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New translational metabolomics exploration of Age-related macular degeneration: 
improving risk assessment and « real-life » patient’s follow-up 

 

In this work, an NMR-based metabolomics approach was applied to the study of age-related 

macular degeneration (AMD) in way to explore several challenges linked to patient’s 

management: (1) patient’s stratification; (2) evaluation of disease progression and patient’s 

responses; and (3) early diagnostic. To achieve these goals, blood derived samples coming from 

two different cohorts were analyzed. The first cohort consist of plasma samples collected from 

AMD patient in active and inactive phase of the disease and from healthy volunteers. NMR-

based metabolomics analysis of these samples will provide us information about disease status 

and patient stratification. For the second cohort, a follow-up of 32 advanced AMD patients 

under treatment over a period of two years (269 time points) was made. At each time point, 

clinical data regarding nAMD patients’ status was collected and used for biomarker discovery. 

NMR metabolomics approach was used to correlate changes among the metabolome with AMD 

patients’ evolution. The last cohort is composed of blood derived samples collected from 471 

people with no sign of AMD and followed during a period of 7.8 years. During this period, 

blood samples and clinical data regarding their AMD incidence were recorded. NMR-based 

metabolomics and lipidomics analyses aimed to highlight spectral signatures of AMD 

incidence, representing a unique opportunity to improve AMD risk assessment for elderly 

population.  The main objectives of this thesis were to provide new tools able to improve 

patients’ management and identify key metabolites linked to disease occurrence and evolution. 
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Nouvelle étude métabolomique translationnelle de la dégénérescence maculaire liée à 

l’âge : Amélioration de la prédiction du risque et suivis du patient. 

 

Ce travail de thèse décrit l’application de l’approche métabolomique par RMN pour étudier 

la dégénérescence maculaire liée à l’âge (DMLA). Le but de cette étude était d’explorer 

comment l’approche métabolomique pourrait être utilisée afin de relever différents challenges 

associés à cette pathologie : (1) diagnostic précoce ; (2) stratification du patient ; et (3) 

évaluation de la progression de la maladie et de la réponse du patient au traitement. Pour 

atteindre ces objectifs, des échantillons sanguins provenant de différentes cohortes ont été 

analysés. La première cohorte de patient comprend des échantillons de plasma prélevé chez des 

patients atteint de DMLA exsudative en phase active, non active et chez des patients sains. 

L’analyse de cette cohorte via de nouveau outils et les informations supplémentaires apportées 

nous permettrons d’identifier les biomarqueurs en lien avec la stratification du patient. Pour la 

seconde cohorte, un suivi longitudinal de 32 patients en cours de traitement pour leurs DMLA 

exsudative a été réalisé sur une période de deux ans (269 points de contrôle). A chaque visite, 

des informations concernant le statu pathologique du patient ainsi que des échantillons sanguins 

et des mesure biochimiques ont été collectés dans le but de découvrir de nouveaux 

biomarqueurs permettant d’évaluer la réponse au traitement et la progression de la maladie. La 

troisième et dernière cohorte se rapporte aux échantillons sanguins collecté auprès de 471 

personnes exempte de DMLA et suivie sur une période de 7,8 ans. Durant cet interval de temps, 

les échantillons sanguins ainsi que les données cliniques se rapportant au développement de 

leurs DMLA ont été enregistrés. Cette cohorte représente une opportunité unique d’appliquer 

l’approche métabolomique par RMN afin de découvrir de nouveaux biomarqueurs précoces de 

la pathologie. L’objectif global de ce travail était donc la mise en place de nouveaux outils afin 

de mieux diagnostiquer le patient et d’améliorer son suivi au cours de l’évolution de la 

pathologie. Ceci, dans le but de proposé une thérapeutique alternative et mieux adaptée au 

besoin du patient. 

 

  



- 8 - 
 

 

 

Abbreviation complete name Abbreviation complete name

AI-bucketing Adaptative Intelligent bucketing PLS Partial Least Square
AMD Age related Macular degeneration POS Photoreceptor Outer Segment
AsLS Asymetric Least Square smooting PQN Probabilistic Qotient Normalization
AUC Aera Under the Curve PSA Protstate-Specific Antigen
BER Balanced Error Rate PTW Parametric Time Warping
BM Bruch's Membrane ROC Recieving Operator Characteristic
BMI Body Mass Index ROS Reactive Oxygen Species
CFH Complement Factor H RPE Retinal Pigment Epithelium
CLS Constrained Line Shape RR Relative Risk
CNV Choroidal NeoVascularization SNR Signal to Noise Ratio

COSY Correlation Spectroscopy SRF SubRetinal Fluid
CSN Constant Sum Normalization SVM Support Vector Machine
DA Discriminant Analysis TNF Tumor Necrosis Factor

DCA Dichloroacetic Acid VA Visual Acuity
ELM External Limiting Membrane VEGF Vascular Endothelial Growth Factor
FA Fluorescein Angiography VIP Variable Importance in Projection

FGF Fibroblast Growth Factor VLDL Very Low-Density Lipoprotein
FID Free Induction Decay
GA Geographic Atrophy
GC Gas Chromatography

HDL High-Density Lipoprotein
HIFs Hypoxia Inducible Factors

HPLC High Performance Liquid Chromatography
HSQC Heteronuclear Single Quantum Correlation

IDL Intermeridate Density Lipoprotein
ILM Internal Limiting Membrane
IRC Intraretinal Cystoid Fluid
LC Liquid Chromatography

LDL Low-Density Lipoprotein
MAC Membrane Attack Complex

MMPs Matrix MetalloProteinases
MS Mass Spectrometry
MSI Metabolomics Standard Initiative

nAMD neovascular Age related degeneration
NIH National Institutes of Health

NMR Nuclear Magnetic Resonance spectroscopy
NN Neural Network

OCT Optical Coherence Tomography
OPLS Orthogonal Partial Least Square
PCA Principal Component Analysis
PCR Principal Component Regression

PDGF Platelet-Derived Growth Factor
PDH Pyruvate Dehydrogenase 
PDK Pyruvate Dehydrogenase Kinase
PED Pigment Epithelial Detachment
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1 Introduction 

1.1 Age-related Macular Degeneration (AMD) 

1.1.1 Background of AMD 

Age-related macular degeneration (AMD) is the leading cause of vision loss among elderly 

population in the Western countries1. The prevalence of AMD increases with aging and, since 

the growth of our life expectancy, the number of projected cases is likely to rise in a dramatic 

manner. In 2014, Wong et al projected an increment of 47% between 2020 and 2040 reaching 

288 millions of cases2. 

 

Clinically, AMD is classified in three different stages and 90% of the vision loss caused by 

AMD are due to its last stage, named neovascular Age-related Macular Degeneration (nAMD). 

Despite recent advance in the management of AMD patient and the development of anti-

vascular endothelial growth factor (anti-VEGF) therapy to treat advanced form of AMD, no 

permanent cure for this disease has been found. Indeed, the complete physiopathology and the 

age-related change that induce AMD and led to nAMD remains unclear. For these reasons, 

there is a need to study this complex pathology by using patient driven approaches such as 

Metabolomics in the context of personalized medicine. 

