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Abstract. Analysis of VNIR-SWIR hyperspectral images
is presented to assist the development of a multi-sensor
scanning system for Iberian Pyrite Belt Cu-Zn-Pb
projects. Fisher Linear Discriminant and Linear Support
Vector Classifier were used for supervised classification
after pre-processing, spectral plotting and construction of
false color composites. Validation is given by mean
accuracy of confusion matrices for different scenarios
considering parameters of practical applications in
industrial settings. Interpretation indicates a different
performance for shale and volcanic-hosted deposits. The
results demonstrate the power of machine learning
algorithms and hyperspectral databases applied to an
automated technique to assist the traditional logging.
Combined to other sensors, the methodology should be
adapted to a drill-core scan delivering cost-effective and
time-saving outcomes.

1 Introduction

Hyperspectral imaging (HSI) concentrates on the
diversity of spectral properties inherent to each material.
In other words, the light that is emitted or reflected and its
variation along narrow wavelength ranges. The link
between these physical properties and earth sciences
has emerged to map geological parameter in different
scales (Hunt 1977; Goetz et al. 1985).

The logging of drill cores has been carried out by
geologists using visual inspection. Despite providing
important basic information, the technique has
demonstrated to be subjective. In this work, the potential
of machine learning algorithms combined to HSI is
evaluated as an automated logging tool by testing
different supervised classification strategies. The chosen
method is considered supervised because it is assisted
by a previous user knowledge (Han et al. 2012).

This research aims to contribute to the classification of
rocks in the lIberian Pyrite Belt volcano-sedimentary
complex in a consistent manner. The work comprises a
fundamental step of ANCORELOG, an EIT Raw
Materials-funded project working on the development of
a multi-sensor analytical drill-core scan. Finally, the new
prototype will extend the functionality of DMT CoreScan
System, improving utilization of ore bodies from
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exploration to mineral processing (Lamberg 2012).

Predictions of performance in practical applications
are evaluated for the following Cu-Zn-Pb ventures: Aguas
Tedidas and Patata Frita (ATE); Magdalena (MAG);
Sotiel and Elvira (SOT); also, the drilling campaign of
Majada (MAD). The underground mines and surface
exploration areas associated to each deposit are
illustrated in Fig. 1.
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Figure 1. Study area (Mendes 2018).
2 Methodology
2.1 Sampling

Characterization was carried out through visual drill core
logging and mine front description. The divergence
between two metallonegetic environments was
considered (Martin-lzard et al. 2016): Shale hosted
deposits of Type 1 (SOT and MAD) and Volcanogenic
Massive Sulphides (VMS) of Type 2 (ATE and MAG),
where extrusives dominate.
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In total 40 samples were collected following a
systematic protocol to ensure representativeness of
lithology, texture, alteration degree and metal grade.

Chemical assays of valuable metals and penalty
elements from 10 mineralized samples with cupriferous
stockwork and massive cupriferous/polymetallic ore were
given by ICP-OES. Main minerals are chalcopyrite,
sphalerite and galena.

2.2 Image acquisition and pre-processing

The images were acquired using a Specim SWIR camera
and a VNIR, which is composed by a Specim
ImSpectorV10E spectrograph and a Photonfocus MV1-
D1312ie sensor (Fig. 2). Both cameras are placed
horizontally over a 2.5 m frame to detect the reflected light
from the samples in a line pointing the conveyor belt
through mirrors (Barnabé et al. 2015). The approximately
350 mm line in the field of view is placed at the focuses
of extruded elliptical reflectors so it is illuminated with
constant light by halogen lamps, that are situated at the
other focuses.
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Figure 2. Hyperspectral acquisition system. (Left) Conveyor belt
and metallic frame. (Right) VNIR and SWIR cameras, mirrors and
illumination system with halogen lamps and extruded elliptical
reflectors (Barnabé et al. 2015).

