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Abstract ESA’s Jupiter Icy Moons Explorer (JUICE) will provide a detailed investi-
gation of the Jovian system in the 2030s, combining a suite of state-of-the-art instru-
ments with an orbital tour tailored to maximise observing opportunities. We review
the Jupiter science enabled by the JUICE mission, building on the legacy of discover-
ies from the Galileo, Cassini, and Juno missions, alongside ground- and space-based
observatories. We focus on remote sensing of the climate, meteorology, and chem-
istry of the atmosphere and auroras from the cloud-forming weather layer, through the
upper troposphere, into the stratosphere and ionosphere. The Jupiter orbital tour pro-
vides a wealth of opportunities for atmospheric and auroral science: global perspec-
tives with its near-equatorial and inclined phases, sampling all phase angles from day-
side to nightside, and investigating phenomena evolving on timescales from minutes
to months. The remote sensing payload spans far-UV spectroscopy (50-210 nm), vis-
ible imaging (340-1080 nm), visible/near-infrared spectroscopy (0.49-5.56 um), and
sub-millimetre sounding (near 530-625 GHz and 1067-1275 GHz). This is coupled
to radio, stellar, and solar occultation opportunities to explore the atmosphere at high
vertical resolution; and radio and plasma wave measurements of electric discharges in
the Jovian atmosphere and auroras. Cross-disciplinary scientific investigations enable
JUICE to explore coupling processes in giant planet atmospheres, to show how the
atmosphere is connected to (i) the deep circulation and composition of the hydrogen-
dominated interior; and (ii) to the currents and charged particle environments of the
external magnetosphere. JUICE will provide a comprehensive characterisation of the
atmosphere and auroras of this archetypal giant planet.
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1 Introduction

Jupiter is our closest and best example of a hydrogen-dominated gas giant planet, rep-
resenting a class of objects ~ 10x the size of Earth that may be commonplace across
our galaxy. The formation and migration of such a large planet (317.8 Earth masses,
approximately 0.1% of the mass of the Sun) shaped the architecture of our Solar Sys-
tem, such that the origin of Jupiter is an essential piece of the puzzle of planetary sys-
tem evolution, providing a window on the epoch of planet formation. Jupiter provides
a perfect planetary-scale laboratory for the exploration of atmospheric physics and
chemistry (e.g., climate, meteorology, and convective processes on a rapidly-rotating
hydrogen-rich world), without the complicating influences of terrestrial topography
or large seasonal changes'. Jupiter also provides a means to explore how the layers
within a giant planet are coupled, from the interior to the external plasma environ-
ment, and vice versa. For example, the interaction between the upper atmosphere and
the plasma environment of the magnetosphere creates an auroral lightshow that is
unrivalled in the Solar System. The influence of solar ultraviolet light on the chem-
icals in Jupiter’s stratosphere generates a rich atmospheric chemistry. And motions
within the interior, from the metallic hydrogen to the deep atmosphere, influence the
ever-shifting clouds and colours in the visible atmosphere.

For all these reasons and more, a comprehensive investigation of Jupiter as the
archetypal giant planet is one of the two primary goals of ESA’s Jupiter Icy Moons
Explorer (JUICE), Europe’s first mission to the Jupiter system (Witasse et al. in
prep.). The emergence of habitable worlds within Gas Giant systems is explored
by Tobie et al. (in prep.) and Tosi et al. (in prep.), focussing on Ganymede, Eu-
ropa and Callisto. The wider Jovian system, and the magnetosphere, are covered by
Masters et al. (in prep.), Schmidt et al. (in prep.) and Denk et al. (in prep.), here
we focus on the Jupiter scientific investigations enabled by the JUICE orbital tour
and its suite of state-of-the-art instruments. Jupiter science, particularly atmospheric,
magnetospheric, and auroral science and how they connect to the wider system of
potentially-habitable satellites, formed a key component of ESA’s Jupiter mission
from the outset, when it was first formulated as the multi-spacecraft Laplace mis-
sion in 2007 (Blanc et al. 2009) for ESA’s Cosmic Vision. The science case evolved
as it became the Jupiter Ganymede Orbiter (JGO, Blanc and Greeley 2010), ESA’s
contribution to the Europa-Jupiter System Mission (EJSM) between 2008 and 2011.
Finally, Jupiter exploration was a cornerstone in the science case for JUICE (Grasset
et al. 2013), which was selected (2012) and adopted (2014) as ESA’s first ‘L-class’
mission, and which launched on April 14th, 2023.

The science case presented by Grasset et al. (2013) built on the discoveries of the
Galileo orbiter (1995-2003) and in situ probe (1995); the Voyager 1 and 2 (1979),
Cassini (2000) and New Horizons (2007) flybys; and the wealth of remote sensing
investigations from ground-based and earth-orbiting observatories. These previous
missions had provided snapshots of Jupiter at specific times, often lacking adequate
sampling of Jovian variability over minutes (e.g., auroras, lightning), days (e.g., storm

! Jupiter’s axial tilt is 3° and its orbital eccentricity introduces a 14% maximum change in insolation at
Equator (Levine et al. 1977), providing limited seasonal forcing during its 11.9-year orbit
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plumes, impacts), months (belt/zone changes), and years (vortices) to determine the
mean atmospheric state and the drivers of variability. It was hoped that JUICE would
provide a continuity of data coverage over long temporal baselines to address the
shortcomings of the previous snapshots, particularly the challenging Galileo obser-
vations due to the failed deployment of its high-gain antenna. JUICE would also use
broad and quasi-simultaneous spectral coverage from the UV to the sub-millimetre to
probe different atmospheric layers. At the time of mission adoption, the Jupiter sci-
ence case (Grasset et al. 2013) aimed to provide ‘the first four-dimensional climate
database for the study of Jovian meteorology and chemistry,” creating a global picture
of the processes shaping the Jovian atmosphere ‘from the thermosphere down to the
lower troposphere.” This led to three science objectives to characterise atmospheric
(a) dynamics and circulation; (b) composition and chemistry; and (c) vertical struc-
ture and clouds. It also determined a series of mission requirements that would con-
tribute to the design of the JUICE orbital tour, sampling both low- and high-latitude
domains over a long span of time.

Since the JUICE Jupiter science case was developed, both the orbital tour (Bou-
tonnet et al. in prep.) and the payload capabilities have been fully specified. Further-
more, NASA’s Juno mission has been providing new discoveries and insights into the
planet’s interior, atmosphere, and magnetosphere since its arrival at Jupiter in 2016
(e.g., Bolton et al. 2017). Juno’s elliptical polar orbit brought the spacecraft close
to Jupiter every ~ 53 days (reducing to ~ 40 days during the extended mission) to
provide high-resolution regional views, whereas JUICE will have a near-equatorial
orbit that provides opportunities for longer-term monitoring and global views. The
tour strategies for Juno and JUICE are therefore different and complementary. Fur-
thermore, Juno’s exploration of the deep interior via gravity sounding and microwave
remote sensing complements the JUICE observations at lower pressures. Given the
wealth of new discoveries from Juno and supporting Earth-based observations since
the original JUICE objectives were developed, and new insights gained from the cul-
mination of the Cassini mission at Saturn between 2004-2017, this paper revisits and
significantly updates the JUICE Jupiter science case.

This paper is organised as follows. Section 2 provides a brief review of the Jupiter
science case for JUICE, in light of the latest discoveries, and focusing on key ques-
tions and objectives that must be addressed by the tour and payload. Requirements for
the tour, and the observation opportunities needed to address the science objectives,
are discussed in Section 3. Details of the payload relevant to Jupiter science, and
how the instruments will operate both independently and synergistically to achieve
the science goals, are provided in Sections 4-5. We place the JUICE science case into
broader context of other missions and astronomical facilities operating in the 2030s in
Section 6, and emphasise the need for Earth-based support from amateur and profes-
sional observers. Finally, Section 7 confirms how the instruments and tour achieves
closure of the science requirements.
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2 Jupiter Scientific Objectives

Jupiter’s atmosphere, and its connections to both the deep interior and external plasma
environment, are to be explored via a carefully-designed remote sensing investigation
(Section 4) across a ~ 4—year orbital tour that samples a range of illumination condi-
tions, geometries, and orbital inclinations (see Section 3). The original JUICE Jupiter
science case was subdivided into three scientific objectives that sought to ‘charac-
terise atmospheric (a) dynamics and circulation; (b) composition and chemistry; and
(c) vertical structure and clouds.” This led to a traceability matrix with 11 specific
science investigations (Table 1, and summarised in Figure 1), and 12 level-one sci-
ence requirements (based on Science Requirements Document JUI-EST-SGS-RS-
001). These requirements on the spacecraft capabilities and tour are emphasised in
boldface font and discussed in detail in this Section, but first we briefly introduce the
payload elements that will be crucial to achieving the JUICE Jupiter-science objec-
tives: an ultraviolet spectrograph (UVS, Gladstone et al. in prep., and Section 4.1);
visible-light camera (JANUS, Palumbo et al. in prep., and Section 4.4); near-infrared
mapping spectrometer (MAJIS, Poulet et al. in prep., and Section 4.2); sub-millimetre
wave instrument (SWI, Hartogh et al. in prep., and Section 4.3); a radio science ex-
periment for atmospheric occultations (3GM, Iess et al. in prep. and Section 4.5;
PRIDE, Gurvits et al. in prep.); and a radio and plasma wave instrument (RPWI,
Wahlund et al. in prep., and Section 4.6). These studies, conducted synergistically
by six onboard instruments and an Earth-based experiment (PRIDE), will be used to
achieve the scientific goals described in the following sections.

JA Characterise the atmospheric dynamics and circulation

JA.1 | Investigate the dynamics and variability of Jupiter’s weather layer.

JA.2 | Determine the thermodynamics of atmospheric meteorology.

JA.3 | Quantify the roles of wave propagation and atmospheric coupling on energy and material
transport.

JA4 | Investigate auroral structure and energy transport mechanisms at high latitudes.

JA.S | Understand the interrelationships between the ionosphere and thermosphere.

JB Characterise the atmospheric composition and chemistry

JB.1 | Determine Jupiter’s bulk elemental composition to constrain formation and evolution.

JB.2 | Investigate upper atmospheric chemistry and exogenic inputs from the stratosphere to the
thermosphere.

JB.3 | Study spatial variation in composition associated with discrete phenomena and polar vortices.
JB.4 | Determine the importance of moist convection in meteorology, cloud formation, and chemistry.

JC Characterise the atmospheric vertical structure and clouds

JC.1 | Determine the three-dimensional temperature, cloud and aerosols structure from Jupiter’s upper
troposphere to the lower thermosphere.

JC.2 | Study coupling by waves, eddy mixing and global circulation across atmospheric layers.

Table 1 JUICE Jupiter Scientific Objectives
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Fig. 1 Summary of the Jupiter science enabled by the JUICE mission. Images show Jupiter in visible
light from Hubble (centre, Credit: NASA, ESA, NOIRLab, NSF, AURA, M.H. Wong and I. de Pater et
al.), near-infrared from JWST (left, credit: NASA, ESA, CSA, Jupiter ERS Team; image processing by
Judy Schmidt), and in the 5-um window (right, credit: Gemini Observatory, NOIRLab, NSF, AURA, M.H.
Wong et al.), where clouds appear in silhouette against the thermal background. Auroral emissions from
H? can be seen in the JWST image, and in the UV in Hubble observations (centre-top and centre-bottom,
credit: NASA, ESA. J. Clarke).

2.1 Jupiter’s Dynamic Weather Layer

Investigations of Jovian dynamics and meteorology are naturally biased to the day-
side top-most clouds, where contrasts in colours, and rapid motions of small-scale
meteorological phenomena, reveal the banded structure of winds, aerosols, temper-
atures, and gaseous composition. This two-dimensional perspective samples a rela-
tively unique interface, where the condensate cloud decks start to mingle with sun-
light; where adiabatic lapse rates (both dry and saturated) become influenced by ra-
diative heating to produce the statically-stable upper troposphere; and where photol-
ysis of gaseous compounds by ultraviolet light can produce colourful hazes. Despite
this complexity, visible-light images of this region surrounding the top-most clouds
informs much of what we know today about atmospheric dynamics on Jupiter-sized
worlds (Ingersoll et al. 2004; Vasavada and Showman 2005; Sanchez-Lavega et al.
2019). However, spectroscopy from the UV to the sub-millimetre (Fig. 3) provides
an invaluable tool to access the vertical dimension, probing the depths below the vis-
ible cloud tops (~ 500 — 1000 mbars), and extending measurements through the
cold-trap of the tropopause (~ 100 mbar), the radiatively-controlled stratosphere
(mbar-ubar pressures), and into the ionosphere and thermosphere (nbar pressures).
Spectroscopy from JUICE will exploit reflected sunlight, i.e., the solar spectrum with
significant absorption from methane and other species to sound the vertical distribu-
tion of aerosols, and thermal emission, i.e., hydrogen-helium collision-induced opac-
ity overlain by tropospheric absorption and stratospheric/ionospheric emission bands.
JUICE will use nadir views, limb views, and solar/stellar occultations, to probe the
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vertical domain and the transfer of energy, momentum and material between adjacent
atmospheric layers.

A

——
UV (Hubble) Vis (Hubble) Near-IR
0.3-0.4 ym 0.5-0.8 ym 2 pm

Deep Clouds Stratosphere Troposphere Radio
5pm 7 pm 8/10 pm 100-1000 pm

Fig. 2 Multi-wavelength remote sensing of Jupiter provides access to both reflected sunlight (UV to near-
IR) and thermal emission (mid-IR to radio). These false-colour images demonstrate the appearance of the
atmosphere at different wavelengths. JUICE UVS will measure scattered sunlight from upper-tropospheric
aerosols. JANUS and MAIJIS observations (below approximately 3 um) sense clouds, chromophores and
winds using both the continuum and strong CHy4 absorption bands (Hueso et al. 2017; Grassi et al. 2020).
MAIJIS will be able to observe H;r emission from Jupiter’s ionosphere and auroras between 3-4 um
(VLT/ISAAC observations, Credit: ESO), as well as thermal emission from the deep cloud-forming lay-
ers near 5 um (Gemini/NIRI observation, Wong et al. 2020). Although JUICE lacks mid-IR capabilities
(VLT/VISIR observations, Fletcher et al. 2017a) and radio-wavelength capabilities (VLA observations, de
Pater et al. 2016), sub-millimetre sounding by SWI will probe the stratospheric temperatures and winds.

This capability to view the Jovian atmosphere in three dimensions will be ex-
ploited over a variety of spatial scales, from the largest circulation patterns, to the
smallest storm systems and waves.

2.1.1 Belt/Zone Circulation

The dominance of the Coriolis force in the momentum balance on a rapidly rotat-
ing planet leads to the generation of a system of planetary bands. Jupiter’s system
of zonal (east-west) jets has been remarkably stable over multiple years (Garcia-
Melendo and Sanchez-Lavega 2001; Porco et al. 2003; Hueso et al. 2017; Tollefson
et al. 2017), despite significant variability in cloud coverage and aerosols. The jets
themselves appear to be maintained by an upscale flow of energy, from the small-
est scales to the largest scales, with eddies and storms feeding momentum into the
zonal flows (Sanchez-Lavega et al. 2019). Given Jupiter’s rapid rotation, the jets are
in geostrophic balance, as the Coriolis force is in balance with the forces exerted by
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Fig. 3 Overview of Jupiter’s reflected (1 < 4 pum) and thermal emission (1 > 4 um) spectra, with key
molecular features labelled, and the approximate ranges covered by UVS, JANUS, MAJIS and SWI. UV,
visible, and near-IR spectra in (a) were created from a low-latitude spectrum from Cassini/UVIS (Melin
et al. 2020); Hubble FOS spectra at 6 — 20°N acquired in November 1992 with the blue and red de-
tectors (Edgington et al. 1999); disc-averaged measurements from the European Southern Observatory
(Karkoschka 1994) converted from albedo to spectral radiance assuming the solar spectrum of (Meftah
et al. 2018); disc-averaged measurements from IRTF SpeX instrument (Rayner et al. 2009) approximately
scaled to match adjacent datasets; and disc-averaged ISO/SWS measurements from Encrenaz (2003). Mid-
and far-IR spectra in (b) were from ISO/SWS, plus low-latitudes averages from Cassini/CIRS (Fletcher
et al. 2009) and Voyager-1/IRIS (Fletcher et al. 2017b). Far-IR to microwave spectra in (c) were from
averaged Cassini/CIRS spectra (Pierel et al. 2017), Herschel/PACS observations (Sagawa et al. 2010); and
disc-averaged brightnesses from WMAP and ALMA in the millimetre (Weiland et al. 2011; de Pater et al.
2019a) and VLA in the centimetre (de Pater et al. 2019b).

the pressure gradient, and the thermal wind equation (Holton 2004) relates the verti-
cal shear on the winds to latitudinal temperature contrasts in the upper troposphere.
At altitudes above the top-most clouds, the tropospheric winds are found to decay
with increasing height (Pirraglia et al. 1981; Flasar et al. 2004; Fletcher et al. 2016),
and the temperature gradients and zonal jets are so well co-aligned that both are used
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to define the latitudes of Jupiter’s canonical warm, cyclonic ‘belts’ and cool, anticy-
clonic ‘zones.” These axisymmetric bands sometimes (but not always) exhibit con-
trasts in aerosol properties - zones are often considered to be bright and reflective, as
volatile species like ammonia become saturated and condense to NHj3 ice at the cool
temperatures of the zones. Conversely, aerosols evaporate/sublime in the warmer and
typically cloud-free belts. But this correspondence between aerosols and the belt/zone
boundaries is only well defined around the equator, with its typically-white Equatorial
Zone (EZ) bordered by the typically-brown North and South Equatorial Belts (NEB
and SEB). At mid-latitudes, the banding becomes more tightly packed, with Tropical
Zones giving way to a series of Temperate Belts in each hemisphere, each bordered
by prograde (eastward) jets on the equatorward edge, and retrograde (westward) jets
on their poleward edge. Here the correspondence between the thermal/wind band-
ing and the aerosol properties begins to break down (Fletcher et al. 2020). The last
detectable zonal jets, around 65 — 70° in each hemisphere, give way to a polar re-
gion dominated by smaller-scale vortices and large cyclones (Orton et al. 2017; Mura
et al. 2022), albeit still with some form of latitudinal organisation (see Section 2.1.2).
A diagram presenting the zone/belt structure is shown in Figure 4.

Jupiter’s belts and zones therefore appear to differ as a function of latitude, and
their appearance at least at wavelengths sensitive to aerosols appears to change over
poorly understood timescales (Fletcher 2017; Antufiano et al. 2018, 2019). To bet-
ter understand the circulation patterns associated with the planetary banding, JUICE
will probe their vertical aerosol and gaseous structures via spectroscopy, and charac-
terise the fluxes of momentum and energy into the zonal jets. Crucially, the JUICE
orbital tour enables long-term monitoring of the winds, clouds, and composition, to
see how they change along with the axisymmetric ‘upheavals’ to their appearance.
For example, the North Equatorial Belt undergoes periods of northward expansion
and contraction with a 4-5 year period (Fletcher et al. 2017a); the Equatorial Zone
exhibits periodic clearings of clouds with a 6-7 year period (Antufiano et al. 2018);
the North Temperate Belt exhibits spectacular plume activity on a 4-5 year period
(Sdnchez-Lavega et al. 2016); and the South Equatorial Belt displays disturbances,
fades (whitening) and revivals with periods of 3-7 years (Sanchez-Lavega and Gomez
1996; Fletcher et al. 2017c). These timescales, or at least their half-cycles, are within
reach of the JUICE mission.

