Supplementary Information: Tables and Figures

CRISPR-Cas-Docker: Web-based *in silico* docking and machine learning-based classification of crRNAs to Cas proteins

Ho-min Park^{1,2}, Jongbum Won¹, Yunseol Park¹, Esla Timothy Anzaku^{1,2}, Joris Vankerschaver^{1,3}, Arnout Van Messem⁴, Wesley De Neve^{1,2}, Hyunjin Shim^{1,*}

Author Information

Affiliations

¹Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon 21985, South Korea
²Department of Electronics and Information Systems, Ghent University, Ghent 9000, Belgium
³Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent 9000, Belgium
⁴Department of Mathematics, University of Liège, Liège 4000, Belgium

*Corresponding Author: Hyunjin Shim (jinenstar@gmail.com)

Figure S1. The architecture of CRISPR-Cas-Docker. This diagram shows how users interact with the Server to make service requests and view results. The *Server* manages these interactions through the *Home* and *Result* interfaces. The *Worker* component is responsible for generating the actual results, with the *Server* and *Worker* exchanging data through Storage without direct communication. The black arrow represents the request of a user, while the red arrow shows the generation of results. The blue arrow indicates the user interaction with the results. CRISPR-Cas-Docker is implemented by making use of the following Python libraries or binaries;

Server: Flask, BioPython, Plotly, NumPy, Pandas

Workers: Scikit-learn, RNAfold, RoseTTAFold, AlphaFold, HDOCK.

*The source of the libraries and binaries can be found in the section on Data and Code Availability of the main manuscript.

Figure S2. Averaged boxplot of CRISPR-Cas-Docker performance for Cas13 proteins. In particular, this boxplot shows that the average docking score is approximately -600 for all four Cas proteins, with no noticeable differences between them. However, there are some particularly low outliers for GTP-GTR, which may be indicative of docking performance very close to the ground truth. According to the HDOCK server, a lower docking score corresponds to a better docking model. (GTP: Ground Truth Cas Protein; GTR: Ground Truth crRNA; PP: Predicted Cas Protein (AlphaFold); PR: Predicted crRNA (RoseTTAFold)).

Figure S3. CRISPR repeat sequences labeled by the adjacent Cas system (\pm 10,000 base pairs). As the created dataset has a class imbalance, we divided the CRISPR repeat sequences into four subsets based on their frequency of occurrence. This ensures that the KNN classification is not affected by the aforementioned class imbalance. The first subset, which is named Major, includes IE, IIC, IB, IC, IF, and IIIA, with each class containing more than 1,000 instances. Since the number of IE instances (6,862) is four or more times that of other types, 20% of the IE repeats were randomly sampled for training (1,372). The second subset, which is called Minor, includes IIIB, IA, IIA, and IIID, with each class having more than 300 instances and not belonging to Major. The third subset is named Tiny, which includes classes with less than 300 instances and with these classes not belonging to either Major or Minor. Lastly, the subset Undefined consists of CAS and IU which are Cas system types that are not complete and unidentified, respectively.

Figure S4. Distance distributions of CRISPR repeat sequences labeled with their adjacent Cas system. This histogram shows the distance of each CRISPR array to the adjacent Cas system in base pairs. It shows that most CRISPR arrays are around 100 base pairs away from their adjacent Cas system (2859), but there are some as far as 10,000 base pairs away.

Figure S6. Two-dimensional CRISPR sequence atlas. The interactive version is available in CRISPR-Cas-Docker. We used t-SNE to show the Hamming distance between all pairs of sequences in a two-dimensional representation. Each dot represents a crRNA sequence, with the shape and color of the dot indicating the type of that particular crRNA sequence. According to the t-SNE method, closely located dots denote similar sequences. We pad the shorter sequence with padding characters in order to equalize their lengths when using the Hamming distance measure.

Figure S7. Two-dimensional CRISPR sequence atlas, separated by the data subsets. We divide the crRNA sequence data into (a) Major (more than 1,000 sequences), (b) Minor (more than 300 sequences), (c) Tiny (less than 300 sequences), and (d) Undefined (CAS and IU types). In the case of the Major subset, we found that the IE type has four clusters, and the cluster located near (0, 25) overlaps heavily with other types. In the case of the Minor subset, we found many overlapping points in most of the types, except for IIID. These overlapping points suggest that a single crRNA sequence may be labeled with multiple Cas system types.

(c)

Figure S8. Confusion matrix of the classification result. The matrix is divided into four subsets for easier viewing. Except for the Tiny subset, which has a small number of test sets, IB had the highest misclassification rate in the Major subset. We observed that IB is frequently mistaken for IIIB. In the Minor subset, IIIB had the highest misclassification rate. This may be due to IIIB sharing many similar sequences with other CRISPR arrays. Overall, the KNN model performed well in correctly classifying the Major and Minor classes, with the aforementioned exceptions.

