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Abstract.  
Crop nitrogen trait estimations have been used for decades in the frame of precision agriculture 
and phenotyping. They are crucial information towards a sustainable agriculture and efficient use 
of resources. Remote sensing approaches are currently accurate tools for nitrogen trait 
estimations. They are usually quantified through a parametric regression between remote sensing 
data and the ground truth. For instance, chlorophyll or nitrogen concentrations are accurately 
estimated using features like vegetation indices. However, those models tend to simplify the 
observed scene in averaging the features. Thus, they encompass potential other information as 
the distribution of the concerned trait and tend to underexploit the data. 
In this study, we have modeled organ scale nitrogen maps from multispectral camera array 
images mounted on a ground-based platform. Two wheat fertilization trials were imaged for two 
years. Reference nitrogen concentration measurements were performed in the laboratory, by 
taking care to separate the flag leaves from the other leaves. As a single or two nitrogen 
measurements per image were available, the idea was to exploit the machine learning algorithm 
capacity to generalize and find patterns. Therefore, small leaf patches were drawn over the 
images of different nitrogen input objects and growth stages. Patches on the flag leaves and on 
the other leaves were associated with the corresponding nitrogen measurement. Three machine 
learning algorithms were trained and tested using features from the six multispectral bands of 
these patches. The arising patterns, created by the nitrogen changes over the season and 
nitrogen objects, were used by the model to generate nitrogen maps at the organ scale. It also 
provided the nitrogen concentration distribution of the observed scene. The percentiles 25 and 75 
were the most suitable statistics to predict the leaf and the flag leaf nitrogen concentration with a 
relative RMSE of 0.11 and 0.15, respectively.  
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Introduction 
Nitrogen is an essential macronutrient for plants as the major component of chlorophyll and 
protein ensuring crop production and quality. Its natural availability is not important enough to 
cover the crop needs. Farmers often fertilize according to a fertilization program which might 
generate over or under-fertilization. It can cause nitrogen pollution, a drop in crop yield or increase 
the probability of lodging. In this sense, breeders are trying to overcome the challenge of limiting 
the crop nitrogen demand while increasing yield through the evaluation of the nitrogen use 
efficiency (NUE) (Cormier et al., 2016; Hawkesford & Riche, 2020). As a complex trait including 
many processes, improving NUE is not trivial and requires a lot of data. Most of these traits are 
dependent on genetics (G), environment (E), and management (M) and their interactions (G x E 
x M) (Hawkesford & Riche, 2020). For example, (Barraclough et al., 2014) described significant 
genetic variation in N contents of individual organs. Plant breeding is a tedious work where there 
is a real need for high-throughput data acquisition systems. 
Phenotyping methods are becoming mainstream tools that provide relevant traits for farmers as 
well as for breeders or researchers in a high-throughput and objective way (Reynolds et al., 2020; 
Weiss et al., 2020). Satellite imaging is mainly dedicated to farmers for nitrogen monitoring as it 
provides spatially and temporally consistent information over the growing season. On the other 
hand, ground-based phenotyping platforms are mostly used in the frame of breeding or research 
which needs more details. Other vectors such as airborne or UAV might be used in both cases. 
The main embedded technology used for nitrogen level estimation is spectroscopy (Verrelst et 
al., 2019). The underlying idea mainly relies on the strong but brittle correlation between nitrogen 
content and chlorophyll content which demonstrates strong and specific light absorption bands in 
the visible domain (Gitelson et al., 2003, Berger et al., 2020). The most common and simplest 
spectroscopy data processing is the use of vegetation indices. Many of them correlate well with 
chlorophyll content (Cammarano et al., 2014; Padilla et al., 2018; Prey & Schmidhalter, 2019). 
Other methods use radiative-transfer models to quantify biophysical variables (Verrelst et al., 
2019).  
To our knowledge, all approaches, except clip leaf measurements, compared one average 
nitrogen value, i.e. leaf nitrogen content or plant nitrogen content, with a single or an average 
spectrum of the observed scene. However, nitrogen is not evenly distributed and is redistributed 
all along the season. Moreover, at the canopy scale, the measured reflectance is a function of not 
only biophysical variables but also of the soil background and the canopy structural properties. 
That is why we proposed a novel approach to visualize nitrogen concentration partitioning of a 
wheat canopy. It uses multispectral images to model a crop nitrogen map at the pixel level using 
machine learning algorithms. 