By combining data from two sensors, the result image
is composed by 323 bands of 6.25 nm and digital pixels
of approximately 0.25 mm?2 Images were spatially
cropped to keep only regions of interest, avoiding long
computational time. Bands up to 500 nm were considered
noisy due to the high variation of pixel intensity within the
spectra, which masks mineral overtones. This
wavelength range was therefore removed to avoid
algorithm’s confusion regarding true classifications.

2.3 Spectral response

The mean spectrum of each sample was extracted from
a random 20 x 20 - pixel window and plotted in a
reflectance versus wavelength chart. This procedure
along with False Color Composites (FCC) assisted
interpretation of classification challenges to segregate
rocks with similar spectral response.

Three bands were extracted from the SWIR database
to highlight the presence of alteration minerals with deep
absorption in the spectra. The 1940, 2200 and 2340 nm
ranges were associated to the bands of an RGB image
(Table 1), where reflectance is attenuated due to the

presence of water, white mica and carbonate / chlorite /
amphibole / white mica, respectively.

Since pixel intensity decreases in a specific
wavelength interval when absorption occurs, the output
represents relative concentrations where the target
minerals are displayed by colors related to the opposite
bands. White micas are normally concentrated in red-
pinkish regions, water-rich material is represented by
blue pixels and green areas are linked to carbonate /
chlorite / amphibole / white mica occurrences and to the
wooden box (GTK 2018 unpublished presentation).
Finally, saturation and contrast were enhanced to
intensify local color transitions.

Table 1. RGB bands associated to SWIR absorptions due to mineral
assemblages.

RGB Short Wave Chemical Mineral Assemblage
Band Infrared (nm) group 9
R 1940 H20 Water
G 2200 AIOH White Mica
B 2340 MgOH and Carbonate/Chlorite/
COs Amphibole/White Mica

2.4 Supervised classification

Supervised classification was undertaken using machine
learning algorithms in the perClass Library for Matlab
(Fig. 3). The objective of supervised classification is to
assign an image pixel to a known lithology.
Dimensionality reduction with Principle Component
Analysis (PCA) indicated a fall of overall performance and
was initially rejected. The algorithms able to handle the
dataset with satisfactory accuracy for convenient
interpretation were selected: Fisher Linear Discriminant
and Linear Support Vector Classifier (LSVC) (Table 2).
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Figure 3. Scheme of supervised classification (Mendes 2018).

Table 2. Algorithms for supervised classification (Mendes 2018).

Classifier General description

Composed by a Linear Discrimination Analysis
(LDA) component followed by a Gaussian
Model
It finds the hyperplane that separates data by
classes after transforming the training set into
a higher dimension.

Fisher Linear
Discriminant

Linear Support Vector
Classifier

A total of 41 classes (samples + box) are combined to
test two different strategies: First, VNIR and SWIR ranges
are cropped from the dataset to evaluate the performance
of cameras together and individually. Subsequently, the
size of training set is modified to identify the sensitiveness
of classification regarding the number of labelled pixels.
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The approach represents the variation of scenarios ruled
by accuracy and costs.

Accuracy is computed by the mean error over classes
from a confusion matrix which shows the relationship
between true labels and classifier decisions.

3 Results

In general, fault rocks and bright volcanics such as
dacites, breccias and tuffites show similar profile due to
the presence of water and OH-bearing molecules
whereas calcite veins emphasize the very deep
absorptions at 2340 nm (Fig. 4). The exceptions are rocks
with strong silicification such as a few tuffs and the black
rhyolite. Sulphides and shales display flat curves.
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Figure 4. Spectral response of Aguas Tenidas rocks (Modified from
Mendes 2018).

False Color Composites (Fig. 5) emphasize the
difference between deposits of Type 1 (MAD and SOT)
and Type 2 (ATE and MAG). While the latter display
colourful regions, most of Type 1 samples contain dark
pixels due to shales and massive/stockwork sulphides
with lack of absorption features. Usually, volcanics have
pink to greenish matrix where alumino-phyllosilicate-
bearing zones are either intercalated or cut by thin veins
of chlorite. The brightest green sample is the calcite vein
located in the upper-right corner of ATE 2.

