our introduction, we explain why we believe that any depth estimation method
should meet four important requirements for such application. These requirements
are (1) generalizability, (2) robustness to visual changes, (3) causality, and (4)
computational efficiency to allow for real-time operation. From our review of the
scientific literature, it appeared that methods existing prior to our work made poor
candidates for applications in UAVs as they fail one or several requirements, and
that research was still needed to address depth estimation for UAVs.

The first expected requirement for a depth estimation method aimed at UAV
applications, that is generalizability, expects the method to work in a wide variety of
environments. The review of datasets available to train and test depth estimation
methods showed that the most significant datasets for outdoor applications are
designed for autonomous cars in urban environments. Therefore, training and
testing depth estimation methods aimed at UAV applications in a wide diversity of
environments was not possible with existing datasets. As a result, we created and
publicly released our own dataset called Mid-Air. This synthetic dataset, presented
in Chapter 2, features 79 minutes of drone flight recorded several times with
different climate conditions in unstructured environments. Its content consists of
multiple synchronized modalities providing data for positioning tasks such as SLAM
or visual odometry as well as for pure computer vision tasks such as depth estimation,
semantic segmentation, or surface normal estimation. While being specifically
designed for flying drones, its size (more than 420k individual frames) and content
makes it also useful for training and testing machine learning algorithms for other
applications than UAVs. The choice of unstructured environments was guided by
the challenge they represent for depth estimation. We introduce two benchmarks
alongside our dataset. The purpose of the first one being to test visual odometry or
SLAM methods in an environment different from the ones present in the training
set to test their generalization capabilities. The purpose of the second is to test the
robustness of computer vision methods to changes in visual inputs. Our dataset has
been available for download since June 2019, and has been downloaded by more
than 500 researchers around the world by the beginning of 2023. Its multi-modal
aspect already led it to be used for various original contributions, which confirms its
value to the scientific community.

In Chapter 3, we addressed the challenging task of depth estimation. First, we
proceeded to identify the weaknesses of existing depth estimation methods when
considering generalizability environments, even unseen ones. We used this analysis
to propose a new causal multi-view depth estimation method, called M4Depth,
designed to be motion- and feature-invariant by relying on a notion of visual parallax
which we have introduced and defined for generic camera motion. We showed how
the visual parallax can be used to estimate depth without tying our network to a
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specific depth distribution, and presented alternate ways of building cost volumes
to increase the generalization capability of our method. Our experiments showed
that the performance of M4Depth is superior to the baseline both in unstructured
environments and in generalization, while performing similarly to existing methods
in structured environments. Furthermore, tests on the visual robustness benchmark
of Mid-Air showed that the design of our method is robust to visual changes. Finally,
the memory requirements and inference time of M4Depth are low enough to be
considered for real-time inference on embedded GPUs. Thus, M4Depth meets all
the requirements needed when considering embedded depth estimation for UAV
applications.

One of the main purposes of depth estimation methods in UAVs is to be used as
tools for planning trajectories or avoiding obstacles. For such application, where
any unpredicted error can lead to collisions, it is essential to anticipate potentially
erroneous data in order to take appropriate action. In Chapter 4, we investigated
the use of uncertainty as a mean to anticipate erroneous data in the depth estimates,
and presented M4Depth+U, an adaption of M4Depth for joint depth and uncertainty
estimation at minimal additional cost. Our M4Depth+U method encompasses both
the adaptation of the architecture, and the method needed to convert the uncertainty
values produced by the network into uncertainty values related to depth. Tests
on multiple data datasets, including zero-shot cross-dataset transfer, showed that
M4Depth+U works better than the standard probabilistic approach for uncertainty
conversion. Besides, our network adaptation keeps the good robustness properties
of M4Depth. More generally, M4Depth+U emerged as an excellent joint depth and
uncertainty estimation method when compared to other methods. Its performance
on a public benchmark for multi-view depth estimation is, indeed, comparable to
the best existing method while, while being 2.5 times faster and causal, as opposed
to other methods that do not meet this requirement of flying drones.

In conclusion, this thesis proposes (1) Mid-Air, a new dataset for developing
computer vision methods for UAV applications, (2) M4Depth, a new robust and
generalizable depth estimation method, and (3) M4Depth+U, the first method
designed to jointly estimate depth and depth uncertainty while meeting the
requirements needed for UAV applications. With these contributions, we believe to
have achieved concrete steps towards truly reliable monocular depth estimation for
unmanned aerial vehicles.
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Future works

While our contributions already show strong results, we identify three research
questions that could be investigated to further improve our proposal for reliable
depth estimation.