 

In this chapter, we will first focus on describing the pathology and its evolution through the 

different stages of the disease. We will put light on the epidemiology and the different risk 

factors that play key roles in this complex multifactorial pathology and explain the current 

strategy for prevent AMD. Finally, the current medicinal practice available and the management 

of patient will be discussed.  
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1.1.2 Stages of AMD 

Age-related macular degeneration is a pathologic condition affecting the macula and is 

responsible of 8.7% of all blindness worldwide3. The macula is the central part of the retina 

responsible of the central vision. That specific region of the eye has a particular importance due 

to its high density of cones photoreceptive cells that allow high acuity vision4. Macular 

degeneration leads to a loss of central vision needed for daily activities that requires detailed 

vision such as driving, reading or face recognition. Peripheral vision may rest intact but the 

impairments due to AMD conduct to a decrease of independent living since it leads to a loss of 

ability performing daily and basic task5. This makes AMD have a profound impact in quality 

of life for those who are diagnosed. 

 

Figure 1. a) Representation of light travel to the eye hitting the central part of the retina called the Macula; b) 

Representation of the different component in a segment of the retina within Macula, the most affected structure in 

AMD are: the Retinal Pigment Epithelium (RPE), which is involved in removing waste from photoreceptive cells; 

the Bruch’s membrane (BM) which is the barrier between the retina and the peripheral tissues; the blood vessels 

within the Choroid that is organized in three layers that vascularize and supply the outer retina with nutrient, and 

maintain the temperature and the volume of the eye. The peculiarity of the macula compared to the remaining 

retina is additional layers of ganglion cells and a higher ratio of cone versus rod photoreceptive cells (adapted 

from6). 
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Figure 1. Structure of a normal eye and retina. (A) Diagram of the transverse section of a normal human eye at the level of the optic nerve.
The major structures are indicated in the diagram. Near the centre of the eye is an oval area of ∼1.5 mm in diameter called the macula
(under the yellow bracket), which is the site of pathological changes in age-related macular degeneration (AMD). In the centre of the
macula is the fovea, a pitted structure that contains the highest concentration of cone cells and is responsible for central, high-resolution
vision. The structure of a segment of the retina indicated in the yellow-boxed region is shown in panel B. (B) Cell types and structures in a
segment of the retina within the macula. The most important structures that are affected in AMD are in the posterior of the retina and
include the retinal pigment epithelium (RPE), which removes metabolic wastes generated by the photoreceptor cells; Bruch’s membrane,
which serves as a barrier between the retina and the peripheral tissues; and the blood vessels in the choroid, which nourish the outer
retina. Extracellular matrix proteins in Bruch’s membrane are produced by the RPE cells and endothelial cells in the choroid, and organize
into three layers as indicated. The choroid contains three vascular beds: the choriocapillaris is a network of capillaries; Sattler’s layer
consists of arterioles and venules; and Haller’s layer consists of small arteries and veins that connect to the peripheral circulation. Two
prominent features distinguish the macula from the peripheral retina: it contains two or more layers of ganglion cells and has a higher
ratio of cone versus rod photoreceptor cells.

called Haller’s layer [4–8] (Figure 1B). Several unique
functional and structural features are associated with
the choroidal vasculature. Relative to the retinal and
brain vasculatures, capillary diameters, blood flow, and
oxygen tension in the choroidal microvessels are higher
(reviewed in refs 9–11). Despite high blood flow in
the choroidal vessels, the microvessels are sparsely
ensheathed by special mural cells that lack interme-
diate filaments [12,13]. In fact, pericyte coverage in
human macular choriocapillaries is estimated to be only
11%, as opposed to 94% for retinal capillaries [12].
These unique features may render the microvessels in
the choroid more prone to undergo structural changes
if the system is stressed.

Pathological changes in the choroidal vasculature
underneath the macula lead to NVAMD. In NVAMD,
angiogenesis and oedema from choroidal vessels
disrupt the overlying structures including Bruch’s
membrane, the RPE, and the photoreceptors, resulting
in focal retinal detachment and vision loss (Figure
2). Although NVAMD accounts for 10–25% of
patients with macular drusen and ∼50% of patients
with advanced AMD [14,15], it presents a significant
medical challenge since it causes more severe and

rapid vision loss than other forms of AMD. For
example, in a study evaluating 103,582 individuals
developing NVAMD, about 16% would become
legally blind in 2 years without treatment [16].

Classification
NVAMD is typically diagnosed by the following phe-
notypes in fundus photographs of the macula: RPE
and/or retinal detachment, exudates (lipid degrada-
tion products left behind from a previous oedema),
fibrovascular scars, and haemorrhage in a small subset
of patients [17]. Using more advanced imaging tech-
niques such as fluorescein angiography (FA) and opti-
cal coherence tomography (OCT), the vascular lesions
in NVAMD are classified into three subtypes: classic,
occult, and minimally classic lesions. These subclasses
were defined operationally according to the filling
patterns of fluorescein: well-defined lesions that leak
fluorescein rapidly before the complete filling of reti-
nal vessels are termed classic lesions, whereas occult
lesions leak more slowly with poorly defined margins
[1]. Some lesions contain both patterns and are often
classified as minimally classic lesions as the occult
pattern usually dominates. The mixed pattern lesions

Copyright  2013 Pathological Society of Great Britain and Ireland. J Pathol 2014; 232: 151–164
Published by John Wiley & Sons, Ltd. www.pathsoc.org.uk www.thejournalofpathology.com



- 17 - 
 

Clinically, AMD is classified on three distinct stages: (i) the early asymptomatic retinal 

abnormalities, an intermediate form of the pathology, (ii) the geographic or atrophic form, 

called also “dry” AMD, and (iii) the neovascular or exudative form (nAMD or “wet” AMD). 

The last two stages represent the most severe form of the pathology, and although nAMD 

account for only 10~25% of all AMD patients, 16% of these would become legally blind in 2 

years if untreated7. 

 

In its earliest stage, patients with early AMD exhibits drusen, lipids and proteins deposits, 

located between the retinal pigment epithelium (RPE) and the Bruch membrane (BM)8 as it’s 

shown in Figure 2. At this stage, the patients are mostly asymptomatic or may notice mild 

central distortion, difficult dark adaptation or reading difficulties9.  The prevalence of drusen 

deposit increases with age; indeed, after the age of 60 approximatively one quarter of the 

population have drusen deposits while more than the half of adult with AMD are concerned10. 

Drusen are composed of various component including neutral lipids with (un)esterified 

cholesterol9, more than 129 different proteins, zinc and iron ions11. Despite the fact that their 

composition remains mostly unchanged, their larger size is used to classify people with early 

AMD12. 

