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Summary 
When in a resting state, although it seems we are idle, our brain is not silent 

at all. It actually continues its activity by dynamically changing its functional 
organization. At the same time, our ongoing experience is also dynamic, 
characterized by rich exploration of a variant set of mental states. A fundamental 
question is how such dynamic neural organization during rest can support 
ongoing conscious experience. An answer to this question may help reveal the 
underlying intrinsic neural architecture which supports aspects of human 
cognition, in the absence of task performance. 

In my Thesis, I tried to answer how ongoing brain activity and spontaneous 
cognition relate in four different ways: i) by decoding ongoing mental states 
during rest based on the brain’s dynamic structural-functional (de)coupling 
profiles, ii) by exploring the neural correlates of mind blanking episodes during 
rest, iii) by checking the effects of external pharmacological perturbations with 
psychedelics on the brain-mind dynamics, and iv) by exploring the effects of new 
non-experienced environments after space travel on the brain’s structural and 
functional organization. I show that while structural-functional (de)coupling 
profiles can predict ongoing mental states higher than chance-level, they also 
change regionally facing unseen environmental circumstances in an appropriate 
way to keep the brain’s optimal functioning. Further, the exploration of the 
brain’s functional dynamics showed that a recurrent profile of hyper-connectivity 
is associated with mind blanking (i.e., instances during which participants are 
unable to report mental contents) accompanied by high fMRI global signal 
amplitude compared to other mental states. The same connectivity profile was 
also found to be dominant in the brain’s dynamical landscape under 
psychedelics. I show that this over-connected functional profile, accompanied by 
lower levels of global signal amplitude is associated with the experience of 
depersonalization and ego dissolution after psychedelic administration.  

Taken together, the main findings of this thesis can be summarized as: i) 
regional structural-functional (de)coupling during rest is a signature of our 
ongoing mentation, ii) a spontaneously occurring functionally hyper-connected 
state affects our experience of self and environment during rest, and iii) the fMRI 
global signal can be used as a proxy of a physiological state, which plays an 
important role in our spontaneous subjective experience. I believe that these 
findings not only open new windows in brain-mind interaction investigations, but 
also suggest that a more general formulation based on brain-body interactions 
are needed to explore ongoing mentation.  
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Glossary 
	

Term Definition 

Anxious ego dissolution 
(AED) 

Feeling of ego disintegration and loss of self-control 
associated with anxiety because of psychedelics 
administration. 

Audio-visual synesthesia when auditory stimuli elicit visual sensations.  

Auditory alterations (AA)  The experience of auditory hallucinations and 
acoustic alterations.   

Auditory network  A network of cortical regions including bilateral 
superior temporal gyri/insular cortices, left pars 
opercularis, left superior temporal gyrus, and 
midcingulate cortex whose role is related to audition 
(tone and pitch discrimination), music, speech, 
phonological and oddball discrimination. 

Auto-regressive model (AR)  A mathematical model to describe certain time-
varying processes in which the output variable 
depends linearly on its own previous values and on 
a stochastic term.  

Blissful state A state of being extremely happy or full of joy, 
peace, and love. 

Blood oxygen level 
dependent (BOLD):  

When neurons of a certain brain area demand 
energy and oxygen, the cerebral vascular system 
responds to this demand by increasing the local 
blood flow which delivers oxygen to these neurons 
(neurovascular coupling). However, not all oxygen is 
consumed by the neurons. Changes in the 
oxygenated over deoxygenated hemoglobin ratio is 
the BOLD effect signal detected by fMRI. 

Changed meaning of 
percepts  

A state in which objects in an individual’s 
environment appear more salient and personally 
significant than they ordinarily do. 

Classification models  

 

A group of supervised learning techniques that 
are used to identify the category of new 
observations based on training data. Using 
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classification models, a program learns from the 
given labeled dataset or observations and then 
classifies new observation into several classes or 
groups. 

Complex imagery The state of having visual hallucinations of scenes 
and pictures after psychedelics administration. 

Connectome  A matrix representing all possible pairwise 
anatomical connections between neural elements of 
the brain. 

Default mode network 
(DMN)  

A large-scale brain network primarily composed of 
the dorsal medial prefrontal cortex, 
precuneus and angular gyrus. It is best known for 
being active when a person is not focused on the 
outside world and the brain is at wakeful rest, such 
as during daydreaming and mind-wandering. 

Disembodiment Disruption of bodily self-awareness which induces a 
disturbing feeling of self-detachment or 
depersonalization. 

Dynamic connectivity 
analysis  

Analysis of functional connectivity alterations over 
the acquisition time course.   

Dorsal attentional network 
(DAN)  

Also known as task-positive network is a large-scale 
brain network composed of the intraparietal sulcus 
and frontal eye fields associated with voluntary 
orienting of visuospatial attention. 

Ego dissolution The experience of a compromised sense of self 
characterized by the reduction in the self-referential 
awareness. 

Elementary imagery Visual hallucinations of regular patterns, colors, or 
light flashes after psychedelics administration. 

Executive control network 
(ECN)  

Also known as fronto-parietal network is a large-
scale brain network composed of dorsolateral 
prefrontal cortex and posterior parietal cortex, 
around the intraparietal sulcus. It is involved in 
sustained attention, complex problem solving 
and working memory. 

Experience of unity A critical dimension of mystical experiences after 
psychedelics administration in which 
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representations of internal and external objects of 
consciousness blend together. 

Exteroception The perception of environmental stimuli originating 
outside of the body, e.g., visual, auditory, or tactile 
stimuli. 

Functional connectome  The collective set of matrices representing brain 
functional connectivity.   

Functional magnetic 
resonance imaging (fMRI) 

A neuroimaging technique that measures the small 
changes in blood flow related to the brain activity. 
This technique relies on the fact that cerebral blood 
flow and neuronal activation are coupled. When an 
area of the brain is in use, blood flow to that region 
also increases. 

General linear models (GLM)  Refers to conventional linear regression models for a 
continuous response variable given continuous 
and/or categorical predictors and is a compact way 
of simultaneously writing several multiple linear 
regression models. 

Glutamate The major excitatory neurotransmitter which is 
involved in the rapid production of excitatory 
postsynaptic potentials at axospinous synapses and 
in slowly developing neuroplasticity associated with 
learning, memory, and neuronal development. 

Graph signal processing 
(GSP)  

An extension of the classical signal processing 
algorithms which considers that signals are 
supported by irregular substrates defined by graphs. 
Signal points are represented as values, which reside 
on the graph nodes and are related to each other 
based on the edge weights of the graph. 

Independent component 
analysis (ICA)  

A computational method for separating 
a multivariate signal into additive subcomponents. 
This is done by assuming that at most one 
subcomponent is Gaussian and that the 
subcomponents are statistically independent from 
each other. 

Information flow In information theory, it is referred to as the transfer 
of information from a variable to another variable in 
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a given process. In neuroscience, the variables can 
be considered and the brain’s regional activity. 

Insightfulness Also known as unconstrained style of thinking, is a 
state after psychedelics administration in which one 
has very original thoughts and gains clarity into 
connections that puzzled him/her before. 

Interoception Collection of senses perceiving the internal state of 
the body such as feeling of heart beats or breathing, 
feeling of hunger, feeling of thirst, etc.   

Limbic system  A set of brain structures including amygdaloid 
nuclear complex (amygdala), mammillary 
bodies, stria medullaris, central gray, and dorsal and 
ventral nuclei of Gudden involved in lower order 
emotional processing of inputs coming from sensory 
system.   

Metastable state A state in which brain signals (such as oscillatory 
waves) fall outside their natural equilibrium but 
persist for an extended period. It is a principle that 
describes the brain’s ability to make sense out of 
seemingly random environmental cues.    

Microgravity  Is the condition in which people or objects appear to 
be weightless. The effects of microgravity can be 
seen when astronauts and objects float in space. 

Neuroplasticity The ability of the nervous system to change its 
activity in response to intrinsic or extrinsic stimuli by 
reorganizing its structure, functions, or connections 
after facing the stimuli. 

Oceanic boundlessness (OB) Feeling of derealization and depersonalization 
associated with positive emotional states after 
psychedelic administration. 

Orthonormal:  A set of vectors that have unity norm and are 
perpendicular to each other are known as 
orthonormal vectors. 

Phase-based coherence A measure to quantify the constant phase difference 
between two signals with the same frequency. 

Phase-locking connectivity 
state  

When performing dynamic functional connectivity 
analysis, if the connectivity matrices are calculated 
based on phase-based coherence, the estimated 
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connectivity states are named as phase-locking 
states. 

Positron emission 
tomography (PET) 

A neuroimaging technique which reveals the 
metabolic or biochemical function of the brain using 
radioactive drug (tracer) to show both normal and 
abnormal metabolic activity. 

Principal component analysis 
(PCA) 

A dimensionality-reduction method that is often 
used to decrease the size of large data sets, by 
transforming them into smaller variables that still 
contain most of the initial dataset’s information. 

Psychedelics A subclass of hallucinogenic drugs whose primary 
effect is to trigger non-ordinary mental states and/or 
an apparent expansion of consciousness. 

Salience network A collection of cortical regions including bilateral 
insular and anterior cingulate cortices (ACC). 
Activation of the insula and ACC are commonly 
observed in conflict monitoring, information 
integration and response selection. In resting state, 
the salience network is also thought to be involved 
in interoception and pain-related processes. 

Sensorimotor network A collection of cortical regions including 
supplementary motor area/ midcingulate cortex, 
and bilateral primary, premotor and somatosensory 
cortices involved in action-execution and 
perception-somesthesis paradigms. 

Sliding window A method of dynamic analysis in which a metric is 
calculated in different consecutive overlapping 
windows of data. 

Spiritual experience  A subjective experience which is interpreted within a 
religious framework and goes beyond human 
understanding in how this experience could have 
happened in the first place. 

Static connectivity analysis Calculation of connectivity measure between pairs 
of regions based on the overall acquired data, 
considering that the connectivity measure is 
constant during the acquisition time. 

Stimulus-dependent thought  Thoughts and mental images that are provoked by or 
reflect the features of one's surroundings. 
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Stimulus-independent 
thought 

Thoughts that occur independently of input from the 
immediate external environment. 

Structural decoupling index 
(SDI) 

A measure of regional decoupling of functional 
activity from the underlying structure connectivity. 

Structural harmonics  Defined as the eigenvectors of Laplacian of 
structural connectivity matrix, showing fully 
synchronous neural activity patterns with different 
frequency oscillations emerging on and constrained 
by the brain structure. 

Transcranial direct-current 
stimulation (tDCS)  

A form of brain stimulation and neuromodulation 
that uses constant, low, and direct electrical current 
delivered via electrodes on the head to modulate 
cortical excitability. 

Transcranial magnetic 
stimulation (TMS)  

 

A noninvasive form of brain stimulation in which a 
changing magnetic field is used to induce an electric 
current at a specific area of the brain 
through electromagnetic induction. 

Visual network 

 

A collection of cortical regions including primary and 
extrastriate visual cortices and inferior temporal gyri 
involved in low-level visual processing, viewing 
complex stimuli, and higher-level visual processing. 

Visual Restructuralization 
(VR) 

Perceptual and imaginational alterations 
including visual hallucinatory phenomena due to 
psychedelics administration. 
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1.1 Network Representation of the Resting Brain 
Suppose you are sitting somewhere, not engaging in any task, and your 

thoughts are free to wander between different contents, times, and places. This 
condition is referred to as the “resting state.” Neuroscientific studies support 
that during resting state, and in the absence of an external input, the brain’s 
ongoing activity is essential to its global functioning (Fox & Raichle, 2007). This 
was initially argued based on positron emission tomography (PET) imaging of 
healthy subjects showing that a system of mesiofrontal, posterior 
cingulate/precuneus cortices, and lateral parietal areas, broadly known as the 
default mode network (DMN), was systematically deactivated during task as 
compared to a resting condition (Mazoyer et al., 2001; Shulman et al., 1997). This 
led to the assumption that the brain at rest is not silent, opening a new area to 
study the purpose of ongoing brain function in more depth. 

One way to investigate the brain’s resting activity is to acquire functional 
magnetic resonance imaging (fMRI) data while the subject is lying still in the 
scanner, known as “task-free condition.” In this setup, the brain’s resting activity 
can be detected using the blood oxygen level dependent (BOLD) signal which is 
characterized by spontaneous low-frequency fluctuations (in the range of 0.01– 
0.1 Hz). In the absence of specific tasks and external inputs, a primary goal in 
resting-state fMRI studies is to analyze synchronized activity of the BOLD signal 
between pairs or sets of brain regions, commonly referred to as functional 
connectivity (FC; Biswal et al., 1997). Earlier studies using data-driven statistical 
methods, such as independent component analysis, showed that the brain at 
rest is organized into specific consistent large-scale FC profiles known as resting 
state networks (RSN; Beckmann et al., 2005; Damoiseaux et al., 2006; De Luca et 
al., 2006; Heine et al., 2012; Figure 1.1A). These RSNs consist of anatomically 
separated, but functionally linked brain regions that show high FC during rest 
(Van den Heuvel & Hulshoff Pol, 2010) and are implicated in various cognitive 
domains. The default mode network (DMN), executive control network (ECN; 
a.k.a., frontoparietal network), salience (a.k.a., ventral attentional network), 
sensorimotor (a.k.a., somatomotor), auditory, visual, dorsal attentional 
network (DAN; a.k.a., task-positive network), and limbic system are among the 
most studied networks. The fundamental characteristic that distinguishes these 
RSNs from each other is high FC between regions belonging to the same network 
and low FC between nodes belonging to different networks (Raichle, 2011).  

These findings led to the network representation of the functional 
associations that exist between distant brain regions. In general, brain regions 
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can be defined as the nodes of a network that are connected using edges, 
describing the strength of structural/functional connectivity between them. 
Mathematically, this network can be demonstrated using a matrix representing 
all possible pairwise anatomical or functional connections between defined 
regions (Figure 1.1B). While the term connectome was initially suggested to 
describe the brain’s anatomical network (Sporns et al., 2005), nowadays the term 
functional connectome is also used to describe a collective set of functional 
connections in the brain.  

The RSN structure has been understood thanks to the “static” analysis of 
BOLD time series, i.e., taking the averaged time series to analyze synchronized 
activity. However, it is now known that brain function is rather a “dynamic” 
exploration of connectivity configurations over time (Gu et al., 2018; Watanabe 
et al., 2014). This means that brain activity configures in different ways as time 
goes by. Different methodologies such as sliding window FC estimation (Allen et 
al., 2014), phase-based coherence (Demertzi et al., 2019), and auto-regressive 
modeling (Liégeois et al., 2019) have been used to estimate the FC in shorter 
temporal resolutions. Accordingly, brain dynamics have been defined as 
spontaneous transitions between discrete metastable states of functional 
connectivity, a.k.a., “FC states” (Cabral et al., 2017; Cavanna et al., 2018; Hansen 

Further characterization of coordination dynamics was obtained
by computing the probabilities of transitioning between different
brain coordination patterns (transition probabilities) and the dura-
tion of contiguous segments of pattern prevalence. Individuals with
higher levels of consciousness were more likely to not only reside in
pattern 1 but also to depart to and from this pattern toward patterns 2
and 3. The brains of patients in UWS were more likely to avoid this
exploration of the complex coordination pattern and to preferentially
reside in the less complex pattern 4. Last, patients in MCS were more
likely not only to remain in pattern 1 but also to switch towardpatterns 2
and 3 (Fig. 2) than patients in UWS. Controlling the transition prob-
ability for the patterns’ absolute (static) frequency of occurrence also
revealed an increase of autotransitioning in pattern 1 as a function of
the level of consciousness (fig. S7). In addition, we also observed that the
overall sequence predictability decreased alongside the state of con-
sciousness, as shown by the systematic increases in entropy rates (esti-
mated from the transitional probabilitymatrices) frompatients inUWS
to patients in MCS and healthy controls (fig. S8).

To validate the implication of the identified brain patterns in
consciousness, we quantified the generalization of the clustering
model trained in dataset 1 into two independent datasets (fig. S9).
First, we tested the rates of occurrence of the dataset 1 patterns
in an independent group of patients, all of whom were behaviorally
in UWS but some of whom presented a cognitive-motor dissocia-
tion (dataset 2), to determine their relevance in the capacity for
conscious experience, regardless of behavioral output. The latter

clinical group presented higher rates of residence in the complex co-
ordination pattern 1, with slopes similar to those observed in healthy
controls (fig. S10). On the other hand, patients inUWS lacking evidence
of command-following during neuroimaging tasks were more likely to
reside in the low-complexity configuration (Fig. 3, left), with slopes
comparable to those measured in anesthetized patients (fig. S10). Sec-
ond, we tested again the rates of occurrence of the dataset 1 patterns in
a third dataset of fMRI acquired in anesthetized patientswith disorders
of consciousness (dataset 3). Our hypothesis was that complex con-
figurations would uniformly disappear across all patients, regardless
of clinical diagnosis, as a result of the pharmacologically depressed
arousal, cognitive function, and autonomic control typically induced
by propofol (22). The pattern identification in anaesthetized patients
with disorders of consciousness confirmed this hypothesis, revealing
an equalization of occurrence probabilities regardless of clinical di-
agnosis, congruent with a uniform loss of awareness in this condition
(Fig. 3, right).

DISCUSSION
We studied the brain’s dynamic organization during conscious
wakefulness and after severe brain injury leading to disorders of con-
sciousness, with the aim of determining patterns of signal coordination
specifically associated with conscious and unconscious states. We
identified a pattern of positive and negative long-distance coordination,
high modularity, with low similarity to the anatomical connectivity,

A C

B
D

8 × 10−13

Fig. 1. The interareal coordination of ongoing brain dynamics is differentially orchestrated as a function of the state of consciousness. (A) Four patterns
recurrently emerged from the data-driven analysis of phase-based coherence matrices. The patterns revealed diverse interareal coordination, from positive/negative
long-range coherence (pattern 1), to predominantly occipital coherence (pattern 2), to overall high coherence (pattern 3), and overall low coherence (pattern 4).
(B) Patient groups differed with respect to the likelihood of each coordination pattern occurrence. The complex interareal coordination pattern 1 presented a higher
probability rate in healthy control participants (HC) and patients in MCS compared to patients in UWS, who predominantly resided in the overall low coordination
pattern 4. Patterns 2 and 3 were equally probable across groups, potentially serving a transitional role. For the sake of visualization clarity, the scale in the last panel
is different than in the other three. (C) Probability of each pattern’s occurrence as a function of their similarity to the anatomical connectivity matrix. Complex
pattern 1 showed low similarity to the anatomical connectivity, while pattern 4 was the most similar to the anatomical connectivity, suggesting that spontaneous
neuronal activity during pattern 4 traces fixed structural connections. The slope of occurrence probability versus similarity relationship decreases with the state of
consciousness. (D) Patients in UWS presented lower entropy values associated with the patterns’ occurrence probability distribution, suggestive of a less uniform
distribution compared to patients in MCS and healthy controls. Notes: (A) The patterns are ordered on the basis of their similarity to the anatomical connectivity,
from the least (left) to the most (right) similar. The networks are rendered on the anatomical space (transverse view) and show the top 10% links between ROIs,
within the absolute value of phase coherence > 0.2; red/blue edges indicate positive/negative coherence. Aud, auditory; DMN, default mode network; FP, fronto-
parietal; Mot, motor; Sal, salience; Vis, visual; KW, Kruskal-Wallis test P value; UWS/MCS, Wilcoxon test P value for the comparisons between patients in UWS and
patients in MCS. (B) Boxplots represent the medians of the occurrence probabilities with interquartile range and maximum-minimum values (whiskers). (C) Lines are
based on the best linear fit for each group; R, Spearman correlation.
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Further characterization of coordination dynamics was obtained
by computing the probabilities of transitioning between different
brain coordination patterns (transition probabilities) and the dura-
tion of contiguous segments of pattern prevalence. Individuals with
higher levels of consciousness were more likely to not only reside in
pattern 1 but also to depart to and from this pattern toward patterns 2
and 3. The brains of patients in UWS were more likely to avoid this
exploration of the complex coordination pattern and to preferentially
reside in the less complex pattern 4. Last, patients in MCS were more
likely not only to remain in pattern 1 but also to switch towardpatterns 2
and 3 (Fig. 2) than patients in UWS. Controlling the transition prob-
ability for the patterns’ absolute (static) frequency of occurrence also
revealed an increase of autotransitioning in pattern 1 as a function of
the level of consciousness (fig. S7). In addition, we also observed that the
overall sequence predictability decreased alongside the state of con-
sciousness, as shown by the systematic increases in entropy rates (esti-
mated from the transitional probabilitymatrices) frompatients inUWS
to patients in MCS and healthy controls (fig. S8).

To validate the implication of the identified brain patterns in
consciousness, we quantified the generalization of the clustering
model trained in dataset 1 into two independent datasets (fig. S9).
First, we tested the rates of occurrence of the dataset 1 patterns
in an independent group of patients, all of whom were behaviorally
in UWS but some of whom presented a cognitive-motor dissocia-
tion (dataset 2), to determine their relevance in the capacity for
conscious experience, regardless of behavioral output. The latter

clinical group presented higher rates of residence in the complex co-
ordination pattern 1, with slopes similar to those observed in healthy
controls (fig. S10). On the other hand, patients inUWS lacking evidence
of command-following during neuroimaging tasks were more likely to
reside in the low-complexity configuration (Fig. 3, left), with slopes
comparable to those measured in anesthetized patients (fig. S10). Sec-
ond, we tested again the rates of occurrence of the dataset 1 patterns in
a third dataset of fMRI acquired in anesthetized patientswith disorders
of consciousness (dataset 3). Our hypothesis was that complex con-
figurations would uniformly disappear across all patients, regardless
of clinical diagnosis, as a result of the pharmacologically depressed
arousal, cognitive function, and autonomic control typically induced
by propofol (22). The pattern identification in anaesthetized patients
with disorders of consciousness confirmed this hypothesis, revealing
an equalization of occurrence probabilities regardless of clinical di-
agnosis, congruent with a uniform loss of awareness in this condition
(Fig. 3, right).

DISCUSSION
We studied the brain’s dynamic organization during conscious
wakefulness and after severe brain injury leading to disorders of con-
sciousness, with the aim of determining patterns of signal coordination
specifically associated with conscious and unconscious states. We
identified a pattern of positive and negative long-distance coordination,
high modularity, with low similarity to the anatomical connectivity,
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Fig. 1. The interareal coordination of ongoing brain dynamics is differentially orchestrated as a function of the state of consciousness. (A) Four patterns
recurrently emerged from the data-driven analysis of phase-based coherence matrices. The patterns revealed diverse interareal coordination, from positive/negative
long-range coherence (pattern 1), to predominantly occipital coherence (pattern 2), to overall high coherence (pattern 3), and overall low coherence (pattern 4).
(B) Patient groups differed with respect to the likelihood of each coordination pattern occurrence. The complex interareal coordination pattern 1 presented a higher
probability rate in healthy control participants (HC) and patients in MCS compared to patients in UWS, who predominantly resided in the overall low coordination
pattern 4. Patterns 2 and 3 were equally probable across groups, potentially serving a transitional role. For the sake of visualization clarity, the scale in the last panel
is different than in the other three. (C) Probability of each pattern’s occurrence as a function of their similarity to the anatomical connectivity matrix. Complex
pattern 1 showed low similarity to the anatomical connectivity, while pattern 4 was the most similar to the anatomical connectivity, suggesting that spontaneous
neuronal activity during pattern 4 traces fixed structural connections. The slope of occurrence probability versus similarity relationship decreases with the state of
consciousness. (D) Patients in UWS presented lower entropy values associated with the patterns’ occurrence probability distribution, suggestive of a less uniform
distribution compared to patients in MCS and healthy controls. Notes: (A) The patterns are ordered on the basis of their similarity to the anatomical connectivity,
from the least (left) to the most (right) similar. The networks are rendered on the anatomical space (transverse view) and show the top 10% links between ROIs,
within the absolute value of phase coherence > 0.2; red/blue edges indicate positive/negative coherence. Aud, auditory; DMN, default mode network; FP, fronto-
parietal; Mot, motor; Sal, salience; Vis, visual; KW, Kruskal-Wallis test P value; UWS/MCS, Wilcoxon test P value for the comparisons between patients in UWS and
patients in MCS. (B) Boxplots represent the medians of the occurrence probabilities with interquartile range and maximum-minimum values (whiskers). (C) Lines are
based on the best linear fit for each group; R, Spearman correlation.
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Heine et al. Resting state networks and consciousness

FIGURE 1 | Multiple cerebral networks can be identified with

fMRI in healthy controls (n = 10) during normal wakeful resting

state using independent component analysis. These networks
reflect “higher-order” cognitive (i.e., default mode, left and right
executive control, salience networks), and “lower-order”

sensorimotor, and sensory (auditory, visual) function. For illustrative
purposes, group-level spatial maps (z values) are rendered on a
structural T1 magnetic resonance template and x, y, and z values
indicate the Montreal Neurological Institute coordinates of the
represented sections.

treatment effects, to cluster heterogeneous diseases such as schizo-
phrenia or even to guide treatments, such as surgical interventions
(Fox and Greicius, 2010).

With an aim to better determine the functional role of rest-
ing state activity in healthy conditions and to further comprehend
its contribution to clinical states, the present review will adopt a
“lesion” approach. Indeed, patients’ neurological data can give us
information about the functional role of the resting state activity to
consciousness. We will review changes in functional connectivity

in the DMN under physiological (sleep, hypnosis), pharmacolog-
ical (sedation, anesthesia), and pathological (coma-related states)
alteration of consciousness. The functional contribution of the
anticorrelated activity between DMN and the “extrinsic” system
to (un)conscious states will also be discussed. We will further
focus on functional connectivity changes in multiple RSNs, such
as the bilateral executive control, salience, sensorimotor, audi-
tory, and visual networks (Beckmann et al., 2005; Damoiseaux
et al., 2006; De Luca et al., 2006; Fox and Raichle, 2007; Smith
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A B

Figure 1.1 Brain in resting state can be characterized by distinct functional connectivity profiles. (A) 
Static analysis of synchronized activity of different brain regions leads to consistent and reliable 
functional connectivity networks identified by anatomically separated but functionally linked brain 
regions (Heine et al. 2012). (B) Time-varying analysis of BOLD time series shows that brain’s functional 
connectivity during resting state is varying and can be explained by distinguishable recurrently 
emerging connectivity patterns (Demertzi et al. 2019).   
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et al., 2015). As an example (Figure 1.1B), it was shown that during rest, the brain 
organizes itself into four distinguishable recurrently emerging time-varying FC 
states described as i) a pattern of high complexity, including both positive and 
negative values of long-distance coordination, ii) a pattern of negative phase 
coherence between visual and other networks, iii) a pattern of cortex-wide 
positive phase coherence and iv) a pattern of low interareal coordination 
(Demertzi et al., 2019). These patterns have been shown to be quite reliable as 
they can be reproduced across different individuals, different paradigms, and 
different scanners (Mortaheb et al., 2022).  

Dynamic transitions between FC patterns can be modeled by the Markov 
chain model, namely a stochastic model in which transition probabilities to other 
states are dependent on the current state (Gagniuc, 2017). Such dynamic 
transitions have so far been associated with level of consciousness (Demertzi et 
al., 2019; Y. Zhang et al., 2019; Zhou et al., 2019), cognitive performance (Cabral 
et al., 2017; Ikeda et al., 2022; Liégeois et al., 2019), and self-reported behavioral 
measures, e.g., life satisfaction (Casorso et al., 2019). However, what still needs 
to be answered is how these dynamic signal transitions are associated with the 
dynamism of ongoing experience. In other words, is there a cognitive relevance 
in task-free conditions?  