Measuring Winds:. Determination of wind speed and direction requires the mon-
itoring of cloud tracers (Sdnchez-Lavega et al. 2019), usually over one Jupiter rotation
(10 hours), but sometimes over smaller time-scales (0.5-2.0 hr) on particularly active
regions in convective storms, turbulent regions or inside vortices. Continuum-band
imaging, i.e., away from strong methane absorption, where the atmosphere is rela-
tively transparent down to the NHs-ice cloud tops, and methane-band imaging (i.e.,
sensing the upper tropospheric hazes) can be used to determine how winds vary with
altitude, a direct measure of the vertical wind shear that can be compared to maps
of tropospheric temperatures derived from continuum spectra measured in the sub-
millimetre. The resultant wind maps can reveal zonal and (weak) meridional motions,
and resolve the motions of individual eddies to understand momentum convergence
on the zonal jets (Salyk et al. 2006), as well as the kinetic-energy and turbulence
spectra at the cloud tops. By observing how this changes with time, such maps will
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Fig. 4 Jupiter belts and zones, defined by the zonal winds, compared to contrasts in colour and reflectivity.
White zones and reddish belts alternate in latitude following the anticyclonic and cyclonic shear of the
zonal jets. The locations and overall characteristics of the jets and the bands are stable in time, but the
magnitude of the winds and the intensity of the belt/zone colors are variable. Zonal winds in this figure
come from Cassini in 2000 (Porco et al. 2003) and from Hubble images from 2019 following an equiv-
alent analysis to that presented in Hueso et al. (2017). The conventional names of zones (left) and belts
(right) are given. The HST background on the left comes from the HST/OPAL program and is available at
http://dx.doi.org/10.17909/T9G593. The Cassini map is available at NASA photojournal as image
PIA02864.

allow JUICE to explore the variability of the energetics of the jets, particularly in
relation to discrete storm activity and planet-wide changes. JUICE was therefore
required to ‘globally determine the vertical structure of zonal, meridional and
vertical winds and eddy fields to understand the mechanisms driving zonal jets
and meteorological activity (R1-J-5).” The close-in orbit of Juno, whilst providing
high-resolution regional views of atmospheric phenomena with JunoCam (Hansen
et al. 2017a), cannot provide the global temporal coverage needed to study the global
windfield.

This discussion naturally raises the question of how the windspeeds change as
a function of depth. Infrared imaging, particularly in the 4.5-5.7 um range, senses
thermal emission from the 2-6 bar region, with clouds in silhouette (i.e., absorbing)
against the bright background. Tracking of cloud tracers at these longer ‘M-band’
wavelengths may enable JUICE to measure windshear immediately below the NH3
ice clouds, down to the levels where the NH4SH cloud forms via combination of NH3
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and H,S, and possibly the condensation levels of H,O clouds (see Figure 5). The
Galileo probe revealed that winds appeared to strengthen from the cloud tops to the
5-bar level (Atkinson et al. 1998) for a single location (the jet stream separating the
NEB and EZ), whilst microwave contrasts measured by Juno (Oyafuso et al. 2020)
were suggestive of the same strengthening of zonal winds at all latitudes down to the
~ 6 bar level of the H,O cloud (Fletcher et al. 2021). However, degeneracies between
ammonia absorption and physical temperatures prevent a unique interpretation of
microwave data, so JUICE will attempt to use visible and near-infrared observations
to directly determine windshear and atmospheric stability across all of Jupiter’s belts
and zones down to approximately ~ 5 bars.

Clouds and Hazes: JUICE has two further techniques to determine the proper-
ties of the belts and zones - by mapping the distributions of aerosols and gases. The
vertical distribution of aerosols - both condensed volatiles like NHj; ice, and photo-
chemical hazes like hydrazine N,Hy - can be derived by modelling reflected-sunlight
spectra in the near-infrared, as the differing strengths of gaseous CH, absorption pro-
vide sensitivity across a range of altitudes. The phase function of aerosol scattering
can be used to investigate the size, shape, and possible chemical composition of the
aerosols. This remains a considerable unknown - the clouds are certainly not pure
condensates (e.g., Sromovsky and Fry 2010a; Pérez-Hoyos et al. 2020), but could
be aggregates of multiple compounds, seeded around a cloud-condensation nucleus
that could be photochemical in origin (e.g., West et al. 2004). However, breaking the
degeneracies between the optical properties, composition, and vertical structure re-
quires sampling the aerosol population under a range of illumination conditions and
viewing geometries, from nadir low-phase imaging in noon sunlight, to observations
of the dawn and dusk terminator regions. Darkening as observations approach the
planetary limb and terminator can provide invaluable constraint on the aerosol prop-
erties. Diagnostic spectral signatures of pure NHj ices, H,O ice and NH4SH all exist
in the near-infrared accessible to MAJIS, particularly near 2-3 um (Baines et al. 2002;
Sromovsky and Fry 2010a, 2018), which can be used to understand the existence of
fresh ices in regions of strong convective activity.

The JUICE orbital tour was required to ‘provide sufficient spectral, latitudinal,
illumination and phase angle coverage to investigate Jovian aerosols from the
condensation clouds to upper tropospheric and stratospheric hazes (R1-J-10).
The nature of these Jovian aerosols is expected to be tied to their formation envi-
ronments, such as fresh white condensates in cold zones, or stagnant UV-photolysed
hazes in quiescent vortices, so JUICE will ‘relate the global temperature and wind
structure to visible properties (albedo, winds, clouds) and atmospheric chem-
istry (R1-J-3).” Finally, the ability to view the limb of Jupiter at high spatial reso-
lution, using visible images and infrared spectral maps, could also provide access to
thin, tenuous haze layers in the lower stratosphere, which in turn can be tied to the
vertical thermal structure derived via sub-millimetre sounding the solar/stellar occul-
tations. Figure 5 shows the various altitudes and cloud layers probed by the remote
sensing instruments.

Volatiles and Disequilibrium Species:. Clouds are intricately linked to the sup-
ply of volatile species (NH3, H,S , H,0) to condense on condensation nuclei, and
colourful aerosols are linked to the supply of chemicals (e.g., PH3, NHj3, sulphur-



Jupiter Science from JUICE 13

Approximate contribution factor

Heterogeneous clouds

y Y Thermochemical model (3 times solar)
N Y e b : — 60 2 C
. UVS & Swi Bright clouds
Stratospheric hazes
-
0.1 890 nm 50 01k 50 01 F 50
- JANUS
Chromophoralhazes (Mrsteong) Colored and White
» vy e
JANUS
20 \_Tropospheric hazes 20 (M Weak, lue) 20
8 0E § Tropospheric NHs cloud {10 € | JANUSIMAJIS. & 10 E
a 0N a 1f o™ ) & [N
“Empty”region Shall &
MAJIS/JANUS . locations
20 \ Middle NHaSH cloud 120 wm,;{mwm lghtninl) SEMENENR @ |20
Deep& .,
N\ H o JANUS| Etolod ‘poegl H20
0 ' o amans  BYATUSE convection convedi 50
De@ 20 cloud ] B pan o il Dee)
o ! o 5 Bl non-convective 80
- 10 B z 10 F B
. 110 110 110
e S T R P I 174 R 125
50 100 150 200 250 300 350 400 450 50 100 150 200 250 300 350 400 450
T(K) T(K)
T T T T |
10° 10* 10° 107 10"

Mass Mixing ratio

Fig. 5 Vertical structure of Jupiter’s troposphere and lower stratosphere. Deriving the vertical cloud struc-
ture at different locations from JANUS/MAIJIS data will require the use of radiative transfer models.
Reflected-sunlight bservations will be sensitive to levels from ~ 100 mbar (in the methane absorption
band with JANUS) to at least 2.5 bar (in the IR images from MAJIS) with some contributions from deeper
layers (Wong et al. 2023). (a) In a cloudless atmosphere imaging filters from the blue to red wavelengths
can penetrate deep in the atmosphere limited by Rayleigh scattering and methane absorptions at specific
wavelengths such as in 727 and 890 nm (contribution functions for single wavelengths from Dahl et al.
2021). (b) The nominal cloud structure in Jupiter consists of layers of ammonia, ammonia hydrosulphide
and water clouds with approximate cloud bases at around 0.7, 2.5, 5-7 bar, respectively, depending on the
local abundance of condensables (the thermochemical calculation shown here assumes 3 times solar abun-
dance of condensables; see Atreya et al. 1999 for details). The upper ammonia cloud limits the penetration
depth of visible light. Above the condensate clouds are higher-altitude hazes with varied properties in dif-
ferent Jupiter regions that can be sampled with a combination of methane band images and observations
in near-IR wavelengths. (c) The real cloud structure is probably very heterogeneous with locations of deep
convection, dry areas and intermediate cloud systems.

bearing species) that can be photolysed by UV irradiation above the clouds. The
strength of vertical mixing within the belts and zones is a crucial missing piece to
understand this puzzle. Upper tropospheric PH; and NH3 are known to be elevated
in the anticyclonic zones and depleted in the cyclonic belts (Gierasch et al. 1986;
Achterberg et al. 2006; Fletcher et al. 2009; Grassi et al. 2020). The EZ is the only
region with a significant deep column of NH3 gas below the ammonia clouds (de
Pater et al. 2016; Li et al. 2017). The ammonia rich EZ renders this region dark at
microwave wavelengths sensitive to depths from 1 bar all the way down to 100 bar.
Saturn displays a similar connection between gaseous species and the meridional cir-
culation on the scale of the belts and zones (e.g., Fletcher et al. 2011; Laraia et al.
2013).

The meridional circulation derived from temperature measurements and jet decay
was first explored during the Voyager era (Pirraglia et al. 1981; Conrath and Pirraglia
1983). The circulation associated with the equatorial zones and belts has been likened
to the Earth’s Hadley circulation (Barcilon and Gierasch 1970). On the other hand,
the mid-latitude jets may be similar to Earth’s Ferrel-like circulations (Fletcher et al.
2020) that may exhibit different directions (upwelling, downwelling) above and be-
low the water-condensation level (as revealed by contrasts in microwave brightness
associated with NHj3 and temperatures in the 0.1-100 bar region, Duer et al. 2021;
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Fletcher et al. 2021). This hypothetical vertically-stacked series of cells with differ-
ent circulation regimes is testable using measurements of gaseous species as tracers
and the distribution of moist convection inferred from lighting (Ingersoll et al. 2000;
Fletcher et al. 2020). However, the belt/zone variability of several gaseous species
accessible in the 4.0-5.7 ym range, including AsHs, GeHy, CO, and H,O, remains
unclear, largely due to the challenge of accessing the trace abundances, and degen-
eracies associated with the distribution of aerosols (Giles et al. 2017; Bjoraker et al.
2018; Grassi et al. 2020). Both PH3 (160-180 nm) and NH3; (> 160 nm) also pro-
vide absorption in the ultraviolet (Edgington et al. 1998; Melin et al. 2020), sensing
higher altitudes of the upper troposphere where photochemical depletion dominates.
It is possible that vertical motions, and associated transport of materials, is localised
within discrete meteorological features (see Section 2.1.3), rather than being elevated
over an entire planetary band. JUICE will map the spatial distributions of each of
these species, and monitor their variation over months and years, in an effort to un-
derstand the belt/zone circulation patterns within and above the cloud-forming region
of the troposphere.

At even higher pressures, below the cloud-forming layers, Juno has revealed that
the cloud-level winds persist down to approximately 3000 km depth, decaying away
before reaching the transition to metallic hydrogen (Kaspi et al. 2018, 2020; Guil-
lot et al. 2018). The truncation of these winds could potentially be due to stabilising
compositional gradients or radiative zones at great depth (Christensen et al. 2020),
but must occur before differential winds reach the conducting, uniformly rotating
interior where the dynamo originates (Cao and Stevenson 2017). Juno’s microwave
radiometer can probe below the clouds to depths of ~ 300 km, but unexpectedly
found that NHj still showed spatial belt/zone variability and global depletion (Inger-
soll et al. 2017). The absence of microwave remote sensing and close-perijove gravity
measurements on JUICE means that it will not directly reproduce these Juno discov-
eries, but it will scrutinise the interface region down to ~ 5 bars - the weather layer
sitting above the deeper troposphere - using infrared spectroscopy to understand how
it couples to the deeper circulation patterns revealed by Juno.

2.1.2 Vortices

Jupiter’s banded appearance is disrupted by the presence of a diverse collection of
geostrophic vortices, both anticyclones (high-pressure centres, with anticlockwise
circulation in the southern hemisphere) and cyclones (low-pressure centres, with
clockwise circulation in the southern hemisphere), as displayed in Figure 6. These
vortices possess the same sign of vorticity as the environment in which they are em-
bedded, and are prevented from migrating with latitude by the strong shears associ-
ated with the system of zonal jets. Jupiter displays a fundamental asymmetry between
the two types - anticyclones appear larger and more numerous than cyclones. Anti-
cyclones appear to grow at the expense of other anticyclones, as was the case for
Oval BA, which formed from three smaller anticyclones in the South Temperate Belt
(Sanchez-Lavega et al. 2001). These vortices are relatively shallow ‘pancake-like’
structures, with horizontal extents orders of magnitude greater than their depths. They
are thought to possess a midplane somewhere in the cloud-forming region (Dowl-
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ing 2014; Lemasquerier et al. 2020), where tangential velocities and the pressure
differences are at a maximum. Their windspeeds decay via the thermal wind equa-
tion (a ‘despinning’) with both altitude and depth. Thus an anticyclone will exhibit
a cold anomaly in the upper troposphere, a cyclone will exhibit a warm anomaly,
and such thermal contrasts have been confirmed by mid-infrared thermal imaging
(e.g., Fletcher et al. 2010; Wong et al. 2020). Below the vortex midplane, there is
evidence from Juno for warm cores beneath anticyclones, and cold cores beneath cy-
clones (Bolton et al. 2021; Parisi et al. 2021). However, these deep levels will not be
accessible to JUICE.
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Fig. 6 Jupiter atmosphere: Morphology and variety of atmospheric features at different spatial scales: (a)
Jupiter’s Great Red Spot. (b) Turbulent features at a 55°N. (c) Convective storm at 31°S. (d) Dayside
storms with lightning observed at the same location on the nightside. (e) Series of short-scale gravity
waves in Jupiter’s cloud at 17°N above a series of large dark features at 8°N in Jupiter’s North Equatorial
Belt. (f) One of the dark projections of the North Equatorial Belt, sometimes known as a 5-um hotspots. (g)
New Horizons observation of small-scale gravity waves in Jupiter’s atmosphere. (h) Galileo observations
of Jupiter’s limb in violet and near infrared light at 756 nm. (i) Composite map of Jupiter’s North polar
region in polar projection from Junocam observations obtained on different perijoves. (j) combination
of visible and near IR observations of Jupiter’s South polar region sampling polar hazes structured as a
circumpolar wave. Latitudinal grid is superimposed each 10°. Credits and sources: (a) and (b). Junocam
images acquired on February 12, 2019 with credits: NASA / JPL-Caltech / SWRI / MSSS / Kevin M. Gill.
(c) Excerpt from a Junocam observation obtained on June 2, 2020. (d) Combination of Galileo SSI images
obtained on May 4, 1999. NASA / JPL-Caltech. Image (e) is an HST observation from April 1, 2017 from
Simon et al. (2018a). Image (f) is a Junocam observation obtained on Sept. 16, 2020. (g) New Horizons
views from the MVIC instrument of equatorial waves on Feb. 28, 2007 with credits from NASA/Johns
Hopkins University Applied Physics Laboratory/Southwest Research Institute. (h) Galileo December 20,
1996; NASA / JPL-Caltech. (i) Image composite from Junocam images obtained on Feb. 17, April 10, June
2, and July 25 of 2020. NASA/JPL-Caltech/SwRI/MSSS / Gerald Eichstédt, John Rogers. (j) Adapted from
Barrado-Izagirre et al. (2008a).

Anticyclones: The Great Red Spot (GRS) (Figure 6a) is the largest and longest-
lived of all the vortices observed in planetary atmospheres (Rogers 1995). Internally
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the GRS exhibits a variety of meteorological phenomena (Sdnchez-Lavega et al.
2018), and the interaction of these large-scale vortices with the surrounding environ-
ment also has a significant effect on Jovian dynamics. The Great Red Spot deflects jet
streams to the north and south, which generate a ‘wake’ of turbulent activity that pro-
motes moist convective plumes (see Section 2.1.3). The peripheral winds appear to
entrain material within the GRS (Sdnchez-Lavega et al. 2021), such that the uniden-
tified compounds responsible for the orange-red haze (Baines et al. 2019) are either
irradiated for longer within the stagnant top of the anticyclone, or some unusual chro-
mophore is supplied from below via secondary circulation with the vortex itself. UV
and infrared spectroscopy will be able to compare aerosols and gaseous composition
in the GRS compared to its surroundings, and to compare this largest anticyclone to
smaller white anticyclonic ovals (Anguiano-Arteaga et al. 2021). Furthermore, the
GRS has been steadily shrinking from ~40000km in 1879 to its current value of
~15000km (Simon et al. 2018b), resulting in changes to its velocity field, vortic-
ity, and temperature structure at the upper cloud level. Another large anticyclone,
Oval BA, undergoes colour changes, from white to red and back again (Cheng et al.
2008a). By the early 2030s, JUICE will be able to assess any changes to velocities,
vorticity, aerosol coverage and gaseous composition associated with these variable
anticyclones.

Cyclones: Temporal variability is not just a feature of anticyclones. Cyclonic vor-
tices come in diverse shapes and sizes, from elongated and quiescent brown barges, to
chaotic ‘Folded Filamentary Regions’ (FFRs) at mid-to-high latitudes, to organised
arrays of circumpolar (CPCs) and polar cyclones (PCs) at both poles (Figure 6i). The
connections between the dynamics of these different types of cyclones remains un-
clear, but cyclones do appear to promote moist convective activity (see Section 2.1.3),
which may be partially responsible for the chaotic and ever-changing appearance of
the FFRs. The CPCs and PCs revealed by Juno (Adriani et al. 2018a) challenge our
understanding of Jupiter’s polar domain - an octagonal arrangement at the north pole,
and a pentagonal (sometimes hexagonal) arrangement at the south pole, whose long-
term stability reveals the dynamics of atmospheric turbulence and the ‘beta-drift’ of
cyclones (Gavriel and Kaspi 2021). The inclined phase of JUICE, with sub-spacecraft
latitude reaching up to 33°, will provide a new glimpse of the polar domain, with its
FFRs and polar cyclones, several years after the culmination of the Juno mission.
Whilst the JUICE inclination (see Section 9) does not match the polar orbit of Juno,
it does provide a long-term vantage point to observe how these polar features move
and change over daily or weekly timescales, and a broader infrared spectral range to
study their aerosols and composition. Thus the JUICE mission is designed to ‘deter-
mine the three-dimensional properties of discrete atmospheric features at high
spatial resolution and track them over time (e.g., Great Red Spot, vortices, at-
mospheric plumes, ’brown barges’) (R1-J-6)’.

