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Abstract 

This paper presents a new proposal for beam-column interaction formulae initially 

based on second-order in-plane elastic theory, as an alternative to those proposed in the 

Eurocode 3 pre-standard [1]. It has been derived according to the following 

requirements: theoretical background, clear physical meaning, consistency with the 

other related formulae of  Eurocode 3 and accuracy. Besides that, the suggested 

formulae cover all required continuities: between the cross-section classes, from 

plasticity to elasticity as slenderness and axial force increase, and continuity between all 

the individual stability member checks and cross-section verifications. Further to the 

presentation of the formulae and their background, the good agreement of the proposal 

is shown through an extensive  comparison with more than 15 000 results of finite 

element numerical simulations.  

Keywords:  Instability – Buckling – Biaxial bending – Interaction – Beam-column – 

Elastic-plastic – FEM numerical simulation 
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1. Introduction 

The stability of structural members subjected to combined axial compression forces and 

bending moments is a quite important problem for designers and it has been extensively 

studied during the last 50 years [2]; nevertheless, as a  full satisfactory solution is still 

not yet available for daily practice, and because of the general tendency to increase the 

slenderness of steel members and frames, further research investigations have to be 

carried out with the aim to include safe and economic calculation rules in modern 

design codes.  As far as Eurocode 3 is concerned, it is now widely recognised that the 

interaction formulae for beam-columns have to be significantly improved, in terms of 

accuracy and physical background. Present paper aims at describing a new proposal for 

beam-column interaction formulae, that could be an alternative to the Eurocode 3 ones. 

The proposed formulation has been derived in order to fulfil several objectives: 

economy and accuracy, generality, physical transparency and consistency with all the 

individual stability member checks (flexural instability in compression, lateral torsional 

buckling in bending…) and cross-section resistance verifications; it is based on a 

second-order in-plane elastic theory, and has been progressively extended to spatial and 

elastic-plastic behaviour. Its theoretical format is such that each constitutive coefficient 

is normally associated to a single physical effect; when this is not possible, results of 

FEM numerical simulations are used to calibrate locally some coefficients. 

In this paper, for sake of simplicity and lack of space, attention will only be devoted to 

the design of members where lateral torsional buckling is not likely to occur, i.e. 

torsional deformations are prevented. But the out-of-plane behaviour of the beam-

columns subjected to biaxial bending and axial compression will be considered. This 

case is not a common one in practice, except for tubular construction, but it represents 

an important step for the development of the presented formulae. Complete formulae 
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including lateral torsional buckling effects are available and have been also validated 

through comparisons with FEM simulations; the interested reader is kindly requested to 

refer to references [3] and [4] for more details.  

Finally, notations used in the paper are those suggested in Eurocode 3. 

2. Basis of the  formulation: second-order in-plane elasticity 

2.1. Simply supported member under axial compression  

In Fig 1,  a simply supported member under pure compression with an initial transverse 

deflection is illustrated. The initial deflection is supposed to be sinusoidal, and may 

therefore be expressed as: 

 ( )
L

xexv d
πsin,00 = . (1) 

For an applied axial compression SdN , the additional deflection ( )xv  can be evaluated 

by solving the following classical buckling equilibrium equation:  

 ( )
L
xe

NN
Nxv d

Sdcr

Sd πsin,0−
= , (2) 

where crN  is  the Euler elastic critical load. The total deflection at mid-span of the 

beam then amounts ( )2/,0 Lve d +  and the resistance criterion of the member cross-

section at mid span including second-order effects is then expressed: 

 1
/1

1

.

,0

.
≤

−
+

Rdel

dSd

crSdRdpl

Sd
M

eN
NNN

N . (3) 

In Eq. (3), RdelM .  and RdplN .  respectively represent the elastic bending resistance and  

the plastic resistance in compression of the cross-section. Keeping in mind that, at 
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failure, the maximum applied  axial force reaches the actual buckling resistance 

RdplRdb NN .. χ=  of the column, the value of de ,0  may be derived: 

 
( ) ( )

Rdpl

RdelcrRdpl
d N

MNN
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,0

/11

χ

χχ −−
= . (4) 

2.2. Beam-column: in-plane behaviour 

Eq. (3) can easily be extended to the case of beam-columns by adding a term covering 

the effect of the distribution of first order bending moments in the member: 
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In this expression,  two new concepts are introduced: the equivalent moment factor mC  

(see paragraph 2.2.2), and the amplification factor )/1(1 crSd NN− (see paragraph 

2.2.1). By considering the value of de ,0  derived from (4), Eq. (5) may be written under 

several formats: 

- *χ  format [5]: 

 ( ) 1
/1 ..
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+
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, (6) 

where: 
( )
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- With a n∆  term, as in DIN 18800 [6]: 
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where: 22
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1 λχ
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- µ  format: 

 ( ) 1
/1 ..