1.2 Mental States During Rest  
When the mind is unoccupied by environmental events, humans often spend 

most of their time focused on information that is self-generated but is not 
necessarily about the “here and now” (Karapanagiotidis et al., 2020; Mckeown et 
al., 2020). Such ongoing experience is dynamic and rich in content, taking the 
form of mental states. Mental states are transient cognitive or emotional 
occurrences that are described in terms of content (what the state is “about”) 
and the relation we bear to this content (e.g., imagining, remembering, fearing; 
Christoff et al., 2016).  

A fundamental characteristic of ongoing mentation is spontaneity, which 
means fluctuations of content independently from the immediate environment 
and without conscious control (Kucyi, 2018). From this perspective, when our 
attention is decoupled from external environment, our minds are occupied by 
thoughts (Smallwood et al., 2008), also known as stimulus-independent 
thoughts (Stawarczyk et al., 2011; Van Calster et al., 2017). Spontaneous 
thoughts are heterogeneous across people, places and situations (Smallwood et 
al., 2021), and vary in the dimensions of “content” and “form” (Karapanagiotidis 
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et al., 2017; Mckeown et al., 2020), which depends on the interplay between 
internal processes (e.g., self-generated thoughts) and environmental demands 
(Turnbull et al., 2019). In a simplistic model, the content of thought can be 
explained by three elements: time (past vs. future), reference (self vs. others), 
and emotional valence (negative, neutral, or positive). The form of thoughts can 
be about modality (from images to words), level of detail, and level of 
intrusiveness (Karapanagiotidis et al., 2017). These spontaneous thoughts with 
their different contents and forms are estimated to comprise ~30-50% of our 
daily life (Kane et al., 2007; Kucyi et al., 2018; Van Calster et al., 2017) and 
therefore are a significant source of variations during ongoing experience.  

Apart from spontaneous thoughts, while being at rest we can also have 
perceptual contents of external stimuli (exteroception) or internal bodily states 
(interoception; Stawarczyk et al., 2011; Van Calster et al., 2017). External stimuli 
can involve the main five senses of visual, auditory, olfactory, gustatory, and 
somatosensory and internal bodily states can cover internal senses, such as 
feeling thirsty. In past studies, stimuli perceptions were sometimes confounded 
with thoughts related to the immediate environment, a.k.a., stimulus-
dependent thoughts. This was due to the fact that those studies tended to 
distinguish between externally and internally oriented cognition 
(Vanhaudenhuyse et al., 2011) without considering possible mixed states, where 
internal mentation is simultaneously accompanied by some awareness of the 
external environment. 

Finally, during ongoing experience, there can also be moments when we are 
unable to report or retrieve any mental content. This is often reported as “having 
no thought”(Van Calster et al., 2017), as if our mind “went away” (Ward & 
Wegner, 2013), or as if the mind “got blanked” (Kawagoe et al., 2019) widely 
referred to as Mind Blanking (Mortaheb et al., 2022).  

Together, ongoing experience during task-free conditions can be modelled as 
a sequence of thoughts, which are comprised of different contents and forms, 
stimuli perception (exteroception vs interoception), and mind blanking states 
which occur spontaneously and recurrently over time. In this regard, mental state 
dynamics can be considered as spontaneous transitions between thoughts, 
perceptions, and mind blanking states.   
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1.3 Bridging the Resting Brain with the Spontaneous 
Mind  

A fundamental question is how such specific neural organization during rest 
can support ongoing conscious experience. An answer to this question may help 
describe the underlying neural architecture which supports aspects of human 
cognition, useful for the cognitive evaluation of non-responsive individuals who 
are unable to communicate directly (Mckeown et al., 2020; Monti et al., 2010). 

Considering the cognitive relevance of RSNs, there is evidence that resting 
state FC patterns have similarities with different task activation maps (Biswal et 
al., 1995; Smith et al., 2009; Tavor et al., 2016). In fact, FC architectures across a 
variety of tasks were reported to be highly similar (80% shared variance) to the 
resting-state FC architectures (Cole et al., 2014). Based on these similarities, a set 

Table 1.1 Resting state networks and their associated brain regions and cognitive roles.  

Network Brain Regions Cognitive Role 

Auditory Superior temporal cortex 
Insular cortex 
Post central cortex 

- Auditory processes  

DAN Intra parietal sulcus 
Frontal eye fields  

- Goal-directed, voluntary control of 
visuospatial attention 

- Top-down selection of stimuli and 
responses 

DMN Medial prefrontal cortex 
Posterior cingulate cortex 
Angular gyrus 

- Self-related cognitive processes 
- Mind wandering 
- Temporal perspective of self  
- Task-unrelated thoughts 

ECN Dorsolateral prefrontal cortex 
Posterior parietal cortex 

- Sustained attention  
- Complex problem-solving  
- Working memory 

Limbic Amygdala 
Mammillary bodies  
Stria medullaris  
Central gray, dorsal and ventral 
nuclei of Gudden  

- Lower order emotional processing of 
input from sensory systems 

Salience Anterior insula 
Anterior cingulate cortex 

- Detecting and filtering salient stimuli 
- Recruiting relevant functional 

networks 
Somatomotor Post- and precentral gyrus 

Supplementary motor areas  
- Performing and coordinating motor 

tasks 
Visual Striate cortex 

Extra-striate areas in the occipital 
lobe  

- Visual processes  

DAN: dorsal attentional network, DMN: default mode network, ECN: executive control network 
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of cognitive roles were suggested for each one of the RSNs (summarized in Table 
1.1). For example, the DMN was suggested to be associated with self-related 
cognitive processes, such as mind-wandering (Mason et al., 2007; Smallwood et 
al., 2021), task-unrelated thoughts (Stawarczyk et al., 2011; Van Calster et al., 
2017), and temporal perspective of the self (D’Argembeau et al., 2010). Further, 
more detailed analysis showed that the RSNs not only have specific cognitive 
roles, but can also act as specific routes for information flow between different 
brain regions while subjects are performing cognitive tasks (Cole et al., 2016). 
Importantly, FPN, DAN, and ECN were suggested as main networks that globally 
control and coordinate task-related information flow (Ito et al., 2017).  

Static connectivity analysis during rest showed that DMN and its interaction 
with other cortical regions, such as the hippocampus, support the occurrences of 
spontaneous thoughts (D’Argembeau et al., 2010; Karapanagiotidis et al., 2017; 
Mason et al., 2007; Smallwood et al., 2021; Stawarczyk et al., 2011; Van Calster 
et al., 2017). Additionally, parts of DAN and VAN are associated with stimuli 
perception (Van Calster et al., 2017). More detailed investigation of neural 
signatures regarding fluctuating conscious contents can be achieved thanks to 
the dynamic exploration of within- and between-network interactions during rest 
(Kucyi, 2018). For example, considering the role of DMN in the occurrences of 
spontaneous thoughts, it has been shown that more dynamic communication 
within DMN areas increases overall stimulus-independent thoughts (Kucyi & 
Davis, 2014). Using a retrospective evaluation of mental states after resting fMRI 
acquisition, it has also been shown that the neural activity which is commonly 
seen during demanding tasks and the time individuals spent in this state was 
associated with having thoughts about problem solving in the future. In addition, 
a second state that is commonly seen under less demanding conditions and the 
time individuals spent in this state was linked to reports of intrusive thoughts 
about the past (Karapanagiotidis et al., 2020). Also, individuals who reported 
greater frequencies of thoughts related to somatosensory awareness, auditory 
imagery, and visual imagery showed greater FC changes over time. These 
variations were more nuanced in the medial prefrontal cortex, insula, sensory 
regions, and basal ganglia, suggesting content-specificity of the relationship 
between different brain networks and spontaneous thoughts (Chou et al., 2017).  

A limitation in these studies is the retrospective evaluation of ongoing mental 
states using questionnaires after data acquisition. Although this technique avoids 
interruptions in the flow of spontaneous mental states, it does not provide 
precise information about the occurrence time of each particular state, and is 
commonly subject to self-serving biases (Kucyi, 2018). To mitigate this limitation, 
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“experience sampling” or “thought probe” techniques were proposed, in which 
subjects are interrupted in random time points during rest to report their 
immediate mental state (Reed & Mihaly, 2014; Van Calster et al., 2017). This 
technique gives a better temporal resolution of mental state evaluation but leads 
to interruption in the flow on ongoing conscious experience. Due to this tradeoff, 
there is still a big gap in understanding the association of neural dynamics and 
ongoing mental states during rest.   

1.4 Thesis Outline 
In this thesis, the fundamental goal is to investigate the association between 

neural dynamics and ongoing conscious experience during resting state. In a 
general view, the thesis is planned based on four chapters to explore this 
question in two different settings: i) The investigation of brain-mind interactions 
in special conditions with the aim to see how this relationship is influenced by 
different parameters, i.e., intrinsic brain idiosyncrasy (mind blanking), 
perturbations (psychedelic drugs), and extreme environments (space flight); and 
ii) The design of a “brain-reading” model to decode ongoing mental states, with 
the aim to determine those neuroimaging features, critical to classify 
spontaneous mental content.  

In Chapter 2, we investigate the association between resting state neural and 
mental dynamics in special conditions: a) in the form of spontaneous occurrences 
of mind blanking, b) under administration of psychedelics, and c) after space 
travel. Mind blanking is a unique, not widely charted mental state, that can occur 
also during normal wakefulness. As spontaneous occurrences of mind blanking 
suggest that the stream of consciousness might have intermittent gaps, exploring 
its neural correlates in terms of dynamic FC patterns can reveal valuable 
information concerning brain-mind interaction during rest. As perturbations are 
an efficient way to understand the underlying mechanism of a system, in the 
other two studies, we investigate the main question of the thesis while the whole 
brain-mind system is affected by an external factor. First, we study the effect of 
psychedelics (i.e., a class of psychoactive drugs that alter conscious experience) 
on the neural dynamics and how the identified neural changes lead to the 
changes in the conscious experience. Second, we study the effect of long-
duration space flight. There are growing evidence that space travel leads to 
changes in brain structure and function. In this study we aim to explore the 
effects these changes have on the neural dynamics of cosmonauts who traveled 
to the International Space Station and the possible effects they can have on their 
mental flexibility. 
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Chapter 3 deals with mental state decoding. In this study, we use an 
experience-sampling technique to probe ongoing mental states during rest with 
the aim to characterize the dynamic behavior of ongoing conscious experience. 
Using machine learning tools, we designed a decoder which works based on the 
dynamic changes in the coupling and decoupling of functional activity to and 
from the underlying structural connectome. This decoder aimed to predict 
principal mental states that emerged during resting state solely based on the 
brain’s neural dynamics.  

Finally in Chapter 4, we summarize and discuss the main findings of this thesis 
in more detail. On the basis of outcomes and limitations, we suggest future 
directions that can be taken to complete this research.     
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This chapter is based on: 
Mortaheb, S., Van Calster, L., Raimondo, F., Klados, M.A., Boulakis, 
P.A., Georgoula, K., Majerus, S., Van De Ville, D. and Demertzi, A., 
2022. Mind blanking is a distinct mental state linked to a recurrent 
brain profile of globally positive connectivity during ongoing 
mentation. Proceedings of the National Academy of 
Sciences, 119(41), p.e2200511119. 
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2.1 Introduction 
Exploring the underlying mechanism of action in a system in specific 

conditions helps to understand unique aspects of that system which are not 
visible in normal conditions. In this chapter, we examine the dynamic aspects of 
the brain-mind relationship in specific and unique conditions that can reveal 
more details about the way our brain supports ongoing experience during rest. 

First, we observe that the brain’s intrinsic organization constitutes by itself a 
substrate for variant cognition. An uncharted cognitive phenomenon is that of 
mind blanking. Therefore, we seek to answer what happens in the resting brain 
when we experience a blanked mind? Second, a typical way to better understand 
the mechanism of a system is to alter its characteristics through external 
interventions. A promising experimental framework for investigating such 
changes in the brain and mind is the psychedelic state. Psychedelic drugs lead to 
profound departures from normal waking consciousness and produce mystical 
experiences. How would these be reflected on brain dynamics? Third, studying 
the brain under long-term exposure to gravity alteration can provide a clear 
understanding about the effects of the environment on brain dynamic. Could 
structure-function relationship reveal subtle information about mental flexibility 
in space travelers? 

2.2 Mind Blanking 
Contemporary views of ongoing thought see spontaneous experience as an 

interplay between internal processes (e.g., self-generated thoughts) and 
environmental demands (e.g., task difficulty;  Smallwood et al., 2021). For 
example, off-task thoughts and daydreaming can be observed more frequently 
when environmental demands are less pronounced (Turnbull et al., 2019). 
Ongoing experience can also show moments when we cannot report any mental 
content, often accompanied by a post-hoc realization that our mind “went away” 
(Ward & Wegner, 2013) or went “blank” (Kawagoe et al., 2019). This particular 
phenomenon is often referred to as mind blanking (MB). This mental state is a 
waking state during which we do not report any mental content. The 
phenomenology of MB challenges the view of a constantly thinking mind. So far, 
MB has been defined as “reports of reduced awareness and a temporary absence 
of thought (empty mind) or lack of memory for immediately past thoughts [that] 
can be considered as the phenomenological dimension of a distinct kind of 
attentional lapse” (Andrillon et al., 2019). This definition implies that MB can 
have various mechanistic causes, such as lack of content meta-awareness, failure 
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in memory retrieval, or lapses in attention. Regardless of the mechanistic 
counterpart, MB’s phenomenology challenges the view of the mind as relating 
primarily to thoughts. Given this observation, what is the relation between MB 
and other mental states and what are the specific neural configurational 
processes that support this phenomenology? 

To date, behavioral and neuroimaging studies have shown that MB can be 
reported with a low frequency compared to other mental states, it can occur 
either during resting state (Van Calster et al., 2017) or during a cognitive task 
(Andrillon et al., 2021), and it can be accompanied by particular neural activity. 
Behaviorally, it has been shown that, during focused tasks, MB was reported on 
average 14.5% of the times whenever subjects evaluated their mental state upon 
request (Ward & Wegner, 2013) and 18% of the time when participants reported 
MB by self-catching (Schooler et al., 2004). During resting state, this number was 
reported to be about 6% (Van Calster et al., 2017). Neuroimaging data showed 
that when participants were instructed to “think of nothing” as compared to “let 
your mind wander,” there was lower fMRI functional connectivity between the 
default mode network and frontal, visual, and salience networks (Kawagoe et al., 
2018). MB has also been associated with deactivation of Broca’s area and parts 
of the hippocampus, as well as with activation of the anterior cingulate cortex, 
which was interpreted as evidence for reduced inner speech (Kawagoe et al., 
2019). Decreased functional connectivity in the posterior regions of the DMN and 
increased connectivity in the DAN was also found in an experienced meditator 
who practiced content-minimized awareness, which can be considered a 
phenomenological proxy to sustained MB (Winter et al., 2020). 

Collectively, these studies indicate that the investigation of MB is rising over 
the years. Yet, we observe that its neurobehavioral characterization remains 
inconclusive for several reasons. First, MB has been studied after deliberately 
inducing it or in highly trained individuals; therefore, its spontaneous 
occurrences are not generalizable. Second, in some cases MB has been studied 
in isolation from other mental states; therefore, its interstate dynamics are 
lacking. Third, current MB’s neural correlates concern a limited number of brain 
regions, leaving the whole-brain functional connectome uncharted. Here, we 
aimed at addressing these issues by delineating the neurobehavioral profile of 
MB in a comprehensive way. For this purpose, we used fMRI-based experience 
sampling in typical individuals (Van Calster et al., 2017) to account for the 
behavioral quantification of spontaneous (noninduced) MB occurrences, to 
determine MB’s inter-mental state dynamics, and to estimate MB’s functional 
fine-grained connectome at the whole-brain level.  
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2.2.1 Characterization of Mind Blanking at Rest 
Dataset  

Data were previously collected from 36 healthy participants (27 women, 9 
men, mean age: 23 y ± 2.9) within a 3-T MRI scanner while they were at rest with 
eyes open (Van Calster et al., 2017).  Experience- sampling concerned randomly 
presented sounds (n = 50) that prompted the participants to evaluate and choose 
by button press the mental states in which they were engaged prior the probe. 
Possible mental states were absence (i.e., MB), perception of sensory stimuli 
(Sens), stimulus-dependent thoughts (SDep), and stimulus-independent 
thoughts (SInd) (Figure 2.1, Methods Box 1). 

Behavioral Characteristics 

Considering the occurrence rate over time, MB was reported significantly 
fewer times than the other mental states (median=2.5, IQR=3, min=0, max=9; 
Figure 2.2A). With respect to reaction times, there was a main effect of mental 
state (χ2[3]=66.63, p<0.001; generalized linear mixed model analysis; Figure 
2.2B), with MB being reported faster than SDep (z=3.81, P=0.0008) and SInd 
(z=3.37, P=0.0042) but with no significant differences from Sens (z=0.73, P=0.89; 
post-hoc Tukey test). The evaluation of the dynamic transitions between 
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Figure 2.1 Data acquisition and analysis paradigm. While at rest, participants were randomly 
interrupted by an auditory probe to report their immediate mental state choosing between absence 
(MB), Sens, SDep, and SInd. To estimate which brain configuration corresponded to a reported mental 
state, connectivity matrices were estimated via phase-based coherence for each fMRI volume. The 
matrices were then organized in distinct patterns via k-means clustering, and the similarity between 
these patterns and the matrices relating to the reported mental states of the preprobe period was 
calculated. The pattern with the highest similarity to the preprobe matrices was assigned to that 
reported mental state. 



 

 

 

 

 

 

34 

different mental states showed exceptionally low but equal probabilities (0.06) 
for reporting MB when departing from a content-oriented state (Figure 2.2C). 
Also, the probability of rereporting MB was particularly low (0.04). Finally, the 
hypothesis of a uniform distribution of reports across the session could not be 
rejected for MB (χ2[9]=12.31, p=0.20, φ=0.35; Figure 2.2D), SDep (χ2[9]=5.25, 
p=0.81, φ=0.10), or SInd (χ2[9]=4.22, p=0.90, φ=0.07). Sens reports, though, 
were not uniformly distributed over time (χ2[9]=18.15, p=0.03, φ=0.23; Appendix 
D, Fig. D1). 

 

Figure 2.2 Mind Blanking (MB) is characterized by a distinct behavioral profile. (A) MB shows 
significantly low reportability by comparison to the other mental states, replicating past findings (FDR 
p<0.05). (B) MB is reported significantly faster than SDep and SInd mental states, possibly reflecting 
shorter cognitive evaluation due to the “absent content” as opposed to the thought-related reports. 
(C) The Markov model shows that the probability of reporting an MB state after exploring other 
mental states is low but equal (6%), suggesting that MB might serve as a transient mental relay during 
spontaneous mentation. (D) Uniform distribution of MB reports across the acquisition time shows 
that this phenomenon is not driven by tiredness or drowsiness. Sens: sensory perception of stimuli; 
SDep: stimulus-dependent thoughts; SInd: stimulus-independent thoughts. 
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Neural Characteristics 

MB is associated with a distinct physiological state. To estimate MB’s 
functional connectome, we first sought to delineate the contribution of the 
global signal (GS). This was because the GS has been previously shown to contain 
neural sources (Li, Kong, et al., 2019; Murphy & Fox, 2017; Schölvinck et al., 2010) 
and thus can be of functional significance. The spatially averaged time series were 
extracted from the regions of interest (ROIs), and their amplitude was estimated 
for five volumes (10.2 s) per probe, that is, two volumes preceding the probe and 
three after it (Figure 2.1) to account for the blood oxygen level–dependent 
(BOLD) hemodynamic response (see Methods Box 1), and their mean absolute 
value was calculated. By using this 10-s analysis window, we found a significant 
effect of mental state on the GS amplitude (χ2[3]=12.474, p=0.006; generalized 
linear mixed model), with higher amplitude relating to the volumes surrounding 
MB reports as compared to those linked to SDep (z=3.3, p=0.005) and SInd 
reports (z=2.55, p=0.05; post-hoc Tukey test; Figure 2.3). Similar results were 
obtained when the analysis window lagged between zero frames (i.e., five scans 
preprobe) up to three volumes (i.e., two preprobe and three postprobe scans; 
Appendix D, Fig. D2). As the GS contributes deferentially to the reportability of 
mental states, we decided to include it in the connectivity analyses. For 
comprehensive purposes, all analyses were performed without the GS as well. To 

Figure 2.3 Volumes labeled as mind blanking (MB) are characterized by high global signal (GS) 
amplitude. The average value of the GS shows that the GS amplitude is significantly higher for 
volumes reported as MB compared to the GS amplitude observed in volumes reporting content-
oriented states, pointing to a distinct physiological substrate supporting MB reportability. Bars show 
the mean absolute value, and error bars show 95% confidence intervals. Sens: sensory perception of 
stimuli; SDep: stimulus-dependent thoughts; SInd: stimulus- independent thoughts.  



 

 

 

 

 

 

36 

investigate the potential effect of the level of arousal on MB reportability, we 
also calculated the correlation between the GS amplitude and the reaction times 
of all MB reports. No significant correlation was found (Spearman’s ρ=0.03, 
p=0.76; Appendix D, Fig. D2). 

MB is accurately classified by means of phase-based coherence matrices. To 
check whether MB has a distinct neural profile, we first tested whether it can be 
classified among other mental states by using the functional connectome. Using 
the Hilbert transform, we estimated framewise phase-based coherence matrices 
for the above-mentioned period of five volumes (lag=3). Considering these 
connectivity matrices as feature vectors (five vectors per probe), a support vector 
machine (SVM) classifier with fivefold cross-validation and 10 repeats classified 
MB reports from all mental states with an average precision of 1, average recall 
of 0.81, and average balanced accuracy of 0.90. In addition, a one-versus-one 
strategy to classify MB from the other reports separately led to high classification 
performance (Table 2.1). To compare the results with the empirical chance level, 
a dummy classifier was further used to separate MB-labeled matrices from the 
matrices corresponding to the other mental states. This dummy classifier 
generated random predictions by respecting the training set class distribution 
(Table 2.1). This classification strategy also showed comparable performance for 
other analysis window lag values (Appendix D, Tables D1–D4). Collectively, by 
comparing all the performance metrics of the MB classification by using an SVM 
and the dummy classifier, we found that the SVM successfully separated the 
functional connectomes of MB reports from those belonging to the other mental 
states. 

Table 2.1 Performance of SVM classifier when predicting MB reports based on phase coherence 
matrices (lag = 3) 

 Balanced 
Accuracy 

Recall Precision 

MB VS. SENS 0.97 0.95 0.99 

MB VS. SDEP 0.96 0.92 1 

MB VS. SIND 0.94 0.88 1 

MB VS. OTHERS 0.90 0.81 1 

MB VS. OTHERS (DUMMY) 0.50 0.05 0.06 
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Functional connectivity organizes into distinct recurrent patterns. Under the 
hypothesis that the MB’s neural signature is contained in connectivity dynamics, 
we investigated how the framewise functional connectome organizes into 
distinct connectivity patterns. By concatenating all the estimated connectivity 
matrices across subjects and by applying k-means clustering, we determined four 
main functional brain patterns that appeared recurrently across the resting state 
periods, replicating previous results (Demertzi et al., 2019) despite different 
acquisition parameters and parcellation schemes. The patterns were 
characterized by distinct signal configurations: a pattern of complex interareal 
interactions, containing positive and negative phase coherence values between 
long-range and short-range regions (pattern 1), a pattern showing 
anticorrelations primarily between the visual network and the other networks 
(pattern 2), a pattern with overall positive interareal phase coherence (pattern 
3), and a pattern of overall low interareal coherence (pattern 4; Figure 2.4A). In 
terms of occurrences, pattern 4 appeared at a significantly higher rate than 
pattern 1 (t[35]=7.131, p<0.001, Cohen’s d=1.18), pattern 2 (t[35]=7.495, 
p<0.001, Cohen’s d=1.25), and pattern 3 (t[35]=5.857, p<0.001, Cohen’s d=0.98, 
p values false discovery rate (FDR) corrected at α=0.05; Figure 2.4A). Importantly, 
these patterns also emerged when we used different cluster sizes (ranging from 
3 to 7) and different analysis window lags (ranging from zero up to three frames; 
Appendix D, Figs. D3–D6). 

Neurobehavioral Characteristics 

To determine which brain pattern was the closest to the MB reports, we used 
the cosine distance as the similarity measure between five connectivity matrices 
of each analysis window and the four resting brain patterns (Figure 2.1). Using a 
generalized linear mixed model fit to the distance measures of each brain pattern 
separately, we found a significant effect of mental state for distance values to 
pattern 3 (χ2[3]=19.088, p=0.0002). Pattern 3 further showed higher similarity to 
MB compared to the reports of Sens (estimate=0.114, low CI=0.027, high 
CI=0.202, p=0.004), SDep thoughts (estimate=0.137, low CI=0.053, high CI=0.221, 
p=0.0002), and SInd thoughts (estimate= 0.132, low CI=0.050, high CI=0.213, 
p=0.0002; post-hoc Tukey tests; Figure 2.4B). These results were also replicated 
with different analysis window lags (Appendix D, Figs. D16–D19). For 
comprehensive purposes, we performed a supplementary analysis of the 
neurobehavioral coupling by omitting the GS through subtraction or regression. 
Global signal subtraction (GSS) refers to withdrawing the GS from the ROI 
preprocessed time series, while global signal regression (GSR) concerns removing 
the GS from the preprocessed ROI time series via linear regression. After GSS and 
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GSR were applied, all brain patterns were reproduced except for pattern 3 
(Appendix D, Fig. D15A), whose architecture shifted toward negative coherence 
values. The same observation was noticed on the clustering results with different 
cluster sizes (Appendix D, Figs. D7–D14). The overall effect of GSS and GSR on the 
connectivity patterns was the shift of connectivity value distributions toward 
negative values thus enhancing anticorrelations (J. S. Anderson et al., 2011; 
Leonardi et al., 2013; Murphy et al., 2009), also previously reported (Xu et al., 
2018; Appendix D, Fig. D15B). In addition, inter-pattern correlation analysis 
showed that pattern 3 had the lowest similarity to itself after GSS and GSR 
(ρ=0.59; Appendix D, Fig. D15C). Considering a p<0.05/4=0.0125 threshold to 
correct for multiple tests, no significant effect of mental states on the similarity 
measures were found for any pattern, neither for GSS (pattern 1, p=0.931; 

B

P1 P2 P3 P4

A

Conn>0 
Conn<0

p<0.001

Figure 2.4 MB is associated with an overall positive interregional brain connectivity pattern. (A) 
Brain functional organization during rest can be summarized into four main connectivity patterns of 
complex cortical interactions (pattern 1 [P1]) visual network anticorrelations (pattern 2 [p2]), globally 
positive coherence (pattern 3 [p3]), and low inerareal connectivity (pattern 4 [p4]). There were similar 
occurrences rates across patterns, except for p4, which potentially reflects the underlying anatomy 
and therefore acts as a foundation upon which the others can occur. (B) The globally positive phase 
coherence P3 shows the highest similarity (positive contrast value of cosine similarity) to the 
connectivity matrices related to the MB reports compared to the other mental states. Black dots show 
the difference between similarity measures to the related connectivity pattern for each pair of mental 
states; error bars indicate 95% confidence intervals; vertical blue lines indicate the zero differences. 
Conn: connectivity (phase-based coherence); DMN: default mode network; Cont: executive control 
network; DA: dorsal attentional network; VA: ventral attentional network; Lm: limbic network; Vis: 
visual network; SM: somatomotor network.  
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pattern 2, p=0.116; pattern 3, p=0.294; pattern 4, p=0.573), nor for GSR (pattern 
1, p=0.109; pattern 2, p=0.022; pattern 3, p=0.276; pattern 4, p=0.093); Appendix 
D, Figs. D20 and D27). These results suggest that the GS carries partially 
independent neural information and contributes to the cerebral profile of MB 
reportability. 

