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Abstract 
Recent advances in high-throughput technologies enable a more comprehensive interpretation of the tumour 
evolution through the study of the intra-tumour heterogeneity. Several algorithms, however, often relies on the use 
of models that described the top of the iceberg regarding the stromal contamination of the samples, making 
diagnosis difficult to assess. Indeed, such as radio wave receivers, tools to analyse high-throughput technologies 
data, are used to enable the discrimination between multiple signals differing in frequencies. However, such tools 
often look at the average frequency more than distinct signals, leading to analyse a confused signal. This confusion 
could dramatically lead to a mis–interpretation of the real data, especially during the diagnosis as it relies on the 
choice of a unique scenario among many others. Here, we describe how this signal confusion occurs in the most 
classical DNA microarray analysis of tumours and we provide statistics to determine how many other possible 
scenario can lead the same signals, in order to improve the robustness of pigeon hole logic based analysis. Based 
on simulations, where a unique tumour population was diluted by an increasing gradient of normal cells, we 
underline the causes and consequences of such signal confusion for up to five allelic copies. Despite the removal 
of all technical biaises and background noise, we show how the signal confusion remains systematically present in 
the commonly used DNA microarray analysis, especially for the genotypes AAAAB, AAAB and AAB for copy 
numbers 5, 4 and 3 respectively, as well as their symmetric combinations for the B allele. 

Introduction 
Cancer genomes are often distinguishable from normal genomes by their numerous genetic aberrations. These 
aberrations can take several forms from punctual mutations to chromosomal rearrangements such as gains, losses, 
translocations or inversions. Many of these events were linked to specific tumour types, and now constitute strong 
markers for the cancer characterisation and classification [1, 2]. These events were acquired and selected during 
the long process of tumourigenesis. Indeed, tumours are the result of a long evolution that includes multiple rounds 
of proliferation, cell death, and genomic rearrangements. This process implies a continuous genesis of new 
aberrations that are not always ubiquitous through tumour cells [1-8]. The most striking events are gains and losses, 
which are commonly called copy number alterations (CNA). These CNAs often produce allelic imbalances (Ai), 
which are an over-representation of one of the two original heterozygous alleles. The most striking Ai is the loss 
of heterozygosity (LOH), where a normal heterozygous locus become homozygous after a loss event. All non LOH 
allelic imbalances, are called here other Ai (oAi). 
 

Single nucleotide polymorphism (SNP) arrays (SNP–aCGH) allow the screening of CNAs and Ais through the 
allele specific analysis. These technologies measure the intensity of fragmented genomic DNA sequences that are 
hybridised to probes which cover most part of the genome. The allele specific analysis is enabled by the targeted 
sequences. Indeed, probes target genomic regions of known SNPs and thus measure the two possible allelic 
versions of this SNP. For convenience, these two possible versions are labelled A and B alleles. Thus, these 
platforms provide both the Log R ratio (LRR), the total intensity of both A and B alleles, as well as the B allele 
frequency (BAF), the relative proportion of the B allele. While the reproducibility of these platforms is not to 
debate here, the biopsy composition can bias the resulting signal. 
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Along the tumourigenesis, cell clones are selected for their survival and proliferation advantages. Although 
most cancer cells are expected to share common genetic features, coming from their most recent common ancestor, 
the recent advances in high-throughput genetics emphasised significant sub–populations in most tumours [8, 11, 
12]. Even if a sub–population exhibits a high fitness, it rarely reached the fixation at the time of the surgery, thus 
resulting in the co-existence of several sub–populations in the sample [3, 7, 13]. Consequently, tumours are often 
composed of a mixture of genetically different cell sub-populations which constitutes the intra-tumour 
heterogeneity (ITH). Like waves in physics, the detected signals are the subject of interferences, such as signal 
destruction, which often lead to a mis–interpretation of the data. This signal destruction can occur for LRR and 
BAF signals when two equally represented populations carry opposite aberrations, such as gain and loss with 
complementary genotypes, such as A and ABB. 

 
Tumour samples picked-up by surgery are often contaminated with normal stromal cells. This source of 

additional interferences makes the overall sensitivity of LRR and BAF signals proportionally distorted along with 
an increasing amount of normal cells. Such contamination often led to difficulties in the assessment the exact CNA 
or the detection of LOH events [14]. Furthermore, stromal cells were previously described as an additional source 
of chromosomal aberrations, making the overall mixture even more complex [15, 16]. 

 
Tools to address all these sample effects were developed during the last decade [4, 14, 17-22]. The main attempt 

of these algorithms is to assess the exact copy-number status of such complex samples. For this purpose, the LRR 
and the BAF signals were combined to circumvent the signal distortion. Two distinct methods were mainly used, 
hidden Markov models (HMM) and change point detection (CPD). Studies that compared these tools concluded 
that CPD based algorithms outperform HMMs [22]. Besides, a pigeon hole logic can be applied to the entire set of 
individual alterations to improve the exact CNA assessment. Altogether, these tools were able to solve most of the 
crucial SNP–aCGH problems, such as noise, polyploidy as well as ITH. 