Dynamic frame sampling. As detailed in Chapter 3, our depth estimation method
relies on a specific notion of parallax which is the visible frame-to-frame pixel
displacement of a static object. The architecture of the network is such that our
method works best for a specific range of parallax values, as shown in Section 4.5.2.
Therefore, we assume that the performance of the method could be improved by
working with parallax values that are optimal for the network. As the parallax is
function of the frame-to-frame camera motion, adapting the frame-to-frame camera
motion could be a solution to achieve this. Without controlling the vehicle, adapting
the perceived frame-to-frame motion can be achieved by choosing the time that
separates the two frames used for depth estimation. As a result, it could be interesting
to find a strategy to dynamically sample past frames for each pixel depending on the
needs of the method.

Handling dynamic scenes. In this thesis, we considered the temporal multi-view
approach of depth estimation because of its better potential for long-range depth
estimation when compared to a stereo setup with a small baseline, as the ones
typically found in small UAVs. However, the main drawback of the temporal approach
when compared to the stereo setup is its inability to deal with dynamic objects in
the scene. Combining both approaches would allow combining their strengths but
requires a strategy to fuse the available information adaptively for each pixel of the
image. While such a strategy is relatively straightforward in a generic multi-view
stereo method relying on a single plane-sweeping cost volume, the parallax and
parallax sweeping cost volumes approach of our method induces some challenges
that require a custom solution.

Visual odometry integration. Throughout this thesis, we assumed the pose of
the camera corresponding to each recorded frame to be known, since it can be
estimated by standard visual odometry or SLAM algorithms. However, a part of the
work performed by these algorithms, which is triangulating feature points, is partially
redundant with depth estimation, therefore leading to a waste of computational
resources. We believe that the next natural step would be to get rid of the need for
an external algorithm by jointly estimating depth and camera pose by solely relying
on input images and IMU measurements.
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� Overview
In this part, we provide the practical information needed for using
Mid-Air. We give the characteristics and specifications of all
simulated sensors, we cover the structure of the dataset itself, and
we explain the procedure to download it.





A.1 Technical specifications

(a) Sensors position (b) Frames of reference definition

Figure A.1: Illustration of the axis definition and of the placement of the sensors on the drone used
to record the Mid-Air dataset.

A.1 Technical specifications

Hereafter, we present the details about the sensors used in Mid-Air, which include
their type, their capture rate, their unit, their reference frame, and sensor positions.

A.1.1 Sensors positioning and frames of reference definition

Figure A.1a shows the sensor locations on the drone used to generate our dataset.
Cameras are represented by the pyramids. The blue cube shows the IMU and the
GPS receiver locations.

Figure A.1b illustrates the frames of reference used for all position-related data. The
World frame is defined at the starting point of the trajectory and oriented such that
the drone yaw is equal to zero. The other axes are horizontal. The Body frame is
rigidly attached to the drone with its origin corresponding to the position of the IMU
and GPS receiver. All frames use the North, East, Down (NED) axes convention.

A.1.2 Positioning data

For all position-related data, we use the North, East, Down (NED) axes convention.
Distances are expressed in meters, rotations in quaternions, angles in radians, and
time in seconds. The positioning information stored in the dataset is as follows:

• Ground truths for the position, speed, acceleration, and attitude are expressed
in the World frame;

• Angular velocity ground truths and IMU data, i.e., acceleration and angular
velocity are expressed in the Body frame;

• GPS position and speed are given in meters in the World frame.

It is important to note that the GPS position is not given by the standard longitude,
latitude, and altitude information, but by a simple position in meters expressed in
the World frame. This position in meters is obtained by projecting the position given
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with the longitude/latitude/altitude format relative to the first point of the trajectory.

Additionally, our dataset stores some information about the state of the sensors. The
following sensor data are made available:

• An estimate of the initial bias for the accelerometer and the gyroscope;

• The GPS signal quality estimates (i.e., GDOP, PDOP, HDOP, VDOP) for each
measurement;

• The number of satellites visible by the GPS receiver for each of its
measurements.