2.2.2 Discussion   
We used experience sampling paired with fMRI to determine the 

neurobehavioral profile of MB in typical individuals to delineate its 
neurobehavioral profile in a comprehensive way. Collectively, our results show 
that MB is a unique mental state supported by a distinct neural state that 
contributes meaningfully to spontaneous mental activity. Behaviorally, we found 
that individuals report MB occurrences less frequently and faster than other 
mental states. This finding is in line with previous studies showing that MB gets 
reported significantly less often than thought-related states (Schooler et al., 
2004; Ward & Wegner, 2013), although the opposite effect was also reported 
(Kawagoe et al., 2019). These discrepancies might be attributed to the study 
protocol, where in the latter study participants were encouraged to stay engaged 
in thinking about nothing (Kawagoe et al., 2019). This implies that MB might be a 
flexible and trainable mental state that, once introduced as an option, can be 
informative of one’s ongoing mental experience. Our results also align with 
studies reporting similarly short MB reaction times while participants are 
involved in sustained attention to response tasks (Stawarczyk et al., 2020; 
Stawarczyk & D’Argembeau, 2016). Other investigations, however, show that MB 
is reported slower when compared to other mental states, which was interpreted 
as MB facilitating sluggishness in responses (Andrillon et al., 2021) or as the result 
of decreases in alertness and arousal during task performance (Unsworth & 
Robison, 2016). Here, we consider that the short reaction times for MB and the 
longer reaction times for thought-related mental states (Sdep, Sind) might be 
attributed to an additional cognitive evaluation of the latter. In other words, 
when thoughts are occupied by specific content, this is translated into longer 
cognitive evaluation as to the particularities of this content.  

This stance implies that MB can be a mental state that is “content-free,” and 
as such it is reported faster. This interpretation is supported by previous 
investigations using self-paced focused reading with self-catches of MB and mind 
wandering (Ward & Wegner, 2013). Although this is a tempting consideration, 
we recognize that the content-free nature of MB reports could not be directly 
addressed here. In attempting to uncover the mechanisms of MB, past work 
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shows that attention can act as a mediating process that drives content 
reportability (Pitts et al., 2018), so that participants do entertain content-full 
thoughts but fail to attend to them, therefore leading to attentional lapses 
(Stawarczyk et al., 2020; Unsworth & Robison, 2016; Van den Driessche et al., 
2017). At the same time, it can be that MB is a matter of participants’ 
metacognitive capacities, in that MB is more about a “cognitive evaluation free” 
or “meta-awareness free” mental state rather than lack of mental content. 
Equally, MB might be deprived of any experience altogether, reflecting a 
“transition mode” between modifications of experience (content) as we move 
from one state to the other. This last scenario fits with our results of the low 
probabilities to report MB when previously in another mental state. In that case, 
departures from MB are more likely to lead toward thought-related reports and 
less likely to return to MB. However, these findings should be considered within 
the temporal constraints of the experience sampling paradigm, namely, one 
cannot assume that this dynamic sequencing reflects actual mental state 
transitions because the temporal structure between the reports is not 
continuous. Consequently, other mental states might have appeared between 
reports. Despite this limitation, the finding that the equally small probabilities to 
report MB when previously in another state and vice versa indicates that MB 
might not be driven by any specific mental content, therefore serving as a 
transient mental relay (Fornito et al., 2012). This means that thoughts with 
reportable content can lead toward more mental contents due to semantic 
associations, hence creating the perception of a stream of consciousness 
(Christoff et al., 2016). Since MB is not semantically associated with any particular 
mental content, it may therefore occur scarcely during ongoing experience. 
Therefore, phenomenologically “empty” mental states might have less of an 
anchoring effect than content-full states. Finally, our finding of a uniform 
distribution of MB reports over time, also reported elsewhere (Ward & Wegner, 
2013; Watts et al., 1988), further suggests that MB happens spontaneously 
across time and is not an artifact of fatigue or sleepiness, which would lead to 
more occurrences at the end of the recordings. Additionally, in the absence of 
direct physiological measures of arousal, such as electroencephalography or 
pupillometry markers, the BOLD GS amplitude can be considered as a proxy of 
arousal and also sleepiness (Fukunaga et al., 2006; Nilsonne et al., 2017). 
Although other studies relate sleepiness to an inflated number of MB reports and 
reduced reaction times (Stawarczyk et al., 2020; Stawarczyk & D’Argembeau, 
2016), the lack of significant correlation between GS amplitude and reaction 
times shows that sleepiness is not a confounding factor of MB reportability in our 
dataset. Taken together, the behavioral results indicate that MB is a distinct 
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mental state with a unique position among thought-related reports. In order to 
shed light on the refined mechanisms underlying MB reportability we suggest 
that future work address MB in terms of content, attention, and metacognitive 
capacities.  

In terms of MB’s neural underpinnings, we first found that the amplitude of 
the GS was preferentially higher for scanning volumes associated to the MB 
reports. In addition, the supplementary analysis of the neurobehavioral coupling 
without the GS confirmed that the GS contributes meaningfully to the MB state 
as it dramatically changes the overall interregional positive coherence of pattern 
3 after its removal. At the moment, we can only speculate about what the high 
GS amplitude might mean for MB reportability. In terms of physiological 
relevance, spontaneous GS amplitude was previously found to correlate 
negatively with electroencephalographic (EEG) vigilance (alpha, beta 
oscillations), while increases in EEG vigilance due to caffeine ingestion were 
associated with reduced GS amplitude (Wong et al., 2013). In macaques, 
electrocorticography showed that widespread transient and synchronous 
cortical activity was linked to low arousal in a series of sequential spectral 
transitions (i.e., from decreases in midfrequency activity, accompanied by 
increases in the gamma band, to be followed by increases in delta band; Liu et 
al., 2015). When these transient electrophysiological events in animals were 
linked to fMRI motifs in humans, there was a close association between the GS 
and these transitions, which corroborated the origins of arousal (Liu et al., 2018). 
These results, jointly with the elevated GS amplitude during MB described herein, 
show the possibility of neuronal silencing during wakefulness.  

The scenario of neuronal silencing is further supported by the analysis of 
neurobehavioral coupling. With this analysis we first showed four distinct brain 
functional connectivity patterns, which recur dynamically during the resting 
periods of the experience-sampling task. These brain patterns bear great 
resemblance to what we previously reported as recurrent brain configurations 
during pure resting state fMRI acquisitions across healthy individuals and brain-
injured patients (Demertzi et al., 2019). The fact that these patterns appear 
across independent datasets, and also in nonhuman primates (Barttfeld et al., 
2015), under different paradigms, different brain parcellations, and different 
cluster sizes, points to their universality and robustness. Specifically, to MB, the 
pattern with the all-to-all positive interareal connectivity (pattern 3) had the 
highest similarity to the connectivity matrices preceding MB reports. Such high 
prevalence of comparable signal configurations was previously shown during 
non–rapid eye movement slow-wave sleep, wherein overall minimal neuronal 
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firing was translated as globally positive connectivity (Aedo-Jury et al., 2020; El-
Baba et al., 2019). Studies in rats (Vyazovskiy et al., 2011) show that such periods 
of neuronal silencing can happen also during wakefulness in the form of neuronal 
firing rate reduction, leading to slow wave activity, which is indicative of local 
sleeps. When applied to humans, it has been argued that these instances of local 
sleeps can be the phenomenological counterpart of MB (Andrillon et al., 2021). 
In that respect, wakefulness does not only support constantly on periods of 
neuronal function. Rather, our brains can also show instances of neural down 
states even during wakefulness, possibly for homeostatic reasons (Bridi et al., 
2020), which can be translated as global positive connectivity and 
phenomenologically interpreted as MB. 

From a theoretical perspective, it seems that MB further challenges the 
boundaries of various models of conscious experience. For example, the global 
neuronal workspace theory (Dehaene et al., 2006) posits that a stimulus becomes 
reportable when some of its locally processed information becomes available to 
a wide range of brain regions, forming a balanced distributed network (Sergent 
& Dehaene, 2004). A key process of this global broadcasting is ignition (Dehaene 
et al., 2003). Ignition is characterized by the sudden, coherent, and exclusive 
activation of a subset of workspace neurons that code a particular content, while 
the remainder of the workspace neurons stay inhibited. If the global neuronal 
workspace ignition is always related to selective neural activation and inhibition 
(content), the theory cannot account for how MB can still be reported if it is 
linked to a functional connectome with only positive connections. This is similar 
for the integrated information theory (IIT) (Tononi, 2008). According to IIT, in 
order to generate an experience, a physical system must be able to discriminate 
between a large repertoire of states (i.e., information). This must be done as a 
single system that cannot be decomposed into a collection of causally 
independent parts (i.e., integration). So far, IIT can explain the inability to report 
mental content in brain states with extreme functional integration (i.e., 
functional hyperconnectivity), as during generalized epilepsy (Blumenfeld, 2012). 
In such a brain state, an abnormally large number of regions work in synchrony, 
and, as a result, the brain becomes no longer capable of processing information 
in a way that leads to conscious experience. The here-identified all-to-all positive 
connectivity pattern shows the highest level of integration and efficiency and the 
lowest level of segregation and modularity compared to the other brain patterns 
(Demertzi et al., 2019). Therefore, this may imply that such a neural configuration 
is unable to produce a balance between values of integrated information and its 
segregation, leading to limited experience, such as MB. If the role of integration 
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is emphasized over the role of segregation, as in the recent version of IIT, then 
MB challenges that approach, making a clear case for the importance of 
information segregation within neural configurations of conscious content. 
Importantly, though, the integration in IIT happens only when there is a content 
of experience, being reported or not, which is counterintuitive for MB. Both 
theories essentially start from the premise that experience is made up of various 
bits from which a unified experience arises. As MB does not provide such building 
blocks, it seems to be a kind of global state of unified experience, with conscious 
content being the modifications of such a basal conscious field, according to 
Searle’s unified field model (Searle, 2000). If this interpretation is considered, 
then the current findings pose an important challenge to building block models 
of conscious experience. 

Our analysis leaves several questions unaddressed. First, the current design 
does not permit us to determine the underlying mechanism that drives MB (i.e., 
whether it is an effect of attention, memory, or language). Such determination is 
expected to shed light on MB’s modulatory mechanisms as well; and therefore, 
further indicate its functional significance in variant conditions. Second, apart 
from the intrinsic problems with the validity and reliability of self-reports during 
experience sampling (Nisbett & Wilson, 1977), we also used a probe-catching 
method. This means that participants were interrupted during spontaneous 
thinking by a probe, asking them to choose an appropriate option to describe 
their thought state. Such a probe-framing technique can restrict the estimation 
of potential phenomenological switches happening in between. Indeed, as the 
probes were appearing at predetermined time points, we cannot exclude the 
possibility of mental contents happening during the inter-probe intervals, and 
hence they were missed and could not be reported. Also, probe framing can be 
suboptimal in capturing spontaneous thinking because it might lead to an inflated 
number of MB reports. This is because participants may have chosen this 
category due to the fact that it was available, which, otherwise, they would not 
have reported if they were to identify it spontaneously (Weinstein et al., 2018). 
However, given that MB occurrences were not reported with a comparable high 
frequency to the content-oriented states, it might be that MB was evaluated in a 
representative way across the evaluation, leading to infrequent occurrences 
across participants. Third, the high repetition time (TR) during the fMRI 
acquisition (2.04 s) could also have echoed the temporal implications of the MB 
profiling. By means of simultaneous EEG and fMRI recordings, more light is 
expected to be shed on fine-grained temporal dynamics of MB. Such 
simultaneous multimodal recordings are expected to also illuminate the 



 

 

 

 

 

 

44 

assumption of slow-wave activity as the corresponding neural mechanism of MB. 
Finally, we cannot exclude the possibility that the mind is not absent in the first 
place, under the premise that if it were, participants would not have been able 
to report anything, including its absence. The term “mind blanking”, thus, may 
reflect different aspects (e.g., truly absence of the mind vs. absence of conscious 
access to mental events) that still need to be disentangled.  

In conclusion, our study suggests that MB can be considered a default mental 
state occupying a unique position among thought-related reports. Its rigid 
neurofunctional profile could account for the inability to report mental content 
due to the brain’s inability to differentiate signals in an informative way. While 
we wait for the underlying mechanisms of MB to be illuminated, these data 
suggest that instantaneous nonreportable mental events can happen during 
wakefulness, setting MB as a prominent mental state during ongoing experience. 
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2.3 Resting Brain and Mind under Psychedelics  
Psychedelics are a class of psychoactive drugs that have been used historically 

as a means to alter conscious experience (Mason et al., 2020; Metzner, 1998). 
Lysergic acid diethylamide (LSD), ayahuasca, psilocybin, N-dimethyltryptamine 
(DMT), and mescaline are some examples of these drugs. Among them, 
psilocybin, an ingredient in the so-called “magic mushrooms”, is a well-known 
drug in psychedelic research because of its prolonged effects, rapid onset, and 
good absorption after administration (Griffiths et al., 2011, 2018; Hasler et al., 
2004; Madsen et al., 2021; Tylš et al., 2014). While psilocybin has been used for 
centuries in healing ceremonies via mushroom ingestion, recently it has been 
considered as a potential therapeutic substance to treat different psychological 
disorders such as obsessive-compulsive disorder (Moreno, 2006), anxiety related 
to dying (Grob et al., 2011), depression (Andersen et al., 2021; Carhart-Harris et 
al., 2012, 2021; Ross et al., 2016), treatment-resistant depression (Carhart-Harris 
et al., 2016, 2017, 2018), major depressive disorder (Davis et al., 2021), terminal 
cancer-associated anxiety (Griffiths et al., 2016; Ross et al., 2016), demoralization 
(Anderson et al., 2020), smoking (Johnson et al., 2017), and alcohol and tobacco 
addiction (Bogenschutz et al., 2015; Garcia-Romeu et al., 2019; Johnson et al., 
2014). Considering these therapeutic applications of psilocybin, as well as its 
consciousness altering capability in a profound way, it is important to study the 
way it affects the brain leading to such unique experiences (Tagliazucchi et al., 
2014).  

Psilocybin’s underlying mechanism of action is to stimulate serotonin (5-
HT2A) receptors located on cortical pyramidal neurons (Nichols, 2016; 
Vollenweider & Kometer, 2010) which eventually leads to release of glutamate 
(N. L. Mason et al., 2020; Vollenweider & Kometer, 2010). This mechanism leads 
to hallucinogenic effects and alters subjective conscious experience. In the acute 
phase, subjective experiences can be explained by ego dissolution, i.e., the 
reduction in self-referential awareness, ultimately disrupting self-world 
boundaries and increasing feelings of unity with others’ and one’s surroundings 
(Nour & Carhart-Harris, 2017; Studerus et al., 2010), unconstrained 
consciousness, i.e., hyper-association and profound alterations in the perception 
of time, space and selfhood (Carhart-Harris et al., 2014; Griffiths et al., 2006; 
Tagliazucchi et al., 2014), perceptual alterations, synesthesia, experiences of 
unity, profound changes in affect (Preller & Vollenweider, 2018), and transient 
elevations in mood (Majić et al., 2015). Other studies also reported long-term 
and lasting effects of psilocybin administration on personality and mood change, 
such as increases in the personality traits of openness and extraversion, 
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decreases in neuroticism and increases in mindful awareness (Erritzoe et al., 
2018; MacLean et al., 2011; Madsen et al., 2020). 

In terms of neural effects, functional neuroimaging studies have shown that 
the administration of psilocybin can result in decreased activity in the thalamus, 
posterior cingulate cortex (PCC), and medial prefrontal cortex (mPFC; Carhart-
Harris et al., 2012), decreased connectivity within the DMN (Carhart-Harris et al., 
2012; N. L. Mason et al., 2020) and ECN (McCulloch et al., 2022), increased global 
connectivity with reduced modularity (Preller et al., 2020; Roseman et al., 2014), 
altered connectivity of the claustrum (Barrett et al., 2020), decreased segregation 
of DAN and ECN (Madsen et al., 2021), and increased whole-brain network 
fractional dimension (Varley et al., 2020). These neural counterparts indicate that 
the subjective effects of psilocybin can be due to alterations in the activity and 
connectivity of important brain regions involved in information integration and 
routing. In order to better understand brain-mind interactions in this condition, 
one can further explore the brain’s dynamic behavior during a psychedelic state.  

Dynamic analyses of connectivity patterns after psilocybin administration 
have shown that the brain tends to visit more transient functional states with low 
stability and a smaller number of persistent ones (Petri et al., 2014). In addition, 
in this state the brain has the highest transition probability to a phase-locking 
state characterized by a global cortex-wide positive phase coherence (Lord et al., 
2019). All these findings show that psilocybin affects the brain to make a more 
integrated and less modular system. However, a question that still needs to be 
answered is how these functional connectivity states and the alterations in their 
transitional dynamics are related to the unique experience individuals have 
during the psychedelic state.  

 In this section, we aim to explore the effects of a single dose of psilocybin on 
the brain’s functional dynamics and to investigate how changes in the brain are 
associated with the subjective experience under psychedelics.  

2.3.1 Effects of Psilocybin on the Brain and Mind 
Dataset  

We used previously acquired data (Mason et al., 2020) collected from 49 
healthy participants with previous experience with a psychedelic drug but not 
within the past 3 months. Participants were randomized to receive a single dose 
of psilocybin (0.17 mg/kg, n=22 (12 men), age=23±2.9 y) or placebo (n=27 (15 
men), age=23.1±3.8 y). Six minutes of resting state fMRI (ultra-high field, 7T) 
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were acquired from the participants with eyes open during peak subjective drug 
effect (102 minutes post treatment). In addition, the 5 Dimensions of Altered 
States of Consciousness (5D-ASC) scale (Dittrich, 1998) and the Ego Dissolution 
Inventory (EDI) (Nour et al., 2016) were evaluated 360 minutes after drug 
administration, as retrospective measures of drug effects.  

Behavioral Counterparts 

The 5D-ASC is a 94-item self-report scale that assesses the participants’ 
alterations from normal waking consciousness (Studerus et al., 2010). In this 
questionnaire the participant is asked to make a vertical mark on the 10-cm line 
below each statement to rate to what extent the statements applied to their 
experience in retrospect from “No, not more than usually” to “Yes, more than 
usually.” The 5D-ASC contains the 5 key dimensions, including auditory 
alterations (AA), anxious ego dissolution (AED), oceanic boundlessness (OB), 
reduction of vigilance (RV), visual restructuralization (VR), and which can be 
broken down into 11 subscales consisting of experience of unity, spiritual 
experience, blissful state, insightfulness, disembodiment, impaired control and 
cognition, anxiety, complex imagery, elementary imagery, audio-visual 
synesthesia, and changed meaning of percepts.  

The EDI is an eight-item self-report scale that assesses the participant’s 
experience of ego dissolution (Nour et al., 2016). Sample items for the scale 
includes the following: “I experienced a dissolution of my self or ego” and “I felt 
at one with the universe.” The participants answered the scale with endpoints of 
either 0 = “No, not more than usually” or 100 = “Yes I experience this 
completely/entirely.” The EDI is scored by calculating the mean of all the 8 items 
(range 0–100). The higher the total score, the stronger the experience of ego 
dissolution. Administration of psilocybin was associated with significantly 
increased ratings on all (sub)dimensions of the 5D-ASC (AA: U=529.5, p≤0.001, 
d=0.78; AED: U=555.5, p<0.001, d=0.87, OB: U=583, p<0.001, d=0.96; RV: U=452, 
p=0.002, d=0.52; VR: U=589, p<0.001, d=0.98; EDI: U=487, p<0.001, d=0.64; 
Figure 2.5). 

Neural Counterparts 

Whole-brain static connectivity increases after psilocybin administration. 
After applying the Schaefer atlas with 100 ROIs on the brain and calculating the 
average BOLD time series for each ROI, we used the Pearson correlation to 
measure the statistical dependency of BOLD time series between each pair of 
ROIs. This led to a 100´100 functional connectivity matrix for each participant 
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which were averaged over the participants of each group (Figure 2.6A). After 
administration of psilocybin, the overall connectivity measure of the brain (i.e., 
average of the connectivity matrix for each participant) increased significantly 
(independent t-test: t=3.087, p=0.003; Figure 2.6B). An intra-network 
connectivity analysis showed that this increase was more dominant between the 
regions of the dorsal attentional network for the psilocybin group (independent 
t-test: t=2.620, p=0.042, FDR corrected; Figure 2.6C). An inter-network 
connectivity analysis also showed that the average connectivity between dorsal 
attentional network regions and all the other networks regions increased 
significantly in the psilocybin group (independent t-test; results are shown in 
Figure 2.6D and Table 2.2). 
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Figure 2.5 Substantial changes in subjective experience after psilocybin administration. Assessing 
five dimensions of altered states of consciousness (5D-ASC) and all its sub-scales, together with the 
ego dissolution inventory (EDI) score shows that administration of psilocybin significantly alters the 
subjective experience. AA: Auditory Alterations, AED: Anxious Ego Dissolution, OB: Oceanic 
Boundlessness, RV: Reduction of Vigilance, VR: Visual Restructuralization, Imp. Cont. of Cog.: 
Impaired Control and Cognition, Exp.: Experience, Aud-Vid Syn.: Audio-Visual Synesthesia, Element. 
Im.: Elementary Imagery, Comp. Im.: Complex Imagery.   
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Brain activity tends to self-organize into a hyper-connectivity state after 
psilocybin administration. To investigate the effect of psilocybin administration 
on the dynamic changes of the whole-brain functional connectome at rest, we 
estimated the phase-coherence connectivity matrices at each time point of the 
extracted BOLD signals. After concatenating all the connectivity matrices of all 
the participants, we applied K-means clustering to summarize them into four 
recurrent connectivity patterns (Figure 2.7A). Using this method, we showed that 
the brain’s resting functional connectome was organized into four distinct 
profiles of complex inter-network interactions, including both correlations and 
anti-correlations (Pattern 1), anti-correlation of DMN with other networks 
(Pattern 2), a global cortex-wide positive connectivity (Pattern 3), and a low inter-
areal connectivity pattern (Pattern 4). An analysis of the occurrence rate of these 
patterns over the acquisition time showed that Pattern 3 was appearing 
significantly more often in the psilocybin group when compared to the placebo 
group (independent t-test: t=3.731, p=0.001, α!"#$%&&"#' = 0.05/4 = 0.0125, Figure 
2.7B).  Furthermore, using Markov modeling and considering each one of the four 

A B C

D
p=0.042

Psilocybin - Placebo

Figure 2.6 Overall increases in averaged connectivity after psilocybin administration. (A) Averaged 
connectivity matrix of the psilocybin group shows higher connectivity values between the brain 
regions compared to the placebo group. (B) This can also be seen statistically in the overall 
connectivity of the brain which significantly increases after psilocybin administration. (C) Between-
network connectivity analysis shows that the connectivity measure between dorsal attentional 
network regions and all the other networks regions also increases significantly in the psilocybin group.   
(D) Further, within-network connectivity analysis shows that this increase in the connectivity values 
is more significant between the regions of the dorsal attentional network. 
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patterns as model states, we estimated the transition probability of each state to 
the others. The psilocybin group showed significantly higher transition 
probabilities towards Pattern 3 from Pattern 1 (Wilcoxon Rank-Sum test: z=2.744, 
p=0.006), Pattern 3 (z=2.291, p=0.022), and Pattern 4 (z=2.000, p=0.045; Figure 
2.7C). In addition, the psilocybin group showed lower transition probabilities 
from Pattern 2 to itself compared to the placebo group (z=-2.452, p=0.014).  

Table 2.2 Inter-network comparison of connectivity values between Psilocybin and Placebo groups 
(Psilocybin > Placebo).  

connection t p p(FDR) connection t p p(FDR) 

Cont-
DorAttn 

2.57 0.007 0.027 DorAttn-
Limbic 

1.00 0.026 0.045 

Cont-Limbic 0.93 0.180 0.189 DorAttn-
Salience 

2.48 0.008 0.027 

Cont-
Salience 

1.97 0.028 0.045 DorAttn-
SomMot 

3.01 0.002 0.011 

Cont-
SomMot 

2.19 0.017 0.035 DorAttn-
Visual 

2.32 0.012 0.029 

Cont-Visual 3.81 <0.001 0.002 Limbic-
Salience 

1.52 0.067 0.083 

Cont-DMN 1.79 0.040 0.059 Limbic-
SomMot 

0.99 0.163 0.180 

DMN-
DorAttn 

3.17 0.001 0.009 Limbic-Visual 2.46 0.009 0.027 

DMN-Limbic 0.16 0.436 0.436 Salience-
SomMot 

1.61 0.057 0.075 

DMN-
Salience 

2.40 0.010 0.027 Salience-
Visual 

1.74 0.044 0.061 

DMN-
SomMot 

2.03 0.024 0.045 SomMot-
Visual 

1.49 0.072 0.084 

DMN-Visual 3.83 <0.001 0.002  

Cont: control executive network, DorAttn: dorsal attentional network, SomMot: 
somatomotor network, DMN: default mode network.  
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Regional BOLD signal amplitude decreases after psilocybin administration. 
Calculating the Euclidean norm of the BOLD time series related to each region of 
interest showed that the BOLD signal amplitude of the brain’s posterior and 
anterior regions decreases significantly after psilocybin administration compared 
to the placebo group (Independent t-test (Psilocybin > Placebo), FDR-Corrected; 
Figure 2.8). While somatomotor and limbic networks and temporal regions of 
default mode network did not show significant change in their signal amplitude, 
the highest decrease was related to the posterior cingulate cortex and parietal 
regions of ECN and DMN.  

Neurobehavioral Counterparts 

To investigate the neurobehavioral counterpart of psilocybin administration, 
we performed a canonical correlation analysis (Mihalik et al., 2022) between 
behavioral measures and dynamic state transition probabilities estimated on the 
recurrent functional connectivity patterns. After estimation of the first canonical 
vector for both behavioral and neuronal spaces, we observed that the transition 
probabilities to pattern 3 have the highest correlation with the canonical vector 
related to the state transition probabilities (Figure 2.9A). On the other hand, 
considering the first canonical vector of the behavioral scores, OB, EDI, and VR 
showed the highest correlation with this vector (Figure 2.9B). These observations 
show that the depersonalization feelings after psychedelic usage comes from the 

AA B

p=0.014

p=0.045

p=0.022

p=0.008

Psilocybin > Placebo 
Psilocybin < Placebo 

Figure 2.7 Brain tends to be functionally hyper-connected after psilocybin administration. (A) 
Functional connectome of the brain during resting state can be explained by four different recurrent 
connectivity patterns from a complex inter-network interaction (pattern 1) to a low inter-areal 
connectivity profile (pattern 4). (B) Occurrence rate analysis shows that after psilocybin 
administration, occurrence rate of the global cortex-wide positive connectivity (pattern 3) increases 
significantly. (C) Further, the transition probability from other configurations to the pattern 3 
increases in the psilocybin group which shows the tendency of the brain to be reconfigured in this 
manner under psychedelics.  
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tendency of the brain to reconfigure itself into a global cortex-wide positive 
connectivity configuration. Considering the scatter plot showing the relationship 
between the first canonical vectors of both behavioral and neural spaces, the 
latent variable which derives the high correlation is group of the subjects 
(psilocybin vs placebo) which shows the results we observe here are directly due 
to psilocybin administration (Figure 2.9C). These results were further proved by 
a multiple-regression analysis. Fitting a linear model to each state transition 
probabilities, considering group and behavioral measures as factors of the model 
(𝑇(,* = 𝐺𝑟𝑜𝑢𝑝 + 𝐴𝐴 + 𝐴𝐸𝐷 + 𝑂𝐵 + 𝑅𝑉 + 𝑉𝑅 + 𝐸𝐷𝐼, with subjects as random 
factors), showed a significant effect of OB scores on the transition probability 
from pattern 1 to pattern 3 (t=3.160, p=0.003).  

