Acta Cryst. (1963). 16, 228

Infra-red spectrum and tetrahedral co-ordination of lithium in the spinel LiCrGeO₄. By

P. TARTE, University of Liege, Department of General Chemistry, Liege, Belgium

(Received 6 June 1962)

The compound LiCrGeO₄ has been recently synthesized and recognized as a spinel on the basis of its X-ray powder diagram (Strunz & Jacob, 1960), but no information about the cation distribution has so far been reported. Both lithium and germanium are known to have a marked preference for tetrahedral co-ordination in oxygenated compounds, and their actual distribution in the spinel LiCrGeO₄ can not be decided without further investigation. The possibilities offered by infra-red spectroscopy (Tarte & Preudhomme; see also Tarte, 1962a) have been applied to this problem.

The observed infra-red spectrum is given in Fig. 1. Three strong bands only are observed in the 1000-300 cm.⁻¹ range, and one of these bands is moderately shifted towards higher frequencies when natural lithium (predominantly ⁷Li) is replaced by ⁶Li (Table 1). Now, comparison of these results with previous infra-red investigations enables certain conclusions to be drawn.

(1) GeO₄ tetrahedra have been found to absorb in the 830-680 cm.⁻¹ range in a large series of orthogermanates

Table 1. Isotopic shifts in the infra-red spectrum of $LiCrGeO_4$

Observed frequencies		
$^{7}\mathrm{LiCrGeO}_{4}$	$^{6}\mathrm{LiCrGeO}_{4}$	$\Delta \nu$
$623 { m cm.^{-1}}$	$623\mathrm{cm.^{-1}}$	0 cm. ⁻¹
526	523	-3
447	473	+26

(Tarte, 1962*a*). LiCrGeO₄ has no band in this spectral range; this is a first reason for believing that no GeO_4 tetrahedra are present in this structure.

(2) An infra-red investigation of lithium compounds with LiO_4 tetrahedra or LiO_6 octahedra (Tarte, 1962b) has revealed the occurrence, in the 500-400 cm.⁻¹ region, of infra-red bands related to LiO_4 tetrahedra; these bands are identified without doubt by the isotopic shift (20-30 cm.⁻¹) related to the ⁷Li-⁶Li replacement. No such bands are observed for LiO_6 octahedra and they are expected to lie below 300 cm.⁻¹, the actual limit of our infra-red equipment. The conclusion is a straightforward assignment of the 447 cm.⁻¹ band in ⁷LiCrGeO₄ (473 cm.⁻¹ in ⁶LiCrGeO₄) to LiO_4 tetrahedra.

All the available infra-red data are thus consistent with the four-fold co-ordination of lithium, and six-fold co-ordination of germanium, the formula of the spinel being $\mathrm{Li}^{\mathrm{IV}}[\mathrm{GeCr}]^{\mathrm{VI}}O_4$. The infra-red spectrum, however, does not preclude the occurrence of a slight amount of germanium on tetrahedral sites.

There is great similarity between the infra-red spectra of LiCrGeO_4 and LiCrTiO_4 : from this similarity, it may be inferred that LiCrTiO_4 is also a spinel, with essentially the same cation distribution as LiCrGeO_4 , namely $\text{Li}^{IV}[\text{CrTi}]^{VI}O_4$.

A study of the ⁷Li-⁶Li isotopic shift has been made in a series of lithium compounds (including the spinels LiAl_5O_8 and LiFe_5O_8) in order to determine the lithium co-ordination in these compounds; the results will be published in due course.

References

STRUNZ, H. & JACOB, P. (1960). N. Jb. Miner.. Mh., p. 78.

TARTE, P. (1962a). Spectrochim. Acta, 18, 467.

TARTE, P. (1962b). Spectrochim. Acta, in the press.

Acta Cryst. (1963). 16, 228

Nb₃Si, a superconductor with the ordered Cu₃Au structure. By FRANCIS GALASSO and JANE PYLE, United Aircraft Corporation. Research Laboratories, East Hartford, Connecticut

(Received 1 October 1962)

Many papers have been published characterizing one or more phases in the niobium-silicon system. Knapton consolidated much of the data when he presented the entire niobium-silicon phase diagram in which three compounds, Nb₄Si, Nb₅Si₃, and NbSi₂ were shown and described (Knapton, 1955). In a later study by Samsonov et al., further evidence was given for the existence of these compounds found by Knapton, along with a complete summary of their structural characteristics (Samsonov, Neshpor & Yermakova, 1958) (see Table 1). The purpose of this paper is to report the preparation and structure of another niobium silicide with the formula