 
However, the complex genetic of the tumour samples remains difficult to assess. A high number of tumour 

sub–populations with different genetics often led to a ill-mathematical problem during the assessment of the exact 
CN status [4]. This problem, called here “Signal Confusion”, is one of the basic failures encountered by SNP–
aCGH analysis, and we expect a comparable confusion to occur only with a stromal contamination. Indeed, current 
tools often consider the stromal contamination as an additional population, which only lead to a signal reduction, 
where the LRR and BAF signals converge to the neutral signal of a diploid state [4, 9]. Moreover, it is not known 
which genotypes are more likely to be the source of such signal confusion. Finally, even though efficients, pigeon 
hole algorithms have to choose among numerous equally probable scenario of combined individual alterations. 
Consequently, SNP-aCGH analysis may not always reflect the exact reality, and thus, may increases the number 
of analysis biases, leading to a quick interpretation and thus a false conclusion during diagnosis. 

 
Here, we assessed the impact of such stromal contamination on the common SNP–aCGH analysis, with the 

aim to identify the basic sources of signal confusion occurrences. Furthermore, we developed statistics to weight 
each signal for any confusion occurrence. These probabilities can be used as a degree of certitude on each individual 
alteration, but also to assess the amount of equally probable scenario that can result from a pigeon hole analysis. 
To keep focus on the expected effect of signal confusion, we avoided any additional background noise, polyploidy 
or other ITH in the analysis. Thus, we analysed optimised simulated signals from a population that carry CNs from 
CN0 (bi-allelic deletion) to CN5 (amplification), diluted in an increasing gradient of 1−α% of normal cells (CN2) 
from 0 to 100%. 

Results 

Copy Number analysis 
To assess the impact of normal cells on the exact copy number (CN) analysis, we looked for the signal confusion 
on the Log R ratio (LRR). For this purpose, we simulated LRR signals for CNs from CN0 to CN5 using SiDCoN 
simulation algorithm [23]. Each signal was simulated with an increasing gradient of tumour cells (α) from 0% to 
100%. Figure 1 summarises the evolution of the LRR signal according to the α% of altered cells in the sample, for 
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each simulated CN. With the exception of the CN0, each CN describes a straight line of LRR signal function of 
α% of altered cells. Importantly, several signals can be achieved with different combination of CN and α. As 
exemplified by the dashed lines and listed in table 1, the signal LRR=−0.415 can be achieved both by a CN1 at 
α=76% of altered cells and a CN0 at α=38%. Similarly, the signal LRR=0.323 can be achieved either by a CN3 at 
α=90%, a CN4 at α=45% or a CN5 at α=30%. Every genotype combinations that converged to the same CN ended 
with the same LRR signal at the same α. The α% of altered cells can be found based on the LRR signal and the CN 
status with the equation 6 (see Methods), adapted from SiDCoN.  
 

Allelic analysis 
To assess the impact of normal cells on the allelic imbalance (Ai) analysis, we looked for the signal confusion on 
the Θ and the B allele frequency (BAF) analysis, as well as any disturbance that could occur in the LOH detection 
analysis. For this purpose, we simulated the Θ and BAF signals for all allelic combinations (AA, ABB, etc.) that 
led to tumour CNs from CN0 to CN5. Each signal was simulated with an increasing gradient of tumour cells (α) 
from 0% to 100%. Interestingly, all aberrations signals that derived from the homozygous genotypes (AA or BB) 
led to the same signal, which increased the signal confusion. Thus, only the aberrations that came from the 
heterozygous genotype (AB) were considered here. 
 

Theta (Θ): 
Figure 2 summarises the different combinations of Θ values obtained for the dilutions of altered cells with CNs 
from CN0 to CN5. Θ values were calculated based on Wang et al [24]. The signals varied between 0 and 1, and 
were symmetric against 0.5. They also described three distinct curve shapes, that depended on the allelic 
combination. Balanced alleles combination (triangles), described a straight line at 0.5 (figure 2.b). They occurred 
for even CNs when alleles were equally represented. LOH (circles), described curves function of α (figure 2.c). 
They occurred when only one allele was represented. Their signals started from Θ=0.5 to one of the two extrema, 
depending on the allele involved (A or B). Other Ais (squares), described also curves function of α (figure 2.d). 
They occurred when one allele is over–represented. These signals also started from Θ=0.5, but ended before the 
maxima, 0<Θ<1, depending on the most represented allele. It is worth to note that many Θ signals can be achieved 
with different CN or combinations of alleles at different α. As exemplified by the dashed line and reported in the 
table 2, a Θ signal at 0.3 can be achieved by eight different combinations of genotype and α. Additionally, all 
aberrant genotypes coming from a AA reference led to a Θ value of 0. Similarly, the aberrant genotypes coming 
from a BB reference led to a Θ value of 1. Any α can be found based on the Θ signal and the amount  NA t

 
and  

NB t of allele A and B respectively, with the equation 7 (see Methods), adapted from Wang’s equation [24]. 
 