≤
−

+
RdelcrSd
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Rdpl

Sd
MNN
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N
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χ

, (10) 

with: 
crSd

crSd
NN
NN

/1
/1

χ
µ

−
−

= . (11) 

The last format is the one adopted in the proposal as the first term of (10) simply 

corresponds to the Eurocode 3 stability check for a member in pure compression.  

2.2.1. Amplification factor 

The distribution of first order bending moments along the member is affected by the 

application of the axial compression force because of well-known second order effects. 

For a member subjected to a sinusoidal distribution of first order bending moments, the 

“amplified” moments resulting from the application of the axial force SdN  are obtained 

by multiplying the first order bending moments by the following amplification factor 

already used in section 2.1: 
crSd NN /1

1
−

, (12) 

For sake of simplicity, the same amplification factor has been applied in section 2.2 to 

the SdM  moment distribution, what is not strictly true from a scientific point of view. 

For instance, for a column subjected to end moments (linear distribution of first order 

bending moments along the column, the exact value of the amplification factor is [7]:  

 
crSd NN /

2
cos

1
π

. (13) 

This second expression gives quite similar results than  Eq. (12) when the axial force is 
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far from a critical state (i.e. crSd NN /  is small), as shown in Fig. 2. But the difference 

between these two theoretical expressions becomes significant when SdN  gets closer to 

the critical value, and it is then necessary to account for this influence in Eq. (5), (6), (8) 

and (10). In the next paragraph, it will be shown that this correction may be taken into 

consideration through the adoption of appropriate values for the equivalent moment 

factor mC . 

2.2.2. Cm coefficient 

The concept of “equivalent moment” is a quite usual one as far as beam-columns are 

concerned. It simply allows replacing the actual distribution of first order bending 

moments along the member by a sinusoidal equivalent one.  

The maximum first order moment in the equivalent moment distribution is defined as 

Sdm MC ; in this expression, SdM  is the value of the maximum moment in the actual 

first order distribution of bending moments, and mC  is called “equivalent moment 

factor”. The equivalence is such that the maximum amplified moment resulting from the 

application of the axial compression force in the actual member is equal to the 

maximum amplified moment in a similar column subjected to the sinusoidal equivalent 

moment distribution. This is illustrated in Fig. 4. 

This concept brings significant simplification as the maximum amplified equivalent 

moment is located at mid-span. 

From theoretical considerations [6], the exact expressions of mC  to apply to a member 

subjected to a linear first order bending moment distribution (i.e. SdM  at one end of the 

member and SdMψ  at the other end, 11 ≤≤− ψ ), are: 
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when limNN Sd ≥ , and: 
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when limNN Sd < , where 
2
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arccos
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⎞
⎜
⎝

⎛=
π

ψ
crNN  corresponds to the value under 

which the collapse is reached by lack of resistance at the end of the member, and not by 

instability phenomena. 

Villette [5], [8], extensively studied the problem, and derived a simple approximate 

expression, which allows, in Eq. (10),  to account for the theoretical error mentioned in 

§ 2.2.1: 

 ( )
cr

Sd
m N

N
C 33,036,021,079,0 −++= ψψ , (16) 

It is worthwhile to state that the combined use of Eq. (10) and (16) does not prevent the 

designer from checking the resistance of the member end cross-sections.  

Eq. (16) has been  integrated in the proposal. Fig. 3 outlines the fundamental differences 

between the theoretical value of mC  and some other well-known definitions, i.e. the 

Austin one: 

 4,04,06,0 ≥+= ψmC , (17) 

and the Massonnet one: 

 ( ) ψψ 4,013,0 2 ++=mC . (18) 

Besides the fact that the theoretical values of mC  depend on crSd NN / values, a major 
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difference between Eqs. (16) and (17) or (18) lies in their opposite curvatures, as 

clearly seen in Fig. 3. This difference may probably be explained, at least for expression 

(18),  by the fact that the latter has been initially developed to cover the influence of the 

actual bending moment distribution on the value of the elastic critical moment crM  for 

lateral torsional buckling (Eurocode 3 1C  coefficient) and then extended to beam-

columns. 