2.1.3 Convective Storms and Lightning

On the smallest scales, the high-resolution imaging and spectroscopy of JUICE will
be able study individual storm cloud features as a window onto moist convection
in hydrogen-rich atmospheres. Although latent heat release at phase transitions can
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drive heat transport in atmospheres, the high molecular weight of condensates (com-
pared to the hydrogen atmosphere) can have an inhibiting effect on convection, which
must be overcome (Guillot 1995; Hueso et al. 2002; Leconte et al. 2017) to generate
the storms that we see. Such storms may help to regulate heat flux through the tro-
pospheric layers, and as such may play a role in the thermal evolution and banded
structure of Jupiter.

Storm plumes are observed as small white spots in dynamically-active domains
(Figure 6¢), such as the centres of cyclonic vortices (Hueso et al. 2022), or the wake
of the GRS (Baines et al. 2002). Individual cumulus-like clouds can be seen in Juno
high-resolution imaging, often adding texture to larger-scale stratiform clouds. These
cumulus clouds are most likely powered by the latent heat release of water condensa-
tion in the ~ 6-bar region, providing enough buoyancy to rise through the hydrogen-
rich air. Shallow convection, at altitudes too cold for liquid water and potentially asso-
ciated with latent heat release in NH3-ice cloud layers, may also be occurring (Becker
et al. 2020a; Hueso et al. 2022), and the complex blend of water and ammonia ice
may be forming slushy ‘mushballs,” (Guillot et al. 2020a), which trap NHj gas, pre-
cipitate, and then release their payload at several tens of bars (Guillot et al. 2020b).
Thus convective motions, and associated precipitation, play a vital role in shaping
the vertical structure of aerosols and gaseous composition, both on the largest scales
(belts and zones) and smallest scales (surrounding individual storm plumes).

Remote sensing from JUICE will examine these thunderstorms, determining the
vertical aerosol structure in the upper troposphere, and the spatial distribution of
volatiles (e.g., NH; and H,0) and disequilibrium species (e.g., PH3, AsHs, GeHy,
CO) as tracers of vertical motions. Spectroscopic maps in the UV and infrared will
be compared to the morphology of the cumulus clouds at the highest spatial resolu-
tions.

JUICE will also examine the distribution and energetics of Jovian lightning, us-
ing nightside imaging to detect flashes (e.g., Borucki and Williams 1986; Little et al.
1999; Dyudina et al. 2004; Baines et al. 2007), and listening for radio emissions
generated by electrical discharges in the Jovian atmosphere and propagating through
the plasma environment. Using this technique during the first quarter of the Juno
mission, the Waves instrument has made about two thousand lightning detections.
This represents the largest data set on Jovian lightning processes collected to date.
Close to Jupiter, low dispersion rapid whistlers occurred at frequencies from 50 Hz
to 20kHz (Kolmasov4 et al. 2018), and the so-called Jupiter dispersed pulses (JDPs)
were recorded at frequencies between 10kHz and 150 kHz (Imai et al. 2019). The
rapid whistlers have dispersion from units of milliseconds to a few tens of millisec-
onds, and the dispersion of JDPs is even lower. The latter might propagate in the free
space ordinary mode through low density regions in Jupiter’s ionosphere (Imai et al.
2019). The third kind of Jovian lightning radio bursts are long dispersion whistlers
lasting for several seconds, which were previously detected at frequencies of several
kHz in different regions of the Io torus between 5 and 6 Jovian radii using Voyager
2 measurements (Gurnett et al. 1979; Kurth et al. 1985). Due to the larger periapsis
distances of JUICE (~9 to 20 Jovian radii, see Section 3) compared to Juno or the
Voyagers, it will be more difficult for JUICE RPWTI to detect lightning radio pulses.
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However, lightning whistlers from very high latitudes as well as JDPs going through
the ionospheric low-density patches might propagate that far and be recorded.

In Jupiter’s atmosphere, lightning activity is predicted to show the largest emis-
sion in the Ha line at 656-nm (Borucki et al. 1996). However, nightside emissions
(Figure 6d) of lightning observed by Galileo at 656-nm were ten times weaker than
expected (Dyudina et al. 2013). This can be a consequence of deep lightning at pres-
sures larger than a few bar. Shallow lightning on Jupiter at pressures near 1 bar were
discovered by Juno at high latitudes (Becker et al. 2020a) and might be brighter at
656-nm than in clear filters. Dayside lightning in Saturn was observed in blue wave-
lengths during a large-scale storm (Dyudina et al. 2013). Thus, searches of lightning
in Jupiter’s atmosphere by JUICE will have to use a combination of filters to test
different scenarios of depth and intensity of the lightning. Furthermore, JUICE will
search for Transient Luminous Events (TLEs) in the ultraviolet from the night side
in Jupiter’s upper atmosphere (Giles et al. 2020b). Although lightning statistics from
Galileo had suggested that lightning was predominantly found within the Jovian belts
(Gierasch et al. 2000), Juno observations of microwave sferics and rapid whistlers in-
dicated increased lightning activity at the middle and higher latitudes (Brown et al.
2018; Kolmasova et al. 2018). These distributions of lightning activity provides con-
straints on moist convection and the deep abundance of water (Yair et al. 1998;
Sugiyama et al. 2014; Li and Ingersoll 2015). JUICE will therefore re-examine the re-
lationships between the distribution of lightning and the distribution of cumulus-like
clouds, and ‘determine the influence of moist convective processes by mapping
the frequency, distribution and depth of tropospheric lightning (R1-J-7).’

2.1.4 Tropospheric Waves

Jupiter’s atmosphere exhibits wave phenomena at a variety of scales, each providing
a means of characterising the background atmosphere through which they propagate.
Longitudinal waves and curvilinear structures have been observed at the smallest
scales of Galileo orbiter (Arregi et al. 2009) and Juno imaging (Orton et al. 2020),
and interpreted to be gravity (i.e., buoyancy waves in a stably-stratified atmosphere)
or inertia-gravity waves (i.e., sensing the Coriolis effect). Mesoscale waves modu-
lating cloud opacity and reflectivity, often found in regions of cyclogenesis, have
been observed by the Hubble Space Telescope (HST, Figure 6e), Juno, and ground-
based telescopes (Fletcher et al. 2018; Simon et al. 2018a). And larger planetary-scale
waves have been observed at low latitudes, including the equatorially-trapped Rossby
wave responsible for the chain of 5-um hotspots (visibly-dark formations, Figure 6f)
on the jet separating the NEB and EZ (Allison 1990; Arregi et al. 2006), and the
large-scale thermal waves that often occur over the NEB during periods of expansion
and contraction (Fletcher et al. 2017a). Large-scale wave motions were recorded as
movies by Cassini over two months in late 2000 (e.g., Choi et al. 2013). The polar
regions are covered by high hazes that stand out in images taken in methane absorp-
tion filters and in the ultraviolet, with their edge at about 65 deg latitude undulating
with wavenumber 12 (Figure 6j, Sdnchez-Lavega et al. 1998; Barrado-Izagirre et al.
2008b). These Rossby waves, which require a gradient of the Coriolis parameter as
the restoring force, are known to modulate aerosol reflectivity and upper tropospheric
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temperatures, but as yet the distribution of gaseous species and their phase speeds re-
mains unclear.

Understanding the origins of the waves (e.g., from instabilities, or arising from
convection, or some other means) and the deposition of energy during wave break-
ing (providing or removing momentum from the zonal flows) requires assessment of
their motions. Measuring the phase velocities of waves requires long-term imaging
and cloud tracking, with timescales tuned to the phenomenon of interest. A JUICE
requirement was therefore to ‘classify the wave activity in the Jovian atmosphere,
both horizontally (multi-spectral imaging) and vertically (R1-J-11).” We will re-
turn to the influence of wave phenomena on the stratosphere and upper atmosphere
in the following sections, as a means to couple the meteorology of the troposphere
with the circulations at higher altitudes.

2.2 Chemistry and Circulation in the Middle Atmosphere

The previous section described JUICE requirements for remote sensing of the tro-
posphere, at the interface between the deep interior and the cloud-forming regions
accessible to multi-wavelength observations. However, a key strength of JUICE is
its ability to probe the radiatively-controlled middle atmosphere, namely the strato-
sphere above the tropopause. Here the stratified thermal structure is determined by
a radiative balance (e.g., Guerlet et al. 2020a) between heating (absorption by CHy4
gas and aerosols) and cooling (thermal emission from ethane, acetylene, and to a
lesser extent CHy), and UV photolysis of methane generates a complex network of
hydrocarbon species (Moses et al. 2005a) with emission features throughout the mid-
infrared. The JUICE remote sensing payload is required to ‘characterise the three-
dimensional temperature structure of the upper troposphere, stratosphere, and
thermosphere (R1-J-9.5),” enabling a comprehensive study of the Jovian middle at-
mosphere.

Stratospheric Temperatures: Jupiter’s stratospheric circulation exhibits simi-
lar zonal organisation as the troposphere, with bands of warmer and cooler regions
revealed via thermal imaging (Figure 7). The zonal organisation is strongest at low-
latitudes, where Jupiter’s equatorial stratospheric oscillation (often referred to as the
Quasi-Quadrennial Oscillation, or QQO, Leovy et al. 1991a; Orton et al. 1991a)
modulates the 10-mbar thermal contrasts at the equator on a ~ 4-year timescale.
Mid-infrared spectroscopy revealed that this is associated with a downward-moving
chain of warm and cool anomalies (and associated changes in stratospheric zonal
jets, Flasar et al. 2004; Cosentino et al. 2017a; Giles et al. 2020a), but long-term
monitoring reveals that its period and phase can be substantially perturbed by tropo-
spheric upheavals (Antufiano et al. 2021). The vertical structure of this pattern, which
is thought to be driven by waves emanating from the troposphere and interacting with
the mean flow (Friedson 1999), can be sounded via emission in the sub-millimetre
(Cavalié et al. 2021; Benmahi et al. 2021), particularly with CH4 and H,O from the
lower stratosphere up to 10 ubar, but also via occultations - radio occultations as
JUICE passes behind Jupiter as seen from Earth, and stellar/solar occultations as a
star or the Sun sets behind the Jovian limb (e.g., Greathouse et al. 2010). These tech-
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niques will reveal the vertical structure of the QQO. Given the expected longevity of
JUICE, the pattern of stacked wind/temperature anomalies will be monitored during
their descent, sampling a full ~ 4-year period over the duration of the mission.

Gaseous Tracers: Moving to mid-latitudes, the stratosphere again demonstrates
coupling to the underlying troposphere. The spatial distribution of stratospheric acety-
lene is asymmetric between the northern and southern hemisphere (Nixon et al. 2010;
Fletcher et al. 2016; Melin et al. 2018), possibly due to a difference in the strength
of vertical mixing, rather than differences in the efficiency of photochemical produc-
tion. Furthermore, significant stratospheric thermal wave activity, likely to be near-
stationary Rossby waves, are often reported in the northern hemisphere (Fletcher
et al. 2017a) where the acetylene is at its maximum. Ultraviolet spectra from Juno,
which exhibit strong C,H, absorption, reveal that this abundance declines strongly
towards the poles, as expected from the annually-averaged solar insolation, also indi-
cating that horizontal equator-to-pole mixing is not strong enough to distribute C,H,
uniformly with latitude (Nixon et al. 2007b; Giles et al. 2021b). On the other hand,
the meridional distribution of C;Hg does not follow the mean solar insolation and in-
creases towards the poles (Nixon et al. 2007b), and altitude-latitude advective trans-
port models cannot reproduce these C;H, and C,Hg distributions (Hue et al. 2018a).

Recent observations of the polar regions have revealed an even more complex
situation, in which the distributions of C,H, species are not zonal. Local enhance-
ments in abundances are correlated with the location of the diffuse auroras (Sinclair
et al. 2017a, 2018a, 2019). Other species, like HCN and CO,, also show enhance-
ments/depletion in the polar and auroral regions (Lellouch et al. 2006; Cavalié et al.
2022). This is a strong indication that auroral chemistry plays an important role in
these regions. Thermal-infrared observations of the polar stratosphere and upper tro-
posphere reveal cold polar vortices (Simon-Miller et al. 2006; Fletcher et al. 2016),
possibly as a consequence of efficient radiative cooling from polar aerosols (Guer-
let et al. 2020a), for which C, species are probable precursors. However, tying the
aerosol distribution observed in reflected sunlight directly to the thermal structure
will remain a challenge, particularly as a consequence of auroral heating discussed
in Section 2.4.2. JUICE will investigate the thermal structure of the stratosphere, as
well as the distribution of tracers like C;H, and C,Hg (which have signatures in the
FUV below 180 nm, Gladstone and Yung 1983). It will also study the distribution of
species deposited by Comet Shoemaker-Levy 9 (SL9) like HCN, CO, CS and H,O
(e.g., Lellouch et al. 1995b; Feuchtgruber et al. 1997), to understand the middle-
atmospheric circulation, from the equatorial QQO, to the mid-latitude waves, to the
polar domain.

Stratospheric Winds: The global stratospheric temperature field, and the dis-
tributions of hydrocarbons, are just two ingredients required for understanding the
global circulation. Measurements of winds in the Jovian stratosphere have presented
a challenge, given the absence of identifiable cloud tracers to monitor the flows at mil-
libar pressures. Indirect determinations via stratospheric temperature gradients and
the thermal wind equation (Flasar et al. 2004; Read et al. 2006) are subject to sub-
stantial uncertainties, because there is an altitude gap of two scale heights between
the level where the cloud-top winds are used as initial condition (in the upper tropo-
sphere), and the levels where the winds are derived (in the stratosphere). Direct and
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absolute measurement of stratospheric winds relies on high-resolution spectroscopy
to reveal the Doppler shifts of individual sub-millimetre emission lines, recently
demonstrated using the Atacama Large Millimeter/submillimeter Array (ALMA) (Cav-
alié et al. 2021; Benmabhi et al. 2022). The winds are measured at the levels probed by
the spectral lines, usually in the middle stratosphere with the sensitivity of ALMA.
The derivation of the full stratospheric wind field then requires near-simultaneous
temperature measurements to be combined with the wind observations using the
thermal wind equation, as shown in Benmahi et al. (2021). Although it is an es-
sential piece to constrain general circulation models and quasi-periodic stratospheric
oscillations like Jupiter’s QQO (see Figure 7), such a combination has only been ob-
tained once in ten years of ALMA operations. The JUICE payload will enable the
first maps of stratospheric winds, using emission from CHy, H,O, CO, HCN and
CS lines. Here we take advantage of an influx of chemical species from exogenic
sources, such as long-lived oxygen-bearing species (H,O, CO,, and CO), HCN, and
CS, many of which were deposited by the impact of the SL9 comet in 1994 (Lellouch
et al. 1995a; Harrington et al. 2004) and have been slowly diffusing with latitude ever
since (Moreno et al. 2003; Lellouch et al. 2006). High-resolution and high-sensitivity
spectroscopy of these emission lines enables simultaneous sounding of stratospheric
temperatures and direct wind measurements in the 10 ubar to 100 mbar range, with
scale-height resolution, a first for an orbiting spacecraft. Combining sub-millimetre
sounding, performed every orbit for the entire JUICE tour, with UV, IR and radio
occultations will provide significant opportunities for synergistic science for strato-
spheric circulation (see Section 5), with the goal to ‘globally determine the vertical
structure of zonal, meridional and vertical winds (R1-J-5).”

2.3 Global Composition and Origins

The origin and migration of Jupiter played a central role in shaping the present-day
configuration of our Solar System. Its bulk chemical composition (in comparison to
that of the Sun) provides a window on the composition of the protosolar nebula at
the time of planet formation (Atreya et al. 2003; Lunine et al. 2004; Venturini and
Helled 2020). JUICE does not aim to reproduce the Juno capabilities of probing the
bulk NH;3 (Li et al. 2017) and H,O (Li et al. 2020) content of Jupiter’s deep inte-
rior, nor will it perform gravity sounding of the zonal flows and density gradients
in the hot and fluid interior (e.g., the diffuse core extending up to 50% of Jupiter’s
radius into the overlying molecular envelope, Wahl et al. 2017). Furthermore, the
picture of a relatively homogeneous hydrogen-helium envelope, mixed by efficient
convection associated with its high intrinsic luminosity (e.g., Guillot et al. 2004; Li
et al. 2018) is no longer suitable, with a gradient in heavier elements being more
likely. However, JUICE will contribute to our understanding of Jupiter’s atmospheric
composition from the cloud-forming region and upwards, and is specifically required
to ‘provide estimates of elemental abundances and isotopic ratios in the atmo-
spheric envelope to constrain the composition of the deep troposphere and the
origin of external material (R1-]J-9).’
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Fig. 7 Jupiter’s stratospheric equatorial oscillation was initially discovered from thermal infrared observa-
tions similar to those shown in the upper panel (adapted from Antufiano et al. 2021). It is characterised by
vertically alternating temperature extrema that descend with time. At a given pressure level (the 3, 6.4, and
13.5 mbar levels are indicated with horizontal dashed lines), positive maxima occur approximately every
4.5 years. Over the years, this oscillation has shown some variability in its periodicity as demonstrated by
Giles et al. (2020a) (left panel). The oscillation is not only temporal, but also spatial, as demonstrated on
the right panel by the vertically stacked prograde and retrograde jets at the equator (adapted from Benmahi
etal. 2021).

2.3.1 Tropospheric Composition and Origins

Thermochemistry in a strongly-reducing environment leads to the most cosmogoni-
cally abundant elements (C, N, O, S, P) appearing in their hydrogenated forms (CHy,
NHj3;, H,O, H,S, PH3). At the low temperatures of the upper troposphere, the volatile
compounds will condense to form clouds (ices of NH3 and H,0, and a combination
reaction to form NH4SH, Weidenschilling and Lewis 1973), such that the main reser-
voirs for these gases are hidden at depth below the clouds. Furthermore, Juno has
revealed that NH3 is not well-mixed even below its ~ 700—mbar cloud base, remain-
ing variable and depleted down to ~ 60 bars (Ingersoll et al. 2017; Li et al. 2017).
Spectroscopic measurements from JUICE will sound the abundances above, within,
and immediately below the cloud-formation levels. At these altitudes, the abundances
are governed by a combination of vertical mixing, saturation, and photolytic destruc-
tion (e.g., NHj3 is photolysed to form N;Hy, a possible contributor to aerosols in the
upper troposphere). JUICE contributions are therefore likely to be lower limits for
tropospheric volatile enrichments N/H, S/H and O/H. Nevertheless, mapping the lati-
tudinal variability of these species (in relation to the belt/zone structure), and observ-
ing how they vary with time, places bulk measurements of these gases into a wider
context, to understand how representative they might be of the planet as a whole.
Similarly, disequilibrium species like PH3, AsH3;, GeH4 and tropospheric CO can
be studied via combination of UV and 4.0-5.7 um spectroscopy. These species are
only present in the upper troposphere as the rate of vertical mixing is faster than the
rate of their thermochemical destruction, leading to ‘quenched’ abundances that are
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representative of deeper, kilobar levels (Kaye and Strobel 1984). Their spatial and
temporal variability therefore provides estimates of elemental abundances of P/H,
As/H, and Ge/H that would be otherwise inaccessible. Furthermore, tropospheric PHj;
and CO are limited by chemical reactions with water, providing an indirect means of
estimating the deep water abundance via thermochemistry (Bézard et al. 2002; Viss-
cher et al. 2010; Cavalié et al. 2023). Thus, JUICE can provide indirect constraints
on deep elemental abundances, without actually sampling below the cloud-forming
layers.