In addition, ATE 2 samples confirm an association of
metal content and alteration aureoles in the Cu stockwork
area of the deposit. As the segments move outwards from
the mineralized zone, grey and greenish pixels are
substituted by pink and reddish matrices. The network of
thin veins of chalcopyrite immersed in a chloritic matrix
decreases as the volume of barren sericite-rich material
increases together with fine disseminated pyrite.

The supervised classification using both cameras and
LSVC is the most consistent overall (Fig. 6). Average
accuracy is close to 100% if LSVC is combined to many
spectral bands. When only the SWIR data is used both
algorithms show a slight increase in classification error.
The incapability of LSVC of dealing within a small feature
space is evident when only the VNIR camera is selected
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(78 bands). The algorithm loses almost entirely its

capability of classification.
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Figure 5. False color composites for alteration minerals. MAD and
SOT are included in Type 1 whereas ATE and MAG are Type 2.

Another drawback of LSVC is time. The algorithm runs
at low speed in most of the cases whereas decision time
for Fisher is practically negligible in every scenario. Even
though the accuracy of Fisher drops from almost 100% to
80% when only VNIR is used, the interpretation of images
is still possible in this situation. In the case of SWIR by
itself, time is the crucial parameter to elect Fisher as the
best option.
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Figure 6. Most accurate classification scenario overall: VNIR-
SWIR database, large training size and 41 class labels. LSVC
performance is slightly more accentuated in this case. Accuracy
for both type of deposits is close to 100% so that a comparison
of misclassified pixels between them can be hardly evaluated
through classified images (Mendes 2018).
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Overall sensitiveness against training set for both
classifiers is similar. However, Fisher is less accurate
than LSVC at very limited subset fractions. Bearing in
mind that some classes in the smallest training set (Tr4)
are represented by around 5 pixels out of a test set
containing 3 million pixels, the consistency of LSVC can
be considered outstanding in terms of accuracy and
image interpretation if applied to practical logging
applications (Fig. 7).
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Figure 7. Accuracy with varying training set sizes (Mendes 2018).

Performance reflects the variation of absorption
features in the spectra profile, being more consistent for
volcanics than fine clastics in every tested scenario of
classification as seen in Fig. 8.
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Figure 8. — Accuracy for the two deposit types (Mendes 2018).
4 Discussion

FCC and supervised classification reveal the ability of
HSI to discriminate alteration degrees and rock types
(Schneider et al. 2014). However, algorithms are
dependent on investment in cameras and hardware.

Results demonstrate that reflectance and depth of
absorption is extremely affected by grain size. Coarse
material absorbs more radiation penetrating to the
surface than fine grain size. The optical path is explained
by the Labert-Beer Law (Zaini et al. 2012).

Since the diversity of lithologies increase in projects
within time, the capability of both algorithms to deal with
many classes is an advantage. Fisher is preferable over
LSVC when time is crucial and when dealing with
cameras independently. A significant increase in training
set size can improve Fisher performance without
compromising computational effort.

Areas at early exploration stages should consider a
robust training set with a large number of classes from
different parts of the IPB. On the other hand, drill holes
from mine sites can count on a training set with restrict

number of classes with only the known local lithologies.
5 Conclusion

A real performance can only be evaluated when applying
decisions to complete drill cores on site. It should adapt
the methodology to real geological sections where
transitional contacts and textural variations are
impractical to be sampled in a representative manner.

The analysis of spectral profiles with the support of
FCC assists the re-construction of unbiased labels to
define new logging classes. Automatization using HSI
and machine learning can therefore simplify 3D models
in the IPB. It can also save time and costs in projects
where exploration rushes to find new deposits and to
characterize the ore constantly feeding the plant.

This study successfully meets the first steps of
ANCORELOG with promising business opportunities
when applied to end-users such as mining companies
and research institutes.

Future works should improve pixel-wise segmentation.
Grades will be included through the fusion of HSI with the
output of other sensors such as RGB camera, X-Ray

Fluorescence (XRF), Laser Induced Breakdown
Spectroscopy  (LIBS) and time-gated Raman
spectroscopy.
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