BAF: 
Two different methods were used to calculate the BAF in previous studies, the Θ based BAF, derived from Wang’s 
method [24] and the classical BAF, derived from SiDCoN algorithm [23]. Both methods were compared for their 
behaviour against a stromal contamination. For this purpose, we measured the signal confusion on the mirrored 
BAF (mBAF), which constrains the signal between 0 and 0.5. Figure 3.a summarises the different combinations of 
mBAF values, obtained using Wang et al algorithm [24]. These mBAF signals were obtained for CNs from CN0 
to CN5, diluted with an increasing amount of normal cells. Similarly, figure 3.b summarises the same signal of 
mBAF, but estimated with the SiDCoN algorithm [23]. With the exception of balanced allelic amounts (triangles), 
such as the CN0, CN2 and CN4, each allelic combination had a mBAF signal over 0. Like the Θ signal, the mBAF 
signal described two other types of curves, depending on the allelic combination. LOH (circles), described curves 
function of α linking 0 to the maximum of 0.5. Other Ais (squares), described curves function of α, linking 0 to a 
maximum value below 0.5. This maximum value followed the disequilibrium between the two alleles in the 
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genotype. Importantly, in both methods, almost all mBAF signals can be achieved with different combinations of 
alleles for different CNs and α. As exemplified by the dashed line in figure 3 (a) and reported in the table 3, the Θ 
based mBAF signal at 0.3, estimated using Wang’s method, can be achieved with all combination of LOH or two 
other oAi genotypes and α. Similarly, the dashed line in figure 3 (b) showed a classical mBAF signal at 0.3, 
estimated with SiDCoN’s method. As reported in the table 4, this mBAF signal can be achieved with all 
combination of LOH genotypes and α, but only one oAi and α combination. Moreover, the Θ based mBAF at 0.5 
can be achieved with all LOH combinations indifferently for α≥0.5. For the Θ based mBAF, any α can be estimated 
with equation 8 (see Methods), which was derived from a Wang’s algorithm. For the classical based mBAF, any α 
can be estimated with the equation 9 (see Methods), which was derived from SiDCoN method. Interestingly, in 
both BAF cases, all aberrant genotypes derived from a AA or a BB reference led to a mBAF value of 0.5. 
 

LOH detection: 
The LOH being a particular case of Ai, we looked for potential signal distortion that would disable the Ai detection. 
This detection being a boolean method where only signals above 0 are considered, any signals that were close to 0 
will result in a confusion. Thus, to assess this, we looked at any Ai signals that were close to 0 between paired 
samples. With the exception of α≤0.1, numerous signals can be achieved with different CNs. Thus most signals 
were detectable and different from 0 (data not shown). 
 

Combined analysis: Copy Number and Allelic Imbalance 
To assess the impact of normal cells on the combined analysis, we looked at the signal confusion that occurred 
simultaneously for both CN and Ai analysis. These analysis encompass the genotype assignment and the combined 
LRR and BAF analysis. Again, we simulated all the possible allelic combinations (AA, ABB, etc.) of CNs from 
CN0 to CN5 diluted with an increasing amount of normal cells. The special case of genome wide association 
studies (GWAS) will be debated in the discussion. 
 

Combined R and Θ analysis (Genotype assignment): 
Figure 4 summarises the scatterplot of Θ against R values for all genotype combinations that led to CNs from 0 to 
5 contaminated with the increasing gradient of normal cells. Almost all allelic combinations showed a unique and 
distinct signal. However, signal confusion was still observed for the three following allelic combinations, 1. 
AAAAB for CN5, 2. AAAB for CN4 and 3. AAB for CN3, as well as their symmetric combinations for the B 
allele. As exemplified by the arrows and reported in the table 5, a Θ signal of 0.3 combined to a R signal of 2.963 
can be achieved with the following α and genotype combinations. 1. α=0.32 (AAAAB), 2. α=0.48 (AAAB), and 
3. α=0.96 (AAB). Any R signal can be estimated from a Θ, with the equation 10 (see Methods), obtained based on 
the equality “αR=αΘ”. 

 

Combined LRR and BAF analysis: 
Following the same principle, we looked for signal confusions that occurred both in the LRR and the BAF signals 
for each combination of genotype and α. As reported in table 6, a Wang’s BAF signal of 0.4 and a LRR signal of 
0.117 can be achieved with the following α and genotype combinations. 1. α=0.1 (AAAAB), 2. α=0.14 (AAAB), 
and 3. α=0.29 (AAB). Similarly, as reported in table 7, a classical BAF of 0.39 and a LRR signal of 0.216 can be 
achieved with the following α and genotype combinations. 1. α=0.19 (AAAAB), 2. α=0.28 (AAAB), and 3. α=0.56 
(AAB). 
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Signal confusion estimation 
Based on the signal confusions detected within the previous analysis, we evaluated the probability of a signal 
confusion occurrence in the classical SNP–aCGH analysis.  
 