The ratios of isotopes within a particular molecule can also reveal insights into
the nature of its original reservoirs, and the proportion of ices incorporated into the
forming protoplanets. In particular, Jupiter’s deuterium-to-hydrogen (D/H) ratio can
be measured in methane (Owen and Encrenaz 2003), using absorption features of
CHj3D in the 4.0-5.7 um range. Separating CH3;D abundances from the properties of
aerosols is challenging, and will rely on the techniques described in Section 2.1.1,
exploiting reflected sunlight observations under multiple illumination conditions and
geometries. Nevertheless, the JUICE estimate of D/H in methane can then be com-
pared to estimates of the D/H in hydrogen (Lellouch et al. 2001a) to understand the
fractionation of deuterium between different molecules. It will also be compared to
the direct in situ measurement from the Galileo probe (Mahafly et al. 2000), to assess
how well that measurement represents the global composition of Jupiter.

2.3.2 Stratospheric Composition and Evolution

Jupiter’s stratospheric composition is determined by photochemistry of methane (which
does not condense at Jovian temperatures), alongside the influx of exogenic species
from interplanetary dust, bolides and larger impactors (asteroids and comets) entering
the upper atmosphere (Moses et al. 2005a; Hue et al. 2018b). As described in Sec-
tion 2.2, JUICE remote sensing will be able to map the spatial distribution of strato-
spheric hydrocarbons, primarily C;H, and C;Hg in the UV (Melin et al. 2020; Giles
et al. 2021b, 2023; Sinclair et al. 2023) as well as CH3C,H in the sub-millimetre.
An additional goal is to ‘constrain the origin of external material (R1-J-9)’ via
measurements of abundances and isotopic ratios in externally sourced materials. This
includes species like H,O, CS, CO and HCN originating from the cometary impact
(SL9) in 1994. The latitudinal distribution of these species is expected to be gov-
erned by stratospheric circulation and diffusion since the time of impact (Moreno
et al. 2003; Lellouch et al. 2006), but additional ongoing sources of exogenic mate-
rials (e.g., interplanetary dust, connections with Jupiter’s rings, or with satellites via
magnetic field lines) could be determined via new spatial maps acquired by JUICE
in the sub-millimetre (e.g., Connerney 1986; Moses and Poppe 2017). The vertical
profiles of HO and CO can be mapped with scale-height resolution, providing an
indication of the origin of the external oxygen.

JUICE has another technique to determine the origin of these exogenic species
- high spectral-resolution observations in the sub-millimetre will provide estimates
of isotopic ratios in those molecules, for comparison with the wider Jovian environ-
ment. Examples include D/H, '°0/'80, '°0/70 in water and CO; '>C/'3C in CO;
and '2C/"3C and N/'N in HCN, each of which may allow us to connect Jupiter’s
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stratospheric species back to source populations in comets and other icy bodies. For
example, if Jupiter’s external water originates from interplanetary dust particles and
if these particles would enter the planet with slow velocities (so as not to be dissoci-
ated by the heat generated during atmospheric entry), then we would expect to find
cometary D/H ratios in H,0O, i.e. 1-8 x 10~* (Anderson et al. 2022). Conversely, if the
water were produced by comet impacts and would thus result from the recombination
of cometary oxygen with Jovian hydrogen, then the water would exhibit a Jupiter-like
D/H ratio, i.e. ~2x 107> (Lellouch et al. 2001b). In this case, the ortho-to-para ratio
in water would reflect that of Jovian hydrogen and not depart from 3:1. By com-
paring the potential origins of stratospheric species with what is known of Jupiter’s
global composition, JUICE will be able to place new constraints on the formation and
subsequent evolution of the gas giant.

Finally, JUICE may be lucky and glimpse examples of ongoing evolution in
stratospheric composition. The rate of impacts is being refined by Earth-based video
monitoring of flashes in the Jovian atmosphere (Hueso et al. 2018b), revealing bolide
flashes (i.e., impactors disintegrating in the upper atmosphere) at a detectable rate
estimated to be 0.4-2.6 per year. Juno UVS has detected an impactor from orbit, and
considering the probabilities of capturing such an event in a UVS scan, estimated a
rate that was considerably higher (Giles et al. 2021a). Larger impactors, such as the
1994 Comet Shoemaker Levy 9 (Harrington et al. 2004), or the 2009 ‘Wesley’ as-
teroidal impactor (Sdnchez-Lavega et al. 2010; Hammel et al. 2010), remain much
rarer (Zahnle et al. 2003). Each of these events may have observable consequences
for atmospheric composition (injecting water and silicate-rich materials, and produc-
ing high-temperature shock chemistry within the entry point), and the likelihood of
tracking impactors in advance will improve with the commissioning of the forthcom-
ing Vera Rubin observatory (see Section 6). The flexibility and agility of the JUICE
spacecraft to react to unique (and potentially unexpected) events will be discussed in
Section 3.

2.4 Energetics of the Ionosphere, Thermosphere, and Auroras

Beyond the dynamics of the troposphere, and the circulation and chemistry of the
stratosphere, JUICE will explore the interface between the neutral atmosphere and
the external charged-particle environment. Jupiter’s ionosphere and thermosphere
epitomises the JUICE goal of exploring coupling between components of the Jovian
system, being influenced by the circulation and wave propagation of the lower at-
mosphere, and the deposition of energy in the polar region via electrons propagating
along magnetic field lines. Particle and fields in situ measurements, by PEP, RPWI
and J-MAG, will directly monitor the energy and momentum exchange processes in
the magnetosphere responsible for these energetic auroral particles impacting the at-
mosphere (c.f., Masters et al. in prep.). This gives the electromagnetic energy flux and
exact energy distributions flowing downward along the field lines, and can be com-
pared to the auroral emissions detected in the atmosphere at various wavelengths.
It will also put further constraints on the ionization, related ion-molecule and ther-
mosphere aerosol formation chemistry, and thermal altitude profiles in the Jovian
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ionosphere, and electrodynamic processes that contribute to the atmosphere thermal
balance. The locations of the auroral electron acceleration regions and radio emis-
sions from atmospheric lightning can furthermore be remotely monitored by radio
wave detections by RPWI.

Above the methane homopause, solar EUV and auroral precipitation shape a re-
gion comprising Hp, He and H. The ionosphere is formed from layers of thermal
plasma embedded in the neutral atmosphere, from EUV/XUYV ionisation or impact
ionisation from high-energy precipitating particles. JUICE will explore this upper
atmospheric region by means of (i) both radio occultations and stellar occultations
to determine electron densities (from refraction and Doppler frequency shifting) and
the temperature structure of the neutral atmosphere; and via (ii) imaging spectroscopy
(UV and infrared emissions from H,, H, and the H; ion) from the auroral regions to
low latitudes. Direct measurements of stratospheric winds via sub-millimetre Doppler
shifts of spectral lines will also provide constraints on the winds in this region (see
Section 5).

2.4.1 Thermospheric Circulation and the Energy Crisis

From stellar occultations and observations of the H; ion (generated on the dayside
via the reaction of H, with H; produced by the ionisation of H, under solar Ex-
treme Ultraviolet (EUV) radiation, Drossart et al. 1989), it is known that Jupiter’s
upper atmosphere and exosphere at low to mid-latitudes are systematically far hotter
than can be explained by solar heating alone (Yelle and Miller 2004), a conundrum
known as the ‘energy crisis.” The auroral regions are bombarded by electrons that
cover a broad range of energies, with low energy electrons (eVs) mainly contributing
to heating the atmosphere, and the more energetic ones (100 eV and above) produc-
ing excitation, ionization, dissociation and subsequent auroral emissions, chemistry,
and heating. However, thermospheric circulation models (e.g., Achilleos et al. 1998;
Yates et al. 2020) suggest that the strong Coriolis forces associated with Jupiter’s
rapid rotation should trap this energy at high latitudes. However, recent H;L observa-
tions during a potential solar wind compression event have revealed a steady decrease
in temperature from the auroral regions to the equator, confirming the potential re-
distribution of energy from high to lower latitude regions (O’Donoghue et al. 2021).
This heating possibly occurs in pulses associated with a solar-wind compression,
which facilitates the transport of heat to lower latitudes (Yates et al. 2014). Addi-
tional sources of heating from below (e.g., dissipation of gravity and acoustic waves
propagating from the troposphere) may contribute to low-latitude variability in H;r
emission (Schubert et al. 2003), such as the possible excess heating over the Great
Red Spot (O’Donoghue et al. 2016). Such sources, localised and sporadic, also con-
tribute to the highly structured and variable H;’ density profile in altitude (Matcheva
et al. 2001). Furthermore, heating not only expands the atmosphere but can also drive
vertical winds and affect turbulence. The location of the homopause, below which
the main atmospheric species are well mixed and above which there is a diffusive
separation of species by mass, is hence a tracer of energy deposition and dynamics.
Remote sensing by JUICE will ‘characterise the three-dimensional tempera-
ture structure of the ... thermosphere (R1-J-9.5)’. Vertically propagating waves
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observed in occultations throughout the atmosphere in the IR and the UV will be
directly correlated with potential sources in the lower atmosphere (e.g., moist con-
vective events and plumes) to understand their contribution to the energy budget. The
combination of UV and IR occultations is a powerful means to characterise Jupiter’s
atmospheric vertical structure and composition, the dynamical coupling between lay-
ers, and the source of energy sources in the upper atmosphere. They will be com-
plemented by measurements of the stratospheric windfield by SWI, and radio oc-
cultations (e.g., Gupta et al. 2022). In addition, UV observations will be critical to
derive the global variations of the homopause in terms of height and eddy diffusion
coefficient, characterising the amount of mixing, based on hydrocarbon tangential
column densities from multiple UV stellar occultations, complemented by dayglow
Hel 58.4 nm resonance line observations (e.g., Parkinson et al. 2006, Vervack et al.
1995). Temperature profiles associated with H, can be derived from solar and stellar
occultations in the UV (Koskinen et al. 2015). Furthermore, UV dayglow maps could
help to identify the origin of the H Lyman alpha bulge, its possible connection with
the auroral activity or with thermospheric/exospheric circulation, and its relation of
any possible longitudinal asymmetry in Hel 58.4 nm.

2.4.2 Jupiter’s Auroras

Before the Juno mission, the main emissions (shown in Fig. 8) were thought to be
due to co-rotation breakdown in the middle magnetosphere, with emissions related
to upward currents (Cowley and Bunce 2001) from the auroral ionosphere. Juno ob-
servations have shown that particles and plasma wave phenomena are tightly linked
in Jupiter’s low-altitude auroral regions (Kurth et al. 2018; Bonfond et al. 2021a;
Sulaiman et al. 2022), where different latitudinally separated zones are linked to up-
ward (zone I) and downward (zone II) electric currents (Mauk et al. 2020). Kurth
et al. (2018) showed that the electron distributions and significant density depletions
corresponding to zone I are coincident with brief but very intense broadband plasma
waves propagating downward in the whistler mode at frequencies below 10 kHz.
Sulaiman et al. (2022) identified H / Hj cyclotron waves in zone I in the presence
of energetic upward H™ beams and downward energetic electron beams, and large-
amplitude solitary waves in zone II. Juno has also detected evidence of large-scale
electrostatic potentials above the main aurora, with broad electron energy distribu-
tions (Allegrini et al. 2020). Hence, we still probably lack a complete understanding
of all the phenomena that produce the aurora.

The variable magnetic footprints of lo, Europa, and Ganymede are visible equa-
torward of the main oval (Fig. 8, Grodent et al. 2008), associated with Alfvén, ion
cyclotron, and whistler mode waves (Sulaiman et al. 2020), but the complex nature
of their morphology and hence of the moon-plasma interaction, revealed by Juno
close-in observations (Mura et al. 2018), is still to be fully understood. A magnetic
footprint of Callisto was tentatively observed by Bhattacharyya et al. (2018) and fur-
ther observations are necessary to confirm it. Interior to the main oval, the accelera-
tion of charged particles may be responsible for the fluctuating polar-cap aurora (e.g.,
Grodent et al. 2003), with signatures of flares associated with magnetic reconnec-
tion on the dayside magnetopause being observed (e.g., Ebert et al. 2017), but the
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debate about whether the polar region is open or closed to the solar magnetic flux
remains unresolved. These auroral signatures, from the polar cap, to the main oval
and satellite footprints, are all highly variable on timescales of minutes and hours
(Clarke et al. 2004); signatures of possible substorm-like injections have been pro-
posed (Bonfond et al. 2021a). Greathouse et al. (2021) reported that the bright polar
emissions observed by the HST and Juno UVS on the day side dim substantially or
disappear between midnight and dawn. The JUICE UVS will have extended periods
of time to scan the aurora on the night side to study this dimming in more detail,
especially during the high inclination phase. Long-term HST imaging programmes
(Nichols et al. 2009; Clarke et al. 2009; Nichols et al. 2017), as well as Juno IR and
UV imaging (Mura et al. 2017a; Bonfond et al. 2017), have provided substantial in-
creases in our understanding of auroral morphology. In particular, the comparison
between UV and IR is crucial to understand the complexity of the auroral-related en-
ergization processes (Gérard et al. 2018, 2023), but a long-term programme of JUICE
auroral monitoring will provide vantage points that are not possible from Earth-based
facilities.

Visible light studies with JANUS will greatly enhance our understanding of the
aurora in this wavelength range, which, unlike the IR and UV emission, cannot be
observed on the dayside of Jupiter, thus ruling out studies from the Earth or its vicin-
ity. Limited visible light observations by the Galileo solid-state imaging (SSI) system
(e.g. Fig. 8) captured several classes of auroral features from a survey of the northern
auroral region (Vasavada et al. 1999). These included a continuous primary arc a few
hundred km wide, observed at around 245 km above the 1-bar level. This varied in
morphology with local time between a single arc and a multiply-branched feature. A
variable secondary arc, associated with the region just beyond Io’s torus was also vis-
ible, plus a diffuse “polar cap” emission. A spot and tail associated with the magnetic
footprint of Io was also observed. As the visible emission is too faint for Juno’s Juno-
Cam, JANUS will provide unprecedented data, at spatial resolutions as small as tens
of km per pixel, and occasionally at high cadence, allowing the dynamics of these
features to be captured.

The vertical structure of the auroral curtain, and its spectral properties, have been
explored at high spatial resolution in the ultraviolet (Bonfond et al. 2017; Mauk et al.
2020), infrared (Adriani et al. 2017; Dinelli et al. 2017) and visible (Vasavada et al.
1999), which sense different altitudes and chemical compounds. With JANUS and
MAIJIS imagery at perijove, along with MAJIS and UVS occultations, JUICE will
study the dynamic auroras in three dimensions and their temporal evolution.

Auroral Coupling to the Stratosphere: lon-neutral chemistry at high latitudes
may be responsible for the unusual nature of upper tropospheric and stratospheric
aerosols in the polar hazes (Friedson et al. 2002a; Wong et al. 2000), possibly fractal
aggregates (Li et al. 2013) that are numerous and reflective in the infrared (Barrado-
Izagirre et al. 2008a), and dark and absorbent in the ultraviolet. Remote sensing in
the UV and infrared will characterise the composition and scattering properties of
these polar hazes, to understand their asymmetric properties between the northern
and southern poles, and their influence on radiative balance. The consequences of
auroral heating are visible at stratospheric altitudes (e.g., Sinclair et al. 2018b), pos-
sibly via direct Joule heating or radiative effects in the auroral-associated hazes. Sub-
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Fig. 8 Example auroral images obtained from Jovian orbit at three wavelengths, at different epochs and
orientations, with some key features labelled. Lines of System-III longitude and latitude are shown on
each. See Fig. 2 of Grodent (2015) for a comprehensive overview of features at UV wavelengths. a)
Galileo SSI visible light image of the northern aurora, at a spatial resolution ~26 km/pix, obtained
in November 1997; presented in Fig. 1 of Vasavada et al. (1999), and released as NASA PIA01602
(Credit: NASA/JPL-Caltech). b) Polar projection of May 2017 data from Juno UVS, here showing
the southern aurora, presented in detail in Fig. 2 of Bonfond et al. (2021b) (Credit: NASA/JPL-
Caltech/SwRI/UVS/ULiege). ¢) Juno JIRAM mosaic map of the southern auroral oval, taken during Au-
gust 2016. White points are predicted footprint positions indicated by letters I, E, and G for the moons Io,
Europa, and Ganymede, respectively. Presented in detail by Mura et al. (2017b), Fig. 2 (credit: NASA/JPL-
Caltech/SwWRI/ASI/INAF/JIRAM).

millimetre observations will enable joint measurements of stratospheric temperatures
and winds within these auroral zones, to assess the penetration levels of auroral en-
ergy into the stratosphere. Measuring the distributions of species like C;H, and C;Hg
(e.g., Sinclair et al. 2018b, 2023; Giles et al. 2023), H,O, HCN and CO, (Benmabhi
et al. 2020; Cavalié et al. 2022; Lellouch et al. 2006), will also help shed light on
chemistry occurring in the auroral regions, like aerosol production (Perry et al. 1999;
Wong et al. 2000, 2003; Friedson et al. 2002b) and heterogeneous chemistry involv-
ing them (Perrin et al. 2021).

JUICE is required to ‘investigate the unique atmospheric properties of Jupiter’s
polar regions, including the influence of auroral energy deposition and ion chem-



Jupiter Science from JUICE 29

istry on the atmospheric temperatures, energy budget, chemistry and cloud/
haze formation (R1-J-4)’. As we discuss in Section 3, the JUICE tour enables a
long-term study of the Jovian auroras across multiple wavelengths, with observations
tuned to the timescales of the various phenomena, observing variable emissions over
minutes, hours and days as the conditions within the solar wind fluctuate. The auroras
will be particularly scrutinised as JUICE reaches higher orbital inclinations.

2.5 Summary of Objectives

The JUICE science case is summarised by the eleven objectives listed in Table 1,
and by the boldface science requirements included in the text above. The require-
ments state that the mission ‘shall have the capability to investigate the spatial
variability of Jovian dynamics, chemistry and atmospheric structure in three
dimensions (R1-J-1)’, and must provide ‘long-term time-domain investigations of
atmospheric processes over 2+ years, with a frequency tuned to the timescales
of interest (R1-J-2).” To do so, JUICE ‘must support global and regional spec-
troscopic mapping of the sources and sinks of key atmospheric species tracing
atmospheric circulation and chemistry with spatial resolution < 200 km/px in
the VIS-NIR range, < 1000 km in UV and with about a scale height vertical and
2000-4000 km horizontal resolution in the sub-millimeter range, repeated over
a range of timescales from days to years (R1-J-8).” All other science requirements
(R1-J-1 to J-11) are recorded in the previous sections. An overarching theme of the
JUICE science case is that the different regimes (the interior, atmospheric layers, and
magnetosphere) are not decoupled from one another, so cannot be investigated in iso-
lation - JUICE will explore the connections between all of the components within
this system. We now turn to how the payload and Jupiter tour have been designed to
meet these objectives.