Materials and methods 

In field and image data acquisition 
Data was acquired for two seasons, 2020 and 2021, in trials located in the Hesbaye area, 
Belgium. Winter wheat was sown in microplots of 1.95 m large and 6 m long with a row spacing 
of 0.14 m on homogenous deep silt loam soil and a temperate climate. The microplots were 
fertilized three times at BBCH growth stages (GS) 28, 30, and 39 with 27% ammonium nitrate. 
Two types of trials were conducted for both years. The first one was a fertilization trial (F) 
composed of different levels of applied fertilizer from 0 kg/ha to 330kg/ha of nitrogen. The second 
type of trial was composed of different combinations of fertilization applications associated with 
different fungicide application programs (FP). Cultivars ‘LG Vertikal’ and ‘Mentor’ were sown 
respectively for FP and F.  
Manual measurements were performed on major phenological BBCH GS (see Table 1). 
Depending on the trial, measurements were done on three or four replicates per trial. 
Aboveground biomasses were sampled on 0.50 m long on the three central rows. All leaves and 
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flag leaves were separated from tillers, weighted, and dried until constant weights. All organs 
were then sent to a lab for nitrogen concentration determination using the Dumas method. 

Table 1, Data acquisitions details of each trial 

Trial 
name 

Number of 
objects 

Number of 
microplots 

Camera height 
above the canopy 

BBCH GS – Manual 
measurements 

20-FP 7 21 ≃1.60m 38, 65 

20-F 5 or 8 20 or 31 ≃1.60m 33, 39, 65, 75 

21-FP 7 21 ≃1.60m 40, 62 
21-F 5 20 ≃1.60m 30, 32, 39, 65, 75 

A phenotyping platform was designed to capture nadir frames of wheat microplots. A sensor pod 
was installed on a cantilever beam to avoid shadows from the rest of the platform in the images. 
That sensor pod combined a multispectral camera array with six optical filters centered at 490, 
550, 680, 720, 800 and 900 nm, and two RGB cameras used to record color and 3D information 
by stereovision (Figure 1). The multispectral camera array was a Micro-MCA (Tetracam Inc., 
Gainesville, FL, USA) and the RGB cameras were the GO-5000C-USB cameras (JAI A/S, 
Copenhagen, Denmark). This acquisition system and the following pre-processing were detailed 
in our previous work (Carlier et al., 2022; Dandrifosse et al., 2020). The height of the pod was 
adjusted at each acquisition date to keep a distance around 1.6 m between the cameras and the 
top of the canopy. At this distance, the footprint of the frames was approximately 0.98 m2 for the 
multispectral camera array and 1.26 m2 for the RGB cameras. The images were recorded using a 
color depth of 10 or 12 bits per pixel then reduced to 8 bits per pixel, because the stereovision 
and the registration open-source libraries need 8-bit inputs. The auto-exposure algorithms of the 
RGB and multispectral devices were adapted to prevent image saturation. An incident light 
spectrometer AvaSpec-ULS2048 (Avantes, Apeldoorn, The Netherlands) was positioned above 
the cameras. A spectrum of the incident sunlight was recorded at each image acquisition using 
a 16-bit resolution. Each recorded spectrum was the average of three consecutive 
measurements. It was corrected for dark noise and nonlinearity of pixel response to exposure 
time. Thanks to the factory calibration, digital values were converted to irradiance data. Each 
acquisition of images and their associated solar spectrum took only a few seconds. It 
corresponded to the time necessary to average the spectrums and ensure a proper exposure time 
for all the cameras. 
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Figure 1, Data pre-processing workflow 

Data processing 
Stereovision 

A stereovision method has been developed by Dandrifosse et al., (2020) using stereovision 
functions from OpenCV-Python library (version 4.5.3.56). It exploits the overlaps between the two 
RGB images. The percentile 95 of the computed canopy height map was used to deduce canopy 
height in the following image registration process. 
Image pre-processing 