2.3.2 Discussion  
Recent empirical and theoretical studies show that brain networks function 

near a critical state, defined as a state at the boundary between order and 
disorder (Aguilera & Di Paolo, 2021; Lee et al., 2019). At this state, the brain is 
maximally sensitive to internal and external perturbations (Signorelli et al., 2022). 
As a result, any externally exerted perturbation can cause significant changes in 

Figure 2.8 Posterior and anterior regional BOLD signal amplitude decreases after psilocybin 
administration. Difference between the mean value of Euclidean norm of BOLD time series in the 
psilocybin group and the placebo group at each ROI shows that the BOLD signal amplitude in the 
posterior and anterior regions decreases after psilocybin administration while this remains 
unchanged in the somatomotor and limbic networks as well as the temporal regions of DMN.  
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the brain’s functional organization and its dynamics, making external 
perturbation a useful tool to study the underlying mechanism of action of the 
brain. Brain activity can be perturbed magnetically (for example using 
transcranial magnetic stimulation (TMS; Siebner et al., 2009)), electrically (for 
example using transcranial direct-current stimulation (tDCS; Tu et al., 2021)), or 
pharmacologically, such as psychedelic drugs (Jobst et al., 2021). Among them, 
psychedelics can be an ideal candidate to study brain-mind interactions as they 
affect both brain dynamics and subjective experience rapidly and have prolonged 
effects (Madsen et al., 2021). In this study, we investigated the effect of a 
serotonergic psychedelic, psilocybin, on the brain dynamics and subjective 
conscious experience to understand how the resulted neural and mental 
alterations are inter-connected.  

We found that psilocybin administration led to observation of the main 
characteristics of the psychedelic state: increase in feelings of ego dissolution, 
experience of unity with the surrounding environment, and significant alterations 
in RSNs (Carhart-Harris et al., 2013). We first observed an overall increase in the 
whole-brain functional connectivity in the psychedelic group, also reported 
elsewhere (Preller et al., 2020; Roseman et al., 2014). Previous work has also 
shown that the serotonergic psychedelics, including psilocybin, change the 
functional organization of the brain into a new architecture characterized by 
greater global integration (Petri et al., 2014; Tagliazucchi et al., 2016). More 
detailed analysis showed that this increase principally comes from the within-

Figure 2.9 Depersonalization scores are associated with tendency of the brain to reconfigure itself 
with a global cortex-wide positive connectivity pattern. A) Canonical correlation analysis shows that 
the transition probabilities to the pattern 3 have the highest correlation with the first canonical vector 
of the state transition probabilities. B) In addition, the depersonalization scores such as OB and EDI 
have the highest correlation with the first canonical vector of the subjective scores. C) Showing two 
canonical vectors in relation with each other in a scatter plot, the separability of the points related to 
each group of subjects shows that psilocybin administration is the latent variable deriving the 
association between higher tendency of the brain to be configured as pattern 3 and depersonalization 
feeling after psychedelics usage.   
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network increased connectivity in DAN and between-network increased 
connectivity between DAN and other RSNs. The DAN is important in externally 
oriented attention (Fox et al., 2005) and there are also recent evidence that it 
gets desegregated after psilocybin administration (Madsen et al., 2021). This 
hyper-connectivity of DAN with the rest of the brain is aligned with the subjective 
psychedelic experience, explaining a perceived reduction in the borders between 
self and the external world (Carhart-Harris et al., 2013).  

Dynamic analysis of FC patterns also showed that under psilocybin, the brain 
tends to spend more time in a globally coherent, highly integrated state. This was 
also observed in terms of higher transition probabilities from other FC states into 
this state. This pattern which is characterized by maximal integration and 
minimal segregation (Demertzi et al., 2019) is functionally non-specific and was 
also observed in previous psychedelic studies (Lord et al., 2019). Under 
psilocybin, this highly integrated FC state becomes the dominant attractor of the 
dynamic repertoire of the brain. This can be explained by the “flattened 
landscape” theory, stating that main functionally-specific FC states which act as 
attractors in normal conditions become less dominant under psychedelics 
(Carhart-Harris & Friston, 2019) and the brain consumes less energy to transit 
between those states (Singleton et al., 2022). This reduction in functionally-
specific states leads to an increased transition probability into the globally 
coherent pattern which is interpreted as being functionally non-specific (Lord et 
al., 2019). Additionally, high functional integration in this state may lead to an 
atypical interregional communication profile (Lord et al., 2019) in which the brain 
retains the potentiality to entertain multiple contents simultaneously. 

Considering the relationship between alterations in the brain dynamics and 
subjective conscious experience, we found that higher transition probabilities 
into the globally coherent FC state are predictors of oceanic boundlessness, ego 
dissolution, and visual restructuralization. OB can basically be explained by 
positively experienced depersonalization and derealization, deeply-felt positive 
mood, and experiences of unity (Studerus et al., 2010). In the same manner, ego 
dissolution has been interpreted as a disruption of ego boundaries, resulting in 
difficulty of distinction between self and surrounding objects, and precludes the 
synthesis of self-representations into a coherent whole (Nour et al., 2016). On 
the other hand, VR principally explains visual (pseudo)-hallucinations, illusions, 
auditory-visual synesthesia, and changes in the meaning of percepts (Studerus et 
al., 2010). Considering these definitions, we realize that the tendency of the brain 
to be in a highly integrated state brought by psychedelic drugs is associated 
mainly with the feelings of unity with the surrounding environment and 



 

 

 

 

 

 

55 

hallucinations. Feelings of unity may reveal the disruptions of the self-
environment boundary due to the hyper connection of DAN with other RSNs, and 
hallucinations could be related to the simultaneous connection between 
different RSNs which alters the modular architecture of the brain as it tries to 
make sense of various information coming from different functional networks at 
the same time.  

Another important observation in this study was a cortex-wide decrease of 
BOLD signal amplitude in the psychedelic state. This reduction was previously 
reported in two key structural hubs, namely PCC, and mPFC (Carhart-Harris et al., 
2012) . We here showed that this amplitude reduction can be wider in the brain 
which is a proxy of decrease in global signal. GS amplitude has been shown to be 
an indirect measure of arousal (Fukunaga et al., 2006; Nilsonne et al., 2017). 
Indeed, previous studies have shown that the GS amplitude is negatively 
correlated with arousal and reduced GS amplitude is associated with increased 
vigilance measures of EEG (Wong et al., 2013). In addition, we recently showed 
that the high GS amplitude during wakeful rest is a proxy of low arousal and mind 
blanking (Mortaheb et al., 2022). So, together with previous results we can 
hypothesize that psychedelic state can be realized by high levels of arousal and 
information integration which leads to the unique subjective experience we have 
at the peak of drug effect. 

This study was also exposed to limitations. First, the psilocybin administration 
dose was not high enough to induce total ego dissolution. Because of being in the 
MRI scanner at the peak level of drug effect, the administered dose was chosen 
in a way that the drug induces subjective experience alterations that can be 
handled in the scanner. The behavioral analysis results showed that the chosen 
dose was effective enough to induce both positively and negatively experience 
of ego dissolution and other subjective experience. However, future studies are 
needed to explore the effect of higher doses of psilocybin on the brain dynamics. 
Second, lack of direct physiological data acquisition during fMRI scan limits the 
preprocessing pipeline to remove the physiological fluctuations from the BOLD 
signals. In addition, acquiring data with an ultra-high magnetic field scanner (7T) 
leads to more prominent geometric distortions specially in the inferior regions 
(Jezzard, 2012). In the preprocessing pipeline, we tried to address this problem 
by susceptibility distortion correction techniques using 5 extra acquired EPI 
volumes with the inverted phase encoding direction. Comparable results of this 
study with other studies which acquired their data with lower field strengths, 
shows that the preprocessing pipeline was successful in handling such 
limitations. Finally, duration of the data acquisition was at the edge of having 
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reliable functional connectivity estimations (Birn et al., 2013). In fact, 6 minutes 
of acquisition is the minimum required time to have reliable connectivity 
estimates in the perspective of test-retest reliability. However, the repetition 
time of the acquisition sequence was short enough (TR=1.4 sec) to have 
acceptable time points (n=258) for robust correlation calculations.  

In conclusion, in this study we found that an external pharmacological 
perturbation in the brain-mind dynamical system using psilocybin leads to 
profound alterations in both neural substrate and ongoing subjective experience. 
We showed that administration of psilocybin leads to an increase of brain 
tendency to be configured in a functionally non-specific hyper-connected 
organization which cognitively is realized as feelings of ego dissolution, 
depersonalization, and hallucinations. 
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2.4. Traveling to Space  
Studying the brain in new non-experienced environments is a unique 

opportunity to understand the underlying mechanisms of its plastic abilities. In 
fact, when the brain confronts new circumstances, it dynamically adapts its 
structure and function to the new conditions, a process known as neuroplasticity 
(Lledo et al., 2006; Pascual-Leone et al., 2005). One such situation is long-
duration space flights, during which the brain is profoundly affected by different 
factors such as microgravity (De la Torre, 2014), space radiation, social isolation 
and confinement, and circadian disruption (Roy-O’Reilly et al., 2021). These 
factors lead to structural and functional alterations by developing new and 
potentially compensatory ways to adapt the new environment. Eventually these 
modifications result in behavioral and performance changes (Bloomberg et al., 
2015; Kornilova et al., 2017; Newberg & Alavi, 1998), which can reveal valuable 
information about the dynamism of the brain and its relation to cognition.  

Considering structural alterations, studies so far have shown ventricular 
enlargement (Alperin et al., 2017; Barisano et al., 2022; Jillings et al., 2020; 
Kramer et al., 2020; Roberts et al., 2017; Van Ombergen et al., 2018, 2019), brain 
upward displacement with narrowing of the subarachnoid space at the vertex 
(Barisano et al., 2022; Jillings et al., 2020; Roberts et al., 2017, 2019; Van 
Ombergen et al., 2018), decreased grey matter (GM) volume in the frontal, 
temporal, and occipital cortex and decreased white matter (WM) volume and 
fractional anisotropy in some large WM tracts important for vestibular and 
proprioceptive processing (Jillings et al., 2020; Koppelmans et al., 2016; J. K. Lee 
et al., 2019; Van Ombergen et al., 2018), narrowing of central sulcus, 
supravermian cistern, and calcarine sulcus (Roberts et al., 2017), and increased 
volume of sensory motor areas and pre- and postcentral gyrus (Hupfeld et al., 
2020; Koppelmans et al., 2016). These modifications can be principally attributed 
to the upward shift of the brain as a result of microgravity, which persist for 
several months or even a year after return to the Earth (Jillings et al., 2020; 
Kramer et al., 2020). The ensuing effects of such structural modifications, 
concern alterations in the left caudate which have been correlated with poor 
postural control, as well as alterations in the right primary motor 
area/midcingulate which were linked to the complex motor tasks completion 
times (Roberts et al., 2019). In addition, greater changes in the superior 
longitudinal fasciculus were found to be correlated with larger postflight balance 
disruptions (Lee et al., 2019).  
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Taking the brain’s functional alterations into account, a case study on a 
Russian cosmonaut showed that exposure to long-term microgravity leads to 
significant differences in resting-state functional connectivity between motor 
cortex and cerebellum, as well as changes within the default mode network. In 
addition, during a motor imagery task, the cosmonaut showed changes in the 
supplementary motor area (Demertzi et al., 2016). Another study on a larger 
group of cosmonauts showed increases in the stimulation-specific connectivity 
of the right posterior supramarginal gyrus with the rest of the brain,  
strengthening of connections between the left and right insulae, decreased 
connectivity of the vestibular nuclei, right inferior parietal cortex and cerebellum 
with areas associated with motor, visual, vestibular, and proprioception 
functions, and decreased coupling of the cerebellum with the visual cortex and 
the right inferior parietal cortex (Pechenkova et al., 2019). A more recent study 
on the resting state functional connectivity changes after spaceflight showed 
persisting connectivity decreases in posterior cingulate cortex and thalamus and 
persisting increases in the right angular gyrus. In addition, connectivity in the 
bilateral insular cortex decreased after spaceflight, which reversed at follow-up 
(Jillings et al., 2023). Based on all these studies, brain regions that show 
functional changes due to microgravity are mainly associated with motor, 
vestibular and proprioceptive functions, or cognitive control, reflecting 
adaptations to unfamiliar and conflicting sensory input in microgravity (Jillings et 
al., 2023).  

Together, the aforementioned studies indicate profound alterations in both 
brain structure and function caused by space travel. However, many important 
questions remain to be addressed in this research area, two of which will be the 
topic of investigation in the current chapter. First, how are brain functional 
dynamics affected due to the long-term living in microgravity conditions? An 
answer to this question will get us closer to a more comprehensive account about 
how the brain adapts to the extreme environments. Second, how does the 
relationship between the structural and function of the brain change in these 
conditions? By answering this question, one may reveal an underlying cognitive 
mechanism associated with these changes, especially when considering that 
associated behavioral tests during spaceflight are difficult to perform.  

In this study, we aim to answer these questions by investigating brain 
dynamics in terms of transitions between FC patterns and the regional 
(de)coupling of functional activity from and to the structural connectome at rest.  

 



 

 

 

 

 

 

59 

2.4.1 Resting Brain after Space Travel  
Dataset  

Eighteen male cosmonauts (age = 44.92 ± 5.64 y.o.), engaged in long-duration 
space missions (185.35 ± 76.5 days) to the International Space Station, gave their 
consent to participate in the study. Resting state fMRI, diffusion weighted images 
(DWI), and structural data were acquired at three time points: before their 
mission (pre-flight), shortly after (post-flight), and approximately 8 months later 
(follow-up; Figure 2.10). Not all cosmonauts completed the whole protocol: 14 
cosmonauts had the complete data for pre-flight, 14 for post-flight, and 7 for 
follow-up. Thirteen healthy participants (age = 42.55 ± 6.11 y.o.) matched for age, 
gender, education, and handedness were included as controls for time- and 
scanner-related effects. The control group was scanned at two timepoints, with 
an interval similar to that of the cosmonauts’ preflight and postflight scans.  

Effects of Space Travel on the Functional Dynamics  

We first explored the effect of exposure to prolonged microgravity on the 
dynamics of the whole-brain functional connectome at rest. After preprocessing 
and denoising of the resting state functional data, we extracted the averaged 
BOLD time series from the Schaefer atlas with 100 ROIs concatenated with 19 
subcortical regions. Then, we estimated phase-coherence connectivity matrices 
at each time point. After concatenating all connectivity matrices across 

Pre-flight
(n=14)

Post-flight
(n=14)

Follow-up
(n=7)Cosmonauts

Flight 1
(n=18)
Scanned in Moscow

Controls
(n=13)
Scanned in Moscow

DWI 
rs-fMRI

DWI 
rs-fMRI

DWI 
rs-fMRI

Session 1
(n=13)

Session 
(n=13)

Figure 2.10 Data acquisition paradigm. Eighteen cosmonauts underwent resting state fMRI, DWI and 
structural imaging at three time points: i) pre-flight, ii) post-flight, and iii) follow-up. Thirteen matched 
control participants also underwent the same data acquisition session in two time points separated 
exactly as the duration between pre- and post-flights.  
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participants, K-means clustering summarized them into four recurrent 
connectivity patterns (Figure 2.11A). We first found that the brain’s resting 
functional connectome is organized into four distinct profiles of complex inter-
network interactions, including both correlations and anti-correlations (Pattern 
1), anti-correlations of DMN and ECN with other networks (Pattern 2), a global 
cortex-wide positive connectivity (Pattern 3), and a low inter-areal connectivity 
pattern (Pattern 4). No significant interaction was found between Time and 
Group in the occurrence rate of each pattern considering pre- and post-flights for 
both groups of subjects (linear mixed model analysis, Pattern 1 [c2=0.865, 
pFDR=0.942], Pattern 2 [c2=0.100, pFDR=0.942], Pattern 3 [c2=0.005, pFDR=0.942], 
and Pattern 4 [c2=0.206, pFDR=0.942]; Figure 2.11B). We also calculated the mean 
dwell time, namely the average time that brain stays in each specific pattern. No 
significant interaction was observed between Time and Group with respect to 

C 

B 

A 

Figure 2.11 Exposure to prolonged microgravity does not affect functional dynamics. (A) Using 
phase-based coherence connectivity analysis on the cosmonauts’ data, four patterns with distinct 
profiles were estimated. (B) The patterns’ occurrence rate did not change after space flight (repeated-
measure ANOVA, FDR correction for p-values). (C) In addition, the patterns’ mean dwell time did not 
change after space flight (repeated-measure ANOVA, FDR correction for p-values). 
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mean dwell time of each connectivity pattern considering pre- and post-flights 
for both groups of subjects (linear mixed model analysis, Pattern 1 [c2=0.004, 
pFDR=0.947], Pattern 2 [c2=0.254, pFDR=0.819], Pattern 3 [c2=1.854, pFDR=0.694], 
and Pattern 4 [c2=0.875, pFDR=0.699]; Figure 2.11C). The analysis of transition 
probabilities among patterns did not show any significant differences between 
pre- and post-flights for either cosmonauts or controls (Wilcoxon rank-sum test, 
pFDR>0.05 for all transition probabilities).  

Effects of Space Travel on the Structural Connectivity 

To investigate possible alterations in the cosmonauts’ structural connectome, 
we estimated the structural connectivity matrix of each participant at each time 
point using tractograms estimated from the DWI images and the Schaefer atlas 
with 100 ROIs (see Methods Box 1 for more information). Then, we used a mass 
univariate analysis, applying a linear mixed model to the structural connection 
values, and correcting p values for multiple comparison over the number of 
connections. We found a significant interaction between Time and Group for 
seven structural connections, showing both increases and decreases in the 
normalized values of structural connections (Figure 2.12A and Table 2.3). For the 
connections found to be significantly altered after space travel, we also 
performed a longitudinal analysis on the connection values, considering pre-
flight, post-flight, and follow-up values just for the cosmonaut group. All the 
three connections that showed a decrease after space flight did not significantly 
change in the longitudinal analysis (linear mixed model considering Time as the 
fixed factor and subjects as random factors, R15-R21: c2=3.238, pFDR=0.198, R33-
R61: c2=5.861, pFDR=0.053, and R83-R87: c2=0.998, pFDR=0.607). Out of four 
connections which showed an increase in their value after space flight, two of 
them were normalized to the pre-flight value in the follow-up (R37-R52 and R83-
R85) while the other two connections remained altered even at the follow-up 
scans (R34-R72 and R46-R96; Figure 2.12B and Table 2.3).  

Effects of Space Travel on the Structural-Functional Relationship  

Above we observed that space travel did not have a significant effect on the 
dynamic functional fluctuations but did affect structural connectivity. Therefore, 
we further asked how the structural-functional relationship is affected due to 
long-term travel to space. To investigate this question, we studied what regional 
alterations happen to the structural-functional coupling due to space travel. 
Using graph signal processing (GSP) framework, we represented the functional 
time series based on the structural harmonics calculated from an averaged 
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version of the structural connectome. As we observed the structural connectivity 
changes after spaceflight, we calculated the average structural connectivity for 
each time point separately. By transforming the functional time series to the 
structural harmonics space, we calculated the coupling and decoupling index of 
each ROI time series to and from the underlying structure, as well as the 
structural decoupling index (SDI; Figure 2.13 and Method Box 1).  A linear mixed 
model analysis revealed that the interaction between Time and Group has a 
significant effect on the SDI measure of the left insular cortex and right superior 
parietal lobule from the dorsal attentional network (Figure 2.14). While insular 
cortex activity showed more decoupling from the underlying structure, the 
posterior regions of dorsal attentional network showed more coupling to the 
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Figure 2.12 Structural connectivity alters after space flight. (A) Seven structural connections were 
found to be altered due to the long-term exposure to the microgravity, showing both decreasing and 
increasing values (Rxx is the region number xx in the Schaefer atlas, blue edges show a decrease, and 
red edges show an increase in the connection value after space flight). (B) Longitudinal analysis shows 
that some alterations in the structural connections are persistent while the others get normalized to 
the pre-flight values in the follow-up. Details of the statistical analysis are summarized in the Table 
2.3.  
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structure. As the SDI metric is a division of coupling and decoupling indices, we 
further investigated from which sources these alterations in the SDI measure are 
derived. Separate linear mixed model analysis on the coupling and decoupling 
measures showed that coupling measures change significantly for both the 
insular cortex (c2=16.659, pFDR<0.001) and the superior parietal lobule 
(c2=21.849, pFDR<0.001) while the decoupling index did not show any significant 
alteration after p-value FDR correction.   

Table 2.3 Statistical analysis results of significantly altered structural connections after space flight. 
First a linear mixed model analysis was performed to investigate the interaction between time and 
group in the connection values considering pre- and post-flights for both groups of subjects. Then a 
linear mixed model was used in the cosmonaut group to explore the effect of time parameter on the 
connection values considering pre-flight, post-flight, and follow-up scans. In both analysis, subjects 
were considered as the random factors of the model.  

  Post - Pre Follow-up 

Connection Regions Estimate c2 pFDR c2 pFDR 

R15-R21 LH_DAN_Post_1 – 
LH_DAN_PrCv_1 

-0.001 21.174 0.010 3.238 0.198 

R33-R61 LH_Cont_Par_1 – 
RH_SomMot_4 

-0.0001 18.602 0.026 5.861 0.053 

R34-R72 LH_Cont_PFCl_1 – 
RH_DAN_FEF_1 

0.0004 22.080 0.009 17.047 <0.001 

R37-R52 LH_DMN_Temp_1 – 
RH_Vis_3 

0.0002 18.001 0.026 11.140 0.004 

R46-R96 LH_DMN_PFC_6 – 
RH_DMN_PFCdPFCm_2 

0.0005 26.836 0.002 6.285 0.043 

R83-R85 RH_Cont_PFCl_2 – 
RH_Cont_PFCl_4 

0.006 18.352 0.026 16.859 <0.001 

R83-R87 RH_Cont_PFCl_2 – 
RH_PFCmp_1 

-0.002 16.523 0.048 0.0998 0.607 

LH: left hemisphere, RH: right hemisphere, DAN: dorsal attentional network, Post: 
posterior, PrCv: precentral ventral, Cont: executive control network, SomMot: 
somatomotor network, PFCl: lateral prefrontal cortex, FEF: frontal eye field, DMN: default 
mode network, Temp: temporal, Vis: visual network, PFCm: medial prefrontal cortex, 
PFCld: dorsolateral prefrontal cortex, PFCmp: medial posterior prefrontal cortex.  
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Figure 2.13  Structure-function (de)coupling analysis pipeline.  Structural harmonics were 
estimated as the eigenvectors of the normalized Laplacian of the structural connectivity matrix. Then, 
functional activities at each time point were represented as linear combination of the structural 
harmonics. Since harmonic modes range from low frequency distributed to high frequency localized 
activities, functional data were filtered and decomposed into the low and high frequency 
components. Regional Euclidean norm of the lowpass filtered and high pass filtered versions of the 
signal resulted in coupled and decoupled maps respectively. (R: number of atlas regions, xlow: lowpass 
filtered version of the signal, xhigh: high pass filtered version of the signal, xC: coupling map, and xD: 
decoupling map, SDI: structural decoupling index) 
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2.4.2 Discussion 
Traveling to space makes humans to confront newly non-experienced 

environmental conditions which affects both the body and the brain, namely 
microgravity, radiation, acceleration, social isolation, and stress (De la Torre, 
2014). Thanks to neuroplasticity, when confronting new environmental 
circumstances, the brain changes its structure and function accordingly to adapt 
to the new conditions. Studying these structural and functional alterations helps 
us to better understand the relationship between the underlying brain 
mechanism of action and our mental characteristics. In this study, we 
investigated the influences of spaceflight on the brain’s functional and structural 
networks and their coupling profile during rest. Using structural and functional 
MRI acquired before spaceflight, after return to the Earth, and after 8 months 
from the time of return of 18 cosmonauts, we showed that while functional 
dynamics were not affected, profound changes in the structural connectome 
were observed which led to regional alterations in the structural-functional 
coupling profile.  

A separate analysis of structural and functional connectomes showed that 
dynamical FC patterns were not affected in terms of occurrence rate or mean 
dwell time, while several structural connections changed in both increasing and 
decreasing directions. One reason for structural connectivity changes can be 

Coupling
Decoupling Coupling

Decoupling

Sal_FrOperIns_1 DAN_Post_5

Figure 2.14 Regional structural decoupling index changes after space flight. While the structural 
decoupling index of the left insular cortex increases after space travel, this measure decreases in the 
right superior parietal lobule of dorsal attentional network. This alteration principally comes from the 
alterations in coupling index rather than the decoupling index, suggesting that the distributed activity 
of the region is affected more than its localized functioning. Sal: salience network, FrOperIns: frontal 
operculum insula, DAN: dorsal attentional network, Post: posterior. 
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cortical volume alterations because of spaceflight. Since we estimated the 
structural connectivity as the number of white matter tracts between each pair 
of regions of interest normalized by the sum of volumes of those regions, changes 
in the volume of structurally connected cortical regions may lead to the 
alterations in the connectivity value of the link between them. In this regard, 
decreased cortical volumes lead to an increased structural connectivity value and 
an increased volume leads to decreased structural connectivity. Our findings of 
decreased structural connectivity between regions linked to the sensory motor 
areas (R61) and precentral cortex (R21) are in line with the previous reports that 
these cortical areas showed increased volume after a long-term spaceflight 
(Hupfeld et al., 2020; Koppelmans et al., 2016). We also found an increase in the 
connectivity measure of links connected to the prefrontal cortex. This region was 
also previously shown to be susceptible to environmental changes such as long 
Antarctic expeditions, demonstrating its alteration as volume reduction (Roy-
O’Reilly et al., 2021; Stahn et al., 2019). Another reason for structural 
connectivity changes can be related to the microstructural changes in the white 
matter tracts. One set of tracts that have been shown to be affected in 
spaceflights are tracts connecting the occipital lobe with frontal and temporal 
lobes (Lee et al., 2019). We also showed that the structural connectivity between 
temporal regions of the default mode network and occipital regions of the visual 
network were significantly affected after spaceflight which is in line with those 
findings.  