A.1.3 Visual data

Each trajectory record comes with eight video streams corresponding to the (1) left,
(2) right and (3) down-looking RGB camera views and the (4) segmentation, (5) depth,
(6) normals, (7) disparity and (8) occlusion maps seen by the left camera. Each video
stream consists of a set of successively numbered pictures stored in a dedicated
directory. The image formats and content are the following:

• RGB pictures are stored in JPEG images.

• Occlusion masks are stored as lossless 1-channel PNGs.

• Surface normals are stored as RGB lossless PNG files.

• Normal vectors are tri-dimensional and are expressed with respect to the Body
frame.

• Red color corresponds to the Y-axis, blue to the X-axis, and green to the Z-axis
(but with reverse direction).

• All vectors were normalized to have a unit norm. In order to fit in an RGB picture,
the range of possible element values, i.e., [−1; 1], was scaled and shifted to fit a
range of [0; 1]. For example, with this convention, a perfectly flat and horizontal
surface will have an RGB color corresponding to (0:5; 1; 0:5) if the drone does
not have any pitch nor roll angle.

• Depth and stereo disparity maps are expressed in meters and in pixels
respectively, and are stored as 16-bit float matrices in lossless 1-channel PNGs.
One of the provided example scripts shows how to decode them.

• Semantic segmentation maps are stored as lossless 1-channel 8-bit unsigned
int PNGs. The value of a pixel indicates a label number. Correspondences
between label numbers and classes are given below.
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Camera intrinsic matrix

The cameras used to record visual data all share the same intrinsic matrix. For an
image of height h and width w , this matrix is given by:

K =

⎡⎢⎢⎢⎢⎣
f x s c x

0 f y c y
0 0 1

⎤⎥⎥⎥⎥⎦ with f x = c x =
w
2

and f y = c y =
h
2
.

This corresponds to a visual field of view of 90 degrees.

Semantic segmentation classes

Mid-Air provides, among others, semantic segmentation maps. Each pixel of these
maps has an Id number that corresponds to a specific class. The correspondence
between an Id number and its class is given in Table A.1.

Id Class content
1 Animals
2 Trees
3 Dirt ground
4 Ground vegetation
5 Rocky ground
6 Boulders
7 [empty]

Id Class content
8 Water plane
9 Man-made construction

10 Road
11 Train track
12 Road sign
13 Other man-made objects
14 [empty]

Table A.1: Correspondence between Id numbers and classes in the semantic segmentation map.

A.1.4 Sensors summary table

We list all the data available in the dataset in Table A.2.
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Data Sampling freq. Reference Unit
Ground-truth position 100 Hz World [m]
Ground-truth velocity 100 Hz World [m/s]
Ground-truth acceleration 100 Hz World

[︁
m/s2]︁

Ground-truth attitude 100 Hz World [rad/s]
Ground-truth angular velocity 100 Hz World [quaternion]
IMU acceleration 100 Hz Body

[︁
m/s2]︁

IMU angular velocity 100 Hz Body [rad/s]
GPS position 1 Hz World [m]
GPS velocity 1 Hz World [m/s]
GPS signal information 1 Hz n/a n/a
Downward-looking RGB picture 25 Hz n/a n/a
Right stereo RGB picture 25 Hz n/a n/a
Left stereo RGB picture 25 Hz n/a n/a
Stereo disparity map 25 Hz n/a [pix]
Stereo occlusion map 25 Hz n/a n/a
Depth map 25 Hz n/a [m]
Surfaces normal map 25 Hz n/a n/a
Semantic segmentation map 25 Hz n/a n/a

Table A.2: List of all the data available in the dataset with their respective capture frequency. For
each data, we also give the related frame of reference and unit when applicable.

Directories
Climate setup x

color_left
Trajectory i

img_j.jpg
color_right

Trajectory i
img_j.jpg

color_down
Trajectory i

img_j.jpg
depth

Trajectory i
img_j.png

normals
Trajectory i

img_j.png
segmentation

Trajectory i
img_j.png

stereo_disparity
Trajectory i

img_j.png
stereo_occlusion

Trajectory i
img_j.png

HDF5 dataset

(a) Directories hierarchy for
image storage.