 

 

Figure 2. Representation of a retina with early/intermediate AMD. Drusen are accumulation of lipid and 

protein wastes are the hallmark of early/intermediate AMD. Drusen can disrupt the Bruch’s membrane, alter its 

function, and impede the RPE’s capability to transport waste across the Bruch’s membrane. Activated microglia 

present in the outer retina is a sign of local inflammation (adapted from6).  
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Figure 2. Retinas with dry AMD. (A) Diagram of a retina with early or intermediate AMD. Accumulation of lipid and protein wastes in
droplets called drusen is the cardinal feature of early and intermediate AMD. Drusen disrupt the barrier function of Bruch’s membrane
and hampers the RPE’s ability to transport waste across Bruch’s membrane. The choriocapillaris is less dense in patients with early or
intermediate AMD. Inflammation in the outer retina is evident by the presence of activated microglia cells. (B) Diagram of a retina with
geographic atrophy (GA). At this advanced stage of AMD, Bruch’s membrane is severely disrupted; RPE and photoreceptor cell atrophy
and loss are pronounced; loss of other retinal cell types including horizontal cells, bipolar cells, and amacrine cells are evident; the
choriocapillaris is poorly perfused; and inflammation is prominent as activated microglia and macrophages are abundant in the degenerated
area.

may reflect an intermediate step in the development of
classic lesions from occult lesions [18]. Histology anal-
yses revealed that classic lesions consist of neovessels
penetrating through the RPE layer and reach the outer
segment of the retina, although about half of the clas-
sic lesions also contain pathological vessels beneath
the RPE layer (Figure 3B); occult lesions consist of
leaky and/or angiogenic vessels confined beneath the
RPE [19,20] (Figure 3A). Surprisingly, progression
of neovascular lesion sizes appears to be independent
of lesion subtypes, but is dependent on the duration of
exudative disease [21], suggesting that the angiogene-
sis stimuli might be similar between the subretinal and
intraretinal locales.

Pathological drivers
Choroidal neovascularization (CNV) in NVAMD is
likely a secondary reaction instigated by other patho-
logical alterations that happened earlier in life. Stress
or damage in the RPE and the associated immune
responses are believed to promote the production of
pro-angiogenic factors, thereby driving CNV [22]. In
addition, degenerative changes within the choroidal
vasculature are another plausible cause of pathological

angiogenesis. Examination of early AMD lesions indi-
cated that loss of vessels and/or reduction of perfusion
in the choriocapillaris and Sattler’s layer precedes
the formation of pathological vessels, and vascular
loss is often accompanied by the accumulation of
macrophages and foreign body giant cells as well
as early signs of angiogenesis such as endothelial
cell and pericyte activation [7,23–26]. These asymp-
tomatic vascular changes may result in hypoxia and
up-regulate angiogenic factors in the choroid, leading
to the formation of pathological vessels. Among the
angiogenic factors investigated, VEGFA is found to
be a key factor in animal models and human NVAMD
patients [27–32], and VEGFA inhibitors have proven
to be effective in treating NVAMD in the clinic
(reviewed in refs 33–35). OCT and FA imaging in
clinical trials demonstrated that VEGFA inhibitors
significantly reduced oedema and in some cases also
regressed pathological vessels (see data summary in
ref 34). Since vision improvements have been docu-
mented in patients with oedema control but not CNV
regression [36], reduction of vascular permeability
is believed to be the main mechanism of VEGFA
inhibitors. However, pathological vessel regression
may increase the duration of treatment effect [37].

Copyright  2013 Pathological Society of Great Britain and Ireland. J Pathol 2014; 232: 151–164
Published by John Wiley & Sons, Ltd. www.pathsoc.org.uk www.thejournalofpathology.com
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The two last stages are associated with severe visual acuity depletion (Figure 3), and the two 

forms responsible for this impairment are the so-called exudative or neovascular AMD (nAMD) 

and geographic atrophy (GA). Early symptoms of late AMD include distorted vision when 

driving, watching television or reading, and dark spot in the center of vision that can lead to 

difficult face recognition abilities11. Most of the symptoms might not be perceived until both 

eyes are impacted by the disease. As late AMD could progress rapidly, especially for the 

exudative form, early diagnostic and proper patient follow-up are mandatory.  

 
  

Figure 3. “Amsler chart to test your sight”: The Amsler grid is used to test the vision by checking whether the 

lines look wavy, distorted or whether areas of the visual field are missing. This self-vision test is a common way 

to detect early changes caused by worsening AMD or other macular disorders. On the right is represented the 

result of a healthy eye looking at the grip. On the left is shown the result of advanced AMD with all the common 

symptoms impacting the central vision (image from the "community eye health journal”: cehjournal.org). 

  

NORMAL AMD
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Geographic Atrophy (GA) accounts for approximatively 35~40% of all last stage AMD 

cases13. This form is characterized by localized deterioration of retinal pigment epithelium 

(RPE) that led to area in which blood vessels are visible14. Some pigmentary alteration may be 

also present with either hypo or hyperpigmentation surrounding the area of the macular atrophy. 

A population-based study showed that lesion could be local or multifocal, the latter are more 

likely to invade the foveal part of the macula located in the center and decrease the visual acuity 

dramatically15. Up to now, no effective therapeutic strategies can prevent or treat patients with 

GA. Some studies investigated the role of inflammation, mitochondrial dysfunction, oxidative 

stress, lipid abnormalities and cell death in GA, but the precise mechanism of this pathology 

remains unclear.  

 

Therefore, the elucidation of the complex mechanistic pathways involved on the development 

of geographic atrophy from early AMD is mandatory to assess proper prevention and 

therapeutic strategy. Thereby, in 2019, Handa et al. suggested that the future direction in dry 

AMD research should integrate omics, pharmacological and clinical data into mathematical 

model in way to predict disease onset and progression, identify biomarker, establish 

mechanism, and monitor response to therapy. Developing personalized medicine approach 

driven by data obtained from large cohort study, should be a cornerstone in the treatment of dry 

AMD patients.  

 

Neovascular AMD (nAMD) is the last and most severe stage of the disease. Almost 50% of 

all advanced AMD cases are due to this form, whose rapid evolution and dramatic decrease of 

visual acuity made of it a significant clinical challenge. nAMD is characterized by abnormal 

choroidal neovascularization process that led to a disruption of the Bruch membrane, the retinal 

pigment epithelium (RPE) and the photoreceptors, resulting in focal retinal detachment and 

vision loss. The retina is vascularized by two independent circulatory systems, the choroid, and 

the retinal vessels. The inner part receives oxygen and nutrient via the retinal system while the 

outer part is avascular and is supplied by the choroid. 

 

As depicted in the Figure 4, the choroid is composed of three vascular beds: from the bottom 

to the top, a layer of small arteries and veins that connect the peripheral circulation (Haller’s 

Layer); Sattler’s layer that consist of arterioles and venules; and the choriocapillaris, a network 

of capillaries6.  
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Lying on the top of the choroid, the Bruch’s membrane (BM) serves as a barrier between RPE 

and choroid. While BM allows to nutrient pass from choroidal vessels to RPE and 

photoreceptive cells, RPE allows renewal of photoreceptive cells by removing metabolic waste, 

absorb the excess of photons and reduce the oxidative damage to the retina16. In nAMD, change 

in the choroidal vasculature disrupt the overlying structure including Bruch’s membrane, the 

RPE and the photoreceptors. This abnormal choroidal neovascularization (CNV) process led to 

visual impairment that, if not treated, conduct to legal blindness.   