			Μ	lajor				Mi	nor						Tir	ıy					U	ndef	ined	
ш	1367	0	0	1	2	0	0	0	0	2	0	0	0	0	0	0	1	0	0	0	0	0		
S	0	225	0	0	2	0	1	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0		
B	0	4	221	0	0	5	7	3	0	3	1	0	1	0	0	0	0	0	0	0	4	0		- 1200
<u>U</u>	1	0	0	282	0	0	3	1	0	0	0	0	0	1	0	0	0	0	0	0	6	0		
<u>۳</u>	1	0	0	0	329	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
MIIA	3	0	8	2	0	230	7	3	2	6	1	0	0	0	0	0	0	0	0	0	3	1		- 1000
IIIB	2	5	13	10	1	7	68	4	0	4	9	0	0	0	0	0	1	0	0	0	0	1		
Ā	0	1	5	0	0	0	3	76	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
All A	0	0	0	0	0	0	0	0	174	0	0	0	0	0	0	0	0	0	0	0	0	0		000
Ē	0	0	9	0	0	4	4	2	0	42	2	0	0	0	0	0	0	0	0	0	8	1		- 800
d truth	0	0	0	0	0	2	0	0	0	2	28	0	0	0	0	0	0	0	0	0	2	0		
Groun VIB1	0	1	0	0	0	0	0	0	0	0	0	19	0	0	0	0	0	0	0	1	0	0		
IIB	0	1	0	0	0	0	0	0	0	0	1	0	8	0	0	0	0	0	0	0	0	0		- 600
A	0	0	1	0	1	0	1	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0		
VIA	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0		
IIC	0	0	5	0	1	1	2	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0		- 400
\geq	4	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
VB	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1		
VIC	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0		- 200
VIB2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0		
CAS	0	0	8	2	1	4	1	1	0	3	1	0	0	0	0	1	0	0	0	0	16	0		
⊇	4	1	0	1	0	1	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	54		
	*	"c	*	ζ.	*	IIIA	IIIB	4	114	HID .	\$	JIBI	118	JP-	NA	IIIC	4	18	MC-	VIB2	as	2		 U

Table S1: TM-scores of AlphaFold-predicted Cas proteins.

TM-score (0,1] to measure the folding performance of AlphaFold.

0.0 < TM-score < 0.30, random structural similarity 0.5 < TM-score ≤ 1.00 , high structural similarity (about the same fold)

RMSD to check the atom level structure difference. RMSD ≤ 2 Å: two structures are the same structure.

TM-Score	5w1h	5w1i_AB	5w1i_CD	5wlh		
With template	0.99390	0.99240	0.99077	0.99403		
No template	0.80226	0.83607	0.81096	0.81735		

RMSD	5w1h	5w1i_AB	5w1i_CD	5wlh		
With template	1.18	1.23	1.31	1.31		
No template	4.07	4.03	4.00	4.40		

Table S2. Distribution of CRISPR array evidence level by type. The numbered suffix (1 to 4) indicates the evidence level, which is assigned based on the combined degree of similarity of repeats and spacers (Couvin et al. 2018). A higher evidence level indicates a higher chance that the sequence corresponds to a CRISPR array.