Since we found structural alterations due to long-term exposure to space-
related conditions, but not any variation in the functional dynamics, we 
attempted to investigate how the structural-functional relationship is affected 
after facing such circumstances. We used the recently proposed SDI metric to 
quantify decoupling of cortical regions functional activity from the underlying 
structural connectome (Preti & Van De Ville, 2019). This metric has been shown 
to bear cognition related information (Preti & Van De Ville, 2019) and provides 
signatures to accurately classify different cognitive tasks and individual 
fingerprinting (Griffa et al., 2022). In particular, SDI has been shown to have 
higher values in the cortical regions related to higher-order cognition. On the 
other hand, it shows to have lower values in the cortical regions related to the 
low-order cognition (Preti & Van De Ville, 2019). An increased SDI value signifies 
a decoupling of functional activity from the underlying structure, meaning that 
the regions that are structurally connected have anti-correlated functional 
activity. On the other hand, a decreased SDI value signifies that the functional 
activity is coupled to the underlying structural connectome, meaning that regions 
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that are structurally connected show highly correlated activity. Here, we first 
found that the SDI measure increases in the left insular cortex. The insular cortex 
is a part of the salience network and has been related to a wide range of 
functional contexts, including sensory perception (Small, 2010), vestibular 
processing and interoception (Critchley et al., 2004), and motor function 
(Ackermann & Riecker, 2010). Previous studies on astronauts and cosmonauts 
reported a reduced resting state functional connectivity of the insular cortex with 
the rest of the brain after spaceflight (Demertzi et al., 2016; Jillings et al., 2023). 
Structural studies also reported a decreased volume of the left insular cortex due 
to spaceflight (Koppelmans et al., 2016). While the structural changes are mainly 
due to the brain’s upward shift because of exposure to microgravity, we 
hypothesize that increased decoupling of functional activity from the structure in 
the insular cortex is an accommodating mechanism that keeps optimal 
functioning regardless of structural changes, which is vital in the new 
environment with conflicting and unfamiliar sensory stimuli (Jillings et al., 2023). 
On the other hand, we also found decreased SDI measure in the superior parietal 
lobule a region of dorsal attentional network. This region has been related to 
audio-visual multisensory integration and processing (Molholm et al., 2006). In 
typical conditions, a low value of SDI metric can be observed for sensory-motor 
and visual areas so that this higher coupling strength helps them to react fast and 
reliably to external and internal stimuli (Preti & Van De Ville, 2019). As a result, a 
decreased SDI measure of the superior parietal lobule can be related to the new 
need of the brain to integrate and process multisensory inputs faster than normal 
conditions in response to the non-experienced environmental circumstances.  

Taken together, after space travel our brain faces new conditions that it has 
not experienced before. Prolonged exposure to microgravity causes structural 
alterations in the brain which can affect its cognitive performance. In order to 
keep its optimal functioning and to be adapted to the new conditions, the brain 
modifies its functional profile in relation to the underlying structure, potentially 
as a compensation mechanism. We showed that these modifications can be 
captured and investigated using regional measures of coupling and decoupling of 
functional activity to and from the underlying structure.  

This study also posits specific limitations. First, as most other studies with 
space travelers, interpretation of results is limited due to the small sample size. 
In addition, as some cosmonauts did not attend the whole protocol, there are 
also missing data in different time points of the data acquisition which also limits 
the statistical approaches to infer results from the acquired data. To mitigate 
these problems, we used linear mixed model analysis that solves the problem of 
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missing data points. However, the small sample size remains a problem that 
prevents us from discovering small effects in this cohort of subjects. Second, 
cosmonauts usually go through intensive trainings to prepare for spaceflight. This 
fact restricts the result interpretation about how to check if the observed effect 
is due to spaceflight or a training effect. Further studies are needed to clarify this 
potential confound. Finally, our sample was limited to male subjects. This might 
induce an extra bias which can prevent us from generalizing our observations. 
These limitations are common among most of the studies conducted on the 
effects of spaceflight on the brain. Therefore, to have more robust explanations 
of what happens to the underlying mechanism of the brain during space travel, 
further experimental planning with higher number of cosmonauts and more 
gender diversity is required.  
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Methods Box 1 

Participants 

- Mind Blanking: Thirty-six healthy right-handed adults (27 women, 9 men, mean age: 
23 y ± 2.9) participated in an fMRI experience-sampling task. All participants gave 
their written informed consent to take part in the experiment. The ethics committee 
of the University Hospital of Liège approved the study. 

- Psychedelics: Data were collected from 49 healthy participants with previous 
experience with a psychedelic drug but not within the past 3 months of the 
experiment. Participants were randomized to receive a single dose of psilocybin 
(0.17 mg/kg, n=22 (12 men), age=23±2.9 y) or placebo (n=27 (15 men), age=23.1±3.8 
y). This study was conducted according to the code of ethics on human 
experimentation established by the declaration of Helsinki (1964) and amended in 
Fortaleza (Brazil, October 2013) and in accordance with the Medical Research 
Involving Human Subjects Act (WMO) and was approved by the Academic Hospital 
and University’s Medical Ethics committee (Maastricht University). All participants 
were fully informed of all procedures, possible adverse reactions, legal rights, 
responsibilities, expected benefits, and their right for voluntary termination without 
consequences. 

- Cosmonauts: The data of 18 male Russian cosmonauts (mean age = 44.92 ± 5.64), 
engaged in long-duration space missions to the International Space Station, and 
thirteen healthy controls (mean age = 42.55 ± 6.11) matched for age, gender, and 
education were used in this study. The data acquisition was approved by the 
Institutional Review Board of the Antwerp University Hospital (13/38/357), the 
European Space Agency Medical Board, the Committee of Biomedicine Ethics of the 
Institute of Biomedical Problems of the Russian Academy of Science, and the Human 
Research Multilateral Review Board. All participants provided a signed informed 
consent, and all investigations were performed in accordance with the principles 
listed in the Declaration of Helsinki and its amendments.  

Datasets  

- Mind Blanking: Data were acquired during resting state while participants were lying 
inside the scanner with eyes open. At random times, they were interrupted by an 
auditory tone, probing them to report their immediate mental state via button 
presses (Fig. 1, Upper panel). The sampling probes were randomly distributed 
between 30 and 60 s. Each probe started with the appearance of an exclamation 
mark lasting for 1,000 ms, inviting the participants to review and characterize the 
cognitive events they just experienced. Then, on the screen four categories for a 
broad characterization of the cognitive experiences were shown: absence, 
perception, stimulus-dependent thought, and stimulus-independent thought. For 
reporting, participants used two response boxes, one in each hand. Participants used 
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an egocentric mental projection of their fingers onto the screen so that each finger 
corresponded to a specific mental category. Depending on the probes’ trigger times 
and participants’ reaction times, the duration of the recording session was variable 
(48–58 min). To minimize misclassification rates, participants had a training session 
outside the scanner at least 24 h before the actual session. 

- Psychedelics: Six minutes of resting state fMRI were acquired from the participants 
with eyes open during peak subjective drug effect (102 minutes post treatment). In 
addition, the 5 Dimensions of Altered States of Consciousness (5D-ASC) scale and 
the Ego Dissolution Inventory (EDI) were evaluated 360 minutes after drug 
administration, as retrospective measures of drug effects. 

- Cosmonauts: Ten minutes of resting state fMRI with eyes closed, DWI, and structural 
data were acquired in three time points: before the mission (pre-flight), shortly after 
(post-flight), and approximately 8 months later (follow-up). 

Imaging Setup  

- Mind Blanking: Experiments were carried out on a 3-T head-only scanner 
(Magnetom Allegra, Siemens Medical Solutions, Erlangen, Germany) operated with 
the standard transmit–receive quadrature head coil. fMRI data were acquired via a 
T2*-weighted gradient-echo echo-planar imaging sequence with the following 
parameters: TR = 2,040 ms, echo time = 30 ms, field of view = 192×192 mm2, 64×64 
matrix, 34 axial slices with 3 mm thickness and 25% interslice gap to cover most of 
the brain. A high-resolution T1-weighted magnetization-prepared rapid gradient 
echo image was acquired for anatomical reference (TR = 1,960 ms, echo time = 4.4 
ms, inversion time = 1,100 ms, field of view = 230 ×173 mm, matrix size = 
256×192×176, voxel size = 0.9×0.9×0.9 mm). The participant’s head was restrained 
with a vacuum cushion to minimize head movement. Stimuli were displayed on a 
screen positioned at the rear of the scanner, which the participant could comfortably 
see via a head coil–mounted mirror. 

- Psychedelics: Images were acquired on a MAGNETOM 7T MR scanner. 258 whole-
brain EPI volumes were acquired at rest (TR = 1400 ms; TE = 21 ms; field of view=198 
mm; flip angle = 60°; oblique acquisition orientation; interleaved slice acquisition; 
72 slices; slice thickness = 1.5 mm; voxel size = 1.5 × 1.5 × 1.5 mm). 

- Cosmonauts: Resting-state fMRI data were acquired on a 3T MRI scanner (Discovery 
MR750; GE Healthcare USA) located at the Federal Center of Treatment and 
Rehabilitation in Moscow, Russia. T2*-weighted echo planar imaging scans were 
acquired using a 16-channel head and neck array coil with the participants positioned 
head-first and supine. The following scanning parameters were used: echo 
time = 30 ms, repetition time = 2000ms, flip angle = 77°, voxel size = 3 × 3 × 3 mm³, 
field of view = 192 × 192 × 126 mm (matrix dimension: 64 × 64, 42 axial slices). A total 
of 300 images per session were acquired after 4 dummy scans (8 s) to achieve steady-
state conditions. In addition, a high-resolution fast-spoiled gradient echo (FSPGR) 3D 
T1-weighted image was acquired for the purpose of anatomical localization. The 
scanning parameters included: echo time = 3.06 ms, repetition time = 7.90 ms, 
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inversion time = 450 ms, flip angle = 12°, voxel size = 1 mm³, field of 
view = 176 × 240 × 240 mm (matrix dimensions: 240 × 240, 176 sagittal slices). For 
DWI, an optimized multi-shell dMRI acquisition scheme was prescribed, containing 
diffusion weightings of b = 0, 700, 1200, and 2800 s/mm2, applied in 8, 25, 45, and 
75 directions, respectively. In addition, 3 b = 0 s/mm2 images were acquired with 
reversed-phase encoding, for the purpose of correcting susceptibility-induced 
distortions. Other imaging parameters were repetition/echo time of 7800/100 ms, 
voxel size of 2.4 × 2.4 × 2.4 mm3, matrix size of 100 × 100, 58 slices, and 1 excitation. 
Imaging was accelerated by a factor of 2 using the Array coil Spatial Sensitivity 
Encoding Technique. 

Behavioral Analysis 

- Mind Blanking: Paired t-tests were used to compare the number of reports of each 
mental state across participants (P values were FDR corrected with a significance 
level of α = 0.05). A generalized linear mixed model with a gamma distribution and 
inverse link function tested the relationship between reaction times and mental 
states. The choice of the generalized linear mixed model was because of positive tail 
in the distribution of reaction times and inhomogeneity of variance across mental 
states caused by an imbalanced number of reports. Mental state reports were 
considered as fixed effects, and participants were considered as the random effects, 
with sex and age as confound variables. In case of significant main effects, a post-
hoc test was applied for pairwise comparisons. For that, we used the Tukey method 
to correct the type I error inflation that occurred in the multiple comparisons. To 
model dynamic transition between mental state reports, a Markov model was used 
to calculate the transition probabilities between participants’ reports over the 
experiment. The uniformity of the distribution of each report over the acquisition 
duration was tested via χ2 test on the time point of reports across all participants. 
The acquisition duration of each subject was divided into 10 equal temporal bins, 
and the number of reports in each bin was counted. To calculate the effect size of 

the χ2 test, φ measure was used (𝜑 = $!
!

"
, where n is the number of observations). 

- Psychedelics: A non-parametric Mann-Whitney U test was performed to compare 
the 5D-ASC and EDI scores between two groups. FDR correction was performed on 
the p-values of the 5D-ASC dimensions. The effect size was calculated based on the 
Cliff’s delta measure: 𝑑 = #$

%"
− 1, where U is the test statistic, and m and n represent 

the size of each group (Cliff, 1993). 

Neuroimaging Data Preprocessing 

- Mind Blanking: Preprocessing and denoising were performed via a locally developed 
pipeline written in Python [nipype package (Gorgolewski et al., 2011)] encompassing 
toolboxes from Statistical Parametric Mapping 12 (Penny et al., 2011), FSL 6.0 
(Jenkinson et al., 2012), AFNI (Cox, 1996), and ART 
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(http://web.mit.edu/swg/software.htm). In this pipeline, all the functional volumes 
were realigned to the first volume and then, in a second pass, to their average. 
Estimated motion parameters were then used for artifact detection. An image was 
defined as an outlier or artifact image if the head displacement in the x, y, or z 
direction was greater than 3 mm from the previous frame, if the rotational 
displacement was greater than 0.05 rad from the previous frame, or if the global 
mean intensity in the image was more than 3 SD from the mean image intensity for 
the entire scans. After skull-stripping of structural data [using FSL BET (S. M. Smith, 
2002) with fractional intensity of 0.3], realigned functional images were registered 
to the bias-corrected structural image in the subject space (rigid body 
transformation with normalized mutual information cost function). After white 
matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) masks were extracted, 
all the data and masks were transformed into the standard stereotaxic Montreal 
Neurological Institute space (MNI152 with 2-mm resolution). WM and CSF masks 
were further eroded by one voxel. For noise reduction, we modelled the influence 
of noise as a voxel-specific linear combination of multiple empirically estimated 
noise sources by deriving the first five principal components from WM and CSF 
masked functional data separately. These nuisance regressors together with 
detected outlier volumes, motion parameters, and their first-order derivative were 
used to create a design matrix in the first-level general linear model (GLM). After the 
functional data were smoothed with a Gaussian kernel of 6 mm full width at half-
maximum, the designed GLM was fitted to the data. Before GLM was applied, 
functional data were demeaned and detrended and all the motion-related and 
tissue-based regressors were first normalized and then demeaned and detrended 
via the approach explained in (Power et al., 2014). A temporal causal bandpass filter 
of 0.008–0.09 Hz was then applied on the residuals of the model to extract low-
frequency fluctuations of the BOLD signal. Schaefer atlases (Schaefer et al., 2018) 
with 100 ROIs were then used to parcellate each individual brain. The average of 
voxel time series in each region was considered as the extracted ROI time series and 
was used for further analysis. All eventual connectivity analyses were performed 
with both the inclusion and the removal of GS.  

- Psychedelics: The fMRI was preprocessed using locally developed pipeline based on 
SPM12 (Penny et al., 2011). In this pipeline, after susceptibility distortion correction 
and realignment, functional data were registered to the high resolution T1 image, 
then normalized to the standard MNI space, and finally was smoothed using a 
Gaussian kernel with a full width at half maximum (FWHM) of 6. After segmentation 
of structural T1 image into grey matter (GM), white mater (WM), and CSF masks, 
the bias corrected structural image and all the extracted masks were normalized to 
the MNI space. Further, WM and CSF masks were eroded by one voxel to remove 
any overlapping between these tissues and the GM voxels. To denoise functional 
time series, we used a locally developed pipeline written in Python [nipype package 
(Gorgolewski et al., 2011)]. In this pipeline, a general linear model (GLM) was fitted 
to each voxel data separately, regressing out the effect of six movement parameters 
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(translation in x, y, and z directions, and rotation in yaw, roll, and pitch directions), 
constant and linear trends using zero-order and first-order Legendre polynomials, 5 
principal components of signals in the WM and CSF masks, physiological data, and 
outlier data points. Outlier detection was performed using ART toolbox 
(http://web.mit.edu/swg/software.htm). Any volume with a movement value of 
greater than 3 mm, rotation value of greater than 0.05 radians, and z-normalized 
global signal intensity of greater than 3 was considered as an outlier. After 
regressing out these nuisance regressors, the remaining signal was filtered in the 
range of [0.008, 0.09] Hz and was used for further analysis. Schaefer atlas with a 
resolution of 100 ROIs (Schaefer et al., 2018) together with additional 19 subcortical 
regions was used to extract the averaged BOLD signals inside each ROI. 

- Cosmonauts: The fMRI was preprocessed and denoised using locally developed 
pipeline based on SPM12 (Penny et al., 2011). In this pipeline, after realignment, 
functional data were registered to the high resolution T1 image, then normalized to 
the standard MNI space, and finally was smoothed using a Gaussian kernel with a 
full width at half maximum (FWHM) of 6. After segmentation of structural T1 image 
into grey matter (GM), white mater (WM), and CSF masks, the bias corrected 
structural image and all the extracted masks were normalized to the MNI space. 
Further, WM and CSF masks were eroded by one voxel to remove any overlapping 
between these tissues and the GM voxels. To denoise functional time series, a 
general linear model (GLM) was fitted to each voxel data separately, regressing out 
the effect of six movement parameters (translation in x, y, and z directions, and 
rotation in yaw, roll, and pitch directions), constant and linear trends using zero-
order and first-order Legendre polynomials, 5 principal components of signals in the 
WM and CSF masks, physiological data, and outlier data points. Outlier detection 
was performed using ART toolbox (http://web.mit.edu/swg/software.htm). Any 
volume with a movement value of greater than 3 mm, rotation value of greater than 
0.05 radians, and z-normalized global signal intensity of greater than 3 was 
considered as an outlier. After regressing out these nuisance regressors, the 
remaining signal was filtered in the range of [0.008, 0.09] Hz and was used for 
further analysis. Schaefer atlas with a resolution of 100 ROIs (Schaefer et al., 2018) 
together with additional 19 subcortical regions was used to extract the averaged 
BOLD signals inside each ROI. DWI data were preprocessed using MRTrix3 
(https://www.mrtrix.org). Preprocessing steps included denoising (Veraart et al., 
2016), Rician bias correction, Gibbs ringing correction (Kellner et al., 2016), 
Susceptibility-induced and Eddy current distortion correction (Andersson et al., 
2016; Andersson & Sotiropoulos, 2016a), movement (including between-slice 
movement) correction (Andersson et al., 2017), and bias field correction (Tustison, 
Avants, Cook, Yuanjie Zheng, et al., 2010). The anatomical image was registered with 
the DWI (b=0) image and was segmented into five tissue type masks related to 
cortical grey matter, white matter, CSF, subcortical grey matter, and unknown tissue 
types (R. E. Smith et al., 2012). Response functions were estimated using the 
Tournier algorithm (J. D. Tournier et al., 2013) and fiber orientation distributions 
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were estimated using multi-shell multi-tissue constrained spherical deconvolution 
(Jeurissen et al., 2014a). Finally, 1 million tracts were generated for each acquisition 
session using anatomically constrained tractography and second-order Integration 
over fiber orientation distributions (J. D. Tournier et al., 2010) followed by spherical-
deconvolution informed filtering of the tractogram (SIFT) to remove the spurious 
connections (R. E. Smith et al., 2013). Considering a Schaefer atlas with 100 ROIs and 
19 attached subcortical regions, a structural connectivity matrix was created by 
counting the number of streamlines between each pair of regions normalized by the 
sum of the related regions volumes. 

Neuroimaging Data Analysis 

- Dynamic FC Estimation: We used the phase-based coherence analysis to extract 
between-region connectivity patterns at each time point of the scanning session 
(Demertzi et al., 2019). For each participant i, after z-normalization of time series at 
each region r (i.e., xi,r[t]), the instantaneous phase of each time series was calculated 
via Hilbert transform as: 

𝑥*&,((𝑡) = 	
1
𝜋𝑡 ∗ 𝑥&,(

(𝑡) 
where * indicates a convolution operator. Using this transformation, we produced 
an analytical signal for each   regional time series as: 

𝑥&,() (𝑡) = 𝑥&,((𝑡) + 𝑗𝑥*&,((𝑡) 
where 𝑗 = √−1. From this analytical signal, the instantaneous phase of each time 
series can be estimated as: 

𝜑&,((𝑡) = tan*+ 7
𝑥*&,((𝑡)
𝑥&,((𝑡)

8 

After wrapping each instantaneous phase signal of 𝜑&,((𝑡) to the [−𝜋, 𝜋] interval 
and naming the obtained signal as 𝜃&,((𝑡), we calculated a connectivity measure for 
each pair of regions as the cosine of their phase difference. For example, the 
connectivity measure between regions r and s in subject i was defined as: 

𝑐𝑜𝑛𝑛&,(,,(𝑡) ≜ cos A𝜃&,((𝑡) − 𝜃&,,(𝑡)B 
By this definition, completely synchronized time series lead to a connectivity value 
of 1, completely desynchronized time series produce a connectivity value of zero, 
and anticorrelated time series produce a connectivity measure of -1. Using this 
approach, we created a connectivity matrix of 100×100 at each time point t for each 
subject i that we called 𝐶&(𝑡): 

𝐶&(𝑡) ≜ D𝑐𝑜𝑛𝑛&,(,,(𝑡)E(,, 
After collecting connectivity matrices of all time points of all participants, we applied 
k-means clustering on all estimated connectivity matrices. With this technique, four 
robust and reproducible patterns were extracted as the centroids of the clusters, 
and each resting connectivity matrix was assigned to one of the extracted patterns. 
We chose to extract four patterns to compare our results with previous researches 
(Demertzi et al., 2019). We calculated the occurrence rate of each pattern simply by 
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counting the number of matrices that were assigned to each specific pattern at each 
subject separately. In each study, significant differences between pattern 
occurrence rates were analyzed via paired t-test and FDR correction of p values over 
possible pairwise comparisons. 
 

- Classification of MB Based on Time-Varying Connectivity Matrices: Phase-based 
coherence matrices within the analysis windows were considered as the feature 
vectors and the related mental state reports as the class labels. First, an SVM model 
for binary classification was designed to classify MB reports from all the other 
reports. As the dataset was imbalanced, we calculated precision, recall, and 
balanced accuracy as the efficiency parameters of the classifier (MB reports were 
defined as positive class. See Appendix B). As the cross-validation strategy, a five-
fold stratified cross-validation with 10 repeats was applied. This classification 
strategy was also repeated for a one-versus-one classification of MB versus each of 
the other reports separately. To compare the results with an empirical chance level, 
a dummy classifier was also used to classify MB from other reports. This dummy 
classifier generated random predictions by respecting the training set class 
distribution. 
 

- GS Effect on the MB: We calculated the GS for each subject after applying the atlas 
and time series extraction, by averaging time series of all the ROIs. To study the 
effect of the GS on the analysis results, we subtracted it once from the time series 
related to each ROI (GSS): 

	
𝑥-&,((𝑡) = 𝑥&,((𝑡) − 𝑔&(𝑡) 

where i identifies the subject, r identifies the ROI, and gi(t) is the GS of the subject i, 
and regressed it out once from the ROI time series (GSR): 

𝑥-&,((𝑡) = 𝑥&,((𝑡) −
GH𝑥&,((𝑡)HG

H|𝑔&(𝑡)|H
𝑐𝑜𝑟𝑟 A𝑥&,((𝑡), 𝑔&(𝑡)B𝑔&(𝑡) 

To study the relationship between GS and mental states, the GS amplitude was 
calculated for each mental state. The GS amplitude was defined as the sum of the 
absolute value of the five GS time points related to the functional repertoire of each 
mental state. A generalized mixed effect model with gamma distribution and inverse 
link function was fitted to the GS amplitude values, considering mental states as 
main effect and subjects as random effect of the model. In case of finding a 
significant effect, a Tukey post-hoc test was performed to compare each pair of the 
mental states in terms of their related GS amplitude. 
 

- Static Functional Connectivity Analysis of Psychedelic Data: Pearson correlations 
were calculated between the BOLD time series of each pair of ROIs and a 
connectivity matrix was created for each participant. For each participant, the 
average of the connectivity values over the whole brain was considered as the 
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overall connectivity value of the brain. An independent t-test was performed to 
compare the overall connectivity values between psilocybin and placebo groups. 
Average of the connectivity values between the regions of each network was 
considered as the within network connectivity values for each subject. Independent 
t-test was performed to compare the within-network connectivity values between 
two groups. As there were 7 networks, FDR correction was performed to correct for 
multiple comparison. Between-network connectivity was calculated as the average 
of the connectivity values between regions of any pair of networks. After performing 
an independent t-test to compare the between-network connectivity values of 
placebo and psilocybin groups, FDR correction was applied to correct for the 21 
between-network comparisons. 
 

- Dynamic FC Analysis of Psychedelic Data: After FC state estimation, we calculated 
the occurrence rate of each pattern and the transitions probabilities between each 
pair of states as dynamic features of the system. Occurrence rate of each pattern 
was defined as the proportion of connectivity matrices assigned to that pattern and 
was calculated for each subject separately. Independent t-test was used to compare 
the occurrence rate of each FC pattern between psychedelics and placebo groups. 
Bonferroni correction was used to correct the p-values for multiple comparison. 
Markov model was used to model the transition probabilities between each FC 
pattern for each subject. To detect any significantly different transition probability 
between two groups, Wilcoxon rank-sum test was performed on each transition and 
p-values were FDR-corrected.  
 

- Regional GS Analysis of Psychedelic Data: Euclidean norm of the BOLD signals were 
calculated at each ROI as a measure of power of the signal. Independent t-test was 
used to compare the regional GS power between two groups and p-values were 
FDR-corrected due to multiple comparison.  
 

- Dynamic FC Analysis of Cosmonauts Data: After FC state estimation, we calculated 
the occurrence rate and mean dwell time of each pattern and the transitions 
probabilities between each pair of states as dynamic features of the system. 
Occurrence rate of each pattern was defined as the proportion of connectivity 
matrices assigned to that pattern and mean dwell time was defined as the average 
time brain spent at each pattern in consecutive transitions. Both measures were 
calculated for each subject separately. Linear mixed model, considering dynamic 
variables as a function of time and group interaction and subjects as random factor, 
was used to compare the occurrence rate and mean dwell time of each FC pattern 
before and after spaceflight in two groups of cosmonauts and controls. FDR 
correction was used to correct the p-values for multiple comparison. Markov model 
was used to model the transition probabilities between each FC pattern for each 
subject. To detect any significantly different transition probability between two 



 

 

 

 

 

 

77 

groups, Wilcoxon rank-sum test was performed on each transition and p-values 
were FDR-corrected. 
 

- SC Analysis of Cosmonauts Data: After estimation of tractograms for each subject 
and each data acquisition session, structural connectome was estimated by applying 
Schaefer atlas with 100 regions of interest and counting the number of tracts 
between each pair of regions and normalizing it by the sum of volumes of the 
connected regions. A univariate mass analysis using linear mixed models was 
performed considering the values of each connection as the dependent variable, the 
interaction of time and group as the independent variable, and subjects as random 
factors for pre- and post-flights and two groups of subjects. P-values were corrected 
using FDR method. For the significantly altered connections, we also analyzed the 
longitudinal changes of the connection values by fitting a linear mixed model 
considering time (preflight, postflight, and follow-up) as fixed effect and subjects as 
random effect to the connection values of cosmonauts group.  

