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Abstract

Preliminary aircraft design is often carried out with the help of multi-disciplinary optimization processes which, in

order to be effective and to take full advantage of composite materials, must model the aeroelastic behavior of the

aircraft. Since many design variables are involved during the preliminary design stage, the optimization problem

is usually solved using the adjoint method. Moreover, the level of fidelity of the fluid model and the associated

simulation technique must also be selected with care, as they are the main contributors to the computational cost.

The goal of the present work is twofold. Firstly, the discrete gradients of the full potential equation, a medium-

fidelity model, are derived analytically so that they can be used in adjoint optimization problems. Moreover, the full

potential solution and the computation of the gradients are implemented in an open-source and readily available

finite element code. Secondly, aerodynamic shape and aerostructural optimization calculations are carried out on

example wings to demonstrate the effectiveness and the computational efficiency of the proposed method. Overall,

the results show that the newly implemented discrete adjoint nonlinear potential formulation is able to quickly

optimize both the shape and the structural parameters of a typical wing. The next steps consist in improving the

problem formulation and the model, by considering full aircraft configurations, along with more realistic design

variables, constraints and objective function.

Keywords: Discrete adjoint, Transonic flows, Full potential, Aerostructural optimization, Preliminary aircraft

design

1. Introduction

For the air transport sector to remain economically competitive and to keep its rather low environmental im-

pact, aircraft fuel consumption must be reduced further. To this end, various strategies are being investigated, such

as increasing aircraft engine efficiency, using new types of fuel, improving aircraft operations and air services,

reducing structural weight, improving aerodynamic efficiency, etc. The combination of the last two approaches

leads to the design of light, hence flexible, highly loaded wings, which requires suitable modeling of the aerostruc-

tural behavior of the aircraft. Aerodynamic shape optimization is therefore usually performed in conjunction with
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aeroelastic tailoring, which was initially defined by Shirk and Hertz in 1986 as "the embodiment of directional stiff-

ness into an aircraft structural design to control aeroelastic deformation, static or dynamic, in such a fashion as to

affect the aerodynamic and structural performance of that aircraft in a beneficial way" [1]. Such an aerostructural

optimization process enables the design of light wings with efficient shapes, exploiting the orthotropic mechanical

properties of composite materials, that guarantee good aerodynamic performance and are able to withstand the

aerodynamic loads and the aeroelastic instabilities.

Optimization methods fall into two categories: gradient-based or gradient-free. In the context of aircraft design,

the former method has traditionally been favored over the latter, since the initial design is already quite close to the

final design, hence not requiring a full exploration of the design space [2, 3]. Gradient-based optimization can be

performed using finite differences or complex-step methods, or by resorting to the direct or adjoint formulations,

as explained by Martins and Hwang [4, 5]. For the finite difference and the complex-step methods, the nonlinear

aerostructural equations must be solved each time the total gradient with respect to a design variable is required.

For the direct and adjoint formulations, the total gradients are computed by assembling the partial gradients and

using the chain rule. If the direct formulation is used, a linear set of equations must be solved each time the

total gradient with respect to a design variable is required. On the other hand, the adjoint formulation requires

the solution of a linear set of equations once per response function evaluation. The optimization formulation of

modern aircraft usually consists of a few functionals, like the fuel burn and the failure index, and thousands of

design variables, such as the wing shape and the structural parameters. Consequently, the adjoint formulation is

usually favored, as using the other methods would lead to a prohibitive computational cost [6, 7, 8, 9, 10, 11].

Examples of multidisciplinary optimizations for aircraft design carried out using the adjoint method can be found

in several works [12, 13, 14, 15, 16, 17].

Aerostructural optimization is nowadays performed during preliminary aircraft design. Introducing such calcu-

lations in this early stage allows to directly consider complex fluid-structure interactions, and might prevent future

failures resulting from otherwise unaccounted for aeroelastic behaviors, hence helping to make the design process

more robust. In order to decrease the computational cost, low-fidelity linear modeling methodologies are usually

favored [18]. The range of validity of these models is theoretically restricted to the subsonic regime. However,

modern transport aircraft fly in the transonic regime, where nonlinear compressible effects become important and

cannot be neglected. During a recent joint work with Embraer S.A. 1, the authors investigated the effect of vari-

ous aerodynamic levels of fidelity on aeroelastic computations [19]. Based on the trade-off between accuracy and

computational cost of the different models, the steady full potential equation was selected, and a finite element

code was subsequently implemented to rapidly compute flow solutions [20, 21]. The objective of the present work

is twofold. The flow solver is first enhanced by developing a discrete adjoint formulation allowing to quickly

compute the gradients, and is integrated in a multi-disciplinary optimization framework. The methodology is then

1https://embraer.com/, accessed March 2022.
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demonstrated on simple benchmark cases representative of analysis and optimization computations performed

during preliminary aircraft design.

Several authors already developed adjoint formulations for the full potential equation. In 1983, Angrand [22]

used the finite element method to discretize both the linear and nonlinear potential equations, and the adjoint

method to formulate optimization problems. He used these developments to optimize the shapes of a nozzle and of

an airfoil in incompressible and compressible flows. Later, Jameson and Reuther [23, 24, 25] formulated aerody-

namic shape optimization problems using the adjoint method and a finite volume discretization of the full potential

equation. The methodology was then implemented in the computer code FLO36 and subsequently used to opti-

mize the shape of airfoils parameterized using a conformal mapping technique, in order to reduce the wave drag

produced through shocks in transonic flows. In 2000, Santos [26] used a similar formulation to carry out inverse

design problems and wave drag minimization calculations using the parametrization of the NACA 4-digit airfoil

series. More recently, Galbraith et al. [27] developed a finite element method based on a two-field formulation of

the full potential equation, originally developed by Parrinello and Mantegazza [28, 29]. They then implemented

the methodology in the SANS package [30] 2, which uses automatic differentiation to compute the partial gradi-

ents of the flow, and applied the adjoint method to recover the total gradients with respect to the angle of attack.

Nevertheless, few full potential codes have been made widely available to date. Notable examples include the

research code developed by Davari et al. [31] and Núñez et al. [32] in Kratos Multiphysics [33] 3, and

the commercial package TRANAIR [34]. However, the former does not include sensitivity calculations, and the

design and optimization features available in TRANAIR are based on the direct method, whereby the partial gra-

dients are computed using finite differences [35, 36, 37, 38]. Moreover, to the best of the authors knowledge, the

adjoint method has never been used together with the full potential equation to solve aerostructural optimization

problems in preliminary aircraft design. The novelty of this work resides on two main points. Firstly, the analytical

expressions of the discrete full potential gradients are derived and presented in the manuscript, so that they can be

used in adjoint multi-disciplinary optimization problems. The full potential solution and the gradients computation

are implemented in an open-source finite element code. The code is readily available and has a modular high-

level interface so that it can be used within state-of-the-art optimization packages. Secondly, the effectiveness and

the computational efficiency of the proposed full potential adjoint formulation are demonstrated by carrying out

aerodynamic shape and aerostructural optimization computations on two benchmark wings.

The present manuscript is organized as follows. In Section 2, the aerostructural optimization problem is for-

mulated using the adjoint method. Section 3 presents a discrete formulation of the full potential equation based

on the finite element method. More specifically, the aerodynamic and mesh deformation residuals and functionals,

as well as their partial derivatives, are derived analytically. The main aspects of the implementation are also high-

lighted. Two validation cases consisting of aerodynamic shape and aerostructural optimization calculations are

2https://darmofal.mit.edu/software, accessed March 2022.
3https://github.com/KratosMultiphysics/Kratos, accessed March 2022.
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subsequently presented in Section 4. Finally, the last section summarizes and concludes the present manuscript,

and suggests research directions for future work.