LRR signal confusion. 
Figure 5 summarises the probability of a confusion occurrence during the analysis of a candidate LRR signal for 
cells that carry up to 5 chromosomal copies under an expected CNmax from 0 to 10. Interestingly, the signal 
confusion probability remains exactly the same along the expected CNmax for the CN0:pc=0, CN1:pc=0.5 and 
CN2:pc=0. Otherwise, similar shapes were observed for gains. In this context, the probability is higher for lower 
CN gains when assessed with any expected CNmax. Thus, the probability to get a confused signal with an expected 
CNmax=10, is higher for the CN3 than any other upper CNs. 

 

Θ signal confusion. 
Figure 6 summarises the probability of a confusion occurrence during the analysis of a candidate genotype’s Θ 
signal for cells that carry up to 5 chromosomal copies under an expected CNmax from 0 to 10. Interestingly, the 
signal confusion probability reaches exactly the same values for any LOH under the same CNmax. For oAis, 
however, the probabilities follow independent curves. Furthermore, the more unbalanced the genotype, the lower 
the probability is. 
 

Discussion 
In an effort to elucidate the impact of the tumour contamination with stromal cells on classical SNP–aCGH 
analysis, we simulated genotype data that led to copy number aberrations from CN0  to CN5  diluted by an 
increasing gradient of normal cells. With only one tumour population contaminated by normal cells, we showed 
that signal confusion can disturb the interpretation of each classical SNP-aCGH analysis. 
 

Regarding the copy number analysis, LRR signals were shown with a substantial signal confusion for both 
deletions and gains. For deletions (figure 1 bottom) all simulated CN1 values can be achieved with CN0 values at 
another α% of tumour cells. For gains (figure 1 top) the confusion was dependant on the CN maximum (CNmax). 
In our simulations, CNmax was set to 5, and thus the confusion encompassed up to three CNs. While previous 
studies considered a CNmax up to 4, we demonstrated that higher CNs may have a dramatic impact on the data 
interpretation. However, higher CNs can not be excluded when the exact CN have to be assessed, especially in the 
double minute context [25, 26]. As shown by our results, this assessment, based only on the LRR analysis, was 
highly similar to the problem already mentioned for mixtures of different tumour populations [4]. In this context, 
we expect signals from oligo or BAC array CGH (aCGH) to be strongly biased by these confusions when analysing 
contaminated samples. Indeed, these platforms do not allow the allele specific analysis. Nevertheless, the 
probability to have a confusion is higher for the gains than the deletions (figure 5). Indeed, among the deletions, 
only the CN1 can be misinterpreted during the CN assignment, and this for any expected CNmax. Contrariwise, 
the confusion for a gain is even more probable while the expected CNmax is high. Importantly, the lower the 
observed signal is, the highly confused the assignment might be. 
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At the Allelic imbalance level, while the Θ based BAF enabled a better separation of the signals, Θ only or 
BAF analysis were shown with the highest signal confusion among the SNP-aCGH analysis. Interestingly, while 
each class was the subject of different signal confusions, the Θ based BAF showed more confusions than the 
classical BAF (one more genotype combination can reach the signal BAF=0.3). As displayed by figures 2 and 3, 
three classes of genotypes can be the source of the same signals. 1. Balanced (triangles). 2. LOH (circles). 3. Other 
Ais (squares). Every signals coming from classes 2 can be achieved with all other possible genotypes. Only one 
signal was observed for every genotype of the class 1. Signals coming from class 3 are more confused when the 
genotype tends to be more balanced. As these three classes were equally probable when deriving from an 
heterozygous genotype, the expected signal is thus more confused while it tends to a balanced genotype acquired 
by the tumour (figure 6). Interestingly, any kind of pure LOH are equally probable, when available under the same 
CNmax expectation. Besides, all aberrant genotypes that derived from the homozygous genotypes (AA or BB), led 
to the same constant signal of LOH, thus to a constant confusion. Consequently, algorithms that are mainly based 
on Ai signals can fall into a signal confusion, especially when trying to discover the exact percentage of normal 
and tumour cells in the sample. Nevertheless, the LOH detection analysis should not suffer from this confusion, as 
no exact genotype have to be assessed. 

 
The combination of both CN and Ai analysis was widely used in previous studies [9, 10, 14, 19, 21, 22]. Most 

often, it was mentioned in these studies that the combined CN and Ai analysis can help with the normal cell 
contamination. Indeed, it can remarkably increase the power of the assessment both for the exact CN and the 
normal cell contamination. However, our results showed that this combined analysis can also led to a signal 
confusion. As shown by the figure 4, we highlighted three genotypes, AAAAB, AAAB and AAB, which displayed 
similar signals. As CNmax was set up to 5 for the present study, we expect higher CNs to results in even more 
confusion. Moreover, it is worth to note that the signal confusion should be even more important for low α under 
high background noise conditions (figure 4, center). Nevertheless, in the context of the current simulations, only 
one tumour population was studied without any background noise. In this context, the observed confusions should 
be solved using a pigeon hole logic based on the whole set of observed aberrations. For more complex tumour 
cases, however, the analysis can turn into an ill-mathematical problem [4]. The problem falls therefore under 
Parisi’s conclusions, where more than 3 populations within the same sample result in numerous issues, even if a 
pigeon hole logic is used. Importantly, as a consequence of this signal confusion that may occur during the 
genotyping step, any subsequent tumour genome-wide association studies (GWAS) would also suffer from the 
normal cell contamination. As demonstrated in figure 4, three cases could be interpreted as one unique genotype. 
However, common genotype calling algorithms can only, somehow, average these combinations, thus flattening 
the true underlying genotype [27, 28]. Beside this unavoidable confusion, classical statistical approaches are 
subject to a loss of power as the number of degrees of freedom increase with additional genotypes resulting from 
the various alterations commonly found in tumours. Under such conditions, GWAS are approximated, thus missing 
numerous potential associations. 