3 JUICE Tour: Jupiter Observing Opportunities

To meet the Level-1 science requirements described in Section 2, Level-2 require-
ments on the mission and spacecraft design were identified (Science Requirements
Document JUI-EST-SGS-RS-001). To summarise those relevant to Jupiter science,
the mission and spacecraft were designed to:

Support inertial pointing for solar and stellar occultations [...] in orbit around
Jupiter.

Support nadir and off-nadir pointing for imaging.

Support raster pointing for Jupiter [...] when objects are larger than fields of view.
Support a spot-tracking mode for Jupiter.

Perform limb tracking manoeuvre during radio occultations of Jupiter.

Support instrument pointing needs according to [their] requirements.

Provide sufficient temporal coverage for Jovian atmospheric and magnetospheric
science, [with a] Jovian tour [that] shall be at least 2.5 years.
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— Start Jupiter atmosphere observations 6 months before the Jupiter Orbit Insertion
and continue during the Ganymede phase.

— Provide an orbit with inclination of at least 30° with respect to the Jupiter equa-
torial plane.

— Co-align the boresights of instruments JANUS, MAIJIS, UVS, GALA and SWIL

— Provide repeated observations of the same latitudes and cloud features with fre-
quencies tuned to the timescales of interest (hours to months).

— Enable complete latitudinal, phase angle and local solar time coverage of Jupiter
by remote sensing instruments.

— Provide at least two opportunities for remote sensing of Jupiter during the Europa
phase when the distance to Jupiter is at a minimum.

— React on short timescales to new and unexpected events in the Jovian atmosphere,
such as major storms or impacts. JUICE pointing can be updated up to one week
in advance, and commanding up to 3 days before the uplink, both in exceptional
cases.

— Enable sounding of the Jovian atmosphere in radio-, stellar and solar occultations
at all latitudes, repeating observations at regular times during the mission.

— Provide capabilities for (1) global mosaics/scans of Jupiter repeated once every
2.5 hours to build up 360-degree longitude coverage during a ten-hour rotation,
and (2) repetitive imaging of discrete cloud features/ region with hourly frequency
for cloud feature tracking while the feature transits from west to east (full rotation
in 10 hours), repeated on subsequent rotations.

— Enable joint observation campaigns with remote sensing instruments (submm,
IR, visible and UV), as well as ENA and Radio observations for the study of the
auroral region of Jupiter, as well as the coupling between the Galilean satellites,
the Jovian magnetosphere, and the high latitude regions of Jupiter (thermosphere,
ionosphere and magnetosphere).

The JUICE orbital tour of the Jovian system is described by Boutonnet et al. (in
prep.), and was designed to meet these requirements and enable the activities of the
comprehensive payload discussed in Section 4. The JUICE orbit differs substantially
from that of Juno, enabling global views over longer duration from a low-inclination
orbit, and with an inclined phase offering high-resolution views of the southern hemi-
sphere. Unlike Juno, JUICE does not spin, therefore simplifying some of the remote
sensing observation sequences described in Section 4. Here we briefly describe the
different phases of the tour of interest to Jupiter science, which are shown in Figs. 9
and 11.

Phase One begins some six months before Jupiter Orbit Insertion (JOI) in July
2031 according to the Crema 5.0 (Consolidated report on mission analysis) trajec-
tory, and encompasses the first elliptical orbit around Jupiter until February 2032.
The long approach to Jupiter will permit atmospheric monitoring and the generation
of low-resolution movies, with the spatial resolution afforded by the JANUS camera
exceeding the 150 km/pixel of the HST WFC3 instrument some 11.0 days before
JOI and will exceed JWST spatial resolution at 8.5 days before JOI, respectively (see
Figure 10). For much of the long first orbit, the resolution will be 200-300 km/pixel,
enabling global monitoring of atmospheric phenomena. Higher-resolution observa-
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Fig. 9 Overview of the JUICE orbital tour of Jupiter using Crema 5.0, showing (a) the distance to Jupiter
in km; (b) the angular size of Jupiter from JUICE’s vantage point; (c) the sub-spacecraft latitude; and (d)
the phase angle (low phase implies dayside, high phase implies nightside). In (a) we show the mean orbital
distances of Europa, Ganymede and Callisto for comparison. In (b) we highlight phases 2, 3, 4 and 5 of
the tour.

tions begin in earnest in Phase Two, between February and June 2032, as the JUICE
orbital energy is reduced. Five close flybys of Jupiter occur during this phase (per-
ijoves 2-6, with perijove 1 being orbit insertion in July 2031), and provide the first
real opportunity to test the JUICE remote sensing investigations with distances down
to 11-13 Ry from Jupiter (Figure 9). Jupiter remote sensing will work in tandem with
satellite remote sensing and magnetospheric measurements during this period, with
four Ganymede flybys and one Callisto flyby during Phase 2.

Phase Three provides the highest spatial-resolution Jupiter observations of the
entire tour, as JUICE performs two close flybys of Europa in July 2032. Although
much of the spacecraft resources and data volume will be dedicated to the Europa en-
counters, Jupiter science activities will aim to take advantage of these high-resolution
opportunities at perijove 7 and 8 (9.4 Ry from Jupiter).

Following the Europa encounters, JUICE then uses multiple flybys of Callisto to
increase its orbital inclination up to 2 33° during Phase Four, the inclined phase
between July 2032 and August 2033 (Figure 9c). With ~ 23 perijoves during this pe-
riod, with distances ranging from 11-20 R; from Jupiter, JUICE will be afforded with
improved views of the atmosphere and auroras in the polar domains. The maximum
orbit inclination will be attained between December 2032 and February 2033 and
the highest sub-spacecraft latitude at perijove of = 33° will be reached in May-June
2033 (perijoves 26 and 27). JUICE will spend more than 6 months with an orbit more

2035
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Fig. 10 Spatial resolution of JANUS (black line) in the days surrounding JOI and compared to HST and
JWST resolutions (cyan and purple lines, respectively). Phase angle is also plotted (red line).

inclined than 30°. Furthermore, JUICE closest approaches and highest spatial reso-
lutions during the inclined phase will be in the southern hemisphere, complementing
the northern-hemisphere perijoves of Juno’s extended mission.

As JUICE returns to the equatorial plane, it commences the low-energy Phase
Five, circularising the orbit and providing perijoves that are much more frequent, ap-
proximately every two weeks between August 2033 (perijove 32) and December 2034
(perijove 67). Spatial resolutions of visible images match those of the best Galileo
images (10 to 40 km/pixel) throughout this phase, with closest approaches varying
between 12-20 R; before reaching Ganymede’s orbit at 15 R;. Fewer satellite en-
counters are envisaged during this period (four for Callisto, seven for Ganymede),
leaving a number of uninterrupted orbits for Jupiter science. Finally, in December
2034, JUICE enters orbit around Ganymede, with Phase Six completing its primary
mission by September 2035. Short time periods during the Ganymede orbital phase
will be devoted to the monitoring of Jupiter’s atmosphere, following up on dynam-
ical, chemical, and meteorological phenomena discovered during Phases 1 through
5.

3.1 Segmentation of the Tour

Given the wide-ranging objectives of JUICE, and the wealth of opportunities pro-
vided by the orbital tour, a preliminary architecture for scientific operations and
scheduling had to be developed so that requirements on spacecraft resources (teleme-
try, power, pointing, etc.) could be better understood. Each scientific discipline, in-
cluding Jupiter science, evaluated the observing opportunities during the tour. This in-
cluded identifying repeated observations of the Jovian atmosphere and auroras, time-
critical opportunities for occultations (radio, stellar, and solar), and any unique obser-
vational geometries for Jupiter science. Having identified optimal windows of obser-
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Fig. 11 Spatial and wind speed resolutions of JANUS and MAIJIS as a function of time, based on the
Crema 5.0 trajectory and compared to instrumentation on other facilities.

vations for all disciplines, a preliminary ‘level-0’ segmentation plan for the tour was
developed, with specific disciplines being assigned the lead for pointing/operations
during different segments. Jupiter science segments had to be balanced against oppor-
tunities for magnetospheric science, satellite encounters (typically within a +12-hour
window around closest approach to a moon), windows for data downlink (typically
8 hours per day), and other segments for navigation, calibration, and distant investi-
gations of the wider Jovian system. An example is shown in Figure 12 for PJ12 in
September 2023. Operations will naturally be more complex during the Jupiter tour,
with instruments operating as ‘riders’ during science segments devoted to other dis-
ciplines. Potential disruption of the established observation plan may occur with a
time response of a few days only in case of e.g. unexpected events like large aster-
oid or comet impacts. Nevertheless, this approach enabled a thorough assessment of
JUICE’s capabilities to meet the original science requirements.

Proposed Jupiter science investigations mainly fall into the following segment

types:

— Perijove Windows: Jupiter science operations will focus on the +50-hour win-
dow surrounding closest approach, with different types of observations planned
for dayside, terminator, or nightside encounters. The highest spatial resolution ob-
servations are possible during these windows (particularly during Phase 3), with
numerous opportunities for stellar occultations also possible. Jupiter science will
be interrupted by satellite flybys and windows for downlink, but otherwise these
segments will be the top priority for Jupiter science.

— Monitoring Observations: Outside of the perijove windows, JUICE is required
to provide frequent opportunities to track the evolution of atmospheric phenom-
ena. Monitoring will likely be organised into campaigns focusing on specific tar-
gets (e.g., tracking the changes to a storm or vortex, high-frequency auroral obser-
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vations, etc.), but preliminary segmentation places a 10-hour monitoring window
once every three days (approximately), with significant flexibility in scheduling.

— Phase-Angle Windows: When not already covered by perijove or the monitor-
ing windows, JUICE will observe Jupiter within +5 hours of minimum phase
(i.e., dayside), the terminator crossing (90° phase angle), and at maximum phase
(i.e., nightside). These illumination conditions (and phase angles in between) are
required to characterise the scattering properties of aerosols, and to provide night-
side opportunities for lightning imaging and thermal emission measurements in
the absence of scattered sunlight.

— Inclined Windows: When not already covered by perijove windows, and when
the sub-spacecraft latitude exceeds +5° during Phase 4, JUICE will observe for
+10 hours either side of the locations of maximum northern and southern sub-
spacecraft latitude. This will enable long-term monitoring of the polar atmosphere
and auroras during Phase 4. Indeed, a special ‘inclined aurora’ segment is also
planned for when the phase angle exceeds 160°. These inclined windows will be
planned on a case by case basis, as overlap with magnetospheric science segments
is highly likely during Phase 4.

— Occultation Windows: These time-critical events are scheduled independent of
the perijove windows, but sometimes occur within them. A window is reserved
for radio occultation ingress and egress, as the spacecraft moves behind the planet
as seen by Earth. Similarly, a +1 hour window is reserved for solar occultations.
Stellar occultations are extremely numerous, with optimal stellar types selected
by the UV and IR instrument teams, and a subset of these will be scheduled
throughout the tour.

These generic Jupiter science segments are driven by the tour geometry, and al-
though monitoring of atmospheric and auroral variability is a high priority, the de-
tailed science operations plans will remove any unnecessary redundancies. Further-
more, new segments that cover multi-instrument campaigns for specific phenomena
(Section 5) will be built into the plan. A generic Jupiter orbit is shown in Figure 12,
highlighting a proposed sequence of activities. This ‘level-zero’ plan for segmenta-
tion of the JUICE orbit will be the basis of a rigorous activity plan that ensures pro-
posed observations remain within the resource envelope (data volume, power, etc.)
for JUICE.

To aid in the assessment of different tours, Figure 13 shows the amount of time
available to Jupiter remote sensing observations during each of the +50-hour per-
ijove windows. Once the satellite encounters, spacecraft navigation images, wheel
off-loading, and downlink windows are all removed, this leaves approximately 50%
of the available time for science. During phase 4, we envisage sharing of perijoves
with magnetospheric science, further reducing the time available for remote sensing.
However, Jupiter observations are more likely to be data-volume limited rather than
time-limited, and as Figures 13 and 14 reveal, there are plentiful opportunities for ob-
servations within the ‘level-0’ segmentation from (i) close proximity to Jupiter during
perijoves; (ii) a range of phase angles from dayside to nightside; and (iii) a range of
local times. The JUICE tour therefore fulfils the requirements listed at the start of this
Section.
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Fig. 12 Perijove 12 is used as a generic orbit, from apojove to apojove, to demonstrate the segmentation
of the tour. Satellite observations (labelled M”) are prioritised during the +12 hours surrounding clos-
est approach. Jupiter atmosphere and auroral science blocks during the £50 hour perijove windows (red
shading, with specific observations in boxes labelled *A’) are interspersed with downlink windows (grey
shaded boxes). Atmospheric monitoring (’D’) is interspersed with dedicated magnetospheric and plasma
observations (P’) during more distant periods of the orbit. Magnetospheric observations ride along with
remote sensing observations during the perijove encounters.

4 JUICE Instrumentation

Based on the tour phases and high-level segmentation described in Section 3, the
instrument teams developed a number of observing modes that can be used in an
interchangeable fashion, serving as the building blocks to develop the operations plan.
In this section, we provide brief overviews of the instruments and their capabilities
for Jupiter science, describing how they will operate in the Jovian system.

4.1 UVS
4.1.1 UVS Description

UVS (the Ultraviolet Imaging Spectrograph, Gladstone et al. in prep.) observes pho-
tons in the 50-204 nm range of the far-UV. The UVS field of view is defined by its slit,
which comprises a 7.3° x0.1°rectangular section with an additional 0.2° x0.2°box at
one end for solar occultation observations (see Figure 15e), giving a total slit length
of 7.5°. Spectral images of larger regions are built up by scanning across the target
in the direction perpendicular to the long axis of the slit. Observations use a series of
‘ports’, including the main 4 cm x 4 cm airglow port (AP) for auroral observations,
stellar occultations (Figure 16), and nadir view; a 1 cm x 1 cm high- resolution port
(HP) that allows observations of bright targets with improved spatial resolution at the
expense of a 16x reduction in the light collected; and a solar port (SP) offset from
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the main instrument aperture, which uses a 0.25 mm diameter pinhole and additional
pick-off mirror to reduce the solar flux to a suitable level for UVS solar occultation
observations.

The spatial resolution of UVS varies with wavelength and with position along the
slit, with the best resolution achieved near the center of the slit (the on-axis position).
The AP resolution is <0.3°at all wavelengths and along-slit positions and is <0.16°at
most field positions for wavelengths in the range 70 — 130nm (Davis et al. 2020).
The HP resolution ranges from 0.038°to 0.12°; again, the highest spatial resolution
is achieved for wavelengths near 70—130 nm. The point source spectral resolution is
<1 nm at all wavelengths when observing on-axis light (Davis et al. 2020).

UVS aims to study how Jupiter’s upper atmosphere interacts with the lower at-
mosphere below and the ionosphere and magnetosphere above. Unlike the spinning
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Juno spacecraft, JUICE will enable UVS to perform ‘point and stare’ observations,
revealing fainter auroral features, and allowing synoptic-scale imaging of the polar
auroras. However, as the minimum JUICE-Jupiter distance is considerably larger than
the Juno perijove distances the spatial resolution of JUICE UVS auroral images will
be degraded relative to Juno UVS images (see comparison in Figure 17). JUICE UVS
will also perform stellar occultation measurements, which are not possible with Juno
UVS. These observations use inertial pointing to observe UV-bright stars as they are
occulted by Jupiter, providing measurements of atmospheric structure, composition,
and variability.

b) Feature scan c) Limb scans

Observed from 11 RJ Observed from 11 RJ

d) Stellar occultation e) Solar occultation
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Fig. 15 Examples of JUICE UVS observation techniques at Jupiter. In each example the UVS slit is scaled
to its projected size when observing from the distances shown in the bottom left of each panel. The start
and end position of the slit is shown, with arrows indicating the direction of slit motion.

4.1.2 UVS Operations

During the +50-hour period around each JUICE perijove, UVS will use the space-
craft motion to perform a series of scans of Jupiter’s disk using both the AP and HP

i) Perpendicular
to limb

ii) Tangent
te limb
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Fig. 16 Simulation of a Jupiter occultation of bright star Regulus from JUICE UVS. JUICE would hold
Regulus fixed in the center of the UVS slit starting a few minutes before ingress until all of its light
is blocked by Jupiter. The panels on the left show the ingress occultation light curves spectral resolved
(above) and binned over wavelength and labeled by dominant absorber (below). Starting on the left with
no light blocked and moving to the right we observe the absorption of the shortest wavelengths first due to
H; and CHy4 and then followed at longer wavelengths by absorptions by CoH,, CoHg and a mix of higher
order hydrocarbons (CxHy).

ports (with the choice of port depending on distance and illumination) to map the
aurora and airglow (Figure 15a). High-resolution feature scans of smaller areas will
be performed when key regions of interest are visible (Figure 15b), and scans along
Jupiter’s limb will be used to study the structure and variability of the upper atmo-
sphere (Figure 15c). In both feature scans and limb scans, the region of interest is
placed in the center of the slit to achieve the best possible spatial resolution. UVS
does not possess an internal scan mechanism, but instead relies on spacecraft slews
to perform these observations. The orientation of the UVS slit during scans is not
strongly constrained, provided that the scan motion is in the direction perpendicu-
lar to the slit as indicated by the arrows in Figure 15. Disk scans may be performed
North-South, East-West or at any intermediate pointing, while limb scans at different
orientations provide different information: scans with the slit pointed perpendicular
to the limb probe the vertical structure at high resolution while scans at a tangent to
the limb provide larger instantaneous latitude coverage.

UVS also aims to observe ~4 stellar occultations per perijove (Figure 15d), tar-
geting a range of longitudes, latitudes, and local times, including repeat measure-
ments of the same regions to assess temporal variability. Occultations in the auroral
regions are a high priority, as are events where two UV bright stars may be observed
simultaneously at different positions along the UVS slit. Some nightside perijoves in-
clude opportunities to observe solar occultations (Figure 15e); UVS aims to observe
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Fig. 17 Juno UVS maps from Perijove 3 display the brightness (A) and color ratio (C) of the emissions
from Juno’s polar orbit vantage point taken (from supp. in Greathouse et al. 2021). The wire frame model
in the center shows the view of Jupiter from JUICE during the high inclination phase and the orientation
of the aurora and terminator for the time of the UVS observations (aurora on the night side). Even from
a much greater distance, JUICE UVS simulations of the same observation from Juno now displayed in
B and D will allow for detailed study of the auroral night side emissions unobservable by Earth-orbiting
observatories.

a minimum of four of these events, which are particularly important for investigating
atmospheric absorption at the short end of the UVS bandpass, where stellar flux is
typically very low.

UVS will perform scans of both the dayside and nightside of Jupiter, with the
dayside observations providing the best signal-to-noise ratio for airglow observations
and the nightside observations allowing auroral emissions to be devoid of reflected
sunlight background. Juno UVS observations of Jupiter’s nightside proved unexpect-
edly interesting, detecting bright flashes associated with Transient Luminous Events
(Giles et al. 2020b) and a bolide (Giles et al. 2021a). JUICE UVS will likely not
achieve the required spatial resolution to detect similar events, but full disk night-
side scans will facilitate searches for tropical nightglow arcs that might be detectable
along/near the dip equator, similar to the infrared H;r feature detected by (Stallard
et al. 2018).