2. Formulation of the optimization problem

In the present work, the aerostructural optimization problem is formulated using the three-field formulation,

initially developed by Farhat et al. [39] and later improved by Maute et al. [40]. This formulation is required

when nonlinear aerodynamic models are used, since the fluid equations must be solved in the volume surround-

ing the body, which will deform according to the shape of the body. Furthermore, if the body undergoes large

displacements, the contributions of the grid motion cannot be neglected. Figure 1 depicts typical structural and

aerodynamic grids used to perform aerostructural analysis and optimization. The problem is formulated as follows,

min
p

Fobj(u, v, x; p)

s.t. Ru = 0

Rv = 0

Rx = 0

C(u, v, x; p) = 0,

(1)

where u and v denote the vector of structural and aerodynamic variables, x is the vector of volume mesh coor-

dinates, p is the vector of design variables, Ru and Rv represent the structural and aerodynamic equations noted

in residual form, Rx is the vector of residuals of the mesh morphing laws, and Fobj(u, v, x,p) is the functional to

be minimized under the constraints C(u, v, x,p). In order to minimize Fobj, the augmented Lagrangian L is first

constructed as,

L = Fobj + λuRu + λvRv + λxRx, (2)

where λu, λv and λx are Lagrange multipliers, and then differentiated such that,

δL = 0⇒



∂Fobj

∂u + λu
∂Ru
∂u + λv

∂Rv
∂u + λx

∂Rx
∂u = 0

∂Fobj

∂v + λu
∂Ru
∂v + λv

∂Rv
∂v + λx

∂Rx
∂v = 0

∂Fobj

∂x + λu
∂Ru
∂x + λv

∂Rv
∂x + λx

∂Rx
∂x = 0

∂Fobj

∂p + λu
∂Ru
∂p + λv

∂Rv
∂p + λx

∂Rx
∂p = 0

Ru = 0

Rv = 0

Rx = 0

. (3)
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The fourth equation represents the total gradient of the functional Fobj with respect to the design variables p. It can

be computed by first solving the set of the last three nonlinear equations for the variables u, v and x, then solving

the set of the first three linear equations for the Lagrange multipliers, and finally by injecting those variables into

the expression of the total gradient. An optimizer can then be used to drive that gradient to zero, hence finding

the optimal values of the design variables. Note that the constraints C are handled separately from the adjoint

formulation.

Figure 1: Typical structural and aerodynamic discretizations used to perform aerostructural analysis and optimization. The structural mesh,
where Ru is solved, is depicted in dark blue. The aerodynamic grid, where Rv and Rx are solved, is depicted in light blue. Note that only a part
of the aerodynamic mesh boundary is displayed.

3. Formulation of the aerodynamic model

3.1. Full potential equation

The steady full potential equation is derived form the Navier-Stokes equations by assuming that the fluid is

inviscid and that the flow is steady, isentropic and irrotational, such that the velocity derives from a potential φ.

Considering a domain Ω enclosed by a boundary surface Γ, split into a farfield boundary Γf , a body boundary Γb

and a wake boundary Γw, as depicted in Figure 2, the full potential equation can be written in weak form as,

∫
Ω

ρ∇φ ·∇ψ dV −
∫

Γ

ρ∇φ · n̂ψ dS = 0, ∀ψ ∈ Ω, (4)
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where ψ is a test function, n̂ is the unit vector normal to Γ pointing inwards, overlined variables denote quantities

imposed through boundary conditions, and where the density ρ is given by the isentropic flow relationship,

ρ = ρ∞

[
1 +

γ − 1
2

M2
∞

(
1 − |∇φ|2

)] 1
γ−1

. (5)

In Equation 5, ρ∞ is the freestream density, γ is the heat capacity ratio and M∞ is the freestream Mach number. Note

that the velocity ∇φ is normalized by the freestream velocity. An important limitation of the nonlinear potential

equation is the isentropicity assumption, which restricts its use to transonic flows with weak embedded shocks. A

common upper limit for the local normal Mach number upstream of the shock is Mn < 1.3 [41].

Body boundary Γb

Farfield boundary Γf

𝑼∞ = [cos𝛼, sin𝛼]

𝛼

Domain Ω

Wake boundary Γw

Trailing edge ΓTE

Figure 2: Typical domain used for a finite element computation, illustrated in two dimensions for simplicity.

Neumann boundary conditions are applied on the farfield boundary Γf , and on the body boundary Γb. Such

boundary conditions impose a flux through the boundaries of the domain and are naturally recovered in the second

term of the weak formulation of the full potential equation 4. Since the derivative of the potential is the velocity,

the weak form of the Neumann boundary condition can be written as

∫
Γf

ρ∇φ · n̂ψ dS =

∫
Γf

ρ∞U∞ · n̂ψ dS , ∀ψ ∈ Γf∫
Γb

ρ∇φ · n̂ψ dS = 0, ∀ψ ∈ Γb

(6)
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where U∞ is the freestream velocity vector given by,

U∞ =


cosα cos β

sin β

sinα cos β

 , (7)

and where α is the angle of attack and β is the angle of sideslip. Additionally, the Kutta condition needs to be

enforced so that a physically meaningful solution is selected among all the possible solutions, and potential flows

can produce aerodynamic loads acting on lifting bodies. This is accomplished by creating a wake sheet, denoted

Γw, extending horizontally from the trailing edge of any lifting body to the farfield boundary located downstream

of these bodies, as shown in Figure 2. The unknown potential value is discontinuous across the wake, and two

boundary conditions are applied to restore the continuity in the flow variables. The first condition prescribes the

equality of the mass flux across the wake,

∫
Γw

[[ρ∇φ · n̂]]ψ dS = 0, ∀ψ ∈ Γw,l, (8)

and the second condition prescribes the equality of the pressure across the wake,

∫
Γw

[[|∇φ|2]] Ψ dS = 0, ∀Ψ ∈ Γw,u, (9)

where Ψ is a test function stabilized using a Petrov-Galerkin formulation, the double square bracket indicates a

jump between the quantities on the upper and lower sides of the wake, and the subscripts u and l refer to the upper

and lower sides of the wake, respectively. Equations 8 and 9 are supplemented by a third condition that enforces

the Kutta condition locally on the trailing edge ΓTE,

∫
ΓTE,u

1
h2 |∇φ|

2 Ψ dS −
∫

ΓTE,l

1
h2 |∇φ|

2 Ψ dS = 0, ∀Ψ ∈ ΓTE,u, (10)

where h2 denotes the trailing edge surface area covered by ΓTE in Figure 2. More details about the Kutta condition

can be found in Galbraith et al. [27] and in Crovato [21].

The physical behavior of the flow is reflected in the mathematical nature of the full potential equation: the equa-

tion is elliptic in subsonic regions of the flow, whereas it becomes hyperbolic in supersonic regions, as explained

by Holst [42]. This change must be taken into account for the numerical method to be stable. Consequently, the

physical density is upwinded in supersonic flow pockets, as proposed by Eberle [43] and Hafez et al. [44], and

replaced by,

ρ̃ = ρ − µ(ρ − ρU), (11)
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where ρU is the density evaluated at an upwind point, and where the switching function is defined as

µ = µC max
0, 1 − M2

C

M2

 . (12)

The parameters µC and MC are controlled by the numerical scheme. Additional details can be found in Crovato [21].