For beam-columns subjected to transverse loading or end moments plus transverse 

loading, it is recommended to adopt the following value for the equivalent moment 

factor Cm [7]: 

 
cr

Sd
m N

N
LM

vEIC ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+= 11 2

0

0
2π , (19) 

where the index “0” means “first order”. When the member is laterally restrained by 

means of one or more intermediate supports, mC  must be lower bounded to 

crSd NN /1 − , because the amplified moments are unknown along the beam. 

The validity of this new definition of the equivalent moment factor is shown in § 5. 

In the next section, the formulae (10) are extended to column subjected to biaxial 

bending moments and modified to integrate plasticity effects. 

3. Extension to spatial behaviour and plasticity  

3.1. Spatial behaviour 

The in-plane format of Eq. (10) may be easily extended to the more usual case of beam-

column subjected to biaxial bending moments and spatial instability. For each 

instability plane i (y or z according to Eurocode 3), the following equation may be 
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applied: 
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3.2. Elastic-plastic behaviour 

Eq. (20) may be generalised to the case of Class 1 and 2 cross-sections (sections which 

may develop their full plastic moment resistance in bending without premature local 

plate buckling of the constitutive walls in compression, according to Eurocode 3), by 

simply replacing the elastic bending moment resistance RdelM .  by an elastic-plastic one 

noted RdplMk . ;  k  is a plasticity coefficient expressed as follows: 

 ( )
pl

el

Rdpl

Sd
m W

W
N

N
C

w
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⎠
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226,1211 λλ , (21) 

with: 5,1≤=
el

pl

W

W
w . (22) 

plW  and elW designate respectively the plastic and elastic modulus of the column cross-

section in bending. λ  represents the reduced column slenderness for flexural instability.  

Because of instability effects, it appears that the beam cannot develop its full plastic 

capacity, that must then be tempered by this k  coefficient. The definition of k must also 

depend on λ , to allow the behaviour of the beam being plastic for small slenderness, 

and to become elastic as λ  and axial compression increase, as it is in reality. In 

Eq. (21), the factor ( )1−w  represents the maximum available bending potential 

between pure elasticity and pure plasticity, and must be multiplied not only by a 

function of λ , as explained before, but also by a function of mC , because the member 

cannot develop the same elastic-plastic effects whatever the transverse loading is. This 
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calibrated coefficient then clearly permits a smooth physical transition between 

plasticity and elasticity; it will be seen in § 4 that Eq. (21) is consistent with a cross-

section check, i.e. when the slenderness tends to 0. 

The bending  moment of the column cross-sections being always greater than the elastic 

moment resistance, the k coefficient must be bounded by plel WW /  for Class 1 and 2 

cross-sections, and by 3/ WWel  for Class 3 cross-sections (sections which, according to 

Eurocode 3, are only able to develop a bending moment resistance equal to the full 

elastic one), 3W  being an intermediate plasticity modulus allowing a continuous 

transition between Class 2 and 3 cross-sections (cf. § 4.3). 

3.3. Biaxial bending 

In the particular case of biaxial bending, Eq. (20) writes: 

 1
..

..

..

..
≤+

Rdzpl

Sdzzm

Rdypl

Sdyym

M
MC

M

MC
, (23) 

Eq. (23) accounts also for plasticity effects, as detailed in the previous paragraph; this is 

a linear interaction criterion, while, from a physical point of view, it should not. For 

instance, the Eurocode 3 formula (Eq. 24) is not linear: 
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M
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Then, the formulation must be modified in order to take this effect into account. This is 

achieved in decoupling Eq. (20) verification as follows: 

 
( )

( ) 1
/1

*

/1

...

..

...

..

.

≤
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
+

RdzplyzzcrSd

Sdzzm
y

RdyplyyycrSd

Sdyym
y

Rdply

Sd

MkNN
MC

MkNN

MC

N
N

µα

µ
χ

, (25) 



Improvement of the interaction formulae for beam-columns in Eurocode 3 

- 11 -

 

 
( )

( ) 1
/1

/1
*

...

..

...

..

.