 
Studies that suggested the use of a three copy–number state (gain, deletion, normal), can circumvent the exact 

copy–number assessment, but will loss the tumour content information [4]. Because this exact copy number status 
couldn’t be easily assessed for a punctual analysis, a pigeon hole logic analysis is often used. However, these 
algorithms have to make a choice between multiple scenario of numerous individual alterations. The signal 
confusion probabilities, developed in the current study, weight each alteration and let the user aware about all other 
possible scenario that were omitted. For example, in the simple case of 5 deletions, 3 CN1 and 2 CN0, the chosen 

scenario will be one among height others. With pu CN1 – 0.5  and pu CN0 – 1 the scenario probability is 0.53 * 
12 – 1/8. Consequently, the association between the developed equations (11, 16 and 17) and a pigeon hole logic 
can greatly help the diagnostic decision about the robustness of the scenario chosen during the exact copy number 
assignment. 
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Conclusions 
Early identification of tumour populations that recur after current therapies is crucial for future diagnosis, prognosis 
and patient’s care [3, 5, 29, 30]. Studies that attempted to unveil the tumour content, were important steps to build 
robust diagnosis tools [8, 25, 31]. However, tumour samples remain complex mixtures with an unknown number 
of populations, including a random amount of normal cells. In this context, an unknown number of issues are 
possible in the tumour analysis [4, 9]. While we accepted the relevance of previously discovered tumour markers, 
omitting the signal confusion coming with the stromal contamination would lead to an incorrect assessment of the 
tumour content. Indeed, we showed here that the normal contamination can itself lead to numerous interpretation 
of the tumour alterations. Moreover, the signal confusion remained present in all kind of CGH microarray analysis. 
Being hard to circumvent, nevertheless, this confusion can be assessed. Only few genotypes were actually the 
source of a constant confusion in every analysis. Therefore, the current work proposed a way to appreciate how 
many other possible scenario would lead to the same altered signals. Rather than a direct assessment of the exact 
copy–number, we proposed here a degree of certitude regarding a signal confusion occurrence. Combining these 
degrees of certitude for each alteration with a pigeon hole logic can improve the robustness of the tumour sub-
populations identification. Such probabilities could also be integrated in a three state analysis (gains, deletions and 
normal) to help clinicians in their decisions. Understanding how the normal contamination acts on the tumour 
informations, can really make a difference in the assessment of the tumour content and thus in the early 
identification of a treatment response. Subsequent analysis of sub-clonal impact on drug response, are likely to 
have a major impact on the development of new treatment strategies and patient’s care. 
 

Methods 

Reference and sample’s genotypes 
Thousand reference samples were generated with the following genotype proportions, 35% of AA, 35% of BB and 
30% of AB. Based on these genotypes, all possible combinations of tumour genotypes were generated according 
to the type of CN evaluated. For example, for a CN3, the genotypes AAA, AAB, ABB and BBB were evaluated if 
the corresponding reference genotype was AB. In the same context, The genotype AAA was evaluated if the 
corresponding reference genotype was AA. 

Tumour and Reference proportions 
An increasing gradient of altered tumour cells (α) was used to simulate dilution of tumour cells with normal cells. 
Briefly, each analysis was weighted with α. The tumour signal (St) weighted by α (Swt), was obtained with Swt=α.St
. Similarly, normal cell signal (Sn) weighted by α (Swn), was obtained with Swn=(1−α).Sn. 

Allele intensities 
For each simulated ith  SNP probe, weighted Ai  and Bi  allelic intensities were obtained based on the allele 

proportions in the tumour ( NX t) and in the reference (NX n
 
) genotypes, such as  

  (1) 

  (2) 
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Copy Number analysis 
Weighted DNA quantities, for each ith SNP probe (Ri), were obtained by summing the weighted allele intensities 
(equations 1 and 2), such as Ri=Ai+Bi. The subsequent R ratio (RRi) and Log R ratio (RRi) were obtained based on 
SiDCoN method with RRi=Ri/2 and LRRi=log10(RRi). 

Allelic analysis 
Theta Θ. 

Weighted Θ values, for each ith SNP probe (Θi), were obtained based on weighted allele intensities (equations 1 
and 2), using Wang et al methodology [24], such as  

  (3) 

BAF and mBAF. 