The total aerodynamic load vector coefficient is computed by integrating the pressure coefficient on the body

surface,

CF =
1

S ref

∫
Γb

Cpn̂ dS , (13)

where S ref is a reference area, and where the pressure coefficient is given by

Cp =
2

γM2
∞

(ργ − 1) . (14)

The total aerodynamic load is obtained by multiplying the aerodynamic load vector coefficient by the freestream

dynamic pressure,

F =
1
2
ρ∞|U∞|2S refCF. (15)

The aerodynamic load coefficients are obtained by projecting CF on the lift and drag directions, yielding

CL = CF · eL, CD = CF · eD, (16)

where the directions are defined with respect to the angle of attack α, and the angle of sideslip β,

eL =


− sinα

0

cosα

 , eD =


cosα cos β

sin β

sinα cos β

 . (17)

3.1.1. Discretization

The domain Ω and its boundary Γ are discretized following a continuous Galerkin finite element methodology.

An unstructured grid strategy is chosen in order to easily mesh three-dimensional complex shapes. The potential,

test functions and coordinates are expressed using isoparametric linear tetrahedral and triangular finite elements in

the volume and on the surfaces, respectively, as

φ(ξk) = Ni(ξk)φi,

ψ(ξk) = Ni(ξk)ψi,

xk(ξk) = Ni(ξk)xi,k

(18)
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where Ni is the shape function of an element associated with its node i and interpolates the nodal values φi and ψi

of the potential and the test functions, as well as the nodal coordinates xi,k = [x, y, z]i, on an element. The shape

functions are expressed locally on each element as

Ni = Ni(ξk) = Ni
([
ξ, η, ζ

])
, (19)

where ξk is the vector of coordinates attached to the reference frame of an element and where k counts dimensions.

The weak form of the full potential equation (4) must hold for any test function ψ. It can then be discretized and

rewritten in residual form,

Rφ,i =
∑

e

∫
Ωe

ρ̃e∇N jφ j ·∇Ni dVe −
∑

e

∫
Γe
ρ∇φe · n̂eNi dS e = 0, (20)

where
∑

e denotes a sum performed over all elements, Ωe and Γe are the volume and the surface of an element, n̂e is

the unit normal vector to a surface element, and where ρ̃e and ρ∇φe denote the upwinded density and the imposed

flux evaluated on an element. The associated Neumann boundary conditions (6) become

∑
e

∫
Γfe

ρ∇φe · n̂eNi dS e =
∑

e

∫
Γfe

ρ∞U∞ · n̂eNi dS e,∑
e

∫
Γbe

ρ∇φe · n̂eNi dS e = 0.
(21)

The equality of mass flux across the wake (8) is enforced on the lower wake nodes as

∑
e

∫
Γw,le

ρ̃e∇N jφ j ·∇Ni dS e −
∑

e

∫
Γw,ue

ρ̃e∇N jφ j ·∇Ni dS e = 0, (22)

and the equality of the pressure (9) is enforced on the upper wake nodes as

∑
e

∫
Γwe

([
∇φe ·∇N jφ j

]
w,u
−

[
∇φe ·∇N jφ j

]
w,l

) (
Ni +

he

2
êx,k ∂xk Ni

)
w,u

dS e = 0, (23)

where he is the square root of an element surface area and where the stabilization direction is chosen to be êx =

[1, 0, 0]. The Kutta condition on the trailing edge (10) is enforced on the upper trailing edge nodes as

∑
e

∫
ΓTE,ue

1
h2

e
∇φe ·∇N jφ j

(
Ni +

h
2

êx,k ∂xk Ni

)
dS e

−
∑

e

∫
ΓTE,le

1
h2

e
∇φe ·∇N jφ j

(
Ni +

h
2

êx,k ∂xk Ni

)
dS e = 0.

(24)
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3.1.2. Partial gradients

The partial gradient of the potential residual at node i with respect to the potential variable at node j, also

known as the flow Jacobian, is derived from Equation 20 by substituting Equations 5, 11 and 12, and is given by

∂Rφ,i

∂φ j
=

∑
e

∫
Ωe

(1 − µ)
[
−M2

∞ρ
2−γ
e ∂xkφ ∂xk N j ∂xkφ ∂xk Ni + ρe∂xk N j ∂xk Ni

]
dVe

+
∑

e

∫
Ωe

µ
[
−M2

∞ρ
2−γ
U ∂xkφU ∂xk N jU ∂xkφ ∂xk Ni + ρU∂xk N j ∂xk Ni

]
dVe

−
∑

e

∫
Ωe

(ρe − ρU)

2µCM2
C

M3
e

 M∞√
∂xkφ

2 ρ
γ−1
e

+
γ − 1
2/M3

∞

√
∂xkφ

2√
ρ

3(γ−1)
e

 ∂xkφ ∂xk N j ∂xkφ ∂xk Ni

 dVe.

(25)

Note that the last term of Equation 25 is zero when the switching function µ (12) is zero. Similar to the residuals

Rφ, the Kutta condition is enforced by adding the contributions of the upper wake nodes to the lower wake rows,

instead of the upper wake rows, in the Jacobian matrix,

∂Rφ,i

∂φ j

∣∣∣∣∣∣
w,l
←

∂Rφ,i

∂φ j

∣∣∣∣∣∣
w,l

+
∂Rφ,i

∂φ j

∣∣∣∣∣∣
w,u

, (26)

where← denotes an assignment. The following terms are then assembled on the upper wake rows,

∂Rφ,i

∂φ j

∣∣∣∣∣∣
w,u

= 2
∑

e

∫
Γwe

(
Ni +

h
2

êx,k ∂xk Ni

)
w,u

([
∂xkφ ∂xk N j

]
w,u
−

[
∂xkφ ∂xk N j

]
w,l

)
dS e. (27)

Similarly, the lower and upper trailing edge contributions are assembled on the upper trailing edge rows,

∂Rφ,i

∂φ j

∣∣∣∣∣∣
TE,u

= 2

 ∑
e

∫
ΓTE,ue

1
h2

e

(
Ni +

he

2
êx,k ∂xk Ni

)
∂xkφ ∂xk N j dS e

−
∑

e

∫
ΓTE,le

1
h2

e

(
Ni +

he

2
êx,k ∂xk Ni

)
∂xkφ ∂xk N j dS e

 . (28)

The partial gradient of the potential residual at node i with respect to the mesh coordinates at node j is derived

from Equation 20 and is given by

∂Rφ,i

∂x j
=

∑
e

∫
Ωe

(1 − µ)
(
−M2

∞ρ
2−γ
e ∂xlφ

(
−J−1

e,lk ∂x j Je,lk

)
∂xkφ

)
∂xkφ ∂xk Ni dVe

+
∑

e

∫
Ωe

µ
(
−M2

∞ρ
2−γ
U ∂xlφU

(
−J−1

U,lk ∂x j JU,lk

)
∂xkφU

)
∂xkφ ∂xk Ni dVe

+
∑

e

∫
Ωe

[
(1 − µ) ρe + µρU

] [
∂xlφ

(
−J−1

e,lk ∂x j Je,lk

)
∂xk Ni + ∂xl Ni J−1

e,lk ∂x j Je,lk ∂xkφ
]

dVe

−
∑

e

∫
Ωe

(ρe − ρU)

2µCM2
C

M3
e

 M∞√
∂xkφ

2 ρ
γ−1
e

+
γ − 1
2/M3

∞

√
∂xkφ

2√
ρ

3(γ−1)
e

 ∂xlφ
(
−J−1

e,lk ∂x j Je,lk

)
∂xkφ ∂xkφ ∂xk Ni

 dVe

+
∑

e

∫
Ωe

[
(1 − µ) ρe + µρU

]
∂xkφ ∂xk Ni ∂x j dVe.