Cas with evidence level	Frequency	Percentage	Cas with evidence level	Frequency	Percentage
Cas-Type IE 1	143	0.021	CAS 1	18	0.095
Cas-Type IE 2	28	0.004	CAS 2	4	0.021
Cas-Type IE 3	37	0.005	CAS 3	5	0.026
Cas-Type IE 4	6654	0.970	CAS 4	163	0.858
Cas-Type IIC 1	47	0.041	Cas-Type IU 1	18	0.057
Cas-Type IIC 2	1	0.001	Cas-Type IU 2	1	0.003
Cas-Type IIC 3	16	0.014	Cas-Type IU 3	11	0.035
Cas-Type IIC 4	1088	0.944	Cas-Type IU 4	284	0.904
Cas-Type IB 1	68	0.055	Cas-Type VIB1 1	1	0.009
Cas-Type IB 2	8	0.006	Cas-Type VIB1 2	2	0.019
Cas-Type IB 3	9	0.007	Cas-Type VIB1 3	1	0.009
Cas-Type IB 4	1162	0.932	Cas-Type VIB1 4	102	0.962
Cas-Type IC 1	30	0.020	Cas-Type IIB 1	0	0.000
Cas-Type IC 2	23	0.016	Cas-Type IIB 2	1	0.020
Cas-Type IC 3	20	0.014	Cas-Type IIB 3	1	0.020
Cas-Type IC 4	1399	0.950	Cas-Type IIB 4	47	0.959
Cas-Type IF 1	15	0.009	Cas-Type VA 1	1	0.024
Cas-Type IF 2	0	0.000	Cas-Type VA 2	0	0.000
Cas-Type IF 3	7	0.004	Cas-Type VA 3	1	0.024
Cas-Type IF 4	1625	0.987	Cas-Type VA 4	40	0.952
Cas-Type IIIB 1	49	0.078	Cas-Type VIA 1	3	0.333
Cas-Type IIIB 2	0	0.000	Cas-Type VIA 2	0	0.000
Cas-Type IIIB 3	20	0.032	Cas-Type VIA 3	2	0.222
Cas-Type IIIB 4	558	0.890	Cas-Type VIA 4	4	0.444
Cas-Type IA 1	34	0.080	Cas-Type IIIC 1	11	0.212
Cas-Type IA 2	1	0.002	Cas-Type IIIC 2	0	0.000
Cas-Type IA 3	11	0.026	Cas-Type IIIC 3	0	0.000
Cas-Type IA 4	377	0.891	Cas-Type IIIC 4	41	0.788
Cas-Type IIA 1	4	0.005	Cas-Type IV 1	7	0.259
Cas-Type IIA 2	0	0.000	Cas-Type IV 2	4	0.148
Cas-Type IIA 3	14	0.016	Cas-Type IV 3	1	0.037
Cas-Type IIA 4	855	0.979	Cas-Type IV 4	15	0.556
Cas-Type IIIA 1	47	0.035	Cas-Type VB 1	0	0.000
Cas-Type IIIA 2	21	0.016	Cas-Type VB 2	0	0.000
Cas-Type IIIA 3	23	0.017	Cas-Type VB 3	0	0.000
Cas-Type IIIA 4	1239	0.932	Cas-Type VB 4	12	1.000
Cas-Type ID 1	19	0.113	Cas-Type VIC 1	5	0.714
Cas-Type ID 2	0	0.000	Cas-Type VIC 2	0	0.000
Cas-Type ID 3	1	0.006	Cas-Type VIC 3	0	0.000
Cas-Type ID 4	148	0.881	Cas-Type VIC 4	2	0.286
Cas-Type IIID 1	30	0.083	Cas-Type VIB2 1	0	0.000
Cas-Type IIID 2	2	0.006	Cas-Type VIB2 2	0	0.000
Cas-Type IIID 3	9	0.025	Cas-Type VIB2 3	1	0.200
Cas-Type IIID 4	320	0.886	Cas-Type VIB2 4	4	0.800

Table S3. Performance of the machine learning-based classification module in CRISPR-Cas-Docker. We used K-Nearest Neighbors (K=1) after experimenting with five different K values (1,3,5,7,9) with Hamming distance for the model. The dataset consisted of 16,972 crRNA sequences, with 80% of the data used for training and 20% for testing. The Support column indicates the number of actual instances of the Type in the test set. We pad the shorter sequence with padding characters in order to equalize their lengths when using the Hamming distance measure.

Hamm	Hamming nearest neighbor classification								
Amount	Amount Type		Recall	F1score	Support				
	IE	0.990	1.000	0.990	1373				
	IIC	0.950	0.980	0.960	230				
Major	IB	0.820	0.890	0.850	249				
>1,000	IC	0.940	0.960	0.950	294				
	IF	0.970	1.000	0.990	330				
	IIIA	0.910	0.860	0.880	266				
	IIIB	0.690	0.540	0.610	125				
Minor	IA	0.820	0.890	0.850	85				
>300	IIA	0.980	1.000	0.990	174				
	IIID	0.680	0.580	0.630	72				
	ID	0.650	0.820	0.730	34				
	VIB1	1.000	0.900	0.950	21				
	IIB	0.890	0.800	0.840	10				
	VA	0.830	0.620	0.710	8				
Tiny	VIA	1.000	0.500	0.670	2				
<300	IIIC	0.500	0.100	0.170	10				
	IV	0.000	0.000	0.000	6				
	VB	0.000	0.000	0.000	2				
	VIC	1.000	1.000	1.000	2				
	VIB2	0.500	1.000	0.670	1				
Undefined	CAS	0.410	0.420	0.420	38				
Underined	IU	0.930	0.860	0.890	63				
Macro avg		0.750	0.720	0.720	3395				
Weighted avo	9	0.920	0.930	0.920	3395				
Accuracy		0.930			3395				