Two distinct methods were compared to simulate weighted BAF values for each ith SNP probe (BAFi). The first 
method was based on Θ values and was previously described by Wang et al [24]. The second method was described 
with the SiDCoN algorithm [23], and was used here as follow  

  (4) 

The weighted mirrored BAF signal for each ith SNP probe (mBAFi) was obtained for both methods using the 
following equation  

  (5) 

LOH detection analysis 
Following the same principle, weighted Ais were used to assess if the signal confusion can disturb the Ai and 
subsequent LOH detection. This detection is boolean method where only the difference in allele frequency between 
the tumour and the paired constitutive reference samples is assessed. We used previously published method called 
| dAlleleFreq tum−ref|, the absolute value of this allele frequency difference [20, 32]. Since both samples are from 
the same patient, this allele frequency difference is closed to zero except in regions exhibiting Ais or LOHs. 
Possible confusions were therefore detected when any Ai or LOH signals were closed to zero. 

Linear models 
LRR analysis. 
Any α from the figure 1 can be inferred based on the LRR signal, using the following equation.  

  (6) 
Importantly, equation 6 returned non interpretable α for LRR<0 and CN>2, LRR>0 and CN<2 or any LRR and CN 
= 2, this last case always returned aberrant results as any α values between 0 and 1 are possible for the CN2. 
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Theta (Θ) analysis. 
Any α from the figure 2 (a) can be inferred based on the Θ signal using the following equation.  

  (7) 
Where NA t and  NB t are the amount of A and B of the considered genotype. Importantly, equation 7 returned 
non interpretable α for Θ<0.5 and NA t < NB t, Θ>0.5 and NA t > NB t or any Θ and  NA t - NB t

 
, this last case 

always returned aberrant results as any α values between 0 and 1 are possible and Θ will always be equal to 0 for 
balanced genotypes. 

BAF analysis. 
Any α from the figure 3 (a) can be inferred from the Θ based BAF signal, using the following system of equations 
8 to obtain Θ and then using the previous equation 7 to obtain α.  

  (8) 
Besides, any α% from the figure 3 (b) can be inferred from the classical BAF signal, using the following equation.  

  (9) 
Where NA t  and NB t are the amount of A and B alleles respectively. Importantly, this equation 9 returned non 
interpretable α for the following combinations. 1. BAF<0.5 and NA t < NB t, 2. BAF>0.5 and NA t > NB t or 3. 
any BAF and NA t - NB t, this last case always returned aberrant results because any α values between 0 and 1 are 
possible and thus the BAF will always be equal to 0 for balanced genotypes. 

Genotype analysis. 
Any R values from the figure 4 can be retrieved from the Θ value using the α equality “αRi

=αΘi
”, which result in 

the following equation.  

  (10) 

Signal confusion, interference estimation 
Interference in LRR. 
The probability pc LRR  to measure a confused LRR signal is 1 - puLRR, probability of measuring a unique LRR 
signal. puLRR was obtained in two steps. 1. A classical Hidden Markov Model was used to discretise the observed 
signal So into CN status (CN). 2. The probability was estimated based on the following system of equations.  
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  (11) 
Where CNmax is the expected maximal CN status for the sample, which had to be fixed based on expectation. 

Interference in Θ. 
The probability pcΘ

 
 to measure a confused Θ value is 1- puΘ, probability of measuring a unique Θ value. This 

puΘ was measured for Θ∈[0.5,1]. Since Θ values can be divided in three distinct signal shapes, three distinct puΘ 
were assessed, balanced and allelic imbalanced (LOH and oAi) genotypes. In all three cases, the puΘ depends on 
the expected CN maximum (CNmax).  

1.  puΘLOH

 
 for LOH genotypes, achieved for Θ ∈ (0.5,1].  

2. puΘBAL for Balanced genotypes, achieved for Θobs=0.5  

3. puΘoAi for other Ai genotypes, achieved for for Θ ∈ (0.5,1).  

1. Since only one LOH genotype is expected per CN, any Θobs value can be achieved with CNmax genotypes. 
Thus the associated probability is defined by:  

  (12) 
2. As only even CNs can reach a Balanced genotype, the value of Θobs=0.5  can be achieved with 

 genotypes. Thus the associated probability is defined by:  

  (13) 
3. To assess the probability among oAi signals, we first discretise the theoretical values of every pure                                    

genotype signals. These values were obtained with equation 3 for α=1, and were then turned into z levels, with z 
∈ [1, zmax] and zmax defined with the following equation.  

  (14) 
Thus, an observed Θ value will fall in Θobs ∈ [z, z+1), and the puΘoAi is obtained with the following equation:  

  (15) 

Combining the previous equations 12 and 15,  puΘAi

 
 was obtained for Θobs>0.5 with the following equation.  
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  (16) 
In this context, z levels were assigned based on the previous method, zmax+1 for Balanced genotypes and z=0 for 
LOH genotypes. All theoretical values for z levels can be retrieved using the equations 1, 2 and 3 with α=1 (see 
Methods). 