(29)
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The partial gradient of the Jacobian matrix of an element with respect to the mesh coordinates is defined and

computed as,

∂xk J · ,i j =
∂

∂xk

(
∂ξ j Nlxl,i

)
, (30)

where the subscript · refers to a variable evaluated on the current element e, or on the upstream element U. Since

Gauss quadrature is used to compute the integrals in the finite element method, computing the partial gradient of an

elementary volume with respect to the mesh coordinates amounts to computing the partial gradient of the Jacobian

matrix determinant of an element as

∂xk dVe = ∂xk det(Je,i j) = det(Je,i j) tr(J−1
e,i j∂xk Je,i j). (31)

The contributions of the farfield boundary condition are not taken into account since the outer boundary is fixed.

The partial gradients of the wake boundary conditions with respect to the mesh coordinates are assembled in a

similar way as the flow residuals: the contributions of the upper wake rows are first added to the lower wake rows,

and the upper wake rows are then computed as

∂Rφ,i

∂x j

∣∣∣∣∣∣
w,u

=
∑

e

∫
Γwe

(
∂x j

(
he

2
êx,k ∂xk Ni

))
w,u

([
∂xkφ ∂xkφ

]
w,u −

[
∂xkφ ∂xkφ

]
w,l

)
dS e

+ 2
∑

e

∫
Γwe

(
Ni +

he

2
êx,k Ũ∞,k ∂xk Ni

)
w,u

[
∂xlφ

(
−J−1

e,lk ∂x j Je,lk

)
∂xkφ

]
w,u

dS e

− 2
∑

e

∫
Γwe

(
Ni +

he

2
êx,k ∂xk Ni

)
w,u

[
∂xlφ

(
−J−1

e,lk ∂x j Je,lk

)
∂xkφ

]
w,l

dS e

+
∑

e

∫
Γwe

(
Ni +

he

2
êx,k ∂xk Ni

)
w,u

([
∂xkφ ∂xkφ

]
w,u −

[
∂xkφ ∂xkφ

]
w,l

)
∂x j dS e.

(32)

The partial gradient of the Kutta condition with respect to the mesh coordinates is computed as

∂Rφ,i

∂x j

∣∣∣∣∣∣
TE, ·

=
∑

e

∫
ΓTE, · e

−2
h3

e
∂x j h

(
Ni +

he

2
êx,k ∂xk Ni

)
∂xkφ ∂xkφ dS e

+
∑

e

∫
ΓTE, · e

1
h2

e
∂x j

(
he

2
êx,k ∂xk Ni

)
∂xkφ ∂xkφ dS e

+ 2
∑

e

∫
ΓTE, · e

1
h2

e

(
Ni +

he

2
êx,k ∂xk Ni

)
∂xlφ

(
−J−1

e,lk ∂x j Je,lk

)
∂xkφ dS e

+
∑

e

∫
ΓTE, · e

1
h2

e

(
Ni +

he

2
êx,k ∂xk Ni

)
∂xkφ ∂xkφ ∂x j dS e

(33)

where the subscript TE, · denotes a contribution from the lower or upper trailing edge. The lower trailing edge

contributions are subtracted from those on the upper trailing edge and the result is then assembled on the upper

trailing edge rows. The partial gradient of the stabilized shape function can further be developed as

∂x j

(
he

2
êx,k ∂xk Ni

)
= ∂x j

he

2
êx,k ∂xk Ni +

h
2

êx,l J−1
e,lk ∂x j Je,lk∂xk Ni . (34)
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Computing the partial gradient of an elementary surface with respect to the mesh coordinates amounts to computing

the partial gradient of the surface Jacobian matrix determinant of an element. For a two-dimensional surface in a

three-dimensional space, this gradient is expressed as

∂x j dS e = ∂x j det(JS,e,i) =
JS,e,i

|JS,e,i|

(
∂x j∂ξNk xk × ∂ηNk xk + ∂ξNk xk × ∂x j∂ηNk xk

)
. (35)

The angles of attack and of sideslip affect the potential residuals only through the farfield boundary condition.

The partial gradient of the potential residual at node i with respect to the angles of attack and of sideslip are thus

given by
∂Rφ,i

∂[α, β]
=

∑
e

∫
Γfe

ρ∞
∂U∞
∂[α, β]

· n̂e Ni dS e, (36)

where the gradient of the freestream velocity with respect to the angles of attack and of sideslip are

∂U∞
∂α

=


− sinα cos β

0

cosα cos β

 ,
∂U∞
∂β

=


− cosα sin β

cos β

− sinα sin β

 . (37)

The partial gradient of the aerodynamic load at node i with respect to the potential variable at node j is given

by
∂Fi

∂φ j
=

1
2
ρ∞u2

∞

∑
e

∫
Γb,e

∂φ jCpe n̂e,i dS e

= −ρ∞u2
∞

∑
e

∫
Γb,e

ρ
γ
e∂xkφ ∂xk N j n̂e,i dS e.

(38)

The partial gradient of the aerodynamic load at node i with respect to the mesh coordinates at node j is given

by
∂Fi

∂x j
=

1
2
ρ∞u2

∞∂x j

∑
e

∫
Γb,e

Cpe n̂e,i dS e

=
1
2
ρ∞u2

∞

∑
e

[∫
Γb,e

−2ργe∂xlφ
(
−J−1

e,lk ∂x j Je,lk

)
∂xkφ n̂e,i dS e

+

∫
Γb,e

Cpe∂x j n̂e,i dS e

+

∫
Γb,e

Cpe n̂e,i ∂x j dS e

]
,

(39)

where the partial gradient of an elementary surface is computed as in Equation 35, and the partial gradient of the

unit normal vector is given by
∂n̂i

∂x j
= (Iik − n̂in̂k)

1
|nk |

∂x j nk. (40)

The partial gradient of the normal vector to a two-dimensional triangular area with vertices x0, x1 and x2 embedded

in a three-dimensional space is given by

∂n
∂x j

= ∂x j (x1 − x0) × (x2 − x0) + (x1 − x0) × ∂x j (x2 − x0) . (41)
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The partial gradients of the aerodynamic load coefficients can be readily obtained from Equations 38 and 39.

Additionally, the partial gradients of the aerodynamic coefficients with respect to the angles of attack and of sideslip

are given by,
CL

∂[α, β]
= CF ·

∂eL

∂[α, β]
,

CD

∂[α, β]
= CF ·

∂eD

∂[α, β]
, (42)

where the gradients of the directions are defined as,

∂eL

∂α
=


− cosα

0

− sinα

 ,
∂eD

∂α
=


− sinα cos β

0

cosα cos β

 ,

∂eL

∂β
=


0

0

0

 ,
∂eD

∂β
=


− cosα sin β

cos β

− sinα sin β

 .
(43)

3.2. Mesh morphing laws

An efficient way to deform the grid for the kind of wing deflections considered in practical aeroelastic analysis

and optimization, is to use linear elasticity theory, as suggested by various authors [45, 46, 47]. The grid is

assumed to behave like an elastic body, rigid near the deforming boundaries, and flexible elsewhere. Moreover,

the linear elasticity equations can be easily solved by the finite element method, and require little supplementary

implementation work. For an elastic solid, the equilibrium between the internal and external forces can be written

in weak form as ∫
Ω

∇σσσ ·∇ψ dV −
∫

Γ

∇σσσ · n̂ψ dS =

∫
Ω

f ψ dV, ∀ψ ∈ Ω, (44)

where the internal stressσσσ can be related to the displacements ∆x using Hooke’s constitutive law for linear isotropic

solids,

σσσ =
Eν

2(1 + ν)(1 − 2ν)
tr

(
∇ (∆x) + ∇ (∆x)T

)
I +

E
2(1 + ν)