Outside of the perijove periods, UVS will continue to regularly (1-2 times per
week) monitor Jupiter’s airglow, aligning the slit along Jupiter’s North-South axis
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and staring for ~10 hours to build up maps over a full Jupiter rotation period. Ad-
ditional stellar occultation measurements will also be performed whenever suitable
opportunities are identified, since the JUICE-Jupiter distance is not an important con-
straint for these observations.

4.2 MAIJIS
4.2.1 MAJIS Description

MAIJIS (Moons And Jupiter Imaging Spectrometer, Poulet et al. in prep.) is the vis-
ible and near-infrared imaging spectrometer for JUICE. It performs global imaging
spectroscopy from 0.49 to 5.56 um across all local times. The MAJIS spectral range
is divided in two separate channels: the VIS-NIR, covering the 0.49-2.36 um region
with a spectral resolution of about 4 nm, and the IR, covering the 2.27-5.56 um re-
gion with a spectral sampling of about 6 nm. In typical operating conditions, MAJIS
observes a line of 400 spatially-contiguous pixels (a ‘slit’) and a spectrum is recorded
simultaneously for each pixel, in the entire spectral range. The instantaneous field-
of-view (IFOV) of an individual pixel is 150 urad, providing therefore a spatial res-
olution of about 150 km over the Jupiter’s disk at the typical distance of perijove
passages (~ 10° km, see Figure 11).

The design of the instrument enables a large number of operative options, con-
ceived to optimise science return. Notably, the size of MAJIS cubes can be reduced by
masking (i.e., selective removal) along both the spatial and the spectral dimensions,
in order to reduce the downlink burden. On the other hand, spectral regions of special
interest (e.g., absorption lines) can be observed with a 2 x spectral oversampling.

Usually, during Jupiter observations, a mosaic of spatially-contiguous slits (a
‘cube’) is created by repointing the instrument between consecutive acquisitions. This
technique eventually produces a 3D hyperspectral image of the observed scene. The
spatial repointing required between different slits can be achieved either by means of
a slow spacecraft slew or, more commonly, by the motion of MAJIS’ own internal
pointing mirror. This device has one degree of freedom and can shift the slit position
in the sky parallel to its longer axis.

Specific techniques (summing and comparison of several individual observations
for a single slit) have been developed to reduce the adverse effects by impinging
energetic particles (mostly electrons) upon the instrument and to improve, at the same
time, the signal-to-noise (SNR) ratio. In the case of the brightest infrared hot spots
observed between the Equatorial Zone and the North Equatorial Belt (Grassi et al.
2017), MAIJIS SNR is expected to exceed 1000 at 4.7 um.

The radiance observed by MAIJIS in a single cube is determined by a range of
phenomena, and therefore allows one to address a variety of scientific objectives:

— Properties, distribution and variability of hazes and clouds on Jupiter offers key
insights on the vertical and horizontal dynamics of the troposphere. Indeed, dy-
namics drives the distribution of condensable species (H,O, H,S, NH3) that forms
clouds and the transport of gases that, by photodissociation and through complex
chemical patterns, produces the tropospheric and stratospheric hazes. The signal
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measured by MAIJIS between 0.4 and 3.2 um is dominated by the scattering of
solar radiation by aerosols and, in lesser extent, by atmospheric gases (Rayleigh
scattering). The large variability of gas opacity (mostly due to methane) within
this spectral range determines different effective sounding altitudes at different
wavelengths and, in turn, offers a method to probe the vertical structure of clouds
and hazes (Sromovsky and Fry 2010b; Braude et al. 2020; Pérez-Hoyos et al.
2020; Grassi et al. 2021; Anguiano-Arteaga et al. 2021). These observations will
be instrumental in addressing objectives R1-J-6 and R1-J-10 mentioned in Sec-
tion 2. Maps presented in Grassi et al. (2021) on the basis of JIRAM data demon-
strated the high spatial variability of cloud properties - as retrievable from IR-
spectroscopy — at least down to scales of few hundreds of kilometers (see their
Figures 8.c and 8d). On the other hand, latitudinal mean profiles are clearly de-
tected (see their Figures 8a and 8b), revealing contrasts in aerosols over several
thousands of kilometres. In MAJIS observations, it is therefore important to pur-
sue - at the same time - the highest spatial resolution and largest spatial coverage
made possible by available data volume. Notably, the observations presented in
the Juno JIRAM study (Grassi et al. 2021) remains both extremely sparse in space
as well as limited to a single perijove passage. The latter issue justifies a specific
MALIJIS strategy aimed to characterise the time variability of aerosol properties at
least down to a frequency of a few days.

— Distribution and variability of minor atmospheric components is another strong
experimental constraint to dynamic models. Measurement of disequilibrium species
(PH3, GeHy, AsHj) is of special interest in assessing the nature of vertical mo-
tions (Section 2.1). The signal measured by MAJIS at 4 > 4 ym is mostly driven
by the thermal emission of the atmosphere. This spectral range hosts vibro-rotational
bands of several compounds such as water, ammonia, phosphine, arsine and ger-
mane. In cloud-free regions, the mixing ratios of these molecules can be retrieved
down to 5-6 bars (Irwin et al. 1998; Grassi et al. 2010, 2020). These observations
will be instrumental in addressing objectives R1-J-8 and R1-J-9 mentioned in
Section 2. Spatial and temporal desiderata for the investigation of minor species
are similar to the ones implied by aerosol studies, given the intertwined nature of
underlying phenomena. Moreover, Grassi et al. (2020) separately demonstrated
the variability of minor species mixing ratios at least down to scales of few hun-
dreds of kilometers (see their Figures 7.c and 8.c) as well as consistent spatial
patterns over features with dimensions of several thousands of kilometres, such
as the hot-spots and the warm ring around the Great Red Spot.

— Physical conditions in the upper stratosphere and thermosphere of Jupiter are
strongly coupled with the magnetosphere of the planet, which provides a substan-
tial energy deposition at these altitudes, especially at polar latitudes. The spectral
region between 3.2 and 4.0 um hosts a very opaque methane band, that precludes
photons to emerge below the approximate level of 30 mbar (Sromovsky and Fry
2010b) without being absorbed. Here, auroral emission from H3+ (ultimately, a
by-product of the impinging of electrons over the upper atmosphere, Drossart
et al. 1989, Dinelli et al. 2017) or non-LTE emission by methane (Moriconi et al.
2017) can be investigated, providing a method to map phenomena occurring in
the magnetosphere (Mura et al. 2018; Moirano et al. 2021). These observations
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will be instrumental in addressing objectives R1-J-4 and R1-J-9.5 mentioned in
Section 2. While MAJIS data cannot match the spatial resolution of JIRAM auro-
ral observations (that reach in most favourable cases values close to 10 km), they
will allow one to explore feature variability at time scales of few hours. This is a
frequency regime not probed by fast JIRAM passages over the poles and there-
fore particularly important to characterise interactions with rapid magnetospheric
phenomena.

A particular strength of MAJIS, unlike previous imaging spectrometers, is access

to the full M-band window of thermal emission, sculpted by PH3 on its short-wave
side, and NHj3 on its long-wave side. The extension to 5.57 um, rather than curtailing
near 5.1 um, provides significantly stronger constraints on NH; and H,O than pre-
vious instruments (Grassi et al. 2010). Unlike Juno/JIRAM, MAIJIS also extends to
shorter wavelengths below 2 um, enabling stronger constraints on aerosol properties
than possible with JIRAM.

4.2.2 MAJIS Operations

MAUIJIS operations are driven by the following requirements:

— To provide continuous coverage of Jupiter’s disk, with a time sampling rate as uni-

form as possible, with periods complementary to those provided by Juno/JIRAM
(from timescales from hours to months).

— To provide coverage of Jupiter’s limbs at each JUICE perijove, with focus on the

comparisons of morning vs. dusk and solar vs. antisolar conditions.

— To provide coverage of Jupiter’s polar regions, with much longer exposure times

(5 or more seconds) and specific acquisition modes designed for auroral observa-
tions, in the vicinity of each perijove.

These requests are translated in a set of observations types and corresponding

rules:

1.

Observations of Jupiter disk (‘MAJIS_JUP_DISK_SCAN’) will be performed ev-
ery three earth days, with small time adjustment performed at each orbit in order
to have always an observation around the time of the perijove. Each of these ob-
servations will cover the hemisphere of Jupiter visible from JUICE, with a vari-
able number of cubes (from 1 to 4), depending on distance (Figure 18). After the
third perijove passage, the MAJIS IFOV will vary between 140 and 680 km along
a typical orbit. The main focus will be toward equatorial regions (30°S-30°N),
that will benefit of better visibility (lower emission angles) for most of the Jupiter
tour (i.e., when not in the high-inclination phase). However, more complete lati-
tudinal coverage (implying the acquisition of lines for each cube) or longitudinal
coverage (implying the acquisition of more cubes) can be pursued, as far as fea-
sible within data volume constrains imposed by mission resources.

. Observations of Jupiter’s limb (‘MAJIS_JUP_LIMB_SCAN’) will consist in a se-

ries of cubes (typically eight), acquired while keeping the MAJIS slit parallel to
the limb, in order to minimise possible straylight from Jupiter’s disk (Figure 19).
Such a set of cubes will be acquired three times per orbit, at phase angles of 0°



Jupiter Science from JUICE 43

and 90°. Each cube will cover the tangent altitude between 0 and 3000 km above
the nominal 1-bar level. Notably, during these scans, consecutive individual lines
will be largely spatially overlapped (up to 90% in area), in order to achieve a sub-
stantial spatial supersampling and to allow, by deconvolution, a reconstruction of
the vertical profile of the signal with an effective resolution better than IFOV size.
Only the central part (40 pixels) of each line will be transmitted to Earth, to cope
with data volume limitations.

3. Observations of auroras (‘MAJIS_JUP_AURORAL_SCAN’) will usually consist
of a set of four cubes over the northern polar region (north of 50°N), acquired
in proximity of each pericenter passage when sub-spacecraft longitude is closer
to 190°W, to ensure better visibility of the northern polar oval. Southern polar
oval is more symmetric around the pole and will be better observed with during
the high inclination phase. Cubes during each perijove will be taken with gaps of
approximately 40 minutes, to monitor the rapid variability of auroral structures.

Although the types of observations mentioned above will represent most of the
entries in MAJIS Jupiter dataset, they will be nonetheless complemented by other
types, to be performed more rarely during the mission. This latter group includes: a
global complete mosaic at full spectral coverage (to be acquired just once during the
mission, given the massive data volume output), limb observations while in eclipse,
stellar occultations and ‘tracking’ observations (repeated observations of the same
area at the relatively short period of several minutes).

4.3 SWI
4.3.1 SWI Description

The Sub-millimetre Wave Instrument (SWI, Hartogh et al. in prep.) is a passively
cooled radio telescope with a 29-cm primary mirror that will be sensitive to radiation
produced in Jupiter’s atmosphere from its upper troposphere to its lower thermo-
sphere. It will be an ideal instrument to constrain the chemistry and dynamics of
Jupiter’s stratosphere.

SWI can be tuned to observe in parallel two spectral windows located in two
spectral bands, 530-625 GHz (479-565 um) and 1067-1275 GHz (235-281 um), with
one spatial pixel, and a suite of high resolution spectrometers (up to 107 resolving
power) and continuum channels. These two windows in the sub-millimetre open the
possibility to target key neutral and ion species (CHy4, H,O, HCN, CO, CS, CH;C,H,
etc.) as well as their isotopologues relevant for Jupiter chemistry (see Figure 20). The
main limitation of the instrument concerns spatial resolution with a 1 mrad beam at
best (i.e. 1000km from about 15Ry) which will not enable limb scanning. Despite
more limited spatial resolution compared to other remote sensing instruments aboard
JUICE, SWI will nonetheless get vertically-resolved information on temperature and
composition from observations of the pressure broadened lineshapes. The high sen-
sitivity ensured by the low receiver temperatures coupled with the highest resolution
spectrometers, i.e. the Chirp Transform Spectrometers (CTS), which will have 1 GHz
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Fig. 18 (Top) Expected coverage of Jupiter’s disk by MAJIS on 2032-Sep-24, near perijove #12. Differ-
ent colours present the coverage of four cubes acquired at time intervals of 1h10m. (Bottom) Expected
coverage of Jupiter’s auroras by MAJIS on 2032-Sep-25, a few hours after perijove #12. Different colours
present the coverage of four cubes acquired at time intervals of 46m.

bandwidth and 10000 channels of 100kHz, will indeed result in very high S/N ob-
servations of the true lineshapes in few minute integrations. Observing in the two
bands in parallel with the high spectral resolution of the CTS and the high sensi-
tivity of the receivers will enable the simultaneous and independent retrieval of the
vertical profiles of temperature (with CH4 lines around 1256 GHz), abundance of the
species observed in the 600 GHz band, and wind speeds (from the combination of the
two lineshapes), from the upper troposphere to the upper stratosphere. SWI will thus
improve over previous sub-millimetre observatories like IRAM-30m, ISO, Odin and
Herschel for the characterization of the chemistry and general circulation of Jupiter’s
stratosphere (Moreno et al. 2003; Lellouch et al. 2002; Cavalié et al. 2008, 2012,
2013; Benmahi et al. 2020).
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Fig. 19 Example fields-of-view of MAIJIS for different observing modes. Each panel presents an individ-
ual cube from the set of several that are acquired in close temporal sequence: (top left) A cube from a
MAIJIS_JUP_DISK_SCAN set; acquisition starts on 2032-Sep-24 at 19:29 UTC, corresponding to the red
cube of Fig. 18 (top). (top right) A cube from a MAJIS_JJUP_AURORA_SCAN set; acquisition starts on
2032-Sep-25 at 06:51 UTC, corresponding to the red cube of Fig. 18 (bottom). (bottom left) A cube from
a MAJIS_JUP_LIMB_SCAN set; acquisition starts on 2032-Sep-25 at 15:24 UTC. (bottom right) Detail of
the same MAJIS_JUP_LIMB_SCAN cube.

Unlike other instruments, SWI will take advantage of its own pointing mecha-
nism that will enable scanning up to +72° along-track and +4.3° cross-track away
from the attitude of the JUICE spacecraft. This pointing capability has ~30” and ~9”
steps along-track and cross-track, respectively, with 30” accuracy. This mechanism
will serve several operational goals. SWI will be able to (i) map the whole Jovian
disk from any distance >15R;, (ii) compensate for spacecraft motions when per-
forming scans for other remote sensing instruments to ensure a stable pointing, and
(iii) reach any Galilean moon from the equatorial orbit on a daily basis to monitor
their emissions and constrain the source of their atmospheres (Tosi et al. in prep.).
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The main Jupiter science goals of SWI concern its stratospheric circulation and
chemistry. Constraining the general circulation of Jupiter’s stratosphere (e.g. Medvedev
et al. 2013; Guerlet et al. 2020b) requires measuring temperature and winds simulta-
neously and continuously at all latitudes, longitudes and altitudes. This can only be
rarely achieved from the ground (Benmabhi et al. 2021). The duration of the Jupiter
tour will provide SWI with the possibility to build a full 4-dimensional view of
Jupiter’s stratospheric composition and dynamics, from its QQO-dominated equato-
rial region to the auroral latitudes, while ALMA can only provide irregularly-spaced
snapshots (e.g., Cavalié et al. 2021, 2022). A focus will be put on equatorial latitudes
to constrain what maintains the QQO (Leovy et al. 1991b; Orton et al. 1991b; Li and
Read 2000; Cosentino et al. 2017b; Giles et al. 2020a; Benmahi et al. 2021), and on
the auroral regions to understand what controls its chemistry and dynamics (Sinclair
etal. 2017b,a, 2018a, 2019; Cavalié et al. 2021, 2022). Composition maps will help to
constrain the stratospheric photochemistry of Jupiter (Moses et al. 2005b; Hue et al.
2018b) and spectral scans will be performed in various regions to serendipitously
search for new species and isotopologues. SWI will also detect and quantify sources
of exogenic species other than SL9, like the Galilean moons, rings and torii (Har-
togh et al. 2011; Cavalié et al. 2019), interplanetary dust (Moses and Poppe 2017),
and comet/asteroid impacts. The latter seem to occur regularly in giant planet atmo-
spheres (Bézard et al. 2002; Cavalié et al. 2010, 2014; Lellouch et al. 2005; Moreno
et al. 2017; Hueso et al. 2010, 2013, 2018a; Orton et al. 2011).

4.3.2 SWI Operations

These goals will be achieved from the following observation products: regular 2D
wind maps from 10 ubar to 400 mbar with 3° latitudinal resolution; global thermal
structure also from 10 ubar to 400 mbar with 3° latitudinal resolution and 20° lon-
gitudinal resolution; vertical distribution of a variety of species, tracing atmospheric
transport from SL9-derived species distributions; isotopic composition; and search
for new species. The observation strategy adopted by SWI mostly depends on the
distance to Jupiter (see Figure 21). When JUICE is closer than 25 Ry, limb stares
and limb rasters will be prioritised to map temperatures (from CH,), abundances and
wind speeds with the required latitudinal resolution. Observations from these dis-
tances will be complemented by zonal scans to look for thermal waves, 2D maps
and meridional scans to measure the latitudinal distributions of high priority species
(H,0, HCN, CO). These observations will be clustered around perijoves in the early
phases of the tour and during Phase 5. At intermediate distances (between 25 Ry and
35Ry), SWI will measure the latitudinal distributions of lower priority species (CS,
CH;C,H, isotopologues) with 5° latitudinal resolution and look for new species using
limb stares, limb rasters and 2D maps. At distances beyond 35 Ry, SWI will monitor
line emissions at lower spatial resolutions from the equatorial region to the auro-
ras, and perform calibration observations, using 2D maps, 5-point crosses and nadir
stares.
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4.4 JANUS
4.4.1 JANUS Description

The JUICE optical camera, JANUS (Jovis, Amorum ac Natorum Undique Scrutator,
Palumbo et al. in prep.) is a multi-filter camera system with a CMOS detector and
thirteen filters spanning the near-UV (340 nm) to the near-IR (1080 nm). JANUS ad-
dresses a number of the scientific investigations in Section 2 and Table 1. JANUS
will investigate the dynamics of the weather layer by providing high-resolution ob-
servations of the atmosphere from the cloud layer to the upper hazes in multiple
wavelengths. Repeated observations will be used to characterise the atmospheric dy-
namics and circulation [JA.1] including the role of atmospheric waves at multiple
scales [JA.3]. Observations in multiple wavelength will be used to investigate the
vertical cloud structure [JC.1] and the coupling of different clouds with the dynam-
ics [JC.2]. Dayside and night-side observations of convective regions will be used
to study the role of moist convection in meteorology [JB.4]. Auroral processes im-
aged at night [JA.4] will also constitute an important dataset to understand the auroral
structure and the impact of auroral processes in forming high altitude aerosol layers
in the polar regions. JANUS observations will consist in the combination of mappings
of the planet taking advantage of the planet rotation, and high-resolution observations
of different targets separated by different time-scales.