Owing to the disposition of the cameras and the proximity with the canopy, the different images 
were not perfectly overlapping. (Dandrifosse et al., 2021) developed a methodology of image 
registration to align pixel to pixel the six grayscale images from the multispectral camera and the 
left RGB image (Figure 1). A simple global transformation was first performed to provide roughly 
registered images. Then, a second more efficient method was used. It is called the B-SPLINE 
method using the Pyelastix (version 1.2) python library. It uses an area-based method called 
normalized mutual information metric and performs a local transformation based on a third order 
B-SPLINE model. Resulting images are cropped to 855 x 594 pixels that correspond to the 
common scene.  
A second pre-processing refers to image normalization to the incident light. A method to calculate 
an estimation of the bi-directional reflectance factor (BRF) has been developed by (Dandrifosse, 
Carlier, et al., 2022). It is defined as the ratio of the reflected radiance to the incident irradiance. 
In other words, it is the ratio between the light measured through the image to the light measured 
by the incident light spectrometer. This method allowed to correct illumination condition changes 
encountered across the season. BRF is also known as reflectance in other studies. 
Finally, soil-plant and plant-ear segmentations were performed to distinguish between soil, ears, 
and the rest of the plants. The soil segmentation used the 800 nm channel which shows significant 
reflectance differences between soil and plant. A method taking the first local minimum in the 
histogram has been developed that provides a good segmentation. In some cases, with strong 
direct sunlight, a second threshold was made on the 490 nm channel. Finally, the state-of-the-art 
deep learning algorithm Yolov5 was used to detect ears associated with the Deep Mac model to 
get an ear mask (Dandrifosse, Ennadifi, et al., 2022) 
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Annotation and Training Dataset 

The approach relies on defining pixels belonging to flag leaves and to other leaves for which 
nitrogen concentration measurements were available. To build the datasets, one image of three 
contrasted nitrogen objects was selected for each date for the training set and one image of a 
well fertilized object for the validation dataset. The training and validation datasets were 
composed of 39 images and 13 images, respectively. For each image, small distinct patches were 
manually drawn (Figure 2) on the flag leaves and on the other leaves thanks to the online platform 
Apeer.com. Patches should represent the most possible different situations and light conditions 
and have the same amount of flag leaf than other leaf patches.  

 
Figure 2, Illustration of the annotation process with flag leaves in blue and the other leaves in yellow on a 800 nm image. 

Machine learning training 

For each patch, a set of features were extracted in order to be related to the nitrogen 
concentration. Firstly, the six normalized channels of the multispectral camera were considered 
to estimate the BRF. Then, a couple of vegetation indices were computed using these BRF 
images. They were the mNDb (Jay et al., 2017), the GIT1, the GNDVI (A. Gitelson & Merzlyak, 
1994), GIT2, GIT3 (A. A. Gitelson et al., 2003), the CIrede, CIgreen (Roujean & Breon, 1995) and 
the NDRE (Barnes et al., 2000). BRF and vegetation indices values were the average of the pixels 
belonging to one patch. The growing degree days after sowing was also added as a proxy of the 
growth stage. Target value of the patch was the nitrogen concentration values given by the 
laboratory either for flag leaves or for the other leaves. Three machine learning algorithms were 
tested: random forest (RF), support vector machine (SVM), and K-nearest neighbors (KNN) with 
default parameters. All developments were made on Python 3.7 with OpenCV 4.5.3.56 and Scikit-
learn 0.24.2 libraries. Performances were evaluated on the R² and on the relative root mean 
square error (rRMSE) defined as the RMSE to the average value. 

Results  

Nitrogen map 
Three machine learning algorithms were evaluated on the validation set. Results showed that the 
random forest slightly outperformed the others with a rRMSE of 0.12 whereas it was 0.14 and 
0.13 respectively for KNN and SVM. Applied to every pixel of an image, the model generated 
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nitrogen maps as illustrated in Figure 3. It offers a good visualization of the nitrogen concentration 
partitioning in a wheat canopy. We may for example observe that the leaves at the top of the 
canopy showed greater values than the leaves at the bottom of the canopy. 

 
Figure 3, Predicted nitrogen map. Soil and ears are in dark blue. 

Leaf nitrogen estimation 
The nitrogen map allows us to extract a nitrogen value for each pixel of the map and therefore 
compute the nitrogen distribution of the observed canopy. Percentile 25, 75 and the average were 
computed from the nitrogen distribution. The statistic ‘average’ of the distribution is the reference 
as it is the usual statistic used in other studies.  

 Table 2, rRMSE of nitrogen concentration estimation regarding different statistics 

 
 
 
 
The results in Table 2 show that the flag leaves are best predicted by the percentile 75 of the 
distribution with a clear improvement compared to the average. Concerning the other leaves, the 
percentile 25 outperforms the other statistics. Finally, the average leaf nitrogen concentration, i.e. 
all leaves, was best estimated by the average with a R² of 0.67 (Figure 4) and the percentile 25 
with a R² of 0.64. 
 