(
∇ (∆x) + ∇ (∆x)T

)
. (45)

The Young’s modulus E and Poisson’s ratio ν are constitutive parameters. In the present work, they are set to 1/V ,

where V is the volume of an element, and 0, respectively, as suggested by Dwight [46]. As a result, the mesh

behaves as a linear elastic solid, rigid close to the wing where the elements are small, and flexible in the farfield

where the elements are large. Note that, in the context of mesh deformation, the external forces f are zero, and the

deformation is driven by a Dirichlet boundary condition imposed on the moving boundaries. Also note that the

wake is treated as an embedded surface and follows the deformation of the surrounding volume elements.
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3.2.1. Discretization

After discretization, Equation 44 must hold for any test function ψ, and can therefore be rewritten as a set of

equations,

Rx,i =
∑

e

∫
Ωe

[
Eeνe

2(1 + νe)(1 − 2νe)
∂xk Nl∆xl,k δi j +

Ee

2(1 + νe)

(
∂x j Nl∆xl,i + ∂xi Nl∆xl, j

)]
∂x j Nl dVe

= 0.

(46)

The Dirichlet boundary conditions on the deforming surfaces are enforced as

∆xi, j|Γb = ∆xbi, j . (47)

On the wake, the periodic boundary conditions are discretized as follows. The upper wake volume element con-

tributions are added to the lower wake equations, and the upper wake unknowns are prescribed to match the lower

wake unknowns,

∑
e

∫
Ωw,le

[
Eeνe

2(1 + νe)(1 − 2νe)
∂xk Nl∆xl,k δi j +

Ee

2(1 + νe)

(
∂x j Nl∆xl,i + ∂xi Nl∆xl, j

)]
∂x j Nl dVe

+
∑

e

∫
Ωw,ue

[
Eeνe

2(1 + νe)(1 − 2νe)
∂xk Nl∆xl,k δi j +

Ee

2(1 + νe)

(
∂x j Nl∆xl,i + ∂xi Nl∆xl, j

)]
∂x j Nl dVe

= 0,

∆xi, j|Γw,u − ∆xi, j|Γw,l = 0.

(48)

3.2.2. Partial gradients

The mesh deformation residuals only depend linearly on the mesh coordinates. The partial gradients of the

mesh deformation residual at node i with respect to the mesh coordinates at node j, also known as the mesh

Jacobian, are therefore given by

∂Rx,i

∂x j
=

∑
e

∫
Ωe

[
Eeνe

2(1 + νe)(1 − 2νe)
∂xk Nl δi j +

Ee

2(1 + νe)

(
∂x j Nl + ∂xi Nl

)]
∂x j Nl dVe. (49)

Note that, similar to the residuals Rx, periodic boundary conditions are prescribed on the wake by adding the upper

wake volume element contributions to the lower wake equations, and by prescribing the upper wake unknowns to

match the lower wake unknowns.

3.3. Implementation

The formulation presented in sections 3.1 and 3.2 has been implemented in the open-source code DART using

the C++ language. The code is parallelized using the Intel Threading Building Blocks library [48] 4,

4https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html, accessed March 2022.
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and relies on the Eigen library [49] for linear algebra. Furthermore, optimized Basic Linear Algebra Subpro-

grams (BLAS) libraries, such as the Intel Math Kernel Library 5, can be used as a back-end. In order to

provide an easy and modular access to the code, while retaining its high computing efficiency, the C++ routines

are exposed to python using SWIG [50] 6. Furthermore, an Application Programming Interface (API) has been

implemented using python. In practice, this API provides access to pre and post-processing features, as well as to

solution and gradients computation procedures. It is currently compatible with two multidisciplinary frameworks:

OpenMDAO [54] 7 and CUPyDO [51, 52] 8. Since the API has been designed in a modular and flexible way, it

could be easily extended to others.

The full potential solution is computed using a Newton method, combined with the line search procedure

proposed by Bank and Rose [53]. Furthermore, the upwinding parameters in Equation 12 are varied during the

computation. They are initially set to produce a strong stabilization over a wide portion of the flow. As the solution

converges, the numerical dissipation is reduced and applied to a smaller portion of the flow. This strategy improves

the robustness of the solver, while not impacting the accuracy of the final results. Additional details about this

procedure can be found in Crovato [21]. The computation of all the partial gradients is interfaced in python such

that they can be combined and included in any multidisciplinary adjoint formulation.

4. Results

One aerodynamic shape optimization and one aerostructural optimization calculation are performed in order to

demonstrate the full potential and the mesh deformation formulations presented in Section 3. The computations are

performed by means of the following tools, which are described in more details in Appendix A. The optimization

process is formulated and solved using MPHYS and OpenMDAO [54], whereby scipy’s Sequential Least Squares

Programming (SLSQP) [55, 56] is used as the optimization driver. Gmsh [57] is used to create the aerodynamic

grids, and pyGeo [58, 59] is used to parameterize and constrain the body’s geometry. The full potential equation

and the mesh morphing laws are solved using DART [21] and the structural model is solved using TACS [60, 61,

62, 63]. Finally, MELD [64] is used to interpolate and transfer data between the aerodynamic and structural grids.

4.1. Aerodynamic shape optimization - Onera M6 wing

The first calculation is carried out on the Onera M6 wing [65] 9 at a Mach number M∞ = 0.839. The aero-

dynamic computation is performed in a domain discretized using tetrahedral elements. The objective of the op-

timization is to minimize the drag coefficient CD. The geometry is embedded in a free-form deformation box

discretized using 7 control points in the chordwise direction, 5 points in the spanwise direction and 2 points in the

vertical direction, as shown in Figure 3. These points are restricted to move vertically to control the cross-sectional

5https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html, accessed March 2022
6http://www.swig.org/, accessed March 2022.
7https://openmdao.org/, accessed March 2022.
8https://github.com/ulgltas/CUPyDO, accessed March 2022.
9https://www.grc.nasa.gov/www/wind/valid/m6wing/m6wing.html, accessed March 2022.
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shape of the wing. Additionally, the points of the last 4 sections along the wing span can rotate rigidly in order

to create a twist. Furthermore, the angle of attack of the freestream flow is allowed to change. The lift coefficient

is constrained to CL = 0.30. The internal volume of the wing is prevented from decreasing in order to emulate

the presence of a structural wingbox. The leading edge radius and the trailing edge thickness are constrained to

remain constant using 10 points distributed along the span, so that the leading edge cannot sharpen and the trailing

edge cannot collapse. Additionally, the upper and lower control points at the wing leading and trailing edges are

constrained to move in equal and opposite direction so that they cannot emulate a twist, which would be redundant

with the twist design variables [13]. The optimization tolerance is set to a tenth of a drag count. The optimization

problem is summarized in Table 1, and the N2 diagram produced by OpenMDAO is provided in Appendix B.

Objective Number of variables Bounds Scaling

drag coefficient 1 − 102

Design variables

angle of attack 1 [0; 5]◦ 10−1

shape 70 [−1; 1] cm 101

twist 4 [−5; 5]◦ 10−1

Nonlinear constraints

lift coefficient 1 = 0.30 1

wing volume 1 [100;−] % 1

leading edge radius 10 [100;−] % 1

trailing edge thickness 10 [100;−] % 1

Linear constraints

leading/trailing edge 10 = 0 m 1

Table 1: Summary of the Onera M6 optimization problem.