154 M van Lookeren Campagne et al
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Figure 3. Retinas with wet AMD. (A) Diagram of a retina with occult neovascular AMD. Bruch’s membrane is disrupted by neovessels
growing out from the choriocapillaris. Fluids released from the leaky neovessels accumulate under the RPE in the subretinal space,
distorting the local structure and causing stress in the RPE and photoreceptor cells. The choriocapillaris is sparse and poorly perfused.
Inflammation is evident by the presence of activated microglia and macrophages. CNV = choroidal neovascularization. (B) Diagram of a
retina with classic neovascular AMD. A classic lesion shares many similar pathological features with an occult lesion but also has the
following additional phenotype: neovessels now breach the RPE layer and advance into the photoreceptor layer, resulting in intraretinal
fluid accumulation in addition to subretinal fluid; RPE and photoreceptor loss and stress are evident. The neovessels in a classic lesion leak
more rapidly than those in an occult lesion, and they are believed to be more actively growing. Many cell types and structures in Figures 2
and 3 are indicated in Figure 1 and not labelled again.

In addition to the aforementioned pathological
drivers, genetics also plays an important role in the
risk and progression of NVAMD (see the Genetics of
AMD section below).

Preclinical models
Modelling human AMD presents considerable chal-
lenges including replicating advanced age, complex
genetics, and decades of environmental exposures that
contribute to disease development. Equally important,
the rodent models are limited due to the fact that they
lack specialized retina anatomy such as the macula.
No models currently recapitulate the full spectrum of
pathology for either dry AMD or NVAMD; however,
some features of the vascular lesions in NVAMD have
been modelled.

As discussed above, CNV is a cardinal feature in
NVAMD. On the basis of work from Ryan [38], CNV
is now reliably induced in rats [39], mice [40], and
various non-human primates [41,42] by laser that
ruptures Bruch’s membrane and induces angiogenesis
in the choriocapillaris. These CNV models in mice and

monkeys have proven valuable in proof-of-concept
experiments towards drug development of VEGFA-
pathway inhibitors. Species-appropriate VEGFA
inhibitors potently prevent new vessel growth, control
vessel permeability, and in some studies regress patho-
logical vessels [28,43,44]. The pathology developed in
these models is primarily driven by VEGFA activity.
As a result, demonstrating efficacy beyond anti-
VEGFA in these preclinical models is a considerable
challenge.

Laser photocoagulation in aged mice induces lesions
more long-lived and complex than those developed
in younger animals [45]. The rat model has also
been exploited given that vascular lesions are more
durable [46,47], and repeat local dosing is technically
more feasible. Several techniques including FA, rodent
focal electroretinography, and OCT enable longitudinal
monitoring of CNV development and responses to
therapies.

Subretinal injection of VEGFA-containing gelatin
microspheres [48] or Matrigel [44] also induces CNV
lesions, which are exquisitely sensitive to VEGFA
inhibition. Surgical rupture of Bruch’s membrane

Copyright  2013 Pathological Society of Great Britain and Ireland. J Pathol 2014; 232: 151–164
Published by John Wiley & Sons, Ltd. www.pathsoc.org.uk www.thejournalofpathology.com

Figure 4. Representation of a retina with a) occult and b) classic neovascular AMD (nAMD). Both share identical pathologic 

features with the disruption of the Bruch’s membrane by growing neovessels and fluids leakage accumulating under the RPE in 

the subretinal space distorting the local structure and causing stress in the RPE and photoreceptive cells. In the classic expression 

of nAMD, the neovessels break the RPE layer and invade the photoreceptor layer which result in intraretinal fluid accumulation. 

RPE and photoreceptor stress and loss are evident and thus this process impact the vision in a dramatic way (adapted from6). 
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1.1.3 Mechanism involved in AMD progression 

AMD is a complex and multifactorial disease, it’s occurrence and progression through the last 

stage involves at least four processes named: lipofuscinogenesis, drusogenesis, local 

inflammation and neovascularization (for the wet form)17–23.  

Figure 5. Main processes involved in the occurrence and progression of AMD: lipofuscin formation; drusen 

formation; local inflammation; and neovascularization. (POS: photoreceptor outer segment; RPE: retinal 

pigment epithelium; CFH: complement factor H)24 

 

RPE have a variety of supportive and metabolic function that are of peculiar importance for 

retinal photoreceptors such as: maintenance of the blood-retina barrier, participation to the 

visual cycle (uptake, processing, transport and release of vitamin A derivative), and phagocytic 

uptake and degradation of excreted photoreceptor outer segments (POS)25. Thus, it is not 

surprising that impairments of RPE cell function is considered as an early and crucial event in 

the molecular pathway leading to AMD21,22. Indeed, age-dependent phagocytic and metabolic 

insufficiency of postmitotic RPE cells is one the main driving force of its dysfunction. This 

process leads to a progressive and accumulation of lipofuscin granules, also called “age 

pigment”, mostly composed of lipids and proteins of phagosomal, lysosomal and 

photoreceptors origins. These components are modified at various levels by oxidative processes 

resulting of either exposure to light and the presence of high oxygen levels in the eyes26; some 

of them, such as bisretinoid fluorophore, are cytotoxic and potent photo-inducible generator of 

reactive oxygen species (ROS) that can damage proteins, lipids and therefore impact the RPE 

function22.  

Lipofuscin

Drusen

Inflammation(chronic)

Neovascularization

AMD (wet form)

POS, RPE

RPE Choriocapillaries

↓CFH

Complement
activation

Other factors?



- 22 - 
 

Drusen are considered as characteristic of AMD. Clinically, they are divided in two types 

named “hard” and “soft” drusen, depending on their relative shape and size. Herein, the 

presence of numerous, larger size, hard and soft drusen is considered as a major risk factor for 

developing advanced AMD forms and losing central vision. Studies demonstrated that 

photoreceptors overlying drusen undergoes to degenerative changes; the negative impact of 

drusen on these photoreceptors relies on their physical displacement from the RPE and on their 

direct influence on the immune system and local inflammation. Indeed, proteomic and 

immunohistochemical studies performed on drusen of AMD patients indicated an implication 

of the complement system in the pathophysiology of AMD17,20,27.  

 

The complement system is part of the innate immune system that acts as a first line of defense 

fighting against invading pathogens; three different pathways can activate it by leading to the 

formation of the membrane attack complex (MAC), anaphylatoxin C3a and C5a that further 

lead to inflammation. In small amount, MAC is sub-lytic (does not lead to lysis) protective 

during inflammation, in contrast when the number of MAC reaches a given threshold, it 

becomes lytic and leads to membrane disruption and cell death28,29. Prior to MAC formation, 

the complement system results in the production of powerful pro-inflammatory molecules 

anaphylatoxin C3a and C5a. These molecules have chemoattractive effect on macrophages that 

express the respective receptors C3aR and C5aR. Such macrophages has been shown to be 

implicated in AMD as they exhibits both pro- and anti-angiogenic role in choroidal 

neovascularization process27,30–32. In fine, local inflammation and activation of the complement 

cascade, with uncontrolled generation of MAC, contribute to drusogenesis, RPE and 

photoreceptor degeneration, and Bruch’s membrane disruption, these events are associated with 

late stage of AMD. 