HDF5 dataset
Trajectory i

camera_data
color_left
color_right
color_down
depth
normals
segmentation
stereo_disparity
stereo_occlusion

gps
GDOP
HDOP
PDOP
VDOP
no_vis_sats
position
velocity

groundtruth
attitude
angular_velocity
position
velocity
acceleration

imu
accelerometer
gyroscope

(b)Data hierarchy inside of the
hdf5 dataset file.

Table A.3: Graphical overview of the data organization in the Mid-Air dataset.
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A.2 Dataset files organization

Our dataset contains two major types of files; images (PNG or JPEG) and hdf5 dataset
files. The former ones are used to store the visual sensor streams, while the latter
ones contain the records for all positioning information (ground truths and sensors).
Additionally, our hdf5 files also provide information about the time synchronization
between positional and visual records.

A.2.1 Directories hierarchy

Each climate setup is considered as an individual dataset part. They all have their
own hdf5 dataset file and are the root of a directory hierarchy which is the same for
all of them. This hierarchy is illustrated in Table A.3b. In this figure, i corresponds
to each trajectory number and j is the image frame number (it ranges from 0 to the
number of images recorded for the corresponding trajectory).

A.2.2 HDF5 files content

The hdf5 data structure is illustrated in Table A.3a. Its root contains one group for
each trajectory. Each of those sub-dataset then has the same content organization,
which is detailed in the same table.

Since visual sensors are sampled at 25 Hz, GPS at 1 Hz and positioning information
at 100 Hz, and assuming that trajectory_i as a length of N seconds, the groups
in the hdf5 dataset have the following content:

• Groups in the camera_data group are a list of strings of length 25N . Entry
k=floor(25*t) of a list gives the relative path to the frame captured at time t,
where t is expressed in seconds.

• Groups in the gps group are matrices of size N × m, where m is equal to 3 for
the position and velocity groups and 1 for the others. Line k=floor(t) of a
matrix gives the sensor measurement captured at time t, where t is expressed
in seconds.

• Groups in the groundtruth group are matrices of size 100N × m, where m is
equal to 4 for the attitude group and 3 for the others. Line k=floor(100*t) of
a matrix gives the sensor measurement captured at timet, where t is expressed
in seconds.

• Groups in the imu group are matrices of size 100N × 3. Line k=floor(100*t)
of a matrix gives the sensor measurement captured at time t, where t is
expressed in seconds. Additionally, these groups have an attribute giving
the initial bias estimate.
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A.3 Dataset download procedure

Our dataset can be downloaded on the following webpage: https://midair.ulg.ac.be/
download.html. Due to the sheer volume of data, we had to fragment the dataset in
several individual compressed archives to prevent the need for extracting data for a
huge single archive. This also allows us to let the user choose the exact files he wants
to download. The download procedure works as follows:

1. Select the desired visual sensors (left RGB, right RGB, down RGB, surface
normals, semantic segmentation map, range/distance map, stereo disparity
map, stereo occlusion map);

2. Select the desired trajectories and climate setups;

3. Select desired benchmarks;

4. Request download links through a form to guarantee the user agreement to
the dataset license.

Once the form is submitted, the website will generate a text file containing all links
to the archives containing the requested data. Archives can then be downloaded
using wget and the received text file as follows:

1 wget --content-disposition -x -nH -i path_to/download_config.txt

This command line will take care of downloading all the archives whose link is in the
file and of storing them in the correct directory (in order to respect paths encoded in
the hdf5 files). Once all archives are downloaded, they can just be uncompressed in
place. This can be done by running the following command line at the root of the
dataset:

1 find . -name "*.zip" | while read filename; do unzip -o -d $(dirname
"$filename") "$filename"; done;↩→
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� Overview
In this chapter, we provide some details about our experiments
that were left out of the body of this document to preserve the flow
of the text. In the first section, we give the training details of the
methods making the baseline for depth estimation on the Mid-Air
dataset. In the second section, we provide complementary results
to compare the performance of the joint depth and uncertainty
estimation method introduced in Chapter 4, M4Depth+U, to the
baseline and M4Depth that allow us to reinforce the observations
made in this chapter. More specifically, we give the mean and the
standard deviation of the performance obtained by five networks in
various configurations.