≤
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
+

RdzplzzzcrSd

Sdzzm
z

RdyplzyycrSd

Sdyym
z

Rdplz

Sd

MkNN
MC

MkNN

MC

N
N

µ

µβ
χ

, (26) 

where *α  and *β  are coefficients accounting for zy MM −  plastic interaction. 

Eq. (25) is then a strong axis check, while Eq. (26) is a weak axis one; consequently, in 

the particular case of pure biaxial bending, Eqs. (25) and (26) reduce as: 

 1*
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α , (27) 

 1*
..

..

..

..
≤+

Rdzpl

Sdzzm

Rdypl

Sdyym

M
MC

M
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β , (28) 

This new formulae allows increasing the accuracy of the proposal in the case of biaxial 

bending, as it is shown in Fig. 5. 

 

*α  and *β  are respectively chosen as yz ww /6,0  and zy ww /6,0 , to allow 

dealing with any kind of cross-sections. 

Because of the spatial behaviour, the iik  coefficients must write: 

 ( ) ( )
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i
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N
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w
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.

2
maxmax

2
.

6,1211 ⎥
⎦
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⎡
+−−+= λλ , (29) 

where maxλ  is the maximum value of yλ  and zλ , and iik  bounded as in (21). 

For the same reason as explained in § 3.2, it becomes necessary to introduce two other 

ijk  coefficients, calculated from calibration: 
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and: 
pl

el

i

j
ij W

W
w
w

k 6,0≥  or 
3

6,0
W
W

w

w el

i

j . (31) 

Eqs. (25) and (26) are the general formulae of the proposal. They allow to deal with 

biaxial and elastic-plastic behaviour, on the basis of in-plane second-order elasticity. 

They can also be adapted easily to lateral torsional buckling, but this case will not be 

presented in this paper (cf. [3], [4]). Because of their theoretical background, they 

present a strong physical meaning, preventing from mistakes in their use. Next 

paragraph aims at showing  that this general shape reduces to well-known formulae 

when the applied loading is simple. It is details also how elastic-plastic effects can be 

integrated in a continuous way, as it is physically, but not in Eurocode 3 at that time. 

4. Continuity aspects 

One of the most important requirements for the development of such a formula lies in 

its ability to present as much continuities as possible. This paragraph is then devoted to 

point out continuity aspects, which can be divided into 3 types: continuity between 

plane and spatial behaviour, continuity between stability and cross-section resistance 

checks, and smooth resistance transitions in the elastic-plastic range, as a consequence 

of instability effects. 

4.1. Simple loading cases 

The general format of Eqs. (25) and (26) can reduce to more simple expressions, when 

one or more external forces vanish. The case where only two kinds of loading are 

effective on the beam is deduced from the general formulae by simply cancelling the 
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appropriate term, like for example the case of axial compression with strong axis 

bending moment: 

 ( ) 1
/1 ...
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.
≤

−
+

RdyplyyycrSdy

Sdyym

Rdply

Sd
MkNN
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χχ
, (32) 
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Sd
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In this particular case, the two checks of Eqs. (32) and (33) are still required, because 

the collapse of the beam can be either about its strong or its weak axis plane. It should 

be noticed that Eq. (33) clearly underlines the influence of strong axis bending about the 

weak axis buckling, which concept is not fully recognised in well-known standards. 

Obviously, the case where the beam is loaded by in-plane forces only is covered,  in 

considering only one equation, like Eq. (32) for example. If the beam is only submitted 

to axial compression for instance, the formulation simplifies into the Eurocode 3 

buckling check: 

 ( ) 1
,min .

≤
Rdplzy

Sd
N

N
χχ

. (34) 

Of course, other cases like mono- or biaxial bending are covered by the formulation in 

the same way (cf. § 3.3). The proposal deals also with all cases of buckling stability 

problems, whatever the type of loading, i.e. axial compression and biaxial bending. It 

has been shown that it presents all types of continuities for this particular point, and next 

paragraph focuses on the continuities between stability and cross-section resistance 

checks. 

4.2. Stability to resistance continuity 

Another important aspect that the formulation should cover is linked with the influence 
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of the length of the beam. Indeed, the stability verifications must reduce to cross-

section resistance checks, as the buckling effects are no longer influencing the 

behaviour of the beam, i.e. when the slenderness tends to 0. If pure compression, pure 

bending and biaxial bending cases are covered, the case of axial force with bending 

need to be further detailed. More, when the length of the beam tends to 0, the 

verification becomes respectively a plastic or an elastic check, for Class 1 and 2, or 

Class 3 cross-sections. It has been shown in § 3.1 that for pure elastic behaviour, 

Eq. (20) should be used. In this case, it reduces to: 

 1
..