 

Origin Statistics All leaves Other leaves Flag leaves 

Nitrogen map 
distribution 

Percentile 25 0.14 0.15 0.32 
Average 0.14 0.22 0.21 
Percentile 75 0.24 0.35 0.11 



Proceedings of the 15th International Conference on Precision Agriculture 
June 26-29, 2022, Minneapolis, Minnesota, United States  

8 

 
Figure 4, Plot of predicted vs observed N leaves concentration using the average of the distribution map. 

Nitrogen growth curve 
Trials have been followed from tillering to maturity. Figure 5 illustrates an example of the evolution 
of the leaf nitrogen concentration distribution for one well fertilized object of the 21-F trial. We can 
notice that the interquartile, i.e. percentile 75 and 25 are deviating from each other at flowering 
around 1500 degree days, and are merging during the maturity stages.  

 
Figure 5, Nitrogen growth curve of one well fertilized object (Trial 21-F). Lines represent statistics from the nitrogen 

distribution, transparent colors refer to their standard deviations and crosses refer to values measured in the laboratory. 

Discussion 

Nitrogen map as visualization tool 
In this work, a new methodology was proposed to model nitrogen maps at the pixel level. 
Reflectance measured by a spectroscopy sensor is a complex measure considering a wide 
diversity of elements such as plant physiology, plant architecture, and the sun and sensor 
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directions. Considering this complexity, small patches were drawn on flag leaves and on the 
others, while paying attention to select the most possible heterogeneous zones representing 
diverse situations. Whereas reflectance is influenced by viewing angles, some vegetation indices 
are stable across viewing angles (Lu et al., 2019). Therefore, some vegetation indices were 
chosen to help smoothing the nitrogen map against the huge diversity of situations encountered 
in an image. Growing degree days after sowing played the major role in the model, which 
represents 40% of the feature importance of the random forest. Unfortunately, that feature might 
also be responsible for flattening the point clouds for BBCH 30, 32 and 39 in Figure 4. This has 
the effect of gathering values around the mean and thus over-estimate low nitrogen objects and 
under-estimate high nitrogen objects. With a R² of 0.73, the random forest was the most suitable 
model to build coherent nitrogen maps. A nitrogen concentration gradient can be observed: lower 
leaves demonstrated lower values than upper leaves.  
Several aspects are limiting the study, which makes the curve along the season broken (Figure 
5). Firstly, a single nitrogen value was associated with many patches of an image, whereas 
nitrogen is not evenly distributed in the plant. Then, the estimation of nitrogen concentration using 
remote sensing is subject to discussion as mentioned by (Kattenborn et al., 2019). It is argued 
that pigment concentration primarily reflects leaf dry mass and not pigment variation itself. Next, 
there is a lack of data for the dates with no reference measurements. Finally, the pre-process is 
also a source of error and more specifically the registration method which sometimes yields 
aberrant local deformations (Dandrifosse et al., 2021).  

Nitrogen partitioning in wheat 
The nitrogen distribution of the observed scene was rarely computed in previous studies, and yet 
it is a great visualization object and seems a very good provider of information. It brought an 
improvement for nitrogen concentration determination of flag leaves and the other leaves (Table 
2). Its dynamic is also of great interest (Figure 5). The observed interquartile widening and 
narrowing are consistent with the wheat physiology and more specifically with the remobilization 
process that occurs from anthesis (Martre et al., 2003).  

Conclusion and perspectives 
This study proposed a methodology to compute nitrogen maps at the pixel scale. Machine 
learning algorithms were trained on small patches combining features from multispectral images 
with laboratory nitrogen concentration measurements of flag leaves and the other leaves. The 
random forest yielded the best result on the validation dataset with a rRMSE of 0.12. It provides 
good visual nitrogen maps from which the distribution of nitrogen concentration can be extracted. 
Finally, the average nitrogen concentration in flag leaves and in the other leaves were best 
estimated with the percentile 75 and 25 of the nitrogen distribution respectively. This new 
methodology still needs improvements but is of great potential for further work about nitrogen 
distribution and remobilization. It could be fused with a height map to study the distribution of the 
nitrogen concentration as a function of the height of the leaf in the canopy. 
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