Figure 3: Optimization setup for the Onera M6 case. The points controlling the shape design variables are shown in light blue and the shape
constraints are displayed in red.
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4.1.1. Grid convergence analysis and gradient verification

Before running the optimization, a grid convergence analysis is first carried out. The results provided in 2

indicate that the medium mesh yields converged results.

Mesh N. cells CL CD CPU time

Coarse 196 080 0.2865 0.01062 0.5 min

Medium 477 857 0.2996 0.01126 1.5 min

Fine 826 182 0.3013 0.01129 3.5 min

Table 2: Cell count, aerodynamic coefficients and computational times obtained using three grids for the Onera M6 case.

The analytic total gradients obtained using the adjoint method are also checked against the gradients computed

using finite differences. The procedure is automated in OpenMDAO. The relative difference in the total gradients

of the lift and drag coefficients, CL and CD, with respect to the angle of attack α and the twist angles θi on the

original geometry are given by

|
dCL
dα AN −

dCL
dα FD|

dCL
dα AN

= 2.4 × 10−5,
|
dCD
dα AN −

dCD
dα FD|

dCD
dα AN

= 3.0 × 10−5,

|
dCL
dθi AN

−
dCL
dzi FD

|

dCL
dθi AN

= 2.5 × 10−5,
|
dCD
dθi AN

−
dCD
dzi FD

|

dCD
dθi AN

= 3.0 × 10−5,

(50)

where subscripts AN and FD stand for analytic and finite differences, respectively, and where the step size for the

finite differences has been set to 10−6. Note that the gradients with respect to the motion of the control points in the

direction normal to the chord has not been checked for each individual point. However, changing the twist amounts

to changing the position of the control points. Therefore, computing the gradients with respect to the twist angle

involves computing the gradients with respect to the displacements of the points, so that all gradients are implicitly

checked.

4.1.2. Optimization results

The integrated aerodynamic coefficients obtained on the baseline and optimized Onera M6 wing at M∞ = 0.839

are given in Table 3. Additionally, the pressure coefficient contours on the suction side of the wing are shown

in Figure 4, and the sectional pressure coefficients extracted at four stations along the semi-span are shown in

Figure 5. Note that the second station corresponds to the mean aerodynamic chord. The initial solution, computed

at an angle of attack of 3.06◦, exhibits the well-known lambda shock pattern. Overall, the optimization process

turned the original symmetric airfoil shape into a supercritical one, such that the strong shock is removed, and the

flow is smoother. Moreover, the angle of attack has been slightly reduced and a negative twist angle has been added

on the outboard sections of the wing. Consequently, the drag coefficient has been reduced from CD,baseline = 0.0113

to CD = 0.0079. The pressure distributions obtained using the present full potential formulation are also compared
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to those previously obtained by Lyu et al. [70] using the Euler equations. The optimized solutions obtained from

the full potential and Euler methodologies feature similar airfoil shapes and twist distributions. The Euler-based

calculations produced a slightly sharper leading edge that completely eliminates the pressure peak, and leads to a

drag reduction of 40%, compared to the 30% reduction obtained from the full potential optimization. This could

be explained by the different solutions obtained on the baseline geometry: since the full potential equation predicts

a smoother pressure peak initially, it is probably less penalized during the optimization process. Note that the

differences could also be partly explained by the fact that different tools were used, especially the optimization

driver.

Parameters α(◦) CL CD

Baseline 3.06 0.300 0.0113

Optimized 2.57 0.300 0.0079

Table 3: Initial and final values of the angle of attack and aerodynamic coefficients of the Onera M6 wing at M∞ = 0.839.

(a) Baseline solution. (b) Optimized solution.

Figure 4: Pressure coefficient contours on the suction side of the baseline and optimized Onera M6 wing at M∞ = 0.839.
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(d) y/b = 0.95.

Figure 5: Sectional pressure coefficient and airfoil shape extracted at four stations along the span of the baseline and optimized Onera M6 wing
at M∞ = 0.839, obtained using the present approach and compared to Lyu et al. [70]. Blue: baseline design, red: optimized design. Solid:
present approach, dashed: Lyu et al. [70].

The computation was run on a desktop workstation equipped with an AMD 3970X processor rated at 3.7 GHz.

The mesh size, the number of gradient and functional evaluations, as well as the computational time are given in

Table 4. Even though the Euler based optimization achieved better results, these were obtained at a much higher

computational cost. While the full potential computation required only 11 gradient evaluations and 30 minutes,

the Euler computation required 112 iterations for a total computational time of 348 core-hours 10.

N. cells N. grad. eval. N. func. eval. N. threads Wall-clock time

477 857 11 16 1 30 min

Table 4: Mesh size, number of gradient and functional evaluations, number of threads and computational time required for the Onera M6 case.

10The Euler computations were performed on a 2013 super-computer.
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4.2. Aerostructural optimization - RAE benchmark wing

The second computation is carried out on the RAE benchmark wing at a Mach number M∞ = 0.82 and

an altitude of 35 000 ft. The wing is representative of a typical regional jet, and its geometrical and structural

parameters are given in Table 5 11. The aerodynamic computation is performed in a domain discretized using

tetrahedral elements. The structural model is made of an isotropic material representative of Aluminum 7000 series,

and is discretized using second order shell elements based on the mixed interpolation of tensorial components

formulation [60].

Parameters Values

Aspect ratio 8.6

Taper ratio 0.3

Leading edge sweep 28.2◦

Reference area 91 m2

Airfoil RAE 2822

(a) Geometric data.

Parameters Values

Density 2 780 kg/m3

Young modulus 73.1 GPa

Poisson ratio 0.33

Shear correction factor 5/6

Yield stress 324 MPa

(b) Structural data.

Table 5: Parameters of the RAE wing.

The objective of the optimization is to minimize the fuel burn Wfuel, which is computed using the Breguet

formula,

Wfuel =
(
Wfixed + Wwing

)
×

(
exp

(
Rct

V∞

CD0 + CD

CL

)
− 1

)
, (51)

where Wfixed is the fixed mass of the aircraft, Wwing is the mass of the structural wingbox, R is the mission range, ct

is the thrust specific fuel consumption, V∞ is the true airspeed, and CL is the lift coefficient. In order to account for

the viscous drag, a fixed drag coefficient CD0 is added to the drag coefficient CD obtained using DART. The values

of the different parameters have been derived from a typical mission profile of an Embraer regional aircraft and are

provided in Table 6.

11The wing geometry is available at https://github.com/mdolab/MACH-Aero/tree/master/tutorial/aero/
geometry/. The structural model has been built by the MDO Lab and is available at https://github.com/OpenMDAO/
mphys/tree/main/examples/aerostructural/mach_tutorial_wing/vlm_meld_tacs/. Links accessed March 2022.
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Parameters Symbols Values

Fixed weight Wfixed 34 tons

Range R 2 500 nm

Specific fuel consumption ct 0.65 h−1

Airspeed V∞ 473 KTAS

Dynamic pressure q∞ 11 200 Pa

Fixed drag coefficient CD0 0.022

Table 6: Mission parameters for the RAE optimization case.