Structural-Functional Relationship Analysis of Cosmonauts Data: Considering GSP 
(Ortega et al., 2018) as the main analysis framework, the main idea here was to span 
a multi-dimensional space using orthonormal structural connectome harmonics and 
represent all the functional time series in that space. This transformation led to the 
possibility of studying regional coupling and decoupling of functional data to and 
from the underlying structure and how they can be used to predict ongoing mental 
states. Considering a structural connectivity matrix S.×. where R is the number of 
ROIs, the normalized Laplacian of this matrix can be computed as L(S) =
	D-	

"
!(D-S)D-	

"
!, where D is a diagonal matrix representing the degree of each node in 

the	S matrix: D22 = ∑ S23.
34+ . Eigen decomposition of this normalized Laplacian matrix 

will lead to a set of orthonormal bases with a notion of spatial frequency (higher 
eigen value, higher spatial frequency) which are called structural harmonics: 	L =
UΛU-+ where	 U is the matrix containing eigenvectors and	 Λ is a diagonal matrix 
containing corresponding eigen values. To create a common space for all the 
subjects, average of all the structural connectivity matrices of all the subjects will be 
calculated to estimate the	 S matrix (In this study, as significant changes in the 
structural connectome were detected due to space travel, separate average 
structural connectomes were calculated for pre and post flight acquisitions). 
Considering functional time series matrix X.×5 where	R is the number of ROIs and	T 
is the number of BOLD signal time points, we can transform this matrix to the 
structural harmonics space and transform back from this space to the original space 
as:  

U𝑋W = 𝑈*+𝑋
𝑋 = 𝑈𝑋W					

 

where 𝑋W is the corresponding representation of matrix	X in the structural harmonics 
space. Keeping the first C eigenvectors (1 ≤ C ≤ R ) and setting the rest to zero will 
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lead to a matrix with low frequency eigenmodes and we can name it as U678. In the 
same manner, we can keep the highest R-C eigen vectors and set the others to create 
a matrix with high frequency eigenmodes and call it  U92:9. Reconstructing the signal 
in the original space with U678 will lead to a spatially lowpass filtered version of the 
signal called X678. The same transformation using U92:9 will lead to a highpass 
filtered version of the signal called X92:9:  

U 𝑋
;<= = 𝑈;<=𝑈*+𝑋				

𝑋>&?> = 𝑈>&?>𝑈*+𝑋			
 

In this manner, 	X678 will contain the portion of the signal aligned with the underlying 
structure and X92:9 will contain the portion of the signal liberal from the underlying 
structure. Calculating the Euclidean norm of each row in the X678 matrix will lead to 
a regional measure of functional-structural coupling called X.×+@ and calculating this 
norm in the rows of  X92:9 will lead to a regional measure of functional-structural 
decoupling called X.×+A . Element-wise division of the decoupled signal by the 
coupled signal will result in a parameter called structural decoupling index (SDI):  

𝑆𝐷𝐼B×+ =	
𝑋B×+C

𝑋B×+D  

SDI is an R-element vector containing information about the regional decoupling 
of functional data from the underlying structure. To analyze spaceflight related 
changes in the SDI measure, a linear mixed model was applied considering 
interaction of time and group as fixed effect and subjects as random effect for pre- 
and post-flight data of two groups of subjects. For significantly altered regions a 
longitudinal analysis was also performed by fitting a linear mixed model to the SDI 
values of cosmonauts group considering time (preflight, postflight, and follow-up) 
as fixed effect and subjects as random effect. In all cases, p-values were corrected 
using FDR method.  

Neurobehavioral Analysis  

- Mind Blanking. To evaluate the similarity between mental states’ functional 
connectivity patterns and the main resting state recurrent functional 
configurations, we extracted the five connectivity matrices preceding each probe 
as the functional repertoire of each specific mental state and then calculated their 
cosine similarity to the main resting state patterns. To consider the effect of 
hemodynamic response, all analyses were performed on the shifted versions of 
the connectivity matrices with time lags ranging from zero (five matrices before 
the probe) to three (two preprobe and three postprobe matrices). The selection 
of this time window was justified by the fact that ongoing experience can fluctuate 
slowly with a period of ∼10 s (Van Calster et al., 2017), as well as by the nature of 
the hemodynamic response that reaches its maximum after three post-event 
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scans (Aizenstein et al., 2004).  Cosine similarity between two sample matrices of 
A and B can be calculated as: 

𝑑𝑖𝑠𝑡(𝐴, 𝐵) =
𝑇𝑟(𝐴E𝐵)

d𝑇𝑟(𝐴E𝐴)𝑇𝑟(𝐵E𝐵)
 

where Tr(.) indicates trace of a matrix. Cosine similarity determines how similar 
two matrices/vectors are irrespective of their norm. It can be considered as the 
normalized version of the Euclidean distance (i.e., projecting the vectors onto the 
unit sphere and calculating Euclidean distance, which is then effectively the cosine 
of the angle between those vectors). Subsequently, for each mental state the 
distribution of distances to all four centroids was created. A generalized linear 
mixed effect model with gamma distribution and log link function was applied to 
test the relationship between the distances to each pattern and the mental states. 
In this model, all mental state reports were considered as fixed effects and 
participants as random effects, with sex and age as confound variables. To correct 
for the multiple comparison problem due to fitting the model to the distance 
values of different patterns separately, an effect was considered significant if its p 
value was less than 0.05/K, where K is the number of patterns. In the case of a 
significant effect, a Tukey post hoc test was applied to compare each pair of 
mental states separately and to correct the type I error inflation due to multiple 
comparisons. 

 
- Psychedelics: A canonical correlation analysis was conducted using the sixteen 

transition probability variables as predictors of the 5D-ASC and EDI variables, to 
evaluate the multivariate shared relationship between the two variable sets. 
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3.1 Introduction 
Ongoing experience is dynamic and rich in content, taking the form of mental 

states. Taking this view, a traditional challenge in computational neuroscience is 
to infer mental contents based on the functional and structural characteristics of 
the brain, which is known as “mental state decoding” or “brain reading” (Haynes 
& Rees, 2006; Poldrack, 2006; Poldrack, 2011). The development of brain reading 
algorithms can not only advance our understanding of brain-mind interactions, 
but can also be used for the cognitive evaluation of individuals who are unable 
to communicate directly (Monti et al., 2010).  

Put simply, mental state decoders are classification models whose 
parameters are estimated based on the neural patterns to predict variant mental 
states. After estimation of the model parameters (training phase), decoders can 
take new neural patterns as inputs and predict in which mental state an 
individual is. In order to identify and investigate mental states, one can design a 
variety of highly controlled experimental paradigms characterized by a series of 
distinct states induced by a temporally constrained experimental design (Haynes 
& Rees, 2006; Schrouff et al., 2012). For example, using specific cognitive tasks 
some studies have attempted to decode particular mental states, such as mental 
imagery (Monti et al., 2010; Schrouff et al., 2012), lie detection (Davatzikos et al., 
2005), and object recognition (Hanson & Halchenko, 2008). These studies 
considered functional activation patterns inferred from general linear models 
(GLM) fitting to fMRI signals as neural features of their designed decoder. The 
main challenge of decoding, though, comes for task-free conditions where 
ongoing experience is spontaneous and dynamic, forming a sequence of different 
mental states (i.e., thoughts, stimuli perception, and mind blanking as explained 
in Chapter 1; Van Calster et al., 2017).  

As the resting paradigm precludes the use of cognitive tasks, one needs to 
resort to appropriate proxies to quantify spontaneous mental state contents as 
objectively as possible. Experience-sampling facilitates this endeavor using 
quantification of participants’ mental states by providing them with options 
which best describe their state, either self-caught or via probing (Reed & Mihaly, 
2014; Van Calster et al., 2017). While self-catching is suitable to study 
occurrences of pre-defined mental states, probing can capture various 
spontaneously occurring mental states. In that sense, during rest individuals are 
interrupted in random time points to report their immediate mental state.  

After the definition of mental states during task-free conditions using 
experience-sampling, one can also characterize spontaneous brain activity 
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fluctuations over time to design relevant decoders. While during task-related 
conditions cognitive states are usually predicted using brain’s functional 
activation patterns, in task-free conditions different mental states can be linked 
to the brain’s functional and structural networks (Gonzalez-Castillo et al., 2019; 
Karapanagiotidis et al., 2017). For example, different aspects of ongoing thoughts 
have been linked to the different regions of the DMN (Karapanagiotidis et al., 
2017; Smallwood et al., 2021), sensory perception has been associated with parts 
of VAN and DAN (Van Calster et al., 2017), and mind blanking has been shown to 
be linked to a globally coherent functional topology (Mortaheb et al., 2022). 
Resting state can also be viewed as a sequence of spontaneous “cognitive-task-
like” processes (Gonzalez-Castillo et al., 2019; Shirer et al., 2012) such as working 
memory, visual or auditory attention, episodic or autobiographical memory, 
mathematical calculations, etc. Considering this model, one can learn the 
underlying functional organization of the related processes by performing 
specific cognitive tasks and using them to predict and decode those processes 
during rest (Gonzalez-Castillo et al., 2019). 

While so far studies have used either the brain’s functional or structural 
connectome as the input of their designed decoding model, recent studies argue 
that taking both functional and structural information into account and studying 
their regional interdependence can lead to more insight about cognitive states 
arising from the brain (Griffa et al., 2022; Preti & Van De Ville, 2019). Importantly, 
it has been shown that coupling of structure and function occurs in the regions 
related to lower-order cognition, such as visual and somatosensory cortices, 
while decoupling occurs in the regions related to higher-order cognition, such as 
emotion, autobiographical memory, and social cognition (Preti & Van De Ville, 
2019). It has been shown that such features can be used to efficiently decode 
various cognitive states during task performance (Griffa et al., 2022). The 
question is whether these structural-functional signatures are also predictors of 
ongoing mental states during task-free conditions.  

With the aim to predict ongoing mental states in task-free conditions, we 
developed a model which uses region-wise coupling and decoupling of the brain’s 
functional activity to and from the underlying structural connectome. As task-
free conditions span a wide range of mental states with their various dimensions, 
we here focused on the dominant dimensions of ongoing experience. Using 
principal component analysis (PCA), previous studies have shown that when 
participants report their ongoing thoughts, the temporal (past vs future) and 
referent (self vs others) dimensions contribute the most into the principal 
components of their reports (Karapanagiotidis et al., 2017). At the same time, 
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when participants lay in the scanner with eyes open, they still have auditory and 
visual percepts which directs their mind temporal dimension to the present. As a 
result, the goal was to develop a decoder to predict the temporal and referent 
dimensions of ongoing thinking, and spontaneous occurrences of mind blanking 
during task free conditions.  

3.2 Study Overview  
Three different scenarios were defined for mental state decoding: i) decoding 

cognitive tasks that simulate mental states happening during rest, ii) decoding 
individual reports in an experience-sampling paradigm during rest, and iii) 
decoding individual reports in the experience-sampling paradigm based on the 
features extracted from the cognitive tasks (Figure 3.1A, B). In each scenario, we 
used structural-functional relationship features to train and test the designed 
decoder model (Methods Box 2). To this end, functional and structural data were 
acquired in two separate sessions. At the first session, data acquisition started by 
acquiring structural T1-weighted MPRAGE images, followed by functional MRI 
while participants were at rest with eyes open. Then, participants were invited to 
perform five cognitive tasks that simulated the principal mental states happening 
during rest. After a 30-minute pause, at the second session an experience 
sampling paradigm was performed to probe the actual mental states happening 
during rest (Figure 3.1C).  

3.2.1 Cognitive Tasks  
In the first session, five cognitive tasks were used: 1) remembering the 

past/imagining the future about self (PF-S), 2) remembering the past/imagining 
the future about others (PF-O), 3) auditory oddball (A-OB), 4) visual oddball (V-
OB), and 5) self-caught mind blanking (MB; Figure 3.2, Methods Box 2). These 
tasks can be considered as proxies to the mental states happening during rest. 
The order of the tasks was random across participants, except for the mind 
blanking task, which was always presented first to avoid effects of accumulated 
fatigue. 

3.2.2 Experience-Sampling during Rest  
In the second session, we used an adaptation of novel experience-sampling 

paradigms to probe participants’ ongoing experience (Van Calster et al., 2017). In 
this paradigm, participants were lying in the scanner with eyes open and at 
random times they were interrupted by an auditory probe inviting them to report 
their immediate mental state by button press (Figure 3.3). In the first step, they 
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were asked to report whether their thought was in the “past”, “future”, 
“present”, or simply “nowhere” (i.e., mind blanking). Based on their report, a 
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Figure 3.1. Study overview. A) Participants performed five cognitive tasks which simulated the 
mental states happening in the task-free conditions. Coupling, decoupling, and structural decoupling 
index (SDI) maps were extracted at the trial level for each subject and were used to train and test a 
classifier to classify corresponding cognitive tasks. B) In the second session participants performed 
an experience sampling task to report their actual mental states during rest. The same set of features 
were extracted at the probe level and a classifier model was used to predict the participants’ 
responses. C) In the acquisition paradigm, the order of cognitive tasks was random across the 
participants. For each participant, the data acquisition was performed on the same day but in two 
sessions, between which 30 minutes pause took place in order to i) prevent the participants becoming 
drowsy, and ii) account for signal attenuation which takes place in the scanner after one hour of 
acquisition. 
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second question was asked. If their report was the “past” or the “future”, the 
second question asked whether this thought was about “yourself” or “others”, 
leading to four categories of responses as “Past-Self”, “Past-Other”, “Future-
Self”, and “Future-Other”. If their report was the “present”, the second question 
asked whether they had a “sensory perception” or a “stimulus-dependent 
thought”, leading to two more categories of “Present-Sens”, and “Present-SDep”. 
If their report was “nowhere”, no further question was asked. In general, each 
participant was probed 25 times and the interval between each two probes was 
chosen randomly between 30 and 60 seconds. For each participant, the 
responses that took longer than 10 seconds were considered as the erroneous 
responses and were excluded from the analysis. The data acquisition of this 
session was finished by acquiring diffusion weighted images. 

3.2.3 Feature Extraction  
Regional structural-functional (de)coupling measures were estimated at the 

trial-level using graph signal processing (GSP; Ortega et al., 2018), explained in 
Chapter 2. In this framework, the idea is to span an algebraic space using 
structural harmonics estimated from the structural connectivity matrix, and 
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Figure 3.2 Cognitive tasks.  A) In the Past-Future Self (PF-S) and Past-Future Other (PF-O) tasks, 
participants either remembered a specific event in the past or imagined it in the future based on the 
orientation cue at the beginning of each trial. This task was performed twice, once the event was 
related to the self, and the other time related to another person. Using these two tasks, the temporal 
and referent dimensions of the thoughts were studied. B) Classic oddball tasks were used to study 
attention to the deviant visual or auditory stimuli. We used two versions of oddball task, one visual 
(V-OB) and one auditory (A-OB). Each oddball task was performed in 4 separate blocks each containing 
128 trials. (IBI: inter-block interval, ISI: inter-stimulus interval) 



 

 

 

 

 

 

88 

represent each time point of functional data as the linear combination of 
estimated harmonics (See Methods box 1). We used the averaged structural 
connectome across all subjects as the representative anatomical connectivity of 
the group. Structural harmonics can be divided into low frequency and high 
frequency modes showing respectively distributed slow variation and localized 
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Figure 3.3 Experience-sampling. During experience-sampling, participants were at rest and their mind 
was free to wander. At random time points they were probed to report their mental state. At the first 
step, they reported the temporal dimension of their mental state by pressing corresponding buttons. 
If their mind was in the past or in the future, they answered a second question about the referent of 
their thought (i.e., the thought was about themselves or the others). If their mind was at present, 
they were asked to report whether they had a stimulus-dependent thought or a stimuli perception. If 
they reported their mind was nowhere, reports were considered as mind blanking and no further 
questions were asked. 
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fast variation over the brain. The representation of functional data as the linear 
combination of structural harmonics allows the filtering of functional data at 
each time point into low frequency and high frequency components showing 
their slow and fast spatial variations respectively (Methods Box 1). Using this 
concept, one can introduce the so-called coupled and decoupled components of 
the functional data to and from the underlying structural connectome. In fact, 
region-wise Euclidean norm of low-pass filtered, and high-pass filtered versions 
of the functional leads to coupling and decoupling maps, respectively (Method 
Box 1). Further, division of decoupling by the coupling maps results in structural 
decoupling index (SDI) maps. These features were calculated for each trial of 
cognitive tasks and each probe of experience-sampling. For the experience-
sampling probes feature extraction, an analysis window of 10 seconds length was 
considered before each probe. The selection of this time window was justified by 
the fact that ongoing experience can fluctuate slowly with a period of ∼10 s (Van 
Calster et al., 2017). To account for hemodynamic effects, all the analysis 
windows were lagged by 5 time points for either cognitive tasks trials or 
experience-sampling probes. In fact, previous studies have shown that the peak 
effect of hemodynamic response function happens after ∼6 seconds (Aizenstein 
et al., 2004), which is equivalent to 5 volumes considering the repetition time in 
our study (TR=1.17 seconds).  

3.3 Results  
Preliminary results are based on participation of eight healthy adults (5 

women, 3 men, age: 29.5y ±3.9). All participants gave their written informed 
consent to take part in the experiment. The study was approved by the local 
ethics committee of the ULiège University Hospital (CHU Liège).  

3.3.1 Structural Harmonics Estimation 
The averaged structural connectome was used to estimate the structural 

harmonics (Figure 3.4A). The eigen decomposition of normalized Laplacian of 
structural connectome led to a set of orthonormal eigenvectors and their 
corresponding eigenvalues (Methods box 2). Eigenvalues increased from zero to 
1.54 (Figure 3.4B) and had a notion of spatial frequency. It was shown by zeros-
crossing rate of corresponding eigenvectors which counted the number of edges 
in the structural connectome whose nodes had values with the opposite sign in 
the eigenvector (Figure 3.4C). This notion was better understood by visualizing 
different structural harmonics corresponding to low and high eigenvalues (Figure 
3.4D). Structural harmonics related to the low eigenvalues were characterized by 
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slow variations across the brain structure while the harmonics related to the 
higher eigenvalues were characterized by localized and fast variations. In order 
to define low and high frequency harmonic modes for further analyses, a cut-off 
eigenvalue should be chosen. Instead of choosing a fixed value, we performed 
feature extraction and decoding based on a wide range of cut-off eigenvalues. 

D 

C B A 

Figure 3.4 Structural harmonics estimation. A) The averaged structural connectome was calculated 
across all subjects to create a common space for structural-functional analysis. B) The eigenvalues of 
the normalized Laplacian of structural connectome are increasing from zero to 1.54. C) These 
eigenvalues have the notion of frequency as the zero-crossing rate of their corresponding 
eigenvectors are also increasing. D) The eigenvectors corresponding to the lower eigenvalues show a 
slow and distributed variation over the brain structure, while the eigenvectors corresponding to the 
higher eigenvalues show a fast and localized variation.  
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3.3.2 Decoding Cognitive Tasks 
We used a support vector machine (SVM) classifier with a linear kernel to 

classify cognitive tasks trials based on the extracted features. The classification 
model was trained and tested using a stratified 4-fold cross validation with 10 
repeats and a one-vs-all classification approach. Because of the low number of 
participants, decoding was performed at the trial level. Z-score normalization and 
PCA were applied on the extracted features prior model training and test. Due to 
the variability in the number of different mental state reports, this dataset was 
highly imbalanced. To evaluate the classifier’s performance for imbalanced 
datasets, specific measures such as precision, recall, and balanced accuracy can 
be used. While precision is defined as the ability of the classifier not to label as 
positive a sample that is negative, recall is the ability of the classifier to classify 
positive samples correctly. In that sense, balanced accuracy can be defined as the 
average of the recall values across the classes. This is equivalent of calculating 
classifier accuracy while each sample is weighted according to the inverse 
prevalence of its true class which accordingly will avoid inflated performance 
estimates on imbalanced datasets (refer to Appendix B for more details). These 
metrics were calculated for different feature vectors and cut-off eigenvalues and 
the one with the highest balanced accuracy was considered as the best decoder. 
The following results are based on the best decoder performance.  

Temporal dimensions of cognitive tasks were decoded higher than chance-
level.  We first categorized the task trials into four groups related to their 
temporal dimension, i.e., Past, Present, Future, and Nowhere. While PF-O and 
PF-S tasks were directly related to the Past and Future, A-OB and V-OB trials were 
assigned to the Present, and MB trials were considered as the mind was nowhere. 
Trials related to the Present time were classified with higher balanced accuracy 
than the other temporal dimensions, while MB reports showed lower 
performance (Figure 3.5). The best performance of decoder for each temporal 
dimension achieved by decoupling maps as feature vectors (Table 3.1).  

Reference dimensions of cognitive tasks were decoded higher than chance-
level. The PF-S and PF-O tasks also examined the reference dimensions, namely 
thoughts about self vs. thoughts about others. We also tested if the designed 
decoder is capable of differentiating the referent of our thoughts at different 
temporal dimensions. Classification results showed that the balanced accuracy 
was higher than the chance level (i.e., 0.5) for both Past and Future thoughts 
(Appendix C, Figure C1). The highest balanced accuracy for referent of thoughts 
in the Past was achieved while using coupling feature vectors with a cut-off 
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eigenvalue of 20 (mean balanced accuracy=0.58, mean precision=0.57, mean 
recall=0.56; Appendix C, Table C1). On the other hand, the best balanced 
accuracy for referent of thoughts in the Future was achieved while using SDI 
feature vectors with a cut-off eigenvalue of 80 (mean balanced accuracy=0.55, 
mean precision=0.56, mean recall=0.56; Appendix C, Table C1).  

3.3.3 Decoding Experience-Sampling Reports During Rest  
The same decoding approach that was designed for the cognitive tasks’ 

classification was also used to predict the subjective reports during experience-
sampling.  

Behavioral analysis. During the experience sampling, MB was reported fewer 
times (median=3, IQR=3.5, min=0, max=7) and future-oriented thoughts were 
reported more often than any other mental state (median=11, IQR=4.5, min=4, 
max=15). Pair-wise comparisons showed that just the number of future thoughts 

Figure 3.5 The temporal dimensions of cognitive tasks could be decoded higher than chance-level. 
Classifying the tasks’ temporal dimensions using a one-vs-all approach showed that these were 
decoded higher than chance-level. The decoupling measure calculated based on medial cut-off 
frequencies showed the highest performance among the feature vectors. While Present was decoded 
with the highest decoding accuracy, the MB reports showed the lowest.  

Table 3.1. The best averaged performance of decoder for each temporal dimension.   

Classifier Feature Cut-off 
Eigenvalue 

Balanced 
Accuracy 

Precision Recall  

Past vs all Decoupling map 50 0.66 0.50 0.47  

Present vs all Decoupling map 80 0.87 0.87 0.85  

Future vs all Decoupling map 70 0.64 0.46 0.42  

MB vs all Decoupling map 70 0.58 0.16 0.23  
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and MB reports are significantly different (paired t-test, t=3.851, p=0.014, FDR-
corrected; Figure 3.6A left panel). This high number of future thoughts were 
mainly related to the Self (median=6, IQR=1.5, min=4, max=9; Figure 3.6A right 
panel). Also, Future-Self thoughts were significantly higher in occurrence than 
Past-Self (paired t-test, t=4.361, p=0.001, FDR-corrected), and Present-SDep 
thoughts (paired t-test, t=3.573, p=0.004). Considering reaction times, there 

p = 0.014

p = 0.014 p = 0.029

p = 0.01 p = 0.038

p = 0.001 p = 0.017

A

B

Figure 3.6. Behavioral characteristics of experience-sampling paradigm. (A) left. Ongoing mental 
states are characterized by a high number of reports about Future thinking and by a low number of 
reports about mind blanking. right. In addition, these future thoughts were mainly self-focused. (B) 
left. In terms of reaction times, no significant effect of temporal dimensions of mental states on 
reaction times was observed. Right. On the other hand, a significant effect of reference dimension of 
mental states was observed showing that Future-Self and Future-Other were reported faster than 
Present-Sens and Present-SDep. 
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were no significant effect of mental states on the temporal dimensions of mental 
states (χ2[3]=6.644, p=0.084, generalized linear mixed model analysis; Figure 
3.6B left panel). However, in terms of reference dimension of mental states, 
there was a significant effect of mental state (χ2[5]=23.347, p=0.0003; 
generalized linear mixed model analysis; Figure 3.6B right panel), with Future-
Self being reported faster than Present-Sens (z=3.886, P=0.001) and Present-
SDep (z=3.203, P=0.017), and Future-Other being faster than Present-Sens 
(z=3.362, p=0.010) and Present-SDep (z=2.942, p=0.038; post-hoc Tukey test). 

MB
(0.13)

Past
(0.22)

Present
(0.26)

Future
(0.39)

0.06 0.17

0.21

0.40

0.11

0.
27

0.42

0.11

0.
24

0.
49

0.
10

0.3
0

0.40

0.13
0.
22

0.26

r = 0.401
p = 0.047

A B

C

Figure 3.7. There is high tendency towards the Future Thought state with the passage of time. (A) 
Transition dynamics over the course of experience-sampling shows that there is a high probability of 
going into Future Thought state after any other mental state reports. All probability measures are the 
averaged values across subjects. Diameter of the circles are proportional to the probability of each 
mental state report. (B, C) Calculating the total number of reports over all subjects and over the 
acquisition time shows that with the passage of time the number of Future thought reports also 
increases significantly.  
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Dynamic transitions between mental state reports showed an overall high 
tendency to go into the Future-Thought state and an overall low tendency to go 
into the MB state (Figure 3.7A). Finally, in terms of distribution of reports over 
the acquisition time, there was a positive correlation between the total number 
of Future Thoughts over all the subjects and probe number (r=0.401, p=0.047; 
Figure 3.7B), which shows an increase in the number of Future Thoughts as the 
experiment continues (Figure 3.8C). On the other hand, no significant correlation 
was found for MB (r=0.062, p=0.767), Past (r=-0.225, p=0.279), and Present (r=-
0.241, p=0.245) mental states.  

Temporal dimensions of thoughts were decoded higher than chance-level. 
Considering participant responses to the first-level question, we categorized 
experience-sampling probes into four classes related to the temporal dimensions 
of the thoughts: Past, Present, Future, and Nowhere. Different combination of 
features and cut-off frequencies led to higher than chance-level balanced 

Figure 3.8.  The temporal dimensions of thoughts during rest could be decoded higher than chance-
level. Decoding of thoughts temporal dimensions using a one-vs-all approach showed that they could 
be decoded higher than chance-level. While Future time was decoded with the highest decoding 
accuracy, MB reports showed the lowest. 

Table 3.2. The best performance of decoder for each temporal dimension of thoughts during rest.   

Classifier Feature Cut-off 
Eigenvalue 

Balanced 
Accuracy 

Precision Recall  

Past vs all Decoupling map 70 0.60 0.36 0.41  

Present vs all Coupling map 40 0.61 0.39 0.42  

Future vs all SDI map 110 0.65 0.56 0.61  

MB vs all Decoupling map 40 0.60 0.35 0.29  
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accuracy for thought temporal dimension prediction (Figure 3.8). The classifier’s 
best performance measures are summarized in Table 3.2.  

Reference dimensions of thoughts were decoded higher than chance-level. 
If the mind of participants were at the Past or in the Future, in the second 
question they had to response whether their thought was about themselves or 
another person. Different combination of features and cut-off frequencies were 
shown to be able to classify self-related and other-related reports at each 
temporal dimension higher than chance-level (Appendix C, Figure C2 and Table 
C2).  

3.3.4 Decoding Experience-Sampling Reports based on 
Tasks Features 

In the third scenario, we trained the classifier based on the features extracted 
from the cognitive tasks and tested its performance based on the features 
extracted from the experience-sampling paradigm.  

 Temporal dimensions of thoughts were decoded higher than chance-level. 
Evaluating performance of the decoder in classifying the experience sampling 
probes showed that all temporal dimensions of thoughts can be decoded higher 
than chance level (Figure 3.9 and Table 3.3). Particularly, the best performance 
was achieved for the Past thoughts using SDI maps (balanced accuracy=0.64, 
precision=0.33, and recall=0.72), while MB reports were successfully decoded 
using decoupling maps (balanced accuracy=0.60, precision=0.22, recall=0.54).  

 Reference dimensions of thoughts were decoded higher than chance-level. 
Considering the Past and the Future thought reports, classification of self-related 
and other-related probes at each temporal dimension showed that the 
performance of decoding is higher in the Past thoughts when compared to the 
Future thoughts (Balanced Accuracy=0.62, precision=0.58, and recall=0.58; 
Appendix C, Figure C3 and Table C3). While the coupling feature vectors showed 
higher performance in reference classification of the Past thoughts, decoupling 
feature vectors showed higher performance for the Future thoughts (Appendix 
C, Table C3).   