 

Choroidal neovascularization (CNV) process is the hallmark of the last stage of the disease 

called wet/exudative or neovascular AMD (nAMD). CNV process take place within the choroid 

and can be defined as an abnormal growth of blood vessels. These new neovessels are more 

permeable and may bleed causing leaking of fluid across BM and the RPE. Indeed, the fluid 

released form leaky neovessels is accumulating in the retinal subspace, leading to a distortion 

of the local structure, and causing important stress to the RPE and photoreceptors. Additionally, 

neovessels can break the BM, the RPE and invade the photoreceptors layer. The resulting 

intraretinal fluid is accumulating in addition to the subretinal ones and cause RPE and 
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photoreceptors stress and loss6. These events made nAMD patients developing central scotoma 

and in the worst-case cause legal blindness.  

Figure 6. Hypoxia and inflammation processes leading to choroidal neovascularization. By creating a cellular 

and molecular milieu promoting pro-angiogenic mechanisms, immune reaction and inflammation may play a key 

role in the development of nAMD. (H-1α: hypoxia-inducible factor-1α; VEGF: vascular endothelial growth 

factor; VEGF-R1,-R2: receptors of VEGF; NP: neuropilin; FGF: fibroblast growth factor; FGF-R1,-R2: 

receptors of FGF; TNF-α: tumor necrosis factor; MMPs: matrix metalloproteinases; PIGF: placenta growth 

factor; PDGF; platelet-derived growth factor: PR39: proline- and arginine-rich peptide)24 

 

Two main processes are involved in CNV development and progression (Figure 6), 

angiogenesis and inflammation33. Continuous stress or degradation in the RPE and the 

associated immune response promote the production of pro-angiogenic factors; among these, 

VEGFA, commonly named VEGF, is found to be a key factor in both animal and human model 

of nAMD34–36. Furthermore, in animal model, VEGF blocking treatment are proved to reduce 

the laser-induced CNV process in treated mice37,38. In physiologic condition, the upregulation 

of proangiogenic component such as VEGF is involved in the response to tissue hypoxia. This 

response is mediated by the hypoxia inducible factors (HIFs) transcription regulators and some 

of these factors has been recently discovered in active CNV patients39. In addition to this 

immune reaction, it’s tough that there may be a role for local inflammation as a process that 

leads to an unbalanced increase in pro-angiogenic activity. In fact, this pathway passes through 

the recruitment of monocytes, macrophages and neutrophils that together will trigger the release 

of VEGF and lead to neovascularization.  
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1.1.4 Risk factors and prevention 

The precise mechanism of AMD development going from early stages to pathologic CNV is 

still poorly understood. However, findings from ongoing studies underlines the fact that the 

pathogenesis of AMD is resulting from a complex multifactorial interaction between metabolic, 

functional, genetic and environmental factors40.  

 

If the impact of age has not to be demonstrated, the genetic predisposition to AMD has been 

assessed between 46 to 71% in studies conducted on 840 twins41. Furthermore, a Genome Wide 

Association Study published in 2015 reported a study of more than 12 million variants analyzed 

on 16,144 patients and 17,832 controls. From these, 52 independently associated variant across 

34 loci (position on a fixed chromosome) were identified as the first genetic association signal 

specific to nAMD42. These variants were proven to play a role in controlling immune response, 

inflammatory processes, retina homeostasis, and therefore correlated to dysfunction of these 

reactions in AMD affected patients43. It’s evident that risk factors coming from genetics cannot 

be overcome, nevertheless some others attributed to the lifestyle, the diet and nutrition can be 

modified in the way to reduce the prevalence of AMD and its development (Figure 7).  

 
Figure 7. Schematic representation of interconnectivities between environmental and genetic risk factors 

linked to AMD44. 
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Smokers of >40 years old are from two or four time more likely to develop AMD in 

comparison to nonsmokers of the same age. In fact, after aging, smoking is the strongest risk 

factor for AMD and progression to its last stage45. Other lifestyle risk factors associated with 

AMD are obesity, physical activity, and diet. Several studies demonstrated that early AMD 

patients with obesity and/or higher body mass index (BMI) had more chances for progression 

of AMD to advanced stages compared to patients with lower BMI46,47. Similarly, practicing 

vigorous physical activities three times a week reduced the risk of AMD progression by 25%47. 

  

In line to these findings, dietary factors including antioxidant and dietary fat intake influence 

the onset and progression of AMD44. On one hand, the intake of carotenoids, such as lutein and 

zeaxanthin, or other antioxidants from food was investigated in several studies and was 

associated with a lower risk for AMD48,49,50. Since Lutein and zeaxanthin are macular pigments, 

their relevance for AMD is not surprising because of their physiologic function and location in 

the retina51. Minerals such as zinc or copper may also play a role in antioxidant functions of the 

retina. Regarding these findings, the impact of high dose supplementation with different 

vitamins, carotenoids and minerals was evaluated for prevent AMD and vision loss52. On the 

other hand, higher dietary intake of fat was proven to increase risk of AMD. Indeed, there are 

reported associations between saturated and unsaturated fats, cholesterol, linoleic acid intake 

and an AMD occurrence53–55. However, some studies have pointed out the positive effect of 

omega-3 fatty acid effect. Omega-3 fatty acid is found in high quantities in fatty fish and nuts 

and may exert a protective effect on macular degeneration because of its antioxidative, anti-

inflammatory and anti-angiogenic properties56,57. Omega-3 fatty acids supplementation was 

studied but shown controversary results58. Moreover, a recent study showed that adopting a 

mediterranean diet, which is characterized by high consumption of plant foods, fish and olive 

oil as the first source of fat, reduces the risk of incident advanced AMD by 41%59,60. 

 

Other risk factors such as higher blood pressure, diabetes, cataract surgeries and light exposure 

have been also associated with an augmentation of risk to develop AMD. In 2010, a systematic 

review of the current literature including 18 prospective and cross-sectional studies and 6 case 

control studies involving 1113,780 persons with 17,236 cases of late AMD estimated the 

association between advanced AMD and 16 pre-selected risk factors. They’ve classified the 

increased age, tobacco uses, previous cataract surgery and family history of AMD as strong risk 

factors, whereas increased BMI, previous cardiovascular disease, hypertension and higher 

plasma fibrinogen were found to be moderate risk factors61. 
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The prevention strategy for AMD is mainly based on the management of modifiable risk 

factors62. In way to lower risk of AMD (or slow its progression), the National Institutes of 

Health (NIH), recommends stopping smoking, have a regular physical activity combined with 

healthy foods diet rich in leafy green vegetables and fish, and take under control blood pressure 

and cholesterol levels (figure 8). In addition to these, the over 60s are recommended to pass 

annually eye examination in way to allow early diagnosis and better chance to fight the disease. 