Similar to the Onera M6 case, the wing skin and the wingbox are embedded in a box discretized using 7 control

points in the chordwise direction, 5 points in the spanwise direction and 2 points in the vertical direction to control

the cross-sectional shape of the wing, as shown in Figure 6. Additionally, the twist angle of the last 3 sections along

the wing span and the angle of attack of the freestream flow are allowed to change. Furthermore, the thickness

of the 18 ribs, leading and trailing edge spars, 16 stringers and 324 skin panel patches are also used as design

variables. The lift coefficient and the aircraft weight are related through the load factor n, which is constrained to

one, so that the aircraft is balanced at mid-cruise,

n =
q∞S refCL

g
(
Wfixed + Wwing +

Wfuel
2

) = 1, (52)

where q∞ is the dynamic pressure, S ref is the reference area and g is the acceleration due to gravity. Note that the

trim Equation 52 does not account for any lifting surfaces other than the wing. The structural failure index of the

wing is constrained to remain below a given threshold. The local failure criterion is computed in each shell element

by dividing the von Mises stress by the yield stress, and the global index is calculated by aggregating the criterion

over all the elements using a Kreisselmeier-Steinhauser function [71, 62]. The global failure index is multiplied

by a safety factor of 1.5. The ratio of the internal volume of the wingbox to its initial value is constrained to be no

less than the ratio of the fuel weight to its initial value, so that the fuel required for the flight can be stored inside

the fuel tanks. This volume constraint is enforced from the wing root to 75% of the span, where the fuel tanks

would be located in an actual wing. Furthermore, the height of the trailing edge spar is constrained to 80% of its

initial value using 10 points distributed along the span, such that sufficient space is reserved for the attachment of

the control surface actuation devices. Similar to the Onera M6 case, the leading edge radius and the trailing edge

thickness are constrained to remain constant using 10 points along the span, and the upper and lower control points

at the wing leading and trailing edges are constrained to move in equal and opposite direction. Finally, structural

smoothness is ensured by constraining the difference in the thicknesses between adjacent structural elements to

remain below a given value. The optimization tolerance is set to 1 kg and the different physics are coupled using a

Block Gauss-Seidel scheme [72], whereby relative tolerances on the residuals for the direct and adjoint solutions
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are set to 10−6. The optimization problem is summarized in Table 7, and the N2 diagram is provided in Appendix B.

Note that, as the present work is geared towards the demonstration of the full potential adjoint formulation and its

interfacing in an optimization framework, the problem formulation is quite simple. Possible improvements will be

listed in Section 5.

Objective Number of variables Bounds Scaling

fuel burn 1 − 10−4

Design variables

angle of attack 1 [0; 5]◦ 1

shape 70 [−10; 10] cm 101

twist 3 [−5; 5]◦ 1

ribs thickness 18 [1; 20] mm 102

spar thickness 36 [1; 20] mm 102

stringers thickness 288 [1; 20] mm 102

skin thickness 324 [1; 20] mm 102

Nonlinear constraints

trim 1 = 1 1

failure 1 = 1/1.5 1.5

wing volume ratio 1 [100;−] % 1

leading edge radius 10 [100;−] % 1

trailing edge thickness 10 [100;−] % 1

trailing edge spar height 10 [80;−] % 1

Linear constraints

leading/trailing edge 10 = 0 m 1

structural smoothness 1 256 [−; 1] mm 103

Table 7: Summary of the RAE optimization problem.

Figure 6: Optimization setup for the RAE wing case. The shape design variables are shown in light blue, the wingbox is displayed in dark blue
and the shape constraints are depicted in red.
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4.2.1. Grid convergence analysis and gradient verification

Before running the optimization, a grid convergence analysis is carried out at an angle of attack of 2.55◦. The

three computations converged in nine coupling iterations. The results provided in Table 8 indicate that the medium

mesh yields sufficiently converged results. Note that only the inviscid drag contribution is shown.

Mesh N. cells CL CD ∆tip CPU time

Coarse 330 978 0.3830 0.00802 1.18 m 5.4 min

Medium 655 569 0.4069 0.00931 1.22 m 12.8 min

Fine 1 118 925 0.4080 0.00996 1.24 m 21.4 min

Table 8: Aerodynamic coefficients, tip displacement and computational times obtained using three grids for the RAE case.

The analytic total gradients computed using the adjoint method are also checked against the gradients computed

using finite differences in OpenMDAO. The relative difference in the total gradients of the fuel burn Wfuel with

respect to the angle of attack α and the thickness of the structural elements t?,i are given by

|
dWfuel

dα AN −
dWfuel

dα FD|

dWfuel
dα AN

= 1.2 × 10−4,

|
dWfuel
dt?,i AN

−
dWfuel
dt?,i FD

|

dWfuel
dt?,i AN

=



5.4 × 10−4

1.1 × 10−4

3.7 × 10−4

7.3 × 10−4

7.1 × 10−4

1.1 × 10−4

1.7 × 10−4



,

(53)

where the step size for the finite differences has been set to 10−6. Note that the structural elements are listed in the

following order: ribs, leading and trailing edge spars, upper and lower skins, and upper and lower stringers.

4.2.2. Optimization results

Figure 7 shows the variation of the load factor, the failure criterion, the lift-to-drag ratio, the wingbox mass

and the fuel burn as a function of the number of functional evaluations for the RAE case. Initially, the wing is

stiffened in order to lower the failure criterion. Once it has reached the prescribed value, the thickness of the

structural elements is redistributed, and the wing mass decreases. Overall the fuel burn smoothly decreases from

10.90 to 10.09 tons over 42 iterations. The reduction in fuel burn is solely due to the increase of the lift-to-drag

ratio, varying from 12.8 to 13.7, since the wingbox mass slightly increases from 1.27 to 1.34 tons.
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Figure 7: Variation of the load factor, the failure criterion, the lift-to-drag ratio, the wingbox mass and the fuel burn as a function of the number
of function evaluations for the RAE benchmark case.

The sectional pressure coefficient and the airfoil shape extracted at six stations along the span of the baseline

and optimized RAE wing are depicted in Figure 8. Note that Fig. 8b corresponds to the location of the wingbox

kink and that Fig. 8c corresponds to the location of the mean aerodynamic chord. Overall, the optimization

process has slightly modified the baseline RAE 2822 supercritical airfoil in order to suppress the strong shock

on the suction side of the wing, except near the trailing edge of the station located at 80% of the semi-span,

where a weak shock is still present. Consequently, the drag coefficient has been reduced from CD,baseline = 0.0307

to CD = 0.0284. Although the drag has decreased and the lift-to-drag ratio has increased, it is worth noting

that the optimizer produced bumps on the pressure side of the wing. While these bumps are barely noticeable

on the inboard section of the wing, they become more pronounced outboard. Furthermore, the presence of a

bump near the mid-chord reduces lift production locally and shifts the loads towards the trailing edge, especially

outboard. These bumps are probably due to the thickness constraint imposed at the rear spar, and to the inviscid

nature of the calculations. If the fluid were viscous, a boundary layer would be created, and any bumps would

produce more drag, which would drive the optimizer away from such a solution. Viscous effects can be taken into

account by complementing the full potential equation by the integral boundary layer equations through a viscous-

inviscid interaction method [66]. Such a coupling is currently being developed and implemented in DART [67, 68].

Alternatively, imposing the thickness to change uniformly along the chord might also help alleviate this issue,

probably at the cost of obtaining a less optimal solution. It should be mentioned that similar bumps were already

noticed in the context of aerostructural optimization based on the Euler equations [69].
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Figure 8: Sectional pressure coefficient and airfoil shape extracted at six stations along the span of the RAE wing at M∞ = 0.82. Blue: baseline
design, red: optimized design.