..

..

..

.
≤++

Rdzel

Sdzzm

Rdyel

Sdyym

Rdpl

Sd
M

MC
M

MC

N
N

, (35) 

This is the same elastic resistance check as in Eurocode 3 when first order moments 

reach their maximum value in span ( 1=mC ). In other cases, the cross-section check 

becomes determinant before 0=λ , and so when 0=λ . But for Class 1 and 2 cross-

sections, plastic verifications can be made; and when the slenderness tends to 0, the iik  

coefficient expresses: 

 ( )
pl

el

Rdpl

Sd
iii W

W
N

N
wk ≥−+=

.
121 , (36) 

Eq. (36) shape allows to develop an intermediate bending resistance between RdplM .  

and RdelM . , as drawn in Fig. 7 and 8. The value 2 in Eq. (36) is the highest integer one 

that can take the benefits of plasticity without being insecure when the axial force is 

high. 
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4.3. Particular Class 3 cross-section cases 

As already mentioned before, the proposal was developed so that the transitions 

between elasticity and plasticity are smooth and continuous, as it is actually. It has been 

shown in § 3.2 that this is effective for a member, but this is not the case between cross-

sections classes. As shown in Fig. 6, according to Eurocode 3, a step of bending 

resistance exists between Class 2 and 3 cross-sections. So, the formulation proposes to 

adopt a new “elastic-plastic modulus 3W ” allowing a smooth transition along Class 3 

field. As this coefficient should depend on the tb /  ratios of the cross-sections walls, it 

is proposed to follow the Australian AS4100-1990 recommendations, that may be 

expressed as follows: 

 ( ) ( ) ( )
( ) ( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−
−+=

ii

ii
elplel tbtb

tbtb
WWWW

.2.3

.3
3 //

//
min . (37) 

where ( )2/ tb  is the boundary tb /  ratio between Class 2 and Class 3 for a particular 

cross-section wall, ( )3/ tb  the one between Class 3 and Class 4 and index i  indicates 

each of the cross-section walls in full or partial compression. As a consequence of Eq. 

(37), the bending resistance of Class 3 cross-sections becomes a smooth linear transition 

between the plastic and the elastic behaviour (cf. Fig. 6). 

5. Results – Accuracy 

The formulae have been tested from more than 200 test results [5], and showed precise 

and safe results; but because of the large number of parameters involved in the complex 

behaviour of beam-columns, these tests cannot be sufficient to prove the accuracy of the 

proposal in all cases. Therefore, a comparison between the proposed formulae and 

numerical simulations has been performed (from about 15000 simulations). First, the 
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numerical hypotheses and models are described here, and then some particular results 

are presented. 

5.1. Numerical models 

This paragraph gives a general overview of the calculations and a description of the 

assumptions made in the numerical model. Two software were used for the study: most 

of the results were carried out from ABAQUS [9], and some of them from FINELG [10] 

in the particular case of a IPE 200 shape. This allowed comparing both results, and 

these have been found in excellent agreement. Then, a parametric study was led, with: 

1: 4 different profiles: IPE 200, IPE 500, HEB 300 and RHS 200×100×10, 

2: 4 values of the relative slenderness: 0.5, 1.0, 1.5 and 3.0, 

3: 5 types of primary bending moments diagrams: linear ( 1=ψ ), triangular 

( 0=ψ ), bi-triangular ( 1−=ψ ), concentrated load at mid span and uniformly 

distributed load, 

4: 3 types of loading: in-plane yy − , in-plane zz −  and biaxial bending 

combined with axial compression. 

So, wide ranges of cases were studied, to cover as well as possible most of real practical 

cases. 

Beam elements have been used: 100 using ABAQUS with 51 integration points over the 

cross-section, and 10 using FINELG with 25 integration points over the cross-section 

and 4 along each element. 

The beams were considered simply supported, and initial sinusoidal deflections with 

maximum amplitude of 1000/L  were introduced in both principal planes. Regarding 

the material, an elastic - perfectly plastic constitutive law (i.e. without strain-hardening) 
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has been used, with Fig. 10 characteristics. Additional imperfections such as residual 

stresses were also accounted, as described on Fig. 9. 