B.1 Mid-Air baseline methods training details

B.1 Mid-Air baseline methods training details

In this section, we provide the training details needed to reproduce the results of all
the methods used in our baseline for depth estimation on the Mid-Air dataset. These
details complement the code made available on the following GitHub repository:
https://github.com/michael-fonder/M4Depth-Baselines. In this dissertation, we
have chosen six methods for our baseline, namely: Monodepth [42, 43], Monodepth2
[40, 41], ST-CLSTM [141, 157], the method of [135, 136], ManyDepth [139, 140], and
PWCDC-Net [129].

To get a baseline that is true to the work of the authors and that is coherent between
different methods, we proceeded as follows. We kept the original default parameter
values of each method. Next, we adjusted the batch size so that every learning step
contained around 18 frames, and we trained each network five times. As some
method have specific input pipelines, we adjusted the training epoch count of each
method to guarantee that a network sees every training sample at least 50 times
during its training. After a first round of training, it appeared that some methods
did not converge. This has led us to adapt the training setup for these methods in
order to obtain a representative performance.

The training of PWCDC-Net [129] had to be done differently as it is an optical flow
network. To make it work, we had to convert depth maps to optical flow maps by
using Equation 3.14. It also required more steps during the training to reach a
steady-state on the validation set.

Method Train epoch count Batch size Sequence length
Monodepth [42, 43] 50 18 1*
Monodepth2 [40, 41] 17 6 3*
ST-CLSTM [141, 157] 50 3 5*
Wang et al. [135, 136] 50 3 8*
Manydepth [139, 140] 25 6 3*
PWCDC-Net [129] 100 8 2*

Table B.1: Main parameters used to train baseline methods. The asterisk denotes default
parameters of methods suggested by their respective authors.

The values reported for the baseline methods correspond to the best results obtained
out of five runs. The most important parameters of the baseline setup are given
in Table B.1. We kept all other parameters unchanged to a large extent. However,
adjustments were necessary for some methods, as explained hereafter.

• With the proposed setup, Monodepth failed to produce any output for three
trainings out of the five.

• The lower epoch count for Monodepth2 is due to the fact that the training
pipeline sees each sample three times during a single epoch.

• Performances obtained with the default learning rate for the ST-CLSTM method
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were extremely poor. We obtained better results by reducing it to 10−4.

• The code written by Wang et al. [135, 136] worked as expected. However, the
length of the training sequence had to be downsized from 10 to 8 frames to
accommodate our internal pipeline constraints.

• Finally, for Manydepth, we had to select the encoder architecture; we chose the
ResNet-50 encoder.

B.2 Complementary performance comparison for
M4Depth+U vs M4Depth+UB

In this section, we provide complementary results to compare the performance of the
joint depth and uncertainty estimation method introduced in Chapter 4, M4Depth+U,
to the baseline and M4Depth. More specifically, we give the mean and the standard
deviation of the performance obtained by five networks in various configurations.

In Tables B.2 to B.13, we present the mean and the standard deviation of the
performance of five networks for depth and uncertainty estimation. Similar to
observations made in the body of this document, all tables show that the number of
layers allocated to distinct heads in the network has no significant impact on the
performance of the architecture. The results also confirm that the modifications
made to M4Depth have no significant impact on the performance of depth estimation.
Tables B.8 to B.13 give more insight on the comparative performance of M4Depth+UB
and M4Depth+U for uncertainty estimation, and lead to two important observations.
First, on average, M4Depth+U systematically outperforms M4Depth+UB . Second,
the performance of M4Depth+UB for uncertainty estimation varies from one run to
the other much more than M4Depth+U. This could indicate that an approximate
for the uncertainty on the inverse of the parallax is less reliable than one for the
parallax. All of these additional observations further motivate the superiority of
the conversion method developed for M4Depth+U over the baseline represented by
M4Depth+UB .
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Method # head Abs Rel ↓ RMSE log ↓ δ < 1.25 ↓
layers Mean STD Mean STD Mean STD

M4Depth N/A 0.127 0.012 0.185 0.007 0.907 0.003
M4Depth+UB 1 0.145 0.009 0.190 0.006 0.906 0.001
M4Depth+UB 2 0.132 0.004 0.186 0.003 0.908 0.003
M4Depth+UB 3 0.137 0.008 0.185 0.006 0.907 0.003
M4Depth+UB 4 0.132 0.005 0.183 0.002 0.908 0.002
M4Depth+U 1 0.134 0.008 0.188 0.006 0.906 0.004
M4Depth+U 2 0.141 0.011 0.193 0.013 0.901 0.008
M4Depth+U 3 0.138 0.008 0.191 0.004 0.905 0.002
M4Depth+U 4 0.141 0.010 0.193 0.013 0.901 0.008

Table B.2: Ablation study giving the performance of networks with different numbers of layers
dedicated to the depth head on the test set of the Mid-Air dataset. The reported performances
correspond to the ones of five networks trained on the Mid-Air dataset.