In the example of figure 2, the expected maximal CN is CNmax=5, which lead to zmax=4. The Θobs=0.837 
belongs to Θobs ∈ [z=1, z+1=2). A strong probability for a confused signal is therefore obtained using equation 

16, such as pcΘ - 1 – puΘ - 1 – (1/(1+5)) – 0.834. 

Interference in combined R−Θ. 
Most of the combined R−Θ values were unique (figure 4). The signal confusion appeared only for three genotypes, 
AAAAB, AAAB and AAB as well as their mirror for the B allele. Consequently, the signal confusion probability 
was defined only for these specific cases with the following equation.  

  (17) 
where, amax is the maximum amount of A allele obtained for a balanced genotype within a maximal CN (CNmax) 
and follows amax – [ CNmax / 2].  
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Figure 1:  Signal Confusion in Copy Number analysis. Evolution of the LRR signal against 
α% of tumour cells that carry CNs from 0 to 5 (red to purple). Dashed lines highlight signal 
confusion for -0.415 and 0.323 LRR signals. Each value of the graph was simulated based on 
SiDCoN algorithm. Except for the bi-allelic deletion (CN0), a copy number defines a straight 
line according to the altered cell percentage. Most of LRR signals can be achieved with different 
combination of CNs and α% of altered cells.  
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Figure 2:  Signal Confusion in Theta (Θ) analysis. Evolution of the Θ signal against α% for 
CNs from 0 to 5 (red to purple). Each value of the graph was simulated using Wang’s method 
to estimate Θ. a. All possible genotypes that led to CNs from 0 to 5 which can be separated into 
three genotype classes. Balanced (triangles). LOH (circles). Other Ais (squares). b. LOH 
genotypes only (circles). c. Other Ai genotypes only (squares). Dashed lines highlight signal 
confusion for Θ=0.3 and Θ=0.837. Every Θ signals can be achieved with different allelic 
combinations and α% of altered cells.  
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Figure 3:  Signal Confusion in mBAF analysis. Evolution of the mBAF signal against α% for 
CNs from 0 to 5 (red to purple) which result from three genotype classes. Balanced genotypes 
(triangles). LOH genotypes (circles). Other Ai genotypes (squares). Each value of the graph was 
simulated using the following algorithms. a. Wang’s Θ derived mBAF. b. Classical mBAF 
derived from SiDCoN algorithm. Dashed lines highlight signal confusion for mBAF=0.3 and 
mBAF=0.837. Every mBAF signals can be achieved with different allelic combinations at 
different α% of altered cells.  

  

  
Figure 4:  Signal Confusion in genotype assignment. Co-evolution of the R and Θ signals 
against α% for CNs from 0 to 5 (red to purple), which result from the following genotype 
classes. Balanced genotypes (triangles). LOH genotypes (circles). Other Ai genotypes (squares). 
Each Θ value of the graph was simulated using Wang’s method. Each R value of the graph was 
simulated using the equation Ri=Ai+Bi. Each curve describes an increasing α% of altered cells 
from the center (Θ=0.5,R=2) to the extremes. The two arrows highlight the signal confusion at 
the genotypes AAAAB for CN5, AAAB for CN4 and AAB for CN3 and their mirror for the B 
allele. For these genotypes, the same combined R−Θ signal can be achieved with different α% 
of altered cells.  

  



19 

  
Figure 5:  Signal confusion occurrence in LRR signal. Evolution of the signal confusion 
probability against the expected CNmax of tumour cells that carry CNs from 0 to 5 (red to 
purple). Each value of the graph was obtained using the equation 11 (See Methods). Deleted 
(CN0, CN1) and normal (CN2) copy numbers are CNmax independant. Gains (CN>2) describe 
the same curve shape, which proportionally increases along with the CNmax expectation. Lower 
gains lead to a high signal confusion.  
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Figure 6:  Signal confusion occurrence in theta signal. Evolution of the signal confusion 
probability against the expected CNmax of tumour cells the possible genotypes for CNs from 1 
to 5 (blue to purple) which result from two genotype classes: LOH genotypes (circles). Other 
Ai genotypes (squares). LOH: Loss of Heterozygosity. oAi: Other Allelic imbalance. Each value 
of the graph was obtained using the equation 16 (See Methods). LOHs share a common curve 
shape and are the lowest probable confusion for any expected CNmax. oAi describe independent 
curve with the same shape, which increases along with an increasing CNmax expectation. The 
most unbalanced genotypes show the lowest probability of signal confusion.  

Tables 

  

Table 1:  LRR’s signal confusion example 
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 LRR CN NA t NB t α 
 -0.415 0 0 0 0.38 
 -0.415 1 0 1 0.76 
 -0.415 1 1 0 0.76 
 0.323 3 0 3 0.9 
 0.323 3 1 2 0.9 
 0.323 3 2 1 0.9 
 0.323 3 3 0 0.9 
 0.323 4 0 4 0.45 
 0.323 4 1 3 0.45 
 0.323 4 2 2 0.45 
 0.323 4 3 1 0.45 
 0.323 4 4 0 0.45 
 0.323 5 0 5 0.3 
 0.323 5 1 4 0.3 
 0.323 5 2 3 0.3 
 0.323 5 3 2 0.3 
 0.323 5 4 1 0.3 
 0.323 5 5 0 0.3 

 
LRR: Observed Log R ratio, CN: Tumour’s Copy Number, NA t: Tumour’s A allele amount, 
NB t: Tumour’s B allele amount, α: % of tumour cells.  