 

 
Figure 8. Recommendation for AMD prevention provided by the National Eye Institute (NEI). NIH is an 

American health institute that aim to prevent, treat, or even reverse vision loss (NEI recommendation updated in 

June 2021).  
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1.2 Diagnosis and Current Medicinal Practice for AMD 

 

As mentioned earlier in this work, AMD is a fast-progressing disease, and its onset may be 

subtle to detect for either patient or physician. The earlier AMD is diagnosed, the later the 

patient will undergo severe and irreversible visual impairments. Therefore, efforts are put to 

award individual aged 50 years and older to perform AMD screening regularly. In addition to 

these general ophthalmologic examination procedures, it is recommended to perform home 

monitoring routine between visits. Whenever AMD is suspected, advanced diagnostic must be 

performed in the way to confirm and assess the stage of the disease. This diagnostic procedure 

includes fluorescein angiography (FA) and optical coherence tomography (OCT), and it is 

generally assumed that better final outcomes are achieved with better initial visual acuity (VA) 

and therefore an earlier diagnostic. Unfortunately, nowadays lesions are still usually detected 

when there are already considerable damages causing severe visual impairments. Herein, when 

nAMD is diagnosed, the only way for patient to recover VA is intravitreal injection of inhibitor 

of the angiogenic protein VEGF (Figure 9). If the introduction of anti-VEGF therapy was 

proven to be able to stabilize the vision among nAMD patients, several clinical challenges must 

be overcome, these will be discussed later in this chapter.  

 

 
Figure 9. Illustration of intravitreal injection of antiangiogenic drugs and its effect on the neovascularization 

process within the retinal layer of the macula (illustration reproduced from 

https://www.scienceofamd.org/fr/treat/). 
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1.2.1 Anti-VEGF therapy and clinical strategy 

Intravitreal anti-VEGF therapy is the only treatment that allows nAMD patient to recover 

visual acuity. Indeed, the current therapeutic strategies for managing neovascular AMD is a 

protocol of a fixed monthly dose of antiangiogenic drug for a 96-week follow-up period63,64. 

Despite the risk of overtreatment, and safety risk (infection, retinal detachment, development 

of GA, systemic side effect), monthly dosing guarantee the maximum efficacy in term of VA 

benefits65,66–68. Some studies investigated the possibility of an individualized dosing regimen 

based on imaging parameter to overcome these safety problems (system “as needed” named 

PRN). The result of these less frequent but more adequate regimen were first encouraging but 

failed in real-case clinical practice (Figure 10)69–72. This failure could be associated by the fact 

that OCT-based monitoring is usually applied in a less rigorous manner than in clinical trial. 

Furthermore, there is a lack of sensitive and robust OCT-based biomarkers that allows a precise 

individual management of the disease.   

 
Figure 10. Data from CATT study65: Mean change in total foveal (central part of the macula) thickness from 

the start of the therapy over time by dosing regimen for two antiangiogenic drug groups: a) Ranbizumab and b) 

Bevacizumab. These data shown greater result for monthly than for PRN (as needed) treatment. 
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1.2.2 Imaging Technique and patient’s follow-up 

Since its introduction into Ophthalmology’s sciences in 199373, Optical Coherence 

Tomography (OCT) has become the main tool for the diagnostic and the follow-up of AMD 

patients. This technique allows to identify specific morphological changes that are proven to be 

relevant for visual function, treatment outcomes and disease management74. In this section we 

will discuss the different imaging biomarkers that are commonly used to assess the status of the 

patients and that lead to clinical decisions.  

Optical coherence tomography is an imaging technique that uses low coherence 

interferometry to produce cross-sectional images of the retina. Optical scattering from the tissue 

is captured to analyze spatial details of tissue microstructures. A super-luminescent diode 

products infrared light that is divided into two parts: the probe beam that is scattered from the 

targeted tissues, and the reference beam which is reflected from a reference mirror (Figure 

11a). From the two reflected beams, an interference pattern is measured by a photodetector and 

then integrated by an interferometer that will analyze the created range echo time delay of given 

amplitude named A-scan. Several datapoints are integrated to construct a tomogram of the 

analyzed tissue. For macular scanning, three different types of scan protocol are commonly 

used in ophthalmology practices: a three-dimensional (3D) scan, radial scan, and raster scan 

(Figure 11b-d).  

 

Figure 11. (a) Schematic representation of OCT technology and the three different scan protocols: (b) 3D 

“macular cube”; (c) radial line scan; and (c) raster scan. 
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If 3D scans enable the implementation of advanced and complex analysis, in practice radial 

and raster scan provide detailed view of the macula and give access to information that leads 

clinical decision. Figure 12 represent a single radial line scan from an OCT analysis of a healthy 

macula. On this picture the different retinal layers that compose the macular space are depicted 

(from the bottom to the top: Choroid, BM, RPE, OPR, IS/OS, ELM, ONL, OPL, INL, IPL, 

GCL, NFL and ILM). These measurements allow to evaluate the changes within macular 

subspace and help the clinicians to interpret the damage caused by advanced AMD.   

 

Figure 12. Radial scan of a healthy macula and the different structure detailed on the right (adapted from75). 
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Central retinal thickness is the most obvious and easiest way to quantify retinal change in 

OCT data measurement. Commercial OCT system can segment the internal limiting membrane 

(ILM) and the retinal pigment epithelium (RPE) or Bruch’s membrane as the inner and outer 

retinal boundaries (Figure 13). Thus can represented thickness map and central retinal 

thickness value that allows clinical judgment of disease status and treatment opportunities70,76. 

However, due to poor reproducibility, lack of correlation with functional outcomes and low 

sensitivity to subtle change, the use of retinal thickness measurement for clinical decision is not 

anymore recommended77–82.  

 

Figure 13. Retinal thickness map: On the left the colored thickness map of the macula showing in red the 

thickening of the retina in the macular region. The value of the average thickness is showed in 1mm, 3mm and 

6mm circles centered in the foveal part of the macula. The left image shows the corresponding spectral domain 

optical coherence tomography image of the analyzed region. 
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One of the strongest markers of neovascular AMD events is the disruption of the external 

limiting membrane (ELM) by invasion and propagation of the CNV lesion. This results in 

relatively important leakage of fluid into the neurosensory retina. As it is shown in Figure 14, 

intraretinal accumulation of fluid appears as diffuse retinal thickening or as hyporeflective 

cystoid spaces on OCT images. This intraretinal cystoid fluid (IRC) is the most important factor 

for visual acuity outcomes and baseline visual acuity in neovascular AMD treatment. Studies 

showed that approximatively 60 % of the VA in nAMD patients could be explained by 

examining these changes into the retina. Moreover, IRC appears to be present in all lesion types 

due to exudative AMD. Usually, studies of IRC in nAMD use a presence/absence approach and 

very few of them attempt to quantify IRC in OCT data. This time-consuming effort will, in the 

future, be aided by computer assisted quantification methods. Nevertheless, care should be 

taken to detect and treat active CNV before the apparition of IRC as they are linked to 

irreversible damages. Quantification of such morphological changes therefore could be used 

for individualized prognostic and management. 