Method # head Abs Rel ↓ RMSE log ↓ δ < 1.25 ↓
layers Mean STD Mean STD Mean STD

M4Depth N/A 0.205 0.014 0.229 0.004 0.841 0.006
M4Depth+UB 1 0.181 0.032 0.220 0.023 0.848 0.009
M4Depth+UB 2 0.173 0.014 0.214 0.011 0.853 0.005
M4Depth+UB 3 0.229 0.087 0.251 0.047 0.835 0.016
M4Depth+UB 4 0.172 0.022 0.211 0.012 0.854 0.012
M4Depth+U 1 0.182 0.038 0.245 0.020 0.848 0.009
M4Depth+U 2 0.192 0.007 0.227 0.013 0.844 0.009
M4Depth+U 3 0.172 0.018 0.212 0.010 0.850 0.005
M4Depth+U 4 0.192 0.007 0.227 0.013 0.844 0.009

Table B.3: Ablation study giving the performance of networks with different numbers of layers
dedicated to the depth head on the test set of the KITTI dataset in zero-shot cross-dataset transfer.
The reported performances correspond to the ones of five networks trained on the Mid-Air dataset.

Method # head Abs Rel ↓ RMSE log ↓ δ < 1.25 ↓
layers Mean STD Mean STD Mean STD

M4Depth N/A 0.298 0.009 0.493 0.050 0.709 0.013
M4Depth+UB 1 0.302 0.022 0.458 0.009 0.712 0.009
M4Depth+UB 2 0.297 0.017 0.586 0.086 0.687 0.024
M4Depth+UB 3 0.285 0.025 0.495 0.028 0.702 0.015
M4Depth+UB 4 0.289 0.022 0.545 0.058 0.692 0.014
M4Depth+U 1 0.289 0.010 0.482 0.058 0.710 0.014
M4Depth+U 2 0.302 0.025 0.528 0.062 0.698 0.017
M4Depth+U 3 0.298 0.021 0.510 0.051 0.703 0.011
M4Depth+U 4 0.302 0.026 0.528 0.062 0.698 0.017

Table B.4: Ablation study giving the performance of networks with different numbers of layers
dedicated to the depth head on the Gascola set of the TartanAir dataset in zero-shot cross-dataset
transfer. The reported performances correspond to the ones of five networks trained on the Mid-Air
dataset.
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Method # head Abs Rel ↓ RMSE log ↓ δ < 1.25 ↓
layers Mean STD Mean STD Mean STD

M4Depth N/A 0.592 0.030 0.637 0.042 0.630 0.019
M4Depth+UB 1 0.674 0.057 0.612 0.014 0.634 0.009
M4Depth+UB 2 0.555 0.095 0.695 0.075 0.613 0.028
M4Depth+UB 3 0.545 0.126 0.643 0.048 0.626 0.013
M4Depth+UB 4 0.488 0.047 0.646 0.062 0.627 0.016
M4Depth+U 1 0.542 0.072 0.627 0.067 0.627 0.067
M4Depth+U 2 0.581 0.062 0.686 0.067 0.611 0.021
M4Depth+U 3 0.550 0.165 0.647 0.087 0.629 0.020
M4Depth+U 4 0.581 0.062 0.686 0.067 0.610 0.021

Table B.5: Ablation study giving the performance of networks with different numbers of layers
dedicated to the depth head on the Seasons Forest Winter set of the TartanAir dataset in zero-shot
cross-dataset transfer. The reported performances correspond to the ones of five networks trained
on the Mid-Air dataset.