The performed calculations followed a geometrical and material non-linear calculation 

model, which coupled with the hypotheses described above, allow the real behaviour of 

the member to be simulated as precisely as possible. For the particular case of biaxial 

loading, the degrees of freedom relative to torsional deformations have been restrained, 

in order not to have any interaction with lateral torsional buckling effects. 

5.2. In-plane behaviour 

Only results about in-plane behaviour are presented here, and they are restricted to weak 

axis bending. Considering that for classical I-section shapes, RdzplM ..  is about 50% 

higher than RdzelM .. , while RdyplM ..  is only about  15% higher than RdyelM .. , 

plasticity effects are much more important for in-plane weak axis bending (cf. Fig. 7 

and 8). Nevertheless, the conclusions for strong axis in-plane bending are similar. 

Tables 1 and 2 present the values for simulR , the ratio between the loading giving 

failure according to the FEM simulations to the same proportional loading giving failure 

according to the proposal (cf. Eq. 38). 

 
( )

( ) proposalfailureSdzSdySd

FEMfailureSdzSdySd
simul MMN

MMN
R

,..

,..

,,

,,
= . (38) 

For instance, 03.1=simulR  when the exact failure loading according to the FEM 

simulations  is 3% higher than the proportional one according to the proposal. 

Consequently, simulR  shows the safety and the accuracy of the proposal.  When 

1≥simulR  , that means that the proposal is safe. In the tables, the classical statistical 

values are presented: m  is the mean value, and s  is the standard deviation. 
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As explained in § 2.2.2, the use of the mC  coefficient concept in the formulation 

implies an additive cross-section check. The one considered in the numerical 

calculations [11] led sometimes to slightly unsafe values, that cannot be objected to the 

proposal. In addition, some of the numerical results were sometimes unsafe in the case 

of pure buckling, but never more than 3%. Then, because the proposal intends only to 

deal with stability and MN −  interaction, these values do not characterise really the 

accuracy of the proposal. Then, some other results 97.0≤simulR  were also included in 

the tables, because they really represent unsafe values due to the proposal. Tables 1 and 

2 show that the results are satisfactory: mean values are close to 1, and the standard 

deviation is relatively small. The maximum value from about 979 results does not 

exceed 1.25, without real unsafe value (the minimum is 0.967; in other words, less than 

4% are on the unsafe side). 

5.3. Biaxial bending 

Besides the fact that the proposal also accounts for lateral torsional buckling [12], only 

results where torsional deformations are prevented are presented, i.e. the collapse has 

been reached by buckling or by end-sections excess of plasticity. Results including 

lateral torsional buckling will be presented later. 

Here, the beam is subjected to biaxial bending with axial compression: having spatial 

components, the cross-section displacements are much more complex. As a 

consequence, more results are presented: cases where at failure RdzplSdz MM ... /  = 0, 

0.2, 0.4, 0.6 and 0.8 are reported in Tables 3 and 4. 

The results are in a good agreement, accounting that because of biaxial effects, the 

behaviour of the member is relatively complex. Mean values are satisfactory as the 

maximum values stay under 25% safety. In order to emphasise the accuracy of the 
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proposal for biaxial bending cases, Fig. 11 shows an example of interaction diagram. 

6. Conclusion 

The formulae for beam-columns detailed in this paper are based on second order in-

plane elasticity. This theoretical format allows the proposal to be physically 

understandable and general. It does not cover only plane behaviour but also spatial 

behaviour and loading, elastic-plastic effects and accounts for instability phenomenon. 

It was derived in order to present a maximum of continuities: between cross-section 

classes, from stability to resistance checks, between pure elastic and pure plastic 

behaviour, and with the other formulae of Eurocode 3. 

In addition, several concepts such as amplification effects or equivalent moment 

concept are discussed, and new expressions are proposed. 

A parametric study show that the proposal is safe and efficient, and that it is much more 

accurate than the one included in Eurocode 3. 