The field-of-view of the detector covers a rectangular area over the sky of 1.29° x
1.72°, with the largest size of the detector oriented parallel to Jupiter’s equator with
the nominal spacecraft attitude during Jupiter observations. The detector has 1504 x
1200 pixels with a pixel IFoV of 15 urad that allows images with a 15 km/pix from a
target distance of 10° km. Images with a Signal to Noise Ratio (SNR) larger than 100
are achievable in most operational conditions foreseen during the Jupiter investiga-
tion, with dayside integration times of 1 s or less even in the filters sensitive to strong
methane absorption bands. JANUS observations of the nightside of the planet will be
obtained with larger exposure times below an upper operational limit of 112s.

Table 2 provides details about the filters. Each of these filters have spectral trans-
mission curves that are almost rectangular-shaped. The instrument spectral response
is also determined by the optical elements and detector spectral response, with a steep
decrease at low and high range edges. JANUS filters can be compared with filters
from previous missions in Table 3.
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Table 2 JANUS filters

Position Filter id. Central wavelength/  Note
Bandpass [nm]
F1 PAN 650/500 Panchromatic (clear) — monochromatic imaging
F2 BLUE 450/60 Blue — aerosol colours
F3 GREEN 540/60 Green, background for Na — aerosol colours
F4 RED 646/60 Red, background for He — aerosol colours
F5 CMT medium 750/20 Continuum for medium Jovian Methane band
Fo6 Na 590/10 Sodium D-lines in exospheres
F7 MT strong 889/20 Strong Jovian Methane band
F8 CMT strong 940/20 Continuum for strong Jovian Methane band
F9 MT medium 727/10 Medium Jovian Methane band
F10 Violet 380/80 UV slope
F11 NIR 1 910/80 Cloud structure
F12 NIR 2 1015/130 Cloud structure
F13 He 656/10 Ha-line for aurorae and lightning
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Fig. 20 Jupiter limb spectra in the 600 GHz (top) and 1200 GHz (bottom) bands probed by SWI, with the
main observable molecular lines. Spectra are computed at the limb for a tangential height of 200 km above
the 1-bar level and are convolved by the instrument beam and to a spectral resolution of 1 MHz.
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Fig. 21 Five main observations modes used by SWI for Jupiter atmospheric investigations. Their use
mainly depends on the distance to the planet, as depicted by the color code: yellow, green and blue for
modes to be used when JUICE is at distance d <25Rj, 25R; < d <35Ry, and d >35R}, respectively. The
along-track and cross-track mechanisms of the instrument enable pointing independently from the space-
craft to build various patterns (stares, crosses, scans, and maps). The 2D map mode can be set such that
meridional or zonal scans are performed. The limb stares and rasters use a limb-finding procedure at each
latitude in which the continuum is recorded over several tens of positions from nadir to sky to reconstruct
a posteriori the pointing of the long integration for accurate rotation removal in wind measurements.
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4.4.2 JANUS Operations

Figure 22 shows sketches of some of the operational models of JANUS. JANUS will
provide the highest spatial resolution observations over the planet with the capabil-
ity to map the planet as it rotates and image specific features at very high spatial
resolution (~10 km/pix). To map the planet JANUS will perform vertical scans of
Jupiter (Figure 22a) in which different frames will cover different latitudinal ranges
and different longitudes will be sampled as the planet rotates over its 10-hour rotation
period. These maps will be obtained at low and intermediate phase angles (<90°)
over the illuminated side of Jupiter and will attain spatial resolutions of about 15—
30km/pix. The different opportunities in the orbital tour to obtain full maps of the
planet separated by one Jovian rotation (10hr) will result in several determinations of
the mean zonal winds and their variability over the course of the orbital tour. These
wind fields will have a noise level of less than 1 m/s and will be used to answer fun-
damental question on the energy inputs of the jets and cloud systems and how is the
interaction between the eddies and zonal winds (e.g., Salyk et al. 2006), and on the
meridional transport on belts and zones (Duer et al. 2021) at different moments dur-
ing the mission. Higher resolution observations of particular features will unveil the
internal wind field of vortices, cyclonic regions, and convective storms (Figure 6).

Close to the planet, JANUS will observe specific regions at spatial resolutions
down to 10 km/pix including the limbs (Figure 22b). Repeated observations of the
same regions obtained after a given amount of time will be used to infer dynamics
by examining cloud motions on time-scales of 0.5, 2.0 and 10.0 hr tracking specific
features of interest like the Great Red Spot and other regions. Specific observations
of the polar regions from sub-spacecraft latitudes of about +30°will be obtained to
investigate long-term changes of the polar atmosphere since the Juno observations
(Adriani et al. 2018Db).

In addition, by using a combination of filters sensitive to color and cloud alti-
tude via different atmospheric absorption bands, JANUS image will investigate the
particle size and optical properties of the clouds, hazes and aerosols, investigating
the complex and poorly determined relations between colour distribution and atmo-
spheric dynamics in Jupiter. By observing the limbs at high spatial resolutions over
a variety of phase angles over different latitudes JANUS will further investigate the
elevated hazes at levels close to the stratopause and higher.

Nightside observations will map the spatial distribution of lightning (Figure 22c)
to complement and extend the results from previous missions (Little et al. 1999; Dyu-
dina et al. 2004; Baines et al. 2007; Becker et al. 2020b). Observations of lightning at
high spatial resolution will be used to investigate lightning spot sizes to constrain the
depth of the lightning source. Dayside observations of the same areas observed on the
nightside with time differences of a few hours will also give information about the
intensity, depth and vertical transport associated to moist convective storms. Night-
side observations of the polar region (Figure 22¢) will also investigate the emissions
of the aurora and its vertical structure.
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Fig. 22 Sketch of different JANUS frames over the planet covering different topics. (a) Dayside obser-
vations obtaining vertical scans of the planet as it rotates (green frames), or images of specific features
obtained at high spatial resolution with small time differences (purple frames) will be used for dynamics.
(b) Limb observations at different wavelengths will complement observations at a variety of phase angles
to determine the vertical cloud structure and directly observe haze systems over the limb. (c) Night side ob-
servations at high phase angles will map lightning (dark yellow) at moderate resolution but high-resolution
images of latitudes with convective activity will also be obtained at high-resolution (red). Auroras obser-
vations will also be possible at different spatial and temporal resolutions (blue). These observations will
be spread over different phases of the mission.

4.5 3GM
4.5.1 3GM Description

The 3GM (Gravity & Geophysics of Jupiter and Galilean Moons, Iess et al. in prep.)
is the experiment onboard the JUICE mission responsible for the radio science. This
instrument consists of two separate and independently operated units incorporated
in the Telemetry Tracking and Command subsystem of the spacecraft: a Ka band
Transponder (KaT) and an Ultra Stable Oscillator (USO). The KaT will enable two-
way range and Doppler measurements with very high accuracy at Ka band (34.5-
32.2 GHz), measuring the gravity fields of Europa, Ganymede and Callisto (Cappuc-
cio et al. 2022). Juno measured the gravity field of Jupiter to high accuracy (Iess
et al. 2018), enabling the determination of the zonal wind depth (Kaspi et al. 2018).
This was made possible by Juno’s close proximity to Jupiter’s cloud tops (a few
thousand kilometres altitude). However, JUICE will orbit Jupiter with a proximity of
hundreds of thousands of kilometres, rendering Juno-like gravity measurements of
Jupiter’s deep interior impracticable. However, the USO will enable radio occulta-
tions of Jupiter’s atmosphere by providing a highly stable frequency reference for the
transmitted signal, establishing the possibility of one-way downlink radio occultation
experiments. Together with X and Ka band transponders, providing various commu-
nication links, the USO will be used to perform radio science to retrieve the structure
and composition of the neutral atmosphere and ionosphere of both Jupiter and its
moons.

These occultations and bistatic radar radio science experiments permit the re-
trieval of vertical profiles of density, pressure, temperature and composition in the
Jovian neutral atmosphere and electron/ion densities in the Jovian Ionosphere. The
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wide temporal and spatial variability of the experiments will also enable the study of
vertically-propagating waves influencing the heating in the thermosphere, and moni-
tor this variability with time and latitude.

The main principle of radio occultation measurements is the transmission of an
electromagnetic signal in the radio spectrum (X and Ka band) between two separated
stations (the JUICE spacecraft and an Earth-based ground-station), thereby passing
through the atmosphere or ionosphere of a solar system object (Jupiter or its moons).
Electromagnetic signals crossing an optical medium experience refraction, which can
have two distinct effects on the signal. The first is the increase in the phase speed of
the signal as the wave propagates in a neutral medium and the decrease in the phase
speed of the signal while propagating in an ionised medium. The second is the bend-
ing of the signal towards regions of higher index of refraction, instead of traveling
in a straight line from transmission to reception. These effects on the signal result in
frequency shifts (Doppler shifts) with respect to a signal that would be traveling in
vacuum. This refraction is exploited and studied in radio occultation experiments in
order to retrieve the atmospheric properties of planetary atmospheres in the form of
profiles varying with depth and latitude (e.g., Lindal et al. 1981, Schinder et al. 2015).

The orbit of JUICE will enable the widespread distribution of these vertical pro-
files, guaranteeing good spatial coverage. The vertical temperature profiles will be
improved by the instrumental accuracy of the USO that will allow a resolution of
about 0.1 K over 1 km. The vertical resolution of occultations is also characterised by
the Fresnel scale, some 6 km in the stratosphere, and a few hundred meters in the tro-
posphere (due to refractive defocusing), from the distance of Ganymede. In addition,
the attenuation of the signal can be used to deduce the absorptivity of ammonia, since
radio occultations (at X band) are expected to be able to probe down to approximately
the cloud level at the £700 mbar level, whereupon NHj3 absorption fully attenuates
the signal.

4.5.2 3GM Operations

All predicted JUICE radio occultation opportunities of Jupiter are portrayed for the
period of July 2032 to January 2036, separated into the different phases of the mission
(Figure 23). The latest scenario of an April 2023 launch campaign (Crema 5.0b23)
allows for around 80 radio occultations of the gas giant. The orbit of JUICE allows
for not only a large number of radio occultations over the timeframe of the mission,
but also for a broad latitudinal coverage. This will enable a better three-dimensional
mapping of the upper atmosphere of Jupiter than has been previously possible. Figure
23 shows the wide distribution of the radio occultation possibilities over Jovian lat-
itude (upper) and longitude (lower). Jupiter’s northern hemisphere has significantly
more coverage due to the timing of the JUICE mission, providing the chance for oc-
cultations at approximately the same latitude twice. Equatorial latitudes will only be
observable with occultations during Phase 4 (the inclined phase). Since the southern
hemisphere has fewer opportunities, and all during Phase 3 (the Europa flybys), the
portrayed radio occultations are important to include in the science activity plan. Note
that future changes in the tour of JUICE can affect the frequency and possibilities of
the radio occultation experiments, especially in the southern hemisphere.
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Fig. 23 JUICE radio occultation opportunities of Jupiter based on Crema 5.0b23, for both latitudinal
coverage (top) and longitudinal coverage (bottom) for Phases 3 through 6 of the mission. Note the large
numbers of occultations while JUICE is in orbit around Ganymede during Phase 6.

The USO on board of JUICE provides a highly stable frequency reference for the
transmitted signal in X and Ka bands, leading to the possibility for one-way radio
occultation analysis. In one-way mode, the pointing of the spacecraft will be adjusted
continuously to the direction that allows the signal transmitted by the spacecraft to
be bent in a way that it will be traveling toward the receiving station after traversing
Jupiter’s atmosphere. The analysis of radio occultations of oblate planetary objects
is performed in a different way than for spherically symmetrical ones, due to the fact
that the signal in the oblate case refracts three-dimensionally. The ray-tracing method
used for the analysis of Jupiter follows Schinder et al. (2015). This method uses
a numerical integration of the equations (Eikonal Equations) describing subsequent
optical rays across a barotropic layered atmosphere.

A few radio occultation experiments of Jupiter have been performed in the past,
and can provide benchmarks and constrain more finely the composition of the atmo-
sphere. A series of radio occultations experiments of Jupiter were performed by the
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Voyager 1 and 2 missions (Lindal et al. 1981; Gupta et al. 2022), with a similar con-
figuration to the JUICE mission. Both Voyager spacecrafts carried a USO on board,
which was used to provide a very stable frequency reference for the pure tones in the
S and X frequency bands, so that the analysis could be performed in one-way mode.

The analysis of ~ 20 upcoming radio occultations by the Juno spacecraft during
its extended mission (2023-2025), covering both northern and southern hemispheres,
will provide the most recent data for comparison to the JUICE radio science. Juno
occultations will be performed in two-way mode since no USO is present on board
Juno. In a two-way mode, the highly stable frequency reference is not on the space-
craft but at a transmitting station on the Earth.

4.6 RPWI
4.6.1 RPWI Description

The JUICE Radio & Plasma Wave Investigation (RPWI) instrument package and sci-
ence objectives are described in detail in Wahlund et al. (in prep.) Here we briefly
focus on the parts relevant for the Jupiter science goals. The RPWI instrument pack-
age will measure the electric- and magnetic-field vectors, as well as thermal plasma
properties in a wide frequency range and with high temporal/spatial resolution. The
electric field is measured from DC up to 1.4 MHz by a set of four Langmuir probes.
A search coil magnetometer will measure the magnetic field in the frequency range
0.1-20kHz, complementing the higher frequency wave components of the J-MAG
measurements. Onboard analysis of these measurements, combined with the RPWI
electric components, will be used to obtain the polarization and propagation proper-
ties of electromagnetic waves in this frequency range.

Broadband measurements of all these wave field components will be especially
useful for analysis of electromagnetic signals emitted from electric discharges in the
Jovian atmosphere and waves in different propagation modes linked to Jovian aurora.
The near DC electric field measurements, together with the J-MAG magnetic field
measurements, will enable us to continuously give values of the E x B convection
(i.e., wherever JUICE is traversing in the Jovian system). These convection elec-
tric fields are mapped, along magnetic field flux tubes, down to Jupiter’s atmosphere
and ionosphere, there giving rise to electrodynamic momentum and energy exchange
primarily within the Jovian thermosphere and ionosphere. Along these flux tubes en-
ergy and momentum is also transported by Alfvén wave activity, readily monitored
by RPWI determining their Poynting flux and dispersive properties. This is especially
important on magnetic footprints corresponding to the Jovian auroral regions and the
flux tubes connecting to the larger icy moons (Callisto, Ganymede, and Europa). Jo-
vian radio waves are monitored by a special antenna system operating from 80 kHz
to 45 MHz. In addition, the RPWI sensors monitor thermal plasma and ym-sized dust
properties wherever they operate.

More specifically, the RPWI will contribute to Jupiter science goals in the follow-
ing ways:
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— Map the thermal plasma and the electrodynamic (convection) interaction pro-
cesses along Jovian magnetic footprint fluxtubes corresponding to the icy moons
and the Jovian auroral regions.

— Characterise Alfvén waves, whistler mode waves, plasma waves in the Jovian
magnetosphere of importance for the energy and momentum flux down to the
Jovian ionosphere/thermosphere.

— Characterise radio and whistler wave emissions from lightning at Jupiter.

— Determination of the general dynamic state of the Jovian magnetosphere through
monitoring of the Jovian radio emission activity.

4.6.2 RPWI Operations

The RPWI sensors will nominally be continuously operating together with J-MAG.
The convection electric field (and E x B), thermal plasma properties, and Jovian
plasma and radio wave activity will therefore always be available, with limited im-
pact on the remote sensing plan during the perijove windows in Section 3. Certain
periods will require ‘burst-mode data‘ to enable detailed studies near the large icy
moons or magnetosphere boundaries, e.g., characterizing the icy moons ionospheres
or icy thickness, the icy moons interaction with the Jovian magnetosphere, the en-
ergy and momentum processes related to the magnetospheric footprints to Jupiter,
etc. Multidimensional electromagnetic signals from electrical discharges in the Jo-
vian atmosphere will be also captured during the dedicated burst mode periods. The
RPWI operations will implement a so-called selective downlink where the RPWI
instrument almost always does burst mode measurements, while the telemetry allo-
cation determines how much data RPWI can download at a specific time during a
period of a few weeks.

4.7 PRIDE

The Planetary Radio Interferometry and Doppler Experiment (PRIDE) experiment
will conduct radio occultation observations, alongside 3GM, using radio telescopes
from the European VLBI network (EVN) as receivers in a one-way mode using X-
and Ka- bands. In this setup, the PRIDE telescopes would perform shadow track-
ing of the spacecraft during the occultation (e.g., Bocanegra-Bahamon et al. 2019).
The radio signal would be recorded as it gets refracted by Jupiter’s ionosphere and
atmosphere in a wideband open-loop configuration, which allows capturing its high
dynamic range. The PRIDE experiment has access through the EVN to tens of radio
telescopes in Europe, Asia, South Africa and Australia, including large antennas such
as the 65-m Tianma, 64-m Sardinia and 100-m Effelsberg. The use of many antennas,
and of large antennas in particular in radio occultation measurements, especially for
those geometries with limited SNR (Bocanegra-Bahamén et al. 2018)), would im-
prove the quality of the atmospheric data retrieved and allow sounding deeper in the
atmosphere than with antennas of smaller collecting area. This is particularly impor-
tant in the retrievals of NH3 and PH3 abundances (in terms of associated uncertainties
and penetration depth) from radio occultation measurements, which would lead to an
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improved characterisation of NH3 condensation physics and PH3 photochemical de-
struction processes in Jupiter’s atmosphere.

5 Synergistic Science at Jupiter

The previous sections described the JUICE scientific objectives (Section 1), the re-
quirements on the Jupiter tour and its segmentation (Section 3), and the capabilities
of the payload for Jupiter science (Section 4). In this Section we provide a subset of
examples of how the different instruments might work together synergistically to ex-
plore equatorial dynamics, moist convection and lightning, stratospheric chemistry,
auroral activity, and vertical wave structures, e.g. by taking advantage from the com-
plementary vertical coverage of the various remote sensing instruments as shown in
Fig. 24.
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Fig. 24 Synergistic observations are possible due to the overlapping vertical sensitivity of each instru-
ment in nadir sounding, compared to Jupiter’s thermal structure from Voyager radio occultations (Gupta
et al. 2022), the Galileo Probe Atmospheric Structure Instrument (Seiff et al. 1998), and an average of
Cassini/CIRS temperature retrievals (Fletcher et al. 2016). Key atmospheric regions, species, and aerosols
are labelled where they can be studied via spectroscopy. At higher altitudes, in-situ instruments (J-MAG,
RPWI, PEP) will contribute to characterise the energy and dynamics of the thermosphere (and ionosphere).
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5.1 Jupiter’s Equatorial Circulation and Meteorology

Jupiter’s Equatorial Zone (EZ) and neighbouring belts display a plethora of dynamic
activity: from evidence of moist convection and lightning in the belts, to waves, vari-
able winds, large vortices, and a Hadley-like circulation pattern generating extreme
contrasts in volatiles (e.g., NH3 de Pater et al. 2016; Li et al. 2017), temperatures and
disequilibrium species (e.g., Fletcher et al. 2009) between the EZ, NEB and SEB. The
sole in situ measurement of a giant planet comes from Galileo Probe observations in
a region between the NEB and EZ (Atkinson et al. 1998; Wong et al. 2004), and it
remains unclear how representative these measurements were of the planetary bulk.
Tropospheric dynamics provide the spectrum of waves responsible for Jupiter’s equa-
torial stratospheric oscillation (Leovy et al. 1991a), which subsequently influences
the temperatures, winds and composition of the stratosphere. All of these processes
vary over timescales from hours to months, but systematic multi-wavelength studies
have proven challenging.