Method # head Abs Rel RMSE log δ < 1.25
layers Mean STD Mean STD Mean STD

M4Depth N/A 0.637 0.039 0.598 0.049 0.677 0.019
M4Depth+UB 1 0.930 0.174 0.619 0.041 0.672 0.017
M4Depth+UB 2 0.575 0.055 0.669 0.093 0.660 0.034
M4Depth+UB 3 0.789 0.110 0.618 0.028 0.672 0.028
M4Depth+UB 4 0.589 0.091 0.632 0.065 0.669 0.017
M4Depth+U 1 0.701 0.191 0.585 0.062 0.585 0.063
M4Depth+U 2 0.664 0.094 0.636 0.092 0.665 0.026
M4Depth+U 3 0.683 0.140 0.591 0.058 0.675 0.016
M4Depth+U 4 0.664 0.094 0.636 0.092 0.665 0.026

Table B.6: Ablation study giving the performance of networks with different numbers of layers
dedicated to the depth head on the Neighborhood set of the TartanAir dataset in zero-shot cross-
dataset transfer. The reported performances correspond to the ones of five networks trained on the
Mid-Air dataset.

Method # head Abs Rel ↓ RMSE log ↓ δ < 1.25 ↓
layers Mean STD Mean STD Mean STD

M4Depth N/A 0.373 0.043 0.419 0.056 0.772 0.018
M4Depth+UB 1 0.543 0.123 0.444 0.034 0.765 0.014
M4Depth+UB 2 0.430 0.073 0.555 0.098 0.741 0.030
M4Depth+UB 3 0.447 0.060 0.451 0.030 0.762 0.012
M4Depth+UB 4 0.430 0.048 0.486 0.071 0.754 0.018
M4Depth+U 1 0.371 0.099 0.418 0.058 0.772 0.020
M4Depth+U 2 0.491 0.162 0.524 0.116 0.745 0.035
M4Depth+U 3 0.350 0.058 0.430 0.064 0.770 0.014
M4Depth+U 4 0.491 0.162 0.524 0.116 0.745 0.035

Table B.7: Ablation study giving the performance of networks with different numbers of layers
dedicated to the depth head on the Old Town set of the TartanAir dataset in zero-shot cross-dataset
transfer. The reported performances correspond to the ones of five networks trained on the Mid-Air
dataset.
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Method # head Abs Rel ↓ RMSE log ↓ δ < 1.25 ↓
layers Mean STD Mean STD Mean STD

M4Depth+UB 1 0.028 0.0070 0.084 0.0199 0.009 0.0024
M4Depth+UB 2 0.027 0.0105 0.084 0.0338 0.008 0.0011
M4Depth+UB 3 0.046 0.0155 0.131 0.034 0.011 0.0025
M4Depth+UB 4 0.039 0.0261 0.103 0.0543 0.011 0.0032
M4Depth+U 1 0.007 0.0006 0.020 0.0015 0.006 0.0007
M4Depth+U 2 0.007 0.0006 0.019 0.0017 0.006 0.0006
M4Depth+U 3 0.006 0.0003 0.018 0.0004 0.006 0.0003
M4Depth+U 4 0.007 0.0008 0.019 0.0009 0.006 0.0008

Table B.8: Ablation study giving the performance of networks with different numbers of layers
dedicated to the uncertainty head on the test set of the Mid-Air dataset. The reported performances
correspond to the ones of five networks trained on the Mid-Air dataset.

Method # head Abs Rel ↓ RMSE log ↓ δ < 1.25 ↓
layers Mean STD Mean STD Mean STD

M4Depth+UB 1 0.028 0.0071 0.054 0.0131 0.021 0.0032
M4Depth+UB 2 0.026 0.0029 0.050 0.0101 0.019 0.0005
M4Depth+UB 3 0.039 0.0196 0.078 0.041 0.021 0.0017
M4Depth+UB 4 0.029 0.0067 0.059 0.0199 0.020 0.0016
M4Depth+U 1 0.022 0.0007 0.040 0.0017 0.019 0.0004
M4Depth+U 2 0.022 0.0011 0.041 0.0029 0.018 0.0007
M4Depth+U 3 0.022 0.0010 0.041 0.0019 0.020 0.0008
M4Depth+U 4 0.022 0.0010 0.040 0.0018 0.019 0.0009

Table B.9: Ablation study giving the performance of networks with different numbers of layers
dedicated to the uncertainty head on the test set of the KITTI dataset in zero-shot cross-dataset
transfer. The reported performances correspond to the ones of five networks trained on the Mid-Air
dataset.