  

Table 2:  Θ’s signal confusion example 
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 Θ CN NA t  NB t  α 
 0.3 1 1 0 0.49 
 0.3 2 2 0 0.32 
 0.3 3 2 1 0.96 
 0.3 3 3 0 0.24 
 0.3 4 3 1 0.48 
 0.3 4 4 0 0.19 
 0.3 5 4 1 0.32 
 0.3 5 5 0 0.16 

 

Θ: Observed Θ signal, CN: Tumour’s Copy Number, NA t: Tumour’s A allele amount, : 

Tumour’s B allele amount, α: % of tumour cells.  

  

Table 3:  Θ BAF signal confusion example 
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 mBAF BAF CN NA t NB t α 
 0.3 0.2 1 1 0 0.57 
 0.3 0.2 2 2 0 0.4 
 0.3 0.2 3 3 0 0.3 
 0.3 0.2 4 3 1 0.66 
 0.3 0.2 4 4 0 0.25 
 0.3 0.2 5 4 1 0.44 
 0.3 0.2 5 5 0 0.21 
 0.3 0.8 1 0 1 0.57 
 0.3 0.8 2 0 2 0.4 
 0.3 0.8 3 0 3 0.3 
 0.3 0.8 4 0 4 0.25 
 0.3 0.8 4 1 3 0.66 
 0.3 0.8 5 0 5 0.21 
 0.3 0.8 5 1 4 0.44 

 
mBAF: Observed mirrored BAF signal, BAF: Observed BAF signal, CN: Tumour’s Copy 
Number, NA t: Tumour’s A allele amount, NB t: Tumour’s B allele amount, α: % of tumour cells.  

  

Table 4:  Classical BAF signal confusion example 
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 mBAF BAF CN  NA t  NB t α 
 0.3 0.2 1 1 0 0.75 
 0.3 0.2 2 2 0 0.6 
 0.3 0.2 3 3 0 0.5 
 0.3 0.2 4 4 0 0.43 
 0.3 0.2 5 4 1 1 
 0.3 0.2 5 5 0 0.38 
 0.3 0.8 1 0 1 0.75 
 0.3 0.8 2 0 2 0.6 
 0.3 0.8 3 0 3 0.5 
 0.3 0.8 4 0 4 0.43 
 0.3 0.8 5 0 5 0.38 
 0.3 0.8 5 1 4 1 

 
mBAF: Observed mirrored BAF signal, BAF: Observed BAF signal, CN: Tumour’s Copy 
Number, NA t: Tumour’s A allele amount, NB t: Tumour’s B allele amount, α: % of tumour cells.  

  

Table 5:  Combined Θ–R’s signal confusion example 
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 R Θ CN NA t  NB t  α 
 2.963 0.3 3 2 1 0.96 
 2.963 0.3 4 3 1 0.48 
 2.963 0.3 5 4 1 0.32 

 
Θ: Observed Θ signal, R: Observed R signal, CN: Tumour’s Copy Number, NA t: Tumour’s A 
allele amount, NB t: Tumour’s B allele amount, α: % of tumour cells.  

  

Table 6:  Combined Θ based BAF–LRR’s signal confusion example 
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 LRR mBAF BAF CN  NA t  NB t α 
 white 0.117 0.1 0.4 5 4 1 0.1 
 white 0.117 0.1 0.4 4 3 1 0.14 
 white 0.117 0.1 0.4 3 2 1 0.29 
 white 0.117 0.1 0.6 5 1 4 0.1 
 white 0.117 0.1 0.6 4 1 3 0.14 
 white 0.117 0.1 0.6 3 1 2 0.29 

 
LRR: Observed Log R ratio, CN: Tumour’s Copy Number, NA t: Tumour’s A allele amount,  
NB t

 
: Tumour’s B allele amount, α: % of tumour cells.  

  

Table 7:  Combined Classical BAF–LRR’s signal confusion example 
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 LRR mBAF BAF CN NA t NB t α 
 white 0.216 0.11 0.39 5 4 1 0.19 
 white 0.216 0.11 0.39 4 3 1 0.28 
 white 0.216 0.11 0.39 3 2 1 0.56 
 white 0.216 0.11 0.61 5 1 4 0.19 
 white 0.216 0.11 0.61 4 1 3 0.28 
 white 0.216 0.11 0.61 3 1 2 0.56 

 
LRR: Observed Log R ratio, CN: Tumour’s Copy Number, NA t: Tumour’s A allele amount, 
NB t: Tumour’s B allele amount, α: % of tumour cells.  