Figure 9 illustrates the thickness of the patches and the failure criterion on the elements of the baseline and

optimized structural wingbox for the RAE case. Overall, the thickness of the ribs has decreased uniformly to about

1 mm and that of the stringers is nearly left unchanged. Moreover, the thickness of the spars and the skin panels

has increased inboard, where the failure criterion was initially violated, while the thickness decreased outboard,

where the stresses are the lowest. Finally, the wingbox volume has decreased on the outboard region, where it is
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not constrained.

(a) Baseline thickness (m). (b) Optimized thickness (m).

(c) Baseline failure criterion. (d) Optimized failure criterion.

Figure 9: Thickness and failure criterion of the baseline and optimized structural wingbox for the RAE case.

The computation was run on a desktop workstation equipped with an AMD 3970X processor rated at 3.7

GHz. The mesh size, the number of gradient and functional evaluations, and computational time are given in

Table 9. Note that DART uses shared-memory parallelization while TACS and MELD use distributed-memory

parallelization. To avoid any conflict between the two strategies, TACS and MELD have been run on one process.

As such, the computational time could be reduced by enabling both shared and distributed memory parallelization.

N. aero. cells N. struct. cells N. grad. eval. N. func. eval. N. threads Wall-clock time

655 569 7 632 40 42 1 13 h

Table 9: Aerodynamic and structural mesh size, number of gradient and functional evaluations, number of threads and computational time
required for the RAE benchmark case.

5. Conclusion

In the present work, a discrete adjoint full potential formulation has first been developed to quickly compute

the flow solution and its gradients, so that they can be provided to an optimization process. More specifically,

analytical expressions for the full potential and the mesh morphing law residuals and gradients have been derived

and presented in this manuscript. The formulation was then implemented in an open-source and readily available

finite element code, DART, and integrated in an OpenMDAO-based framework, able to perform aerostructural

analysis and optimization suited for preliminary aircraft design. The methodology was subsequently demonstrated
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on two cases: an aerodynamic shape optimization of the Onera M6 wing, and an aerostructural optimization of a

typical regional jet wing. Overall, the results indicate that the gradients provided by the full potential formulation

are able to quickly optimize the shape and the structural thickness of wings. More specifically, the optimizer turns

the wing shape into supercritical airfoils adapted to transonic conditions, so that the strength of shockwaves and the

associated wave drag are reduced. Moreover, a washout is created along the wing span, such that the tip vortices

and the induced drag are reduced. Additionally, for aerostructural cases, the thickness of the structural wing box

increases where the stresses are high, and decreases where they are low. This redistribution produces a light wing

that respects the failure criterion of the material. The two calculations, performed on a desktop workstation, only

took 30 minutes and 13 core-hours. In the future, the integration of the code in the optimization framework will be

improved so that both shared and distributed memory parallelization can be used at the same time, hence further

reducing the computational cost. Although the aerostructural case presented in this work is representative of an

actual process, it remains quite simple. The next steps consist in improving the model, its parametrization, as

well as the formulation of the constraints and the objective function, following various ideas already present in

the literature. Particularly, a more detailed structural model, made of composite materials including more design

variables and non-aerodynamic loads, will be considered. Additionally, viscous effects will be accounted for by

resorting to viscous-inviscid interaction, whereby the full potential model will be complemented by the boundary

layer equations. Moreover, the planform shape will also be parametrized, so that the taper ratio, the sweep angle

and the dihedral angle of the wing are allowed to change. Consequently, the reference wing area will also have to

be adequately constrained. The internal volume of the wingbox will also be constrained by computing the actual

volume of the fuel tanks, rather than by imposing a ratio. Furthermore, the failure criterion will be constrained by

maneuvers, such as a 2.5 g pull-up, rather than by cruise conditions. Buckling constraints will also be considered.

The formulation of the objective function will also include the fuel burn in various flight conditions, and will not

be limited to the nominal cruise. Ultimately, the process will be applied on a full aircraft configuration, and will

also allow to recover the jig shape. The results will then be compared to higher-fidelity computations, such as

Reynolds-Averaged Navier-Stokes calculations.
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Appendix A. Numerical tools

The overall procedure used to solve the optimization problem 1 is illustrated in Figure A.10 using the eXtended

Design Structure Matrix (XDSM) tool [73] 12, and the different software used in the present work are briefly

described in the next paragraphs.

The optimization process is solved using MPHYS 13, a modular multiphysics simulation package built on top of

the OpenMDAO framework [54] 14, that particularizes it to analysis and optimization calculations usually performed

during aircraft design, such as aerodynamic analysis, aerostructural optimization, etc. More specifically, MPHYS

automatizes the connection of the different software components used in the optimization process and required by

OpenMDAO. The code is open-source and is developed jointly by NASA 15 and the MDO Lab of the University of

Michigan 16.

The aerodynamic meshes are created using Gmsh [57] 17, a three-dimensional unstructured mesh generation

software. The code is actively developed at the University of Liège.

The aerodynamic surfaces are parametrized using pyGeo [58] 18, a set of python tools providing geometry

manipulation features. More specifically, pyGeo allows to parametrize and constrain a geometry, represented by a

surface grid, using the free form deformation technique [59]. It then allows to deform that geometry according to

some design parameters, and to provide the sensitivities of the surface deformation with respect to these parameters.

The code is open-source and developed by the MDO Lab.

The aerodynamic full potential equation is solved using DART [21] 19, a finite element code designed to quickly

compute inviscid transonic flows. DART allows to calculate the aerodynamic loads and to provide the sensitivities

of flow functionals using analytic gradients. The volume mesh deformation procedure in also embedded in DART.

The code is open-source, written in C++ and interfaced in python, and developed at the University of Liège.

The structural equations are solved using TACS [60, 61, 62, 63] 20, a finite element code dedicated to the

analysis of composite structures. TACS allows to compute the deflection of the structural model when it is subjected

to external loads, and to provide the sensitivities of structural functionals using analytic gradients. The code is

written in C++ and interfaced in python. It is developed both by the SMDO group at Georgia Tech 21 and the MDO

Lab.

Since the structure and the aerodynamic equations are solved on different grids, the relevant data need to be

interpolated from one mesh to another. MELD [64] 22 implements such a transfer scheme, and is used to pass the

12https://github.com/mdolab/pyXDSM, accessed March 2022.
13https://github.com/OpenMDAO/mphys, accessed March 2022.
14https://openmdao.org/, accessed March 2022.
15https://www.nasa.gov/, accessed March 2022.
16https://mdolab.engin.umich.edu/, accessed March 2022.
17http://gmsh.info, accessed March 2022.
18https://github.com/mdolab/pygeo, accessed March 2022.
19https://gitlab.uliege.be/am-dept/dartflo, accessed March 2022.
20https://github.com/smdogroup/tacs, accessed March 2022.
21http://gkennedy.gatech.edu/, accessed March 2022.
22https://github.com/smdogroup/funtofem, accessed March 2022.
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aerodynamic loads to the structural mesh and the structural displacements to the aerodynamic mesh. The code is

written in C++ and interfaced in python, and is developed by the SMDO group.
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Figure A.10: eXtended Design Structure Matrix of a generic aerostrucutral optimization process. The processes illustrated in green are explicit
while those depicted in red are implicit.
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Appendix B. N2 diagrams

The N2 diagram representing the optimization process of the Onera M6 case is depicted in Figure B.11.
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Figure B.11: N2 diagram for the shape optimization of the Onera M6 wing. The input variables are displayed in green, the output variables are
in grey, and the implicit (state) variables are in yellow.

The N2 diagram representing the optimization process of the RAE case is depicted in Figure B.12. Note that

the variables have been collapsed due to their large number.
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Figure B.12: N2 diagram for the shape optimization of the RAE wing.
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