JUICE observations are designed to address the need for atmospheric monitoring,
both from the perijove windows to the monitoring opportunities throughout Phases
2, 3 and 5. MAIJIS spectral maps of reflected sunlight and thermal emission to map
aerosols and gaseous composition will be interspersed with JANUS dayside cloud
tracking for tropospheric winds and dynamics, UVS scans for aerosols and strato-
spheric composition, SWI zonal scans to determine the stratospheric temperature
structure, and SWI limb observations to derive the vertical winds associated with
the QQO. UVS, MAIJIS and SWI (via the 572 GHz line) all have sensitivity to Jo-
vian NH3, enabling reconstruction of the gaseous distribution above the condensa-
tion clouds to study its temporal variability. Radio occultations during Phase 4 will
provide the vertical T'(p) and NH3 absorption for comparison with remote sensing
measurements, and RPWI will be able to search for evidence of lightning activity
(see below).

5.2 Moist Convection and Lightning

As described in Section 2.1.3, mapping of lightning activity provides a powerful
probe of Jupiter’s meteorology within the water-cloud regions. UVS may detect tran-
sient luminous events (Giles et al. 2020b) that could be associated with lightning;
JANUS will use nightside imaging to search for optical flashes (and dayside imaging
to find their storm counterparts) using a similar approach to Galileo (Gierasch et al.
2000) and Juno (Becker et al. 2020a). MAIJIS observations of evolving storm plumes
could constrain their changing optical depth from bright fresh plumes to darker ovals,
following similar techniques for Cassini at Saturn (Sromovsky et al. 2018). Lightning
whistler measurements will also be performed by the RPWI search coil magnetome-
ter and the Langmuir probes used as electric antennas. Based on the received signals
in a range from 10 Hz to 20kHz the LF (low frequency) receiver will produce snap-
shots a few seconds long, producing spectra of high temporal resolution from which
the whistler dispersion can be measured. Measurement of sferics or Jovian dispersed
pulses from lightning by RPWI might also be possible using the three RWI anten-
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nas and its corresponding HF (high frequency) receiver in the frequency range above
80kHz, where each sweep will take a few seconds. Such a receiver mode at high fre-
quencies would work for the detection of Saturn lightning, but previous attempts to
use similar frequency-sweeping receivers on a spacecraft at Jupiter have so far failed
to detect any Jovian sferics. Similarly, the RPWI LP receiver can use the Langmuir
probes in the electric field mode from DC to 1.5 MHz to produce electric field spec-
tra with low time resolution. Taken together, these techniques will build a statistical
picture of lightning phenomena on Jupiter, relating lightning detection to discrete
regions of features.

5.3 Stratospheric Chemistry

As described in Section 2.3.2, the vertical and meridional distributions of Jupiter’s
stratospheric hydrocarbons remain poorly understood. The high latitude distributions
of C, species was first observed during the Cassini flyby, with C,H, and C,Hg show-
ing opposite behaviours as a function of latitude (Nixon et al. 2007a). Longitudinally
resolved observations of the auroral regions unveiled and even more complex situa-
tion, with a high degree of variability in all three dimensions for the main C, species
(Sinclair et al. 2018a) and for more complex hydrocarbons (Sinclair et al. 2019).
Some binary or multi star systems have both UV bright and near-infrared bright stars
collocated on the sky. Leveraging this group of unique targets, UVS and MAJIS will
be able to perform simultaneous occultation observations. These synchronous obser-
vations will provide a high fidelity measurement of the thermal and chemical structure
structure from the lower thermosphere to the troposphere. JANUS would contribute
with contextual astrometry observations. All these observations would be comple-
mented by SWI limb observations of the stratospheric thermal structure from CHy
observations at 1256 GHz and the vertical profile of CH3;C,H. These combined ob-
servations of the temperature and hydrocarbon distributions would help to constrain
photochemical and transport models of Jupiter’s stratosphere (Moses et al. 2005b;
Hue et al. 2018b), alongside SWI measurements of the spatial distributions of long-
lived H,O, CO, HCN and CS deposited by the SL9 comet impact in 1994 and dif-
fusing with latitude and depth ever since (Moreno et al. 2003; Griffith et al. 2004;
Lellouch et al. 2002, 2006; Cavalié et al. 2013, 2022).

5.4 Auroral Morphology, Chemistry and Dynamics

Multi-wavelength simultaneous monitoring of the auroral emissions from the UV
to the submillimeter will enable better understanding the variability, energetics, and
dynamics of the auroras. UVS will perform regular meridional scans of the auroras
to monitor the morphology of the auroras. The produced brightness and color ratio
maps will make use of CH4, C;Hg and C,H, distributions retrieved from UV stellar
occultation experiments (see Fig. 16) to capture the flux and energy of the precipitat-
ing auroral particles, giving a measure of the auroral energy deposited into the polar
region. MAJIS maps of H;r emission give insight into the cooling due to radiation to
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space of some of the auroral heating via H;L emissions (Gérard et al. 2023). Thermo-
spheric temperatures and H? densities can be inferred from the H; emissions, while
the upper stratospheric and lower thermospheric temperatures can be captured by
SWI observations of CH4 and HCN lines, revealing how auroral processes contribute
to heating and cooling of the neutral atmosphere. JANUS observations of visible-light
emissions will provide context for the auroral morphology and vertical structure of
the auroral curtain (Vasavada et al. 1999). RPWI will detect electromagnetic waves
of various modes linked to auroral phenomena in a broad frequency range, such as
Alfvén waves, whistler mode waves, and free space mode radio waves. Multicompo-
nent measurements of fluctuating electric and magnetic fields will be used to char-
acterise the wave polarization and propagation properties, including their Poynting
flux.

Compositional contrasts between the auroral ovals and their surroundings will be
studied with UVS, MAJIS and SWI, and SWI will provide upper stratospheric wind
measurements to assess whether auroral winds measured from the ionosphere (Rego
et al. 1999; Stallard et al. 2001, 2003; Johnson et al. 2017) down to the stratosphere
(Cavalié et al. 2021) play an active role in favouring auroral chemistry interior of
the main ovals by confining photochemical products in a region rich in energetic
magnetospheric electrons. UVS and SWI will also look in the moon auroral footprints
for exogenic species possibly transported from the Io (and Europa) torus to Jupiter’s
atmosphere. For instance, UVS is sensitive to SO, and SWI can look for SO and SO,
lines. These measurements, in combination with MAJIS Hj emission detection from
the moon footprints, will also try to solve the puzzling structure of the near footprint
tail (Mura et al. 2018).

5.5 Occultations and Waves

The spatial distribution of radio occultation opportunities was described in Section
4.5 and shown in Figure 23. These will probe both the electron density of the iono-
sphere and the temperature structure of the neutral atmosphere with a high vertical
resolution, at a variety of latitudes and local times. Once the occultation is complete
and JUICE has rotated back to Jupiter, remote sensing instruments will be able to
provide contextual measurements for the same locations: for example, MAJIS ob-
servations of aerosols and NH3, SWI measurements of temperatures and winds; and
JANUS and UVS observations of any layering observed in the aerosol field on the
Jovian limb. Independently of the radio occultations, stellar occultations observed by
UVS, MAIJIS and JANUS will be coordinated to ensure multi-spectral context for
any vertical variability. This would allow vertically-propagating waves observed dur-
ing the radio/stellar occultations to be tied to thermal, aerosol, and chemical layering
observed on the planetary limb, and its variability with time.
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6 JUICE Science in Context
6.1 Complementary Earth-Based Observations

JUICE will be orbiting the Jupiter system for the first half of the 2030s, exploring the
atmosphere and auroras from vantage points that can only be achieved from an orbit-
ing spacecraft. It will be joined by NASA’s Europa Clipper mission, dedicated to the
exploration of Europa but carrying exciting additional capabilities for Jupiter science.
However, just as with numerous previous planetary missions (including Cassini and
Juno), Earth-based observatories, both professional and amateur, will be able to pro-
vide significant spatial, temporal, and spectral support for these missions. In terms of
spatial context, imaging and spectroscopy from ground- and space-based telescopes
provide global, moderate-resolution views of Jupiter to supplement the close-in high-
resolution views of the spacecraft, aiding in registration of observations and providing
broader context (e.g., by characterising environmental conditions across a broad belt
or zone to support JUICE observations of an embedded thunderstorm).

Given limitations on system resources (e.g., data volume), competition between
scientific disciplines, and the finite duration of the Jupiter tour, Earth-based monitor-
ing can also provide temporal context. As storms, vortices, and the planetary bands
evolve and shift over timescales ranging from days to years, ground-based records
can be used to track meteorological features. Lucky-imaging techniques employed
by amateur astronomers (Mousis et al. 2014) produce high-quality Jupiter imaging
on a near nightly basis. By stacking only the sharpest frames, observers can reduce
the blurring effects of atmospheric seeing to create excellent images, which are then
shared with the community via repositories such as the Planetary Virtual Observatory
(PVOL, Hueso et al. 2018b) and the Association of Lunar and Planetary Observers
(ALPO-Japan?). Discrete storm features are tracked from night to night to reconstruct
zonal winds, wave patterns, and drift of active domains. During Juno’s prime mis-
sion, such drift charts proved essential for targeting JunoCam visible-light images.
Asteroid and cometary impacts caught by amateur imaging (Hueso et al. 2010, 2013,
2018a) can also provide opportunities for JUICE to observe impact-driven alterations
of atmospheric composition and temperature. With advances expected in amateur
capabilities in the coming decade, and machine-learning approaches to tracking at-
mospheric features, such long-term atmospheric monitoring will help to connect the
Jovian phenomena of the 2030s to the record of observations spanning back decades
(Rogers 1995). Furthermore, ground-based infrared (e.g., 3-4 um Hj ) observations
and space-based UV (e.g., HST) observations can track the fluctuating auroral emis-
sions over short timescales to complement the JUICE observations.

But perhaps the most important contribution from Earth-based observations is
access to wider wavelength ranges to provide spectral context, at potentially higher
spectral resolutions, than is possible from the JUICE spacecraft. For example, JUICE
does not have instrumentation spanning Jupiter X-ray emission (e.g., Dunn et al.
2017; Yao et al. 2021), so cannot access the hard X-ray bremsstrahlung emission,
pulsed/flared soft X-ray emissions, and the dim flickering aurora observed by the

2 http://alpo-j.sakura.ne.jp/indexE.htm
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likes of Chandra and XMM Newton. These facilities (or their successors) should be
able to observe Jupiter in tandem with JUICE to connect the X-ray emission to the
remote sensing discussed in Section 4. There is also a significant infrared gap in
JUICE’s capabilities, between the long-wave cutoff of MAJIS at 5.5 um, and the 250
pm channel of SWI. This spans the mid- and far-infrared spectrum previously stud-
ied by Cassini/CIRS (Flasar et al. 2004), which provides a means of mapping tropo-
spheric and stratospheric temperatures via a host of absorption and emission features,
respectively. The MIRI instrument on JWST, which is expected to be operating well
into the 2030s, provides spectroscopic mapping in the 5-11 ym range without satura-
tion, but the fields of view are too small (3-7” in size) to view the entirety of Jupiter
without complex mosaicking (Norwood et al. 2016). Thus the only imaging capabil-
ities for the mid- and far-infrared are likely to come from ground-based telescopes
with 3- and 8-m diameter primary mirrors, which will hopefully still be available to
the planetary community in the 2030s (at the time of writing, only a small number of
aging mid-infrared instruments are still available).

At even longer wavelengths, JUICE observations could be supported in the mil-
limetre, centimetre, and metre ranges by facilities like ALMA (Cavalié et al. 2021),
the next-generation Very Large Array (ngVLA, de Pater et al. 2018), and the Square
Kilometre Array (SKA, Butler et al. 2004). In the continuum bands, these facilities
are sensitive to temperatures, ammonia, and possibly PH3 at depths below the cloud-
forming region described in Section 2. Joint campaigns between JUICE and these
ground-based observatories could help connect Jupiter’s dynamic weather layer to
what is happening at great depth. At decimeter to decameter wavelengths, Jupiter is
one of the most prominent celestial radio sources. LOFAR has revealed the first low
frequency resolved images of the radiation belts of Jupiter (Girard et al. 2016); the
long wavelength range makes the observations sensitive to the lower energy end of
the Jovian radiation belt electrons. Io-induced and non-Io decametric emission have
also been observed (Turner et al. 2019). LOFAR’s unprecedented long baselines and
spectra-temporal resolution also provide the opportunity to image the dynamics of
charge bunches causing Jovian decametric emission and test physical models of the
associated plasma instabilities (Zarka 2004). Jupiter is also likely to become an ob-
ject of studies with prospective spaceborne radio telescopes at wavelengths longer
than 20-m at the hitherto unreachable (to ground-based radio telescopes) ultra-low
frequency part of the electromagnetic spectrum (Bentum et al. 2020).

JUICE operations in the 2030s will be in an era of major new facilities for astron-
omy. The European Extremely Large Telescope (ELT), a 39-m diameter observatory
based in the Atacama desert, will provide high-resolution observations in the visible,
near-infrared, and mid-infrared out to approximately 14 um. The primary science
targets for the first-light instruments require small fields of view, creating a substan-
tial mosaicking challenge for the large disc of Jupiter (but excellent for mapping the
Galilean satellites), but could nevertheless observe atmospheric phenomena at the
same time as JUICE. The Vera C. Rubin Observatory, previously known as the Large
Synoptic Survey Telescope (LSST), will begin operating in the 2020s, increasing the
catalogue of small objects throughout the solar system. Within that extensive new sur-
vey, potential objects on collision courses with the Jovian system could be identified
early, and then JUICE observations adjusted to investigate the aftermath. The JUICE
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tour will therefore retain some flexibility in planning, to take advantage of potentially
unique and unforeseen opportunities during the mission, as highlighted in Section 3.

6.2 JUICE and Exoplanets

Finally, the JUICE mission will be operating in an era when our exploration of extra-
solar planets moves from a phase of detection into an era of spectroscopic characteri-
sation, via techniques such as transit spectroscopy and direct imaging. The discovery
of the first hot Jupiter exoplanet (Mayor and Queloz 1995) fundamentally modified
our vision of the Solar System planets. Firstly, planetary formation models have been
challenged by the discovery of the Jupiter-mass planets closer to their star than Mer-
cury, with the introduction of migration processes as a natural step following planet
formation (Morbidelli 2020). Secondly, the mass distribution of the ~5000 exoplan-
ets discovered to date exhibits a very different pattern than that in the Solar System,
with a peak in the mass range of 5-10 Earth masses, corresponding to the “inter-
mediate planets”, mini-Neptunes or super-Earths, which are not found in our Solar
System.

As JUICE will study Jupiter’s origins in the 2030s, it will help to place the char-
acterisation of exoplanets into a wider perspective, attempting to answer the question
of whether Jupiter is a more or less typical giant planet in composition and structure,
or a more rare and special product of our Solar System. Conversely, the growing cen-
sus of exo-planetary system architectures may also lead to broader understanding of
how Jupiter’s formation and migration shaped the structure of our own Solar System.
The climate, meteorology, energetics and variability of Jupiter explored by JUICE
will serve as the archetype for hydrogen-dominated giant planets and Brown Dwarfs.

ESA’s ARIEL mission, to be launched in 2029 (Tinetti et al. 2018), is expected
to be contemporaneous to JUICE. ARIEL is devoted to a statistical study of the com-
position of ~1000 exoplanets from warm super-Earths to hot Jupiters. Interaction
between the science teams of these two missions could therefore improve the science
return of both, by addressing astrophysical questions about planetary origins and en-
vironments in a much broader context.

7 Summary

The exploration of Jupiter as an archetype for giant planets, both in our Solar system
and beyond, has been one of the two primary scientific objectives of ESA’s JUICE
mission since its original inception. Since that time, NASA’s Juno mission has re-
vealed a wealth of new insights into the interior, atmosphere, and magnetosphere of
the gas giant, prompting us to revisit the JUICE scientific requirements in this arti-
cle. Section 2 reviewed the current status of Jupiter exploration, from the dynamic
weather layer with its belts, zones, vortices, and convective storms; to the chemistry
and circulation of the middle atmosphere; the global composition as a window onto
planetary origins; and the energetics and circulation of the ionosphere, thermosphere,
and auroras. JUICE will explore how these different layers are interconnected and
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coupled, both to the circulations of the deep interior, and to the processes at work in
Jupiter’s magnetosphere. These themes are used to justify the JUICE Jupiter science
requirements in Table 1.

Section 3 then described how the 3.5-year Jupiter tour, with its equatorial and in-
clined phases bringing JUICE within 700,000 km of Jupiter at the closest perijoves,
provides the observational opportunities needed to achieve the science goals. JUICE’s
long-term monitoring of atmospheric and auroral phenomena, its global perspective
from a variety of phase angles (dayside to nightside), and its near-equatorial van-
tage point all complement Juno’s close-in regional views of Jupiter from its highly-
inclined orbit, its 40-to-50-day separation of perijoves, and its near-terminator (90°
phase angle) viewing geometry. The high-inclination phase enables excellent spatial
and temporal coverage of Jupiter’s polar atmosphere and auroras, some 5-10 years
after the Juno mission.

Section 4 then described the subset of instruments that are needed to achieve
closure with respect to the JUICE science requirements: namely the remote sens-
ing instruments (JANUS, MAJIS, UVS and SWI), radio occultations (3GM) and ra-
dio and plasma wave measurements (RPWI). These instruments offer flexible op-
portunities and modes, working within the spacecraft resource envelope of power
and data volume, and can operate both independently and synergistically (Section
5 to explore phenomena across a broad spectral range. UVS covers the 50-204 nm
range of the far-UV (similar to the 68-210 nm range of Juno/UVS); JANUS provides
multi-wavelength imaging from 340 to 1080 nm (complementing the R, G, B and
CHy4 bands on Juno/JunoCam); and MAIJIS provides visible and near-infrared spec-
troscopy from 0.49 to 5.56 um (extending the 2.0-5.0 um coverage of Juno/JIRAM).
SWI provides a unique capability to access the temperatures, winds, and compo-
sition high in Jupiter’s stratosphere, using sub-millimetre spectroscopy in two chan-
nels, 530-625 GHz (479-565 um) and 1080-1275 GHz (235-277 um). JUICE does not
have capabilities in the mid-infrared (5.5-30 um), nor in the microwave (> 1 cm, like
Juno/MWR) or X-ray. JUICE observations will therefore be supported by ground-
and space-based observatories (including JWST) wherever possible (Section 6). Fi-
nally, 3GM radio occultations will provide electron and neutral temperature profiles
at a range of latitudes, longitudes, and local times, complementing those being ac-
quired by Juno during its extended mission.

JUICE launched in April 2023, and the scientific questions will no doubt evolve
as JUICE cruises towards Jupiter in the 2020s, informed by discoveries made by
Juno, by ground- and space-based observatories, by theoretical modelling, by labo-
ratory investigations, and by the ongoing characterisation of giant exoplanets. Most
importantly, Jupiter has the ability to surprise us, with unforeseen connections, unex-
pected events, and new puzzles. The JUICE spacecraft, scientific payload, and orbital
tour have been designed to maximise our capability to explore the unexpected, and to
provide our best four-dimensional characterisation of this archetypal giant planet.
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