 

 

Figure 14. Typical OCT radial scan image from nAMD patient and associated imaging biomarkers. 

Intraretinal cystoid fluid is highlighted in bright red, subretinal fluid in blue, and pigment-epithelial detachment 

in dark red. Yellow markings illustrate hyperreflective foci and black asterisks denote alterations in the 

photoreceptor layers74.  
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Another important indicator of neovascular lesion is the presence of pigment epithelial 

detachment (PED). In different patient’s management studies, PEDs was present in almost 80% 

of patients at the time of enrolement78,82. Underlying growth of the PED in treated patient allows 

the prevention of early, “silent” recurrence of choroidal neovascularization. Therefore, this 

should indicate retreatment even if the patient is not symptomatic and even the absence of other 

markers like IRC (Figure 14). During follow-up, a precise monitoring of PEDs including 

quantitative measures should be performed in order to adjust the treatment regimen and prevent 

long-term vision loss83.  

A third typical sign of nAMD in OCT data is the presence of small hyperreflective dots, named 

hyperreflective foci, into the neurosensory retina and more specifically located near neovascular 

lesions84 (Figure 14). In early AMD, presence of hyperreflective foci is considered as a risk 

factor for progression to advanced form of the disease. Furthermore, poorer VA outcomes in 

the treatment of nAMD were associated with these particular structures and their resolution was 

associated with VA gain85,86. Therefore, data suggest the use of hyperreflective foci as potential 

markers for lesion activity and stage.  

One particularly interesting imaging biomarker is subretinal fluid (SRF) as studies shown that 

patients exhibiting SRF derive larger VA gain from anti-VEGF therapy65,87,88(Figure 14). 

Indeed, it is suggested that presence of SRF is an indicator of perfused neovascular network 

vessels and/or choriocapillaris layers in the foveal area providing RPE and photoreceptors 

survival. As SRF in eye of nAMD patients may indicate favorable outcomes in anti-angiogenic 

therapy, this parameter should be considered in the management of such patients. As a matter 

of fact, when comparing the outcomes of fixed frequent versus infrequent anti-VEGF injections, 

patients with SRF had favorable VA gain in both regimen in contrast to the other patients that 

showed poorer outcomes when treated less frequently than frequently89. These together made 

SRF an interesting marker for the follow-up of nAMD patients. 

OCT based biomarker discussed in this chapter are used by clinicians to efficiently personalize 

prognosis and therapeutic management of nAMD patients. Nevertheless, several efforts must 

be made in the way to improve their availability and reproducibility in the context of 

personalized angiogenic therapy. Furthermore, making the link between systemic biomarker 

and robust imaging biomarker could give access to a more precise representation of the 

pathological process involved in neovascular AMD. This knowledge could pave the way to new 

therapeutical strategies and decision-making tools that would help clinicians to better manage 

nAMD patients.  
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1.2.3 Resistance to Anti-VEGF therapy. 

Although anti-VEGF based therapy represents a cornerstone in neovascular AMD treatment, 

not all patients respond at the same level. Indeed, some of them have poor or nonresponse to 

anti-VEGF treatment or exhibit a slow loss of treatment’s efficacy after repeated administration 

over the therapy90. Several experts consider the persistence of exudation after a period of 6 

month of monthly anti-VEGF injection as an indicator of what is called “Refractory AMD”91–

93. Refractory AMD is defined as a situation in which the patient doesn’t respond to the anti-

angiogenic treatment and constitute an important concept for clinical decision making and 

treatment switching option. In addition, another clinical concept named “Recurrent AMD” is 

reported and describes a condition in which the patient is suffering from the appearance of new 

SRF/IRC accumulation after initial resolution of exudates94,95. Nevertheless, both conditions 

result in a diminished therapeutic effect of anti-VEGF agent and/or therapy. 

 If treatment failure appears early in the therapy, several clinical factors such as genetic 

predisposition or misdiagnosis may be involved. On the other hand, resistance to anti-VEGF 

agents and activation of other pathogenic pathways result in a recurrence of exudative lesions 

after a successful period of treatment. Figure 15 depicts the different causes of resistance and 

possible therapeutic approaches that could be applied to achieve good medication90.  

Anti-VEGF therapy is a long and difficult process in which nAMD patient are enrolled with 

the hope to recover and stabilize their vision. There is a need to investigate changes among 

patients that lead to anti-VEGF resistance. This would be helpful for clinicians to guide their 

decision regarding when to swift to other anti-VEGF agent or choose other therapeutic options.  
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Resistance to anti-VEGF therapy 
resulting in a diminished therapeutic 
effect
Regardless of whether the diagnosis is refractory neovascular 
AMD or recurrent neovascular AMD, various clinical mani-
festations are caused by significant interindividual differences 
in response to an anti-VEGF agent. There is no authoritative 
consensus as to how to classify “responder status”. Recently, 
Amoaku et al30 categorized the response to anti-VEGF 
therapies in neovascular AMD. It is divided into optimal 
(good) response, poor response, and nonresponse based on 
both functional and morphological outcomes. We consider 
it an appropriate definition/categorization of the response 
of neovascular AMD to anti-VEGF therapies. Patients who 
have poor response or nonresponse to anti-VEGF under the 
standardized treatment may gradually develop mechanisms 
of resistance to anti-VEGF therapy.

There is currently no consensus on the definition of 
“resistance to anti-VEGF therapy”. Tranos et al46 considered 
that half of the patients who did not improve and ̂ 10% of the 
patients who had no response at all despite ongoing therapies 
with the current standard anti-VEGF approach were resistant to 
anti-VEGF therapy. Bakall et al62 reported that some patients, 
however, had a good initial response with a resolution of fluid 
but then developed recurrent exudation and became resistant 
to further treatment. We consider patients who showed poor 
response or nonresponse to the initial therapy, or who had a suc-
cessful initial response to anti-VEGF therapy but experienced 
a slow loss of response as “resistant to anti-VEGF therapy”.

Some ophthalmologists make no distinction between 
“resistant”, “refractory”, and “recurrent”. The term “resistant” 

is aimed at describing the status of a diminished therapeutic 
effect despite continuous treatment, while “refractory” or 
“recurrent” focuses on describing the characteristics of AMD 
itself, as previously explained. Therefore, phrases such as 
“resistance to anti-VEGF therapy”, “refractory neovascular 
AMD”, and “recurrent neovascular AMD” may be more 
useful and effective. In addition, it is also essential to dis-
tinguish “resistance to anti-VEGF therapy” and “resistance 
to anti-VEGF agents”. The former is a broader concept that 
encompasses “resistance to anti-VEGF agents”.