3.4 Discussion  
During resting state, the mind freely wanders through time and space and 

gets occupied with different contents (Smallwood et al., 2021). In this study, we 
investigated the decodability of the ongoing mental states based on the brain’s 
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underlying neural mechanism. As resting state is an unconstrained condition, the 
ongoing mental states can be highly variable across time that makes their 
decoding a challenging problem in neuroscience.  

We used a modified version of experience-sampling paradigm together with 
fMRI acquisition to quantify the dynamism of ongoing mental states, as well as 
the underlying neuronal activity. Behaviorally, we found that ongoing cognition 
is composed of low probable occurrences of mind blanking (13%), accompanied 
by environmental thoughts or perceptual events (26%), and highly probable 
wandering of mind through time, also known as mental time travel (61%; 
Karapanagiotidis et al., 2017). These findings are in line with previous studies 
which also tried to formulate different ongoing mental states during rest (Kane 
et al., 2007; Van Calster et al., 2017; Ward & Wegner, 2013). We also found that 
the most common reported mental state was self-focused future thoughts (39%). 
This is also in line with previous studies in which used principal component 

Figure 3.9 Temporal dimensions of thoughts during rest can be decoded higher than chance-level 
from the temporal dimensions of tasks. Decoding of temporal dimensions of thoughts during rest 
using a one-vs-all classifier trained on task data shows that they can be decoded higher than chance-
level in specific combinations of features and cut-off eigenvalues.  

Table 3.3. The best performance of decoder for each temporal dimension of thoughts during rest.   

Classifier Feature Cut-off 
Eigenvalue 

Balanced 
Accuracy 

Precision Recall  

Past vs all SDI map 20 0.64 0.33 0.72  

Present vs all Coupling map 10 0.56 0.33 0.32  

Future vs all SDI map 20 0.58 0.47 0.62  

MB vs all Decoupling map 80 0.60 0.22 0.54  
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analysis to show that the first principal component of ongoing thoughts is related 
to the future and self (Karapanagiotidis et al., 2017). We also found that these 
Future thoughts have higher occurrence probabilities at the end of the 
acquisition, while other mental states are uniformly distributed across the time 
course of the data acquisition. In fact, when participants get familiar with the 
scanner environment and learn how to perform the experience-sampling task, 
their mind gets less engaged to the environment and fills with stimulus 
independent thoughts, showing themselves mainly as future self-focused 
thoughts. We should notice that this mental dynamic formulation is not directly 
related to the ongoing mental spontaneity as in the experience-sampling 
paradigm the subjective reports are gathered every 30-60 seconds. However, 
investigating different aspects of this dynamism is important as it is the source of 
imbalanced mental state reports which affects any decoding approach 
(Ramyachitra & Manikandan, 2014).  

  When subjects are at rest, they often engage in a series of self-paced 
cognitive processes including visual imagery, episodic memory recall, future 
planning, somatosensory sensation, etc. (Delamillieure et al., 2010; Van Calster 
et al., 2017). As a result, one can describe the resting state as short periods of 
“spontaneous cognitive-task-like processes” (Gonzalez-Castillo et al., 2019). 
Considering this, we performed mental state decoding in three different 
scenarios: i) train and test the decoder using specific cognitive tasks that simulate 
mental states during rest, ii) train and test the decoder using actual mental state 
reports in an experience-sampling paradigm, and iii) train the decoder based on 
the features extracted from the cognitive tasks and test its performance on 
predicting experience-sampling reports. In the first scenario, we used specific 
tasks to orient participants’ minds into different temporal dimensions and to 
manipulate the referent of their thought contents. The advantage of this 
approach is that the tasks are controlled, and their occurrence rate and duration 
can be designed. However, these constraints also make the situation not 
completely similar to what happens during rest. The second scenario is more 
realistic. Participants report their actual mental states, and their mind is not 
constrained. The disadvantage of this scenario is that the number of mental state 
reports can be highly imbalanced, and no information exists regarding duration 
of each mental state. This can affect the decoder training efficiency. As a result, 
we proposed the third scenario, in which the decoder is trained on a more 
controlled and balanced dataset gathered from task performance and is used to 
decode the mental states during rest. Our decoding model performed higher 
than chance-level in all three scenarios. Although higher than chance-level, the 
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decoder performance was different for various mental states in each scenario. 
This was further shown to be affected by the extracted feature vectors used to 
train and test the decoder.  

In this study, we used feature vectors explaining regional coupling or 
decoupling of functional activity to and from the underlying structural 
connectome to decode the mental states. While the coupling index is related to 
the low variation and distributed spatial functional activity, decoupling mainly 
describes fast changing local functional activity over the structure of the brain 
(Medaglia et al., 2018). The division of the decoupling index by coupling index 
infuses the information contained in these two indices into a single index called 
the  structural decoupling index (SDI; Preti & Van De Ville, 2019). All these neural 
indices have been shown to have cognitive relevance, and can be used to decode 
cognitive tasks and fingerprinting (Griffa et al., 2022). In this study, we showed 
that these indices can also be used to decode ongoing mental states. Particularly, 
we showed that temporal dimensions of cognitive tasks were decoded using 
decoupling indices, indicating that more localized functional activity supports the 
temporal dimensions of cognitive tasks. On the other hand, the temporal 
dimensions of the experience-sampling reports were more heterogenous, 
meaning that different features of coupling, decoupling, and SDI could be used 
to decode them efficiently. This observation comes from the fact that during the 
resting state the mind is less constrained and more distributed functional activity 
can be observed.  

Taken together, we showed that the underlying dynamic coupling and 
decoupling profile of functional activity to and from the brain can support the 
ongoing mental states during rest. This study also has several limitations. First, 
using self-reports to characterize the ongoing mental states could be unreliable. 
This is because self-reports are usually subject to contextual and motivational 
biases (Nisbett & Wilson, 1977), which limits the experience-sampling data to 
reveal real ongoing cognition. Second, the ongoing mental state reports are 
highly variable across participants, leading to highly imbalanced datasets. This 
not only limits the ability of mental state decoders, but also leads to imprecise 
performance evaluations. In this study, we used balanced accuracy together with 
precision and recall trying to reduce the effect of an imbalanced dataset in 
performance evaluation. In addition, recruiting young healthy participants for the 
study was another source of having imbalanced dataset, leading to higher 
number of future thought reports than the other mental states. Adding older 
participants to the study not only leads to the development of more general 
decoders, but also can lead to a less imbalanced dataset. Third, regarding self-
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catch paradigm, with the current design, it is not possible to distinguish between 
the time participants have a specific mental state and the time they decide to 
report that. More advanced designs are required in future studies to overcome 
this issue. Finally, small sample size limited our study’s ability to generalize results 
and prevented us from using more realistic models (e.g., multi-class multi-label 
classification). With higher power from a larger sample size, more generalizable 
results and more realistic models can be achieved.    
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Methods Box 2 

Mind blanking task. To simulate the spontaneous occurrences of mind blanking, 
we used a self-catching paradigm (Ward & Wegner, 2013). In this task, participants 
were at rest with eyes open, fixating on a black screen. Participants were asked to 
press a button whenever they felt they had a mind blanking state, defined as a state 
where participants were not able to remember what they had in their mind. The task 
total duration was 10 minutes. 

Remembering past/imagining future (self/other-focused) tasks. The aim in this 
task was to simulate remembering a topic in the past or imagining it in the future 
using the variations of currently published tasks (Gilmore et al., 2018). Participants 
were asked to envision a specific scenario in response to one of the two task 
orientation cues (Figure 3.2A). The orientation cues directed the participants to either 
remember a specific event in the past or imagine a specific event that might occur in 
the future. There were two different versions of this task: a) a “self-related” version, 
in which participants had to remember or imagine the events about themselves, and 
b) an “other-related” version, in which this had to be about other people. At each trial 
of the task, participants were shown an orientation cue for 2.5 seconds, during which 
they were instructed whether they should remember an event or imagine it in the 
future. Thirty randomly distributed trials were used, of which 15 were related to 
remembering the past and 15 were related to imagining the future. In 80% of the 
trials (24 trials), the orientation cue was followed by a word or phrase (showing a 
topic) which lasted for 10 seconds. These trials are called compound trials. The other 
20% of the trials (6 trials) ended after the orientation cue and no topic was shown to 
the participants. They are called partial trials. The order in which compound and 
partial trials were shown to the participants was random. Inter-trial interval was 
chosen randomly between 2.5 and 7.5 seconds during which participants were 
looking at a fixation cross and they had to clear their mind and wait for the next 
orientation cue. In this experiment, topics were chosen from 32 words and short 
phrases (see Appendix A). The task total duration was about 8minutes and 30 
seconds. 

Oddball (auditory and visual) tasks. To simulate the external stimuli perception 
conditions, we used the standard auditory and visual oddball paradigms that have 
been adapted to the fMRI acquisitions (Stevens et al., 2000). Each oddball paradigm 
consisted of 4 blocks. Each block was made of 128 trials of which 5 to 8 were rare 
target trials and the rest were frequent standard trials (Figure 3.2B). Participants were 
asked to count the number of target trials and report at the end of each block. To 
account for the hemodynamic activity resulting from the rare target trials, there were 
at least 12 standard trials between each two target trials. In the visual oddball 
paradigm, the standard stimuli were “OOOO”, and the target stimuli were “XXXX”, 
while in the auditory paradigm, the standard stimuli were presented as a beep with a 
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frequency of 630 Hz, and the target stimuli were presented as a beep with a frequency 
of 807 Hz. In both paradigms, each stimulus lasted for 500 ms with an inter-stimulus 
interval of 1000 ms. Blocks were separated with an interval of 15 seconds. The task 
total duration was about 14 minutes and 30 seconds.   

Imaging Setup. All MR images were acquired on a whole-body 3T scanner 
(Magnetom Prisma, Siemens Medical Solutions, Erlangen, Germany) operating with a 
20-channel receiver head coil. For anatomical reference at each session, a high-
resolution T1-weighted image was acquired for each subject (T1-weighted 3D 
magnetization-prepared rapid gradient echo (MPRAGE) sequence, TR = 1900 ms, TE 
= 2.19 ms, inversion time (TI) = 900 ms, FoV = 256x240 mm², matrix size = 
256x240x224, voxel size = 1x1x1 mm³, acceleration factor in phase-encoding direction 
R=2).  

Multi-slice T2*-weighted functional images were acquired with the multi-band 
gradient-echo echo-planar imaging sequence (CMRR, University of Minnesota) using 
axial slice orientation and covering the whole brain (36 slices, multiband factor = 2, 
FoV = 216x216 mm², voxel size 3x3x3 mm³, 25% interslice gap, matrix size 72x72x36, 
TR = 1133 ms, TE = 30 ms, FA = 90°). The five initial volumes were discarded to avoid 
T1 saturation effects. To remove the physiological noise, respiration and cardiac 
pulsation signals were also recorded.  

Diffusion-weighted (DW) data were acquired using a multiband SE-EPI sequence 
(Center for Magnetic Resonance Research (CMRR), University of Minnesota), with 
2mm isotropic spatial resolution. Acquisition parameters include TR = 4030 ms, TE = 
69.80 ms, 70 transverse slices, slice thickness = 2 mm and slice acceleration factor = 
2, in-plane resolution 2x2 mm² (FoV = 192x216 mm², matrix = 96x108) and 
acceleration factor 2, bandwidth per pixel = 2264 Hz/Px. The multi-shell diffusion-
weighted imaging (DWI) scheme included 118 volumes. The first volume was 
discarded to avoid T1 saturation effect. The remaining 117 volumes corresponded to 
a total of 105 DW images interleaved with 12 b=0 images. The set of diffusion 
directions which was created using electrostatic repulsion (Slater et al., 2019) was 
defined over three shells (b = 650, 1000 & 2000). For the purpose of susceptibility-
induced distortion correction, 5 additional b=0 volumes was acquired with the same 
acquisition parameters as above, but inverted phase encoding (PE) direction 
(Andersson et al., 2003). 

Data Preprocessing. The fMRI data were preprocessed and denoised using locally 
developed pipeline based on SPM12 (Penny et al., 2011). In this pipeline, after 
susceptibility distortion correction and realignment, functional data were registered 
to the high resolution T1 image, then normalized to the standard MNI space, and 
finally was smoothed using a Gaussian kernel with a full width at half maximum 
(FWHM) of 6. After segmentation of structural T1 image into grey matter (GM), white 
mater (WM), and CSF masks, the bias corrected structural image and all the extracted 
masks were normalized to the MNI space. Further, WM and CSF masks were eroded 
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by one voxel to remove any overlapping between these tissues and the GM voxels. 
To denoise functional time series, a general linear model (GLM) was fitted to each 
voxel data separately, regressing out the effect of six movement parameters 
(translation in x, y, and z directions, and rotation in yaw, roll, and pitch directions), 
constant and linear trends using zero-order and first-order Legendre polynomials, 5 
principal components of signals in the WM and CSF masks, physiological data (i.e., 
respiration and cardiac pulsation), and outlier data points. Outlier detection was 
performed using ART toolbox (http://web.mit.edu/swg/software.htm). Any volume 
with a movement value of greater than 3 mm, rotation value of greater than 0.05 
radians, and z-normalized global signal intensity of greater than 3 was considered as 
an outlier. After regressing out these nuisance regressors, the remaining signal was 
used for further analysis. Schaefer atlas with a resolution of 100 ROIs (Schaefer et al., 
2018) together with additional 19 subcortical regions was used to extract the 
averaged BOLD signals inside each ROI.  

For the DWI images, all the preprocessing, denoising, and structural connectivity 
(SC) estimation steps were performed in MRTrix3 (J.-D. Tournier et al., 2019). 
Susceptibility-induced and eddy current-induced distortions, as well as movements 
were estimated and corrected using topup (Andersson et al., 2003) 
and eddy(Andersson & Sotiropoulos, 2016b) in FSL 6.0.4. Further, the denoised 
images were bias corrected using ANTs (Tustison, Avants, Cook, Zheng, et al., 2010). 
After registering the structural T1 image to the DWI image, it was segmented into 5 
tissue types using FSL. Response functions of GM, WM, and CSF were estimated using 
Dhollander algorithm (Dhollander et al., 2019). A multi-shell multi-tissue constrained 
spherical deconvolution approach was used to estimate fiber orientation 
distributions at each voxel (Jeurissen et al., 2014b, p.) and further, they were 
normalized (Raffelt et al., 2017). One million tracts were generated using probabilistic 
iFOD2 algorithm (J.-D. Tournier et al., 2010). Considering a Schaefer atlas with 100 
ROIs and 19 attached subcortical regions, a structural connectivity matrix was created 
by counting the number of streamlines between each pair of regions normalized by 
the sum of the related regions volumes.   

Behavioral Analysis. Paired t-tests were used to compare the number of reports 
of each mental state across participants (P-values were FDR-corrected with a 
significance level of α = 0.05). A generalized linear mixed model with a gamma 
distribution and inverse link function tested the relationship between reaction times 
and mental states. The choice of the generalized linear mixed model was because of 
a positive tail in the distribution of reaction times and inhomogeneity of variance 
across mental states caused by an imbalanced number of reports. Mental state 
reports were considered as fixed effects, and participants were considered as the 
random effects. In case of significant main effects, a post-hoc test was applied for 
pairwise comparisons. For that, we used the Tukey method to correct the type I error 
inflation that occurred in the multiple comparisons. To model dynamic transition 
between mental state reports, a Markov model was used to calculate the transition 
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probabilities between participants’ reports over the experiment. To detect any 
possible trend in the mental state reports during over the acquisition time, the sum 
of mental state reports at each trial number was calculated across the subjects for 
each mental state and the Pearson correlation between this value and trial numbers 
were estimated. 

Decoder Design. Considering the graph signal processing framework explained in 
Methods Box 1, coupling, decoupling, and SDI vectors were calculated for each trial 
of each task and each probe of the experience-sampling paradigm, for each subject 
separately. A support vector machine (SVM) classifier with linear kernel was used as 
the decoder. The classifier was trained and tested considering: i) coupling vectors as 
feature, ii) decoupling vectors as features, and iii) SDI vectors as features. Each 
feature vector was estimated based on different cut-off eigenvalues from 10th to 
110th eigenvalue with incrementing steps of 10. The decoder was trained and tested 
in three different scenarios: 1) train and test using features of cognitive tasks, 2) train 
and test using features of experience-sampling task, and 3) train based on the task 
features and test on the experience-sampling features. At each scenario, different 
feature vectors calculated using different cut-off eigenvalues were used for decoding 
and the best decoding performance was reported. Due to the highly imbalanced 
dataset of mental state reports, balanced-accuracy, recall, and precision metrics were 
used to assess the decoder performance at each scenario (See Appendix B). For cross-
validation, a stratified 4-fold strategy with 10 repetitions was used and the 
performance of each repetition was considered in the performance analysis. To 
implement the decoder, we used the locally developed codes which use Julearn 
python package, designed for high-level machine learning applications 
(https://juaml.github.io/julearn/main/index.html). 
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4.1 General Discussion 
Current noninvasive imaging techniques, together with mathematical 

frameworks, have helped researchers to model the human brain as a complex 
network of interacting neuronal elements. This modeling approach led to the 
definition of structural and functional networks that support diverse cognitive 
functions and ongoing mentation. Specifically, during rest the functional network 
alters dynamically which can be characterized at the system level by a finite set 
of functional connectivity patterns; considering that, the underlying brain 
dynamics can be modeled as spontaneous transitions between those FC states. 
In addition, the functional organization that the brain takes at each state can be 
constrained to or completely liberal from the structural network. This makes the 
brain’s structural-functional relationship also a dynamic phenomenon. The 
question I asked in this thesis was how these spontaneous changes in the brain’s 
configuration are associated with our ongoing subjective experience during 
resting state.  

We investigated this question from different perspectives: neural correlates 
of spontaneous occurrences of mind blanking, effects of external 
pharmacological perturbations on the brain and mind, effects of environmental 
changes on the brain dynamics, and mental state decoding at normal wakeful 
rest conditions. During resting state, there are spontaneous occurrences of mind 
blanking which have not been widely investigated so far. We found that a 
combination of highly integrated FC state and high global signal amplitude leads 
to mind blanking periods. On the other hand, administration of psilocybin as an 
external perturbation factor makes the highly integrated FC state an attractor 
state in the brain’s dynamical landscape but accompanied with a low global signal 
amplitude. Further, long-term exposure to microgravity showed that structural-
functional coupling profiles play as a specific compensatory mechanism which 
adapts brain functioning in confronting with new environmental circumstances. 
In an attempt to decode mental states during rest, we also found that such 
structural-functional (de)coupling profiles are associated with the ongoing 
cognition. 

We can summarize the main findings of this thesis into three main concepts: 
i) a spontaneously occurring functionally hyper-connected state affects our 
experience of self and environment during rest, ii) global signal as a proxy of 
physiological state plays an important role in our ongoing subjective experience 
during rest, and iii) regional structural-functional (de)coupling during rest is a 
signature of our ongoing mentation. In this chapter we discuss these three 
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findings in more detail and based on the results of the thesis we suggest future 
perspectives to continue this research.   

 4.1.1 Functionally Hyper-Connected State during Rest 
Ongoing cognition is a dynamic interaction between integration and 

segregation (Shine, 2019). In this regard, fluctuations of the functional 
connectome during rest can be characterized using a finite set of spontaneously 
occurring connectivity patterns defined by specific integration and segregation 
profiles. Among them, a specific pattern characterized by overall positive inter-
areal coherence, showing maximal integration and efficiency and minimal 
segregation and modularity, plays an important role in human cognition. This FC 
state has been reported in various studies, appearing during NREM sleep (El-Baba 
et al., 2019), mind-blanking instances (Mortaheb et al., 2022), epileptic episodes 
(Glynn & Detre, 2013), and administration of psychedelic drugs (Lord et al., 2019; 
Tagliazucchi et al., 2016). Unique network-level features of this FC pattern and its 
presence in a wide range of neurobehavioral studies poses the question about 
the role of this state in the dynamical landscape of functional patterns. 
Investigation of behavioral and neurophysiological counterparts of this 
connectivity pattern can help us to better understand this connectivity profile.  

From the behavioral perspective, as this hyper-connectivity pattern appears 
in various states across the wakefulness-arousal axis (from sleep to psychedelic 
state), it is difficult to establish a coherent, overlapping behavioral pattern 
associated with its presence. However, the most homogeneous feature appears 
to be an overall detachment of perception of internal/external stimuli from 
awareness and altered conscious experience. In this thesis, we first observed that 
hyper-connectivity was predictive of mind blanking, a unique phenomenological 
state of inability to recover the content of our mind into the awareness 
(Mortaheb et al., 2022). While it is still unclear whether mind blanking has 
cognitive (Andrillon et al., 2021) or metacognitive (Efklides, 2014) origins, it 
appears that presence of hyper-connectivity pattern inhibits access to conscious 
experience, resulting in experiences of mental absences, usually accompanied by 
a decline in performance in attentional tasks (Andrillon et al., 2021; Ward & 
Wegner, 2013). This has been related to decrease of arousal and presence of local 
sleeps during wakefulness (Andrillon et al., 2021). In the same line, this pattern 
was also reported to be prevalent during NREM sleep which is also characterized 
by lowest levels of arousal (El-Baba et al., 2019). On the other hand, in this thesis, 
in line with other studies (Lord et al., 2019; Tagliazucchi et al., 2016), we found 
that this hyper-connectivity can also be dominant as a result of psychedelic drugs 
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intake, leading to profound shift in awareness levels, without a noticeable change 
in wakefulness levels. This state is categorized by the “diffusion” of the 
boundaries between the self and the environment, experiencing a lack of 
differentiation between self and external representations and a holistic sensation 
(Nour et al., 2016). Observing this FC state in two different arousal and awareness 
levels with completely different behavioral counterparts allows us to investigate 
more deeply the neurophysiological substrates of this pattern.  

From the neurophysiological perspective, when this connectivity pattern is 
accompanied by high global signal amplitude, it can be act as a signature of low 
arousal and presence of slow-wave activity in the brain. In fact, presence of 
periods of neural silencing during wakefulness shows itself as slow-wave activity 
which further leads to local sleeps (Vyazovskiy et al., 2011). Slow-wave activity 
and local sleeps in parietal regions were shown to be signatures of mind blanking 
(Andrillon et al., 2021). In addition, studies on rats using administration of 
isoflurane showed that progressive decrease in arousal is associated with 
increased intensity of slow wave activity and increased strength of functional 
connectivity (Aedo-Jury et al., 2020), possibly by disrupting clustering of regions 
into clearly demarcated and competitive networks (Bukhari et al., 2018). In 
general, these neural characteristics show that wakefulness is not supported just 
by constant active neural states. In fact, our brains during wakefulness can also 
show instances of synchronized neural down states, possibly for homeostatic 
reasons (Bridi et al., 2020). On the other hand, when this hyper-connectivity 
pattern is accompanied by low global signal amplitude, it is representative of high 
arousal levels in the psychedelic state which is associated with accessing and 
integrating higher amount of information at the same time leading to 
hallucinations and alterations in feeling of self.  

The fact that a single connectivity pattern when accompanied by two 
different global signal amplitude profiles leads to different subjective experience 
highlights the importance of the global signal as a proxy of underlying 
physiological state in interpretation of neuroimaging studies.  

4.1.2 Global Signal at Rest   
While dealing with resting state fMRI signals, FC measures can be influenced 

by the presence of a strong global component called the global signal (Wong et 
al., 2013). A common pre-processing step to remove the effects of this signal 
component from the BOLD time series is global signal regression, also known as 
orthogonalization to the global signal (Murphy et al., 2009; Wong et al., 2013). In 
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this step, the global signal is calculated as the average of BOLD signals across all 
the voxels of whole brain or all the voxels of grey matter (Liu et al., 2017) and is 
used as a nuisance regressor in a general linear model to remove the associated 
variance from the observed BOLD signals (Desjardins et al., 2001). However, 
whether to use global signal regression or not is still controversial because 
studies have shown that it can bias in correlation values to have a zero mean, 
leading to spurious anticorrelations (Anderson et al., 2011; Fox et al., 2009; 
Murphy et al., 2009). In addition, while some studies consider the global signal 
having non-neural sources such as motion, scanner artifacts, respiration (Power 
et al., 2017), cardiac rate (Chang & Glover, 2010), and vascular activity (Colenbier 
et al., 2020; Zhu et al., 2015), other studies suggest that the global signal may 
contain significant neural correlates (Schölvinck et al., 2010; Wong et al., 2013; 
Xu et al., 2018). As a result, there is still no consensus on keeping the global signal 
in the analysis or regressing it out before starting any kind of analysis. Both 
approaches can reveal complementary inferences about the brain's functional 
organisation (Murphy & Fox, 2017).  

To better understand the global signal and its effect on the brain’s functional 
organization analysis, it is important to investigate to what extent and how neural 
sources contribute in the global signal formation and what the physiological 
relevance of this global signal is (Wong et al., 2013; Zhang & Northoff, 2022). 
Previous studies have provided a neural-based explanation of global signal by 
finding correlations between local field potential power fluctuations in different 
frequency bands and resting state BOLD signal across the cortex, suggesting that 
GS is strongly driven by slow frequency fluctuations (Leopold, 2003; Schölvinck 
et al., 2010). Sleep studies also have shown that the amplitude and variance of 
the global signal increases by a transition from wakefulness to the sleep state 
(Fukunaga et al., 2006; He & Liu, 2012; Larson-Prior et al., 2009) which is 
characterized by slow-wave activity (El-Baba et al., 2019). Considering that global 
signal amplitude was also shown to be associated with vigilance scores (Wong et 
al., 2013), an important potential function of the global signal can be suggested 
as meditating the level of arousal (Zhang & Northoff, 2022). This can be further 
supported by close relationship between the global signal and physiological 
counterparts of metabolic consumption, such as respiration and cardiac activity 
(Chen et al., 2020), and recent findings that respiration drives the fluctuations of 
arousal (Raut et al., 2021).  

In addition to meditating the level of arousal, recent studies also suggest 
behavioral roles for the global signal (Li, Bolt, et al., 2019; Zhang & Northoff, 
2022). By exploring the individual differences in global signal topography and a 
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battery of phenotypes, Li and colleagues found that the global signal contains 
information related to trait-level cognition and behavior (Li, Bolt, et al., 2019). 
This notion was further approved by examining the occurrence rate of the co-
activation patterns at the peak of the global signal during rest compared to task 
states which showed that the global signal bears cognitive information (Zhang et 
al., 2020). Our finding in this thesis that the global signal amplitude is different 
across the ongoing mental states, having the highest amplitude for the mind 
blanking reports, is in line with both arousal-meditating role of the global signal 
and its association with ongoing cognition.  

Together, the global signal contains both neural and non-neural nuisance 
components. Regressing the global signal completely out from the BOLD signal 
leads to the loss of valuable cognitive information and keeping it may lead to 
incorrect inferences about the cognitive origin of experimental observations. 
Some methods have been developed to selectively remove the noise in the global 
signal while preserving its neural contents (Glasser et al., 2018) and research in 
this area is still continuing.  