Method # head Abs Rel ↓ RMSE log ↓ δ < 1.25 ↓
layers Mean STD Mean STD Mean STD

M4Depth+UB 1 0.049 0.003 0.159 0.014 0.029 0.001
M4Depth+UB 2 0.052 0.007 0.257 0.057 0.034 0.004
M4Depth+UB 3 0.046 0.006 0.180 0.030 0.030 0.003
M4Depth+UB 4 0.051 0.012 0.214 0.049 0.031 0.003
M4Depth+U 1 0.041 0.002 0.158 0.025 0.028 0.002
M4Depth+U 2 0.038 0.004 0.187 0.049 0.027 0.003
M4Depth+U 3 0.037 0.002 0.170 0.029 0.027 0.002
M4Depth+U 4 0.036 0.002 0.170 0.030 0.026 0.002

Table B.10: Ablation study giving the performance of networks with different numbers of layers
dedicated to the uncertainty head on the Gascola set of the TartanAir dataset in zero-shot cross-
dataset transfer. The reported performances correspond to the ones of five networks trained on the
Mid-Air dataset.
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B Complementary details on experiments

Method # head Abs Rel ↓ RMSE log ↓ δ < 1.25 ↓
layers Mean STD Mean STD Mean STD

M4Depth+UB 1 0.162 0.028 0.208 0.016 0.031 0.001
M4Depth+UB 2 0.109 0.049 0.255 0.043 0.036 0.006
M4Depth+UB 3 0.128 0.081 0.216 0.056 0.031 0.003
M4Depth+UB 4 0.095 0.013 0.223 0.055 0.032 0.004
M4Depth+U 1 0.070 0.013 0.162 0.034 0.029 0.003
M4Depth+U 2 0.062 0.007 0.197 0.059 0.030 0.004
M4Depth+U 3 0.062 0.007 0.197 0.059 0.030 0.004
M4Depth+U 4 0.056 0.001 0.179 0.032 0.029 0.003

Table B.11: Ablation study giving the performance of networks with different numbers of layers
dedicated to the uncertainty head on the Seasons Forest Winter set of the TartanAir dataset in zero-
shot cross-dataset transfer. The reported performances correspond to the ones of five networks
trained on the Mid-Air dataset.

Method # head Abs Rel ↓ RMSE log ↓ δ < 1.25 ↓
layers Mean STD Mean STD Mean STD

M4Depth+UB 1 0.222 0.116 0.245 0.061 0.025 0.003
M4Depth+UB 2 0.125 0.034 0.286 0.051 0.029 0.006
M4Depth+UB 3 0.217 0.089 0.262 0.041 0.024 0.002
M4Depth+UB 4 0.170 0.056 0.264 0.050 0.025 0.003
M4Depth+U 1 0.048 0.006 0.150 0.039 0.021 0.004
M4Depth+U 2 0.042 0.008 0.192 0.074 0.023 0.006
M4Depth+U 3 0.042 0.008 0.192 0.074 0.023 0.006
M4Depth+U 4 0.033 0.002 0.149 0.029 0.021 0.002

Table B.12: Ablation study giving the performance of networks with different numbers of layers
dedicated to the uncertainty head on the Neighborhood set of the TartanAir dataset in zero-shot
cross-dataset transfer. The reported performances correspond to the ones of five networks trained
on the Mid-Air dataset.

Method # head Abs Rel ↓ RMSE log ↓ δ < 1.25 ↓
layers Mean STD Mean STD Mean STD

M4Depth+UB 1 0.139 0.068 0.208 0.046 0.023 0.003
M4Depth+UB 2 0.093 0.022 0.238 0.019 0.025 0.002
M4Depth+UB 3 0.150 0.061 0.231 0.041 0.023 0.003
M4Depth+UB 4 0.102 0.016 0.207 0.039 0.021 0.002
M4Depth+U 1 0.039 0.005 0.125 0.017 0.020 0.001
M4Depth+U 2 0.037 0.006 0.162 0.061 0.021 0.004
M4Depth+U 3 0.037 0.006 0.162 0.061 0.021 0.004
M4Depth+U 4 0.031 0.001 0.122 0.015 0.018 0.001

Table B.13: Ablation study giving the performance of networks with different numbers of layers
dedicated to the uncertainty head on the Old Town set of the TartanAir dataset in zero-shot cross-
dataset transfer. The reported performances correspond to the ones of five networks trained on the
Mid-Air dataset.
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