Extensions to cases where lateral torsional buckling is possible are already available [3], 

[4], [12], but still need to be improved. This will be the next  development. 
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Figure Captions 

Figure 1  Axially loaded member 

Figure 2  Amplification factor 

Figure 3 Comparison of different  mC factors 

Figure 4 Equivalent moment coefficient concept 

Figure 5 Biaxial bending interaction for a classical IPE shape 

Figure 6 Continuity between cross-section classes 

Figure 7 yMN −  cross-section interaction (HEB shape) 

Figure 8  zMN −  cross-section interaction (HEB shape) 

Figure 9 Residual stress diagrams used in the simulations 

Figure 10 Elastic-perfectly plastic constitutive law 

Figure 11 Example of interaction diagram (IPE 500) 
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 Table 1 
Results for zz−  in-plane behaviour 

 
 IPE 200 FINELG IPE 200

zλ  0,5 1,0 1,5 0,5 1,0 1,5 
m 1,0374 1,0162 1,0254 1,0686 1,0378 1,0439 
s 0,0368 0,0305 0,0307 0,0537 0,0395 0,0373 
max 1,1319 1,0747 1,1002 1,1760 1,1145 1,1082 
min 0,9696 0,9666 0,9776 0,9817 0,9695 0,9688 
Σ tests 32 32 34 101 105 110 
Σ tests < 1 1 9 7 5 22 13 
Σ tests < 0,97 1 2 0 0 1 2 
 
 
Table 2 
Results for zz−  in-plane behaviour 
 
 IPE 500 HEB 300 RHS 200 

zλ  0,5 1,0 1,5 0,5 1,0 1,5 0,5 1,0 1,5 
m 1,0674 1,0356 1,0333 1,0248 1,0234 1,0311 0,9931 1,0203 1,0307 
s 0,0558 0,0382 0,0375 0,0321 0,0330 0,0317 0,0126 0,0251 0,0302 
max 1,1902 1,1015 1,0977 1,0988 1,0899 1,0821 1,0317 1,0730 1,0918 
min 0,9816 0,9682 0,9689 0,9802 0,9687 0,9711 0,9748 0,9736 0,9784 
Σ tests 57 59 60 62 62 59 69 68 69 
Σ tests < 1 5 12 14 15 18 12 46 12 10 
Σ tests < 0,97 0 2 2 0 1 0 0 0 0 

 

Table 3 
Results for spatial behaviour 
 
 IPE 200 FINELG IPE 200

zλ  0,5 1,0 1,5 0,5 1,0 1,5 3,0 
m 1,0643 1,0562 1,0471 1,0926 1,0842 1,0737 1,0320 
s 0,0443 0,0402 0,0339 0,0691 0,0541 0,0454 0,0345 
max 1,1611 1,1394 1,1236 1,2371 1,1957 1,1665 1,1182 
min 1,0000 0,9658 0,9739 0,9720 0,9710 0,9757 0,9614 
Σ tests 76 77 77 531 551 580 229 
Σ tests < 1 0 4 1 38 20 9 34 
Σ tests < 0,97 0 1 0 0 0 0 8 
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 Table 4 
Results for spatial behaviour 

 
 IPE 500    HEB    RHS    

zλ  0,5 1,0 1,5 3,0 0,5 1,0 1,5 3,0 0,5 1,0 1,5 3,0 
m 1,0976 1,0901 1,0739 1,0326 1,0704 1,0704 1,0627 1,0228 1,0658 1,0844 1,0929 1,0507 
s 0,0773 0,0572 0,0479 0,0365 0,0566 0,0469 0,0393 0,0329 0,0587 0,0532 0,0579 0,0450 
max 1,2483 1,2033 1,1726 1,1339 1,2148 1,1824 1,1451 1,1017 1,2039 1,2248 1,2475 1,1826 
min 0,9633 0,9718 0,9753 0,9576 0,9831 0,9648 0,9756 0,9616 0,9737 0,9854 0,9882 0,9747 
Σ tests 405 562 581 230 558 582 592 236 498 542 567 232 
Σ tests < 1 35 16 18 35 60 26 25 53 50 15 6 15 
Σ tests < 0,97 2 0 0 8 0 1 0 10 0 0 0 0 
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Fig. 1 Axially loaded member 
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Fig. 2 Amplification factor 
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Fig. 3 Comparison of different Cm factors 
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Fig. 4 Equivalent moment coefficient concept 
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Fig. 5 Biaxial bending interaction for a classical IPE shape 
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Fig. 6 Continuity between cross-section classes 
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Fig. 7 N – My cross-section interaction (HEB shape) 
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Fig. 8 N – Mz cross-section interaction (HEB shape) 
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Fig. 9 Residual stress diagrams used in the simulations 
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Fig. 10 Elastic-perfectly plastic constitutive law 
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Fig. 11 Example of interaction diagram (IPE 500) 

 