4.1.3 Structural-Functional relationships and Ongoing 
Cognition 

The brain’s large-scale white matter connections shape the way cerebral 
areas functionally interact, leading to formation of functional networks (Mišić et 
al., 2016; Wang et al., 2015). Neuroimaging studies have shown that the brain’s 
structural and functional connectomes are similar in different topological aspects 
such as small-worldness, modularity, and having highly connected hubs 
(Bullmore & Sporns, 2012; Filippi et al., 2013; He & Evans, 2010; Wang et al., 
2015). These findings suggest that in a general view, structure and function are 
closely related to each other and regions that are linked structurally tend to also 
be connected functionally (Koch et al., 2002). However, recent studies have 
shown that coupling of functional activity to the underlying brain’s structure can 
be regionally heterogeneous (Griffa et al., 2022; Gu et al., 2020; Preti & Van De 
Ville, 2019; Suárez et al., 2020). In fact, during the wakeful resting state a high 
coupling of functional activity to the structural connectivity can be observed in 
the unimodal regions such as sensory-motor and visual areas (Popp et al., 2023; 
Preti & Van De Ville, 2019) while a high functional-structural decoupling can be 
observed in the multimodal areas and frontal, parietal, and temporal regions 
related to the higher-level cognition (Popp et al., 2023; Preti & Van De Ville, 
2019), and sub-cortical areas (Medaglia et al., 2018). These characteristics have 
been shown to be heritable (Gu et al., 2020), variable across age and sex (Gu et 
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al., 2020; Hagmann et al., 2010), and directly related to the cognitive ability (Popp 
et al., 2023; Wang et al., 2018). 

The direct association of structural-functional relationship profiles with 
ongoing cognition was further approved in pathological conditions. In this regard, 
abnormalities or disruptions in structural-functional relationship were reported 
in cognitive disorders such as schizophrenia (Cocchi et al., 2014; Collin et al., 
2017; Skudlarski et al., 2010), idiopathic generalized epilepsy (Zhang et al., 2011), 
psychogenic nonepileptic seizures (Ding et al., 2013), bipolar disorder (Collin et 
al., 2017), cognitive impairments in multiple sclerosis (Ye et al., 2022), attention 
deficit hyperactivity disorder (Lee et al., 2021), and even in altered states of 
consciousness (Luppi et al., 2023; Panda et al., 2022). In addition, the role of 
structural-functional coupling alterations in Parkinson’s dementia, which is 
characterized by changes in perception and thoughts, showed the direct 
association of structural-functional relationship profiles with ongoing mental 
states. These results highlight the significance of the underlying interaction 
between structural and functional connectomes to shape our daily life conscious 
experience.    

Our daily life can be defined as continuously facing changing environmental 
and internal demands. The capacity to adapt in a flexible way to suit changing 
demands is a fundamental aspect of cognitive control, known as cognitive and 
behavioral flexibility (Monsell, 2003). Cognitive flexibility is an essential 
component of executive functioning, and permits the efficient adaptation of 
thoughts and behaviors in response to changing environmental demands 
(Medaglia et al., 2018; Uddin, 2021). Both structural and functional connectomes 
were shown to play an important role in supporting cognitive flexibility (Uddin, 
2021). For example, modification of structural and functional connections using 
cognitive training and physical exercises were shown to improve cognitive 
flexibility (Gomez-Pinilla & Hillman, 2013). More importantly, the structural-
functional relationship has been suggested as a signature of mental flexibility. 
Considering task switching cost as a measure of mental flexibility, it has been 
shown that higher liberality of functional activity from the underlying structure 
in a whole-brain level is associated with higher switching cost and so less mental 
flexibility (Medaglia et al., 2018). In confronting new environmental conditions 
such as space, we found that the regional structural-functional relationship alters 
in multi-sensory integration and processing areas. We hypothesize that this 
observation is exactly related to the adaptation of mental flexibility to the new 
environmental circumstances. Being in space requires an adaptation to the new 
set of environmental demands and so a different cognitive flexibility profile. In 
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addition, structural changes due to exposure to microgravity also affects specific 
regional structural-functional relationships. As a result, a new structural-
functional coupling configuration will be adapted to both compensate the 
structural changes and adapt the cognitive flexibility to the new environmental 
demands.  

All the mentioned studies used a static measure to infer the relationship 
between the functional and structural connectomes either during task or resting 
state. There are recent studies which try to unveil the dynamic alterations in the 
structural-functional relationship to find out how the structure supports the 
functional dynamism by integrating the time-resolved functional map 
corresponding to a given functional network with a whole-brain tractogram 
(Basile et al., 2022; Calamante et al., 2017). Structural-functional features 
extracted in this framework were shown to be predictive of higher-order 
cognition such as fluid intelligence, sustained attention, and cognitive flexibility 
(Basile et al., 2022). In this thesis, we also showed that the structural-functional 
coupling and decoupling maps change dynamically during resting state and these 
time-varying features can be predictive of ongoing mental states.  

Taken together, combining information from both structure and dynamic 
fluctuations of the functional connectome helps us to make a general inclusive 
framework which bridges neural space to the dynamically changing mental 
space, specifically in resting conditions. Additionally, considering the role of 
global signal as a proxy of physiological state in characterization of cognitive and 
mental states, we can think about more general brain-body interactions to 
investigate the ongoing mentation. 

4.2 Future Perspectives: A brain-body characterization 
of mental states 

So far, a vast area of research about brain-mind relationships has investigated 
the brain in isolation from the rest of the body. However, research findings 
propose that physiological pathways influence brain function in direct and 
indirect ways (Critchley & Harrison, 2013). In addition, in this thesis our findings 
about cognitive and behavioral roles of the global signal as an indirect measure 
of physiological states highlights the importance of considering bodily signals in 
cognitive and behavioral studies. Therefore, combined assessment of brain-body 
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signals can be critical to advance our understanding of how individuals solve the 
fundamental issue of continuously evaluating, reacting, and adapting to a 
dynamically changing environment (Criscuolo et al., 2022). At a system-level 
point of view, a network of interactions sub-serving the regulation of the 
homeostatic function encompasses physiological rhythms, such as respiratory 
drive, cardiovascular, and ocular activities (Pernice et al., 2021). In that 
perspective, instead of investigating brain network in isolation, we can define a 
brain-body physiological network considering activities in the brain and other 
bodily organs such as respiration, heartbeat, and pupil diameter. 

My future plan is to develop such brain-body networks under the framework 
of “Network Physiology” (Bartsch et al., 2015; Bashan et al., 2012; Ivanov, 2021), 
in which the dynamic interaction between brain and other bodily organs is 
modeled as a dynamic network. In this network, nodes represent various organs 
(i.e., brain, heart, lungs, eyes) with physiological activities coming from the 
organ’s dynamical system and whose links represent the coordination and 
synchronization between organ systems and sub-systems exhibiting transient 
characteristics. These networks can be represented by connectivity matrices 
called “physiolomes” (Ivanov, 2021).  It has been shown that the physiolome 
works as an appropriate solution to characterize the dynamic nature of brain-
body interactions in different conditions such as sleep stages (Bashan et al., 
2012), exercising (Balagué et al., 2022), focused attention (Marzbanrad et al., 
2020), and mental stress (Pernice et al., 2021). Therefore, estimating 
physiolomes states during rest can be a new approach to examine brain, body, 
and mind and their dynamical interactions at resting state. As a result, a 
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Figure 4.1 Using the Network Physiology framework, the dynamic interactions between brain regions, 
and between brain and other bodily organs (i.e., heart, lungs, eyes) can be described and then 
summarized into a finite number of time-varying brain-body connectivity states (i.e., physiolome 
states). Based on that one can develop a mathematical model that makes use of physiolomes to infer 
ongoing mental states in task-free conditions.  
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suggestion for future research is to develop a mental state decoder based on a 
dynamic brain-body physiolome interaction model (Figure 4.1).  

The main factors affecting the performance of mental state decoders are 
variability in individuals, physiological and neural changes over time, and level of 
consciousness. Decoding models not only should be generalizable across time 
and individuals, but also need to be implemented in the lower levels of 
consciousness. To get one step closer to this goal, another suggestion for future 
research would be to design the mentioned mental state decoders in light 
anesthesia, when participants are still responsive and able to report their mental 
state (Ghoneim & Weiskopf, 2000). This approach results in finding 
consciousness-level-related features which can be used to predict ongoing 
mental states specific to each level of consciousness. 

These suggestions for future research are in line with our final goal to better 
understand ongoing cognition during rest to benefit individuals with 
neuropsychiatric disorders (where mental states can be destabilized) as well as 
individuals with compromised communication abilities (whose mental state 
evaluation can be vital for their survival).      
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Appendices 
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Appendix A: Collection of Words for the PF Tasks 
for the “Remembering Past/Imagining Future (Self/Other-related)” tasks, we 

used a collection of general words and phrases containing 32 different items, 
events, or situations. We chose this set from a bigger collection introduced in 
(Gilmore et al., 2018). 

BEACH  EMAIL  NAPPING  STAYING UP ALL 
NIGHT  

BEDROOM  FLOWERS  PACKING LUGGAGE  TELLING A LIE  
BIRTHDAY  FUNERAL  PHONE CALL  TEXT MESSAGING  
BRUSHING TEETH  GETTING LOST  PIZZA  TRAIN RIDE  
BUYING A DRINK  HAIR CUT  PUBLIC SPEECH  VACATION  
COOKING  HAMBURGER  RECEIVING A LETTER  VALENTINE'S DAY  
DOCTOR  HAVING A COLD  RESTAURANT  VISITING RELATIVES  
DRINKING 
COFFEE/TEA  KITCHEN  SHOWERING  WAITING IN A LINE  
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Appendix B: Classifier Performance Measures for 
Imbalanced Datasets 

Considering a K-class classification, the precision, recall, and balanced 
accuracy is defined as:  

Precision: A parameter between 0 and 1 also defined as the ability of the 
classifier not to label as positive a sample that is negative. This parameter can be 
defined for each class 𝐶+ (1 < 𝑘 < 𝐾) separately:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛,! =
𝑇𝑃+

𝑇𝑃+ + 𝐹𝑃+
 

A high precision shows that classifier is not biased toward larger classes. 

Recall: A parameter between 0 and 1 defined as the ability of the classifier to 
classify positive samples correctly. This parameter can be defined for each class 
𝐶+ (1 < 𝑘 < 𝐾) separately: 

𝑅𝑒𝑐𝑎𝑙𝑙,! =
𝑇𝑃+

𝑇𝑃+ + 𝐹𝑁+
 

a high recall score shows that the classifier is not biased toward the larger 
classes. 

Balanced Accuracy: To compute balanced accuracy, each sample is weighted 
according to the inverse prevalence of its true class which accordingly will avoid 
inflated performance estimates on imbalanced datasets. In a multi-class 
classification, the balanced accuracy is defined as the average of the Recall values 
across the classes:  

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
1
𝐾E𝑅𝑒𝑐𝑎𝑙𝑙,!

-

+./

 

In the above-mentioned definitions: TP=True Positive, FP=False Positive, 
TN=True Negative, and FN=False Negative.   
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Appendix C: Supplementary Results for Mental State 
Decoding  
 

  

Figure C1. Referent dimensions of cognitive tasks were decoded higher than chance-level. Decoding 
the thought referents in different temporal dimensions showed a higher than chance-level 
performance.  
Table C1. The best performance of decoder for reference dimensions of cognitive tasks.   

Temporal 
Dimension 

Feature Cut-off 
Eigenvalue 

Balanced 
Accuracy 

Precision Recall  

Past Coupling map 20 0.58 0.57 0.56  

Future SDI map 80 0.55 0.56 0.56  
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Figure C2. Referent dimensions of thoughts during rest were decoded higher than chance-level. 
Decoding the thought referents in different temporal dimensions showed a higher than chance-level 
performance.  
Table C2. The best performance of decoder for reference dimensions of cognitive tasks.  

Temporal 
Dimension 

Feature Cut-off 
Eigenvalue 

Balanced 
Accuracy 

Precision Recall 

Past Coupling map 20 0.67 0.64 0.67 

Future SDI map 90 0.62 0.73 0.76 
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Figure C3. Referent dimensions of ongoing thoughts were decoded higher than chance-level. 
Decoding the thought referents in different temporal dimensions showed a higher than chance-level 
performance.  
Table C3. The best performance of decoder for reference dimensions of ongoing thoughts based on 
cognitive tasks features. 

Temporal 
Dimension 

Feature Cut-off 
Eigenvalue 

Balanced 
Accuracy 

Precision Recall 

Past Coupling map 30 0.62 0.58 0.58 

Future Decoupling map 40 0.56 0.71 0.50 

 



 

 

 

 

 

 

126 

  



 

 

 

 

 

 

127 

Appendix D: Supplementary Results for Mind Blanking 
Analysis  
 

 
 
 

Figure D1. Mind blanking reports are uniformly distributed across the acquisition time. By dividing 
the acquisition period into 10% bins and counting the number of MB reports at each bin for all the 
subjects, the distribution of reports was found to be uniform (χ2 test). The same results were found 
for SDep and SInd reports but the hypothesis of uniformity was rejected for the Sens reports. 
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Lag=0 Lag=1

Lag=2 Lag=3

Figure D2. Mind blanking is characterized by high cortical global signal amplitude. Average absolute 
value of the global signal of the 5 scans prior each mental state report shows that the global signal 
amplitude is significantly higher for MB reports compared to the content-oriented states. These 
results are replicated considering different pre-probe window lags (related to the hemodynamic 
response peak time). Bars show the mean of the magnitude and error bars are 95% confidence 
interval. 
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Table D1. Performance of SVM classifier when predicting MB reports based on phase 
coherence matrices (lag = 0) 

 Balanced 
Accuracy 

Recall Precision 

MB VS. SENS 0.97 0.94 0.99 

MB VS. SDEP 0.95 0.91 1 

MB VS. SIND 0.94 0.87 1 

MB VS. OTHERS 0.90 0.79 1 

MB VS. OTHERS (DUMMY) 0.50 0.05 0.06 

 
Table D2. Performance of SVM classifier when predicting MB reports based on phase 

coherence matrices (lag = 1) 

 Balanced 
Accuracy 

Recall Precision 

MB VS. SENS 0.97 0.94 0.99 

MB VS. SDEP 0.95 0.91 1 

MB VS. SIND 0.94 0.87 1 

MB VS. OTHERS 0.90 0.79 1 

MB VS. OTHERS (DUMMY) 0.50 0.05 0.06 

 
Table D3. Performance of SVM classifier when predicting MB reports based on phase 

coherence matrices (lag = 2) 

 Balanced 
Accuracy 

Recall Precision 

MB VS. SENS 0.98 0.95 0.99 

MB VS. SDEP 0.96 0.91 1 

MB VS. SIND 0.94 0.88 1 

MB VS. OTHERS 0.90 0.81 1 

MB VS. OTHERS (DUMMY) 0.50 0.05 0.06 
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Table D4. Performance of SVM classifier when predicting MB reports based on phase 
coherence matrices (lag = 3) 

 Balanced 
Accuracy 

Recall Precision 

MB VS. SENS 0.97 0.95 0.99 

MB VS. SDEP 0.96 0.92 1 

MB VS. SIND 0.94 0.88 1 

MB VS. OTHERS 0.90 0.81 1 

MB VS. OTHERS (DUMMY) 0.50 0.05 0.06 
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Figure D3. Four main recurrent functional configurations characterize the resting periods of the 
experience-sampling paradigm (lag = 0). K-means clustering on the connectivity matrices related to 
the resting periods and 5 pre-probe matrices related to the reported mental states shows that four 
patterns recurrently appear during these periods of the experience-sampling even up to k=7 clusters. 
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Figure D4. Four main recurrent functional configurations characterize the resting periods of the 
experience-sampling paradigm (lag = 1). K-means clustering on the connectivity matrices related to 
the resting periods and 5 pre-probe matrices related to the reported mental states shows that four 
patterns recurrently appear during these periods of the experience-sampling even up to k=7 clusters.   
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Figure D5. Four main recurrent functional configurations characterize the resting periods of the 
experience-sampling paradigm (lag = 2). K-means clustering on the connectivity matrices related to 
the resting periods and 5 pre-probe matrices related to the reported mental states shows that four 
patterns recurrently appear during these periods of the experience-sampling even up to k=7 clusters.  
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Figure D6. Four main recurrent functional configurations characterize the resting periods of the 
experience-sampling paradigm (lag = 3). K-means clustering on the connectivity matrices related to 
the resting periods and 5 pre-probe matrices related to the reported mental states shows that four 
patterns recurrently appear during these periods of the experience-sampling even up to k=7 clusters. 
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Figure D7. Effect of global signal subtraction on the extracted brain patterns (lag = 0). After 
subtracting the global signal from regional time series, the resting periods of the experience-sampling 
paradigm fail to show the overall positive connectivity configuration, suggesting an important 
contribution of the global signal on this brain pattern. Notes: recurrent functional configurations are 
extracted using k-means clustering with number of clusters ranging from 3 to 7, considering 5 pre-
probe connectivity matrices related to the reported mental state. 
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Figure D8. Effect of global signal subtraction on the extracted brain patterns (lag = 1). After 
subtracting the global signal from regional time series, the resting periods of the experience-sampling 
paradigm fail to show the overall positive connectivity configuration, suggesting an important 
contribution of the global signal on this brain pattern. Notes: recurrent functional configurations are 
extracted using k-means clustering with number of clusters ranging from 3 to 7, considering 5 pre-
probe connectivity matrices related to the reported mental state. 
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Figure D9. Effect of global signal subtraction on the extracted brain patterns (lag = 2). After 
subtracting the global signal from regional time series, the resting periods of the experience-sampling 
paradigm fail to show the overall positive connectivity configuration, suggesting an important 
contribution of the global signal on this brain pattern. Notes: recurrent functional configurations are 
extracted using k-means clustering with number of clusters ranging from 3 to 7, considering 5 pre-
probe connectivity matrices related to the reported mental state. 
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Figure D10. Effect of global signal subtraction on the extracted brain patterns (lag = 3). After 
subtracting the global signal from regional time series, the resting periods of the experience-sampling 
paradigm fail to show the overall positive connectivity configuration, suggesting an important 
contribution of the global signal on this brain pattern. Notes: recurrent functional configurations are 
extracted using k-means clustering with number of clusters ranging from 3 to 7, considering 5 pre-
probe connectivity matrices related to the reported mental state. 
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Figure D11. Effect of global signal regression on the extracted brain patterns (lag = 0). After 
regressing out the global signal from regional time series, the resting periods of the experience-
sampling paradigm fail to show the overall positive connectivity configuration, suggesting an 
important contribution of the global signal on this brain pattern. Notes: recurrent functional 
configurations are extracted using k-means clustering with number of clusters ranging from 3 to 7, 
considering 5 pre-probe connectivity matrices related to the reported mental state. 
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Figure D12. Effect of global signal regression on the extracted brain patterns (lag = 1). After 
regressing out the global signal from regional time series, the resting periods of the experience-
sampling paradigm fail to show the overall positive connectivity configuration, suggesting an 
important contribution of the global signal on this brain pattern. Notes: recurrent functional 
configurations are extracted using k-means clustering with number of clusters ranging from 3 to 7, 
considering 5 pre-probe connectivity matrices related to the reported mental state. 
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Figure D13. Effect of global signal regression on the extracted brain patterns (lag = 2). After 
regressing out the global signal from regional time series, the resting periods of the experience-
sampling paradigm fail to show the overall positive connectivity configuration, suggesting an 
important contribution of the global signal on this brain pattern. Notes: recurrent functional 
configurations are extracted using k-means clustering with number of clusters ranging from 3 to 7, 
considering 5 pre-probe connectivity matrices related to the reported mental state. 
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Figure D14. Effect of global signal regression on the extracted brain patterns (lag = 3). After 
regressing out the global signal from regional time series, the resting periods of the experience-
sampling paradigm fail to show the overall positive connectivity configuration, suggesting an 
important contribution of the global signal on this brain pattern. Notes: recurrent functional 
configurations are extracted using k-means clustering with number of clusters ranging from 3 to 7, 
considering 5 pre-probe connectivity matrices related to the reported mental state. 
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Figure D15. The overall positive coherence configuration (Pattern 3) is mediated by the cortical 
global signal (GS). A) When subtracting (GSS)/regressing out (GSR) the global signal from the ROI time 
series, Pattern 3 positive connectivity reduces significantly. As the occurrence rate of Pattern 3 is 
relative to the occurrence rates of the other patterns its appearance is not influenced either when 
the GS is included in the analysis or removed by subtraction or regression. B) GSS/GSR shifts the 
connectivity distribution to more negative values and this effect is more prominent for Pattern 3. C) 
The similarity of Pattern 3 to itself is no longer significant after GSS-GSR whereas for the other 
patterns the GS removal strategies do not affect their intra-correlation values. 
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Figure D16. The overall positive coherence Pattern 3 shows the highest similarity to connectivity 
patterns of the Mind Blanking (MB) reports even at high number of clusters (lag = 0). Considering a 
mental state analysis window with lag=0, a generalized linear mixed model analysis for each pattern 
separately shows the highest similarity of the overall positive coherence Pattern 3 to the connectivity 
matrices related to the MB reports. The results are replicated with different number of clusters (k=3-
7). For each cluster number k, a model fit is considered significant if its p-value is lower than 0.05 k to 
correct for multiple tests. In case of significant fit, a post-hoc Tukey test was performed for contrast 
analysis between different mental state pairs. Notes: SDep = Stimulus Dependent Thought, SInd = 
Stimulus Independent Thought, Sens: Sensory Perception.  
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Figure D17. The overall positive coherence Pattern 3 shows the highest similarity to connectivity 
patterns of the Mind Blanking (MB) reports even at high number of clusters (lag = 1). Considering a 
mental state analysis window with lag=1, a generalized linear mixed model analysis for each pattern 
separately shows the highest similarity of the overall positive coherence Pattern 3 to the connectivity 
matrices related to the MB reports. The results are replicated with different number of clusters (k=3-
7). For each cluster number k, a model fit is considered significant if its p-value is lower than 0.05 k to 
correct for multiple tests. In case of significant fit, a post-hoc Tukey test was performed for contrast 
analysis between different mental state pairs. Notes: SDep = Stimulus Dependent Thought, SInd = 
Stimulus Independent Thought, Sens: Sensory Perception.  
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Figure D18. The overall positive coherence Pattern 3 shows the highest similarity to connectivity 
patterns of the Mind Blanking (MB) reports even at high number of clusters (lag = 2). Considering a 
mental state analysis window with lag=2, a generalized linear mixed model analysis for each pattern 
separately shows the highest similarity of the overall positive coherence Pattern 3 to the connectivity 
matrices related to the MB reports. The results are replicated with different number of clusters (k=3-
7). For each cluster number k, a model fit is considered significant if its p-value is lower than 0.05 k to 
correct for multiple tests. In case of significant fit, a post-hoc Tukey test was performed for contrast 
analysis between different mental state pairs. Notes: SDep = Stimulus Dependent Thought, SInd = 
Stimulus Independent Thought, Sens: Sensory Perception.  
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Figure D19. The overall positive coherence Pattern 3 shows the highest similarity to connectivity 
patterns of the Mind Blanking (MB) reports even at high number of clusters (lag = 3). Considering a 
mental state analysis window with lag=3, a generalized linear mixed model analysis for each pattern 
separately shows the highest similarity of the overall positive coherence Pattern 3 to the connectivity 
matrices related to the MB reports. The results are replicated with different number of clusters (k=3-
7). For each cluster number k, a model fit is considered significant if its p-value is lower than 0.05 k to 
correct for multiple tests. In case of significant fit, a post-hoc Tukey test was performed for contrast 
analysis between different mental state pairs. Notes: SDep = Stimulus Dependent Thought, SInd = 
Stimulus Independent Thought, Sens: Sensory Perception.  
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Figure D20. After global signal subtraction, none of the functional connectivity patterns can be 
meaningfully assigned to MB (lag = 0). Considering a mental state analysis window with lag=0, a 
generalized linear mixed model analysis for each pattern separately could not result in significant 
similarity of any pattern to the connectivity matrices related to the MB reports. The results are 
replicated with different number of clusters (k=3-7). For each cluster number k, a model fit is 
considered significant if its p-value is lower than 0.05 k to correct for multiple tests. In case of 
significant fit, a post-hoc Tukey test was performed for contrast analysis between different mental 
state pairs. 
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Figure D21. After global signal subtraction, none of the functional connectivity patterns can be 
meaningfully assigned to MB (lag = 1). Considering a mental state analysis window with lag=1, a 
generalized linear mixed model analysis for each pattern separately could not result in significant 
similarity of any pattern to the connectivity matrices related to the MB reports. The results are 
replicated with different number of clusters (k=3-7). For each cluster number k, a model fit is 
considered significant if its p-value is lower than 0.05 k to correct for multiple tests. In case of 
significant fit, a post-hoc Tukey test was performed for contrast analysis between different mental 
state pairs. 
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Figure D22. After global signal subtraction, none of the functional connectivity patterns can be 
meaningfully assigned to MB (lag = 2). Considering a mental state analysis window with lag=2, a 
generalized linear mixed model analysis for each pattern separately could not result in significant 
similarity of any pattern to the connectivity matrices related to the MB reports. The results are 
replicated with different number of clusters (k=3-7). For each cluster number k, a model fit is 
considered significant if its p-value is lower than 0.05 k to correct for multiple tests. In case of 
significant fit, a post-hoc Tukey test was performed for contrast analysis between different mental 
state pairs. 
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Figure D23. After global signal subtraction, none of the functional connectivity patterns can be 
meaningfully assigned to MB (lag = 3). Considering a mental state analysis window with lag=3, a 
generalized linear mixed model analysis for each pattern separately could not result in significant 
similarity of any pattern to the connectivity matrices related to the MB reports. The results are 
replicated with different number of clusters (k=3-7). For each cluster number k, a model fit is 
considered significant if its p-value is lower than 0.05 k to correct for multiple tests. In case of 
significant fit, a post-hoc Tukey test was performed for contrast analysis between different mental 
state pairs. 
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Figure D24. After global signal regression, none of the functional connectivity patterns can be 
meaningfully assigned to MB (lag = 0). Considering a mental state analysis window with lag=0, a 
generalized linear mixed model analysis for each pattern separately could not result in significant 
similarity of any pattern to the connectivity matrices related to the MB reports. The results are 
replicated with different number of clusters (k=3-7). For each cluster number k, a model fit is 
considered significant if its p-value is lower than 0.05 k to correct for multiple tests. In case of 
significant fit, a post-hoc Tukey test was performed for contrast analysis between different mental 
state pairs. 
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Figure D25. After global signal regression, none of the functional connectivity patterns can be 
meaningfully assigned to MB (lag = 1). Considering a mental state analysis window with lag=1, a 
generalized linear mixed model analysis for each pattern separately could not result in significant 
similarity of any pattern to the connectivity matrices related to the MB reports. The results are 
replicated with different number of clusters (k=3-7). For each cluster number k, a model fit is 
considered significant if its p-value is lower than 0.05 k to correct for multiple tests. In case of 
significant fit, a post-hoc Tukey test was performed for contrast analysis between different mental 
state pairs. 
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Figure D26. After global signal regression, none of the functional connectivity patterns can be 
meaningfully assigned to MB (lag = 2). Considering a mental state analysis window with lag=2, a 
generalized linear mixed model analysis for each pattern separately could not result in significant 
similarity of any pattern to the connectivity matrices related to the MB reports. The results are 
replicated with different number of clusters (k=3-7). For each cluster number k, a model fit is 
considered significant if its p-value is lower than 0.05 k to correct for multiple tests. In case of 
significant fit, a post-hoc Tukey test was performed for contrast analysis between different mental 
state pairs. 
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Figure D27. After global signal regression, none of the functional connectivity patterns can be 
meaningfully assigned to MB (lag = 3). Considering a mental state analysis window with lag=3, a 
generalized linear mixed model analysis for each pattern separately could not result in significant 
similarity of any pattern to the connectivity matrices related to the MB reports. The results are 
replicated with different number of clusters (k=3-7). For each cluster number k, a model fit is 
considered significant if its p-value is lower than 0.05 k to correct for multiple tests. In case of 
significant fit, a post-hoc Tukey test was performed for contrast analysis between different mental 
state pairs. 
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