Causes of resistance to anti-VEGF 
therapy and possible therapeutic 
approaches
Resistance can occur at any time during the course of 
therapy.41 Anti-VEGF therapy may fail from the beginning or 
following an initial successful treatment period. An incomplete 
effect of the initial therapy may be caused by several clinical 
factors, including misdiagnosis and genetic predisposition. 
Resistance to anti-VEGF agents and sustained activation of 
other pathogenic pathways result in the development of per-
sistent or recurrent exudation after an initial successful treat-
ment period. We draw on these facets to provide a framework 
to show why the phenomenon of resistance to anti-VEGF 
therapy occurs and how to deal with it (Figure 1).

An incomplete initial effect caused by 
clinical factors
Misdiagnosis
Misdiagnosis appears to be one common clinical factor that 
results in poor response or nonresponse to anti-VEGF therapy. 

Figure 1 A framework to show the causes of resistance to anti-VEGF therapy and possible therapeutic approaches.
Abbreviations: AMD, age-related macular degeneration; VEGF, vascular endothelial growth factor.
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1.3 Metabolomics and NMR based Metabolomics 

 

1.3.1 Omics Sciences 

Omics sciences refer to specific fields that provide collective information describing a 

biological system. The aim of Omics is to offer a holistic view of what is made a cell, tissue, or 

organism and how it behaves in its environment. It studies a specific biological sample in a non-

targeted and non-biased manner at a gene, nRNA, proteins and metabolites levels. The peculiar 

philosophy of these approaches is that a complex system is better understood if considered as a 

whole and interconnected one. While traditional studies are focused on a chosen set of data that 

should confirm a reasonable assumption, these hypothesis-generating methodologies acquire 

and analyze a huge amount of information to define a hypothesis that must be further tested. 

The exponential growth in technologies and informatics tools enable to generate and integrate 

large biological data sets pave the way to a paradigm shift in the way to approach scientific 

questions related to biological individuals. Therefore, these techniques have a broad range of 

application in numerous fields including toxicology, drug development, food and 

environmental sciences, personalized medicine, and biomarker discovery. 

The main fields of the omics sciences are genomics, transcriptomics, proteomics, and 

metabolomics and each of them refers to a specific part of the studied system. Genomics is 

focused on the study of organisms’ whole genomes and the development of recent sequencing 

technologies allows rapid and cost-effective elucidation of an entire genome and the study of 

all genes simultaneously. This field studies the heredity of an organism and how its 

characteristics, via DNA, are transmitted from one generation to the next one. Downstream, 

transcriptomics will study the total RNA content expressed by an organism after the 

transcription process of its genome. Together these sciences will provide an overview of the 

genes, expressed or transcribed, of a given organism at a precise time point. The proteome is 

defined as the snapshot of the whole proteins content of an organism. Thus, proteomics enables 

the study of the protein inventory of an organism and aimed to be helpful to better understand 

the metabolism dynamics of an organism. At the end of the omics cascade (Figure 16), the 

global approach that aims to measure all the metabolites in cells, tissues or biological fluids 

coming from an organism is called Metabolomics. The analysis of the metabolome gives access 

to unique information about an organism status in a given environment by filling the gap 

between “what’s can happen” and “what’s actually happening”.  
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Figure 16. Omics cascade from the study of the genome to the analysis of the metabolome (adapted from96). 
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1.3.2 Metabolomics 

1.3.2.1 Generalities 

Metabolomics can be defined as the comprehensive study of all metabolites present in a cell, 

a tissue or a biofluid from an organism at a given time point. Life rises from chromosomal DNA 

that are transcribed to RNA which are containing the information to translate functional 

proteins. If studying these events will provide useful information about how differences happen 

between individuals, it must not be forgotten that what is happening is driven by small 

molecules metabolites (80-1500 Da). Indeed, these compounds carry out the main work of 

functioning cells and regulates the activity of the macromolecules in a complex interconnected 

scheme. This is the interaction of the small molecules with the macromolecules components of 

the organism that is responsible of how that organism behaves. The so-called metabolome is 

composed of organic or inorganic molecules, that are involved as reactant, intermediate or 

product of enzyme mediated biochemical reactions and are present at various levels of 

concentration. These molecules exhibit various physicochemical properties and biological 

functions and studying their changes among cell, tissues or biofluid give unique information 

about an organism status.  

The basic idea of studying changes in tissues or biological samples to be able to diagnose 

disease is not new and goes back at least as far as ancient Greece. Indeed, diagnostic urine 

charts were used back in the middle age. Such cards were used to make correlation between 

pathological condition and the color, smells, and taste of urines. Such change in the urine of 

patients were, of course, caused by change in metabolic events.  

  

Figure 17. Urine wheel chart, published 
in 1506 by Ullrich Pinder, that describes 
the possible color, taste and smell of 
urine and how to use them to diagnose 
diseases. 
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1.3.2.2 Modern Metabolomics 

Since its first publication in 199997, there is a growing interest for the field of metabolomics 

among the scientific communities over the past 20 years. Thanks to significant advancements 

in analytical platforms and bioinformatics tools, the number of publications and applications of 

metabolomics among a wide range of field increased considerably (Figure 18). Nowadays, 

metabolomics studies are conducted by using advanced analytical tools that provide a broad 

coverage of the metabolome such as: nuclear magnetic resonance (NMR) spectroscopy, liquid 

chromatography mass spectrometry (LC-MS) and gas chromatography MS (GC-MS). These 

techniques, and their associated methodology, provide the analysis of many classes of organic 

compound including organic acids, amino acids, lipids and others. Each technique has their own 

advantage and inconvenient and are better to be used to complement each other98–100. 

Nevertheless, metabolomics, conducted by a one or a combination of platforms, is a great tool 

that enable the study of the dynamics of the metabolome in various biological samples.   

 

Figure 18. Pubmed occurrence search for “Metabolomics AND Medicine” (dark bars), “Metabolomics AND 

Toxicology (orange bars), “Metabolomics AND Food” (bluer bars), “Metabolomics AND Nutrition” (green 

bars) and “Metabolomics AND Plants” (red bars). 
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1.3.2.3 Metabolomics workflow 

The metabolomics pipeline (Figure 19) is composed of different stages that reflect the 

multidisciplinary nature of the field. Indeed, from the setting of the experimental design to the 

analysis of samples and validation of results, metabolomics requires skills coming from the 

most advanced methodology in statistic, biology, and analytical chemistry sciences. Final 

results are driven by the experimental design and each step has to be carefully set in the way to 

assure reliability of the collected information. 

 

 
Figure 19. Metabolomics workflow, adapted from 101. 

 

Each study starts with the setting of the experimental design and the definition of which 

samples will be collected in the way to answer to the biological question. Carefully assess this 

point will assure the validity and the usefulness of the results. Usually, metabolomics studies 

are conducted on biofluids such as plasma, serum or urine102–104. However, this methodology 

can be also applied on other fluids like saliva, cerebrospinal fluid and, by using dedicated 

analysis (mass spectrometry imaging, high resolution magic angle spinning and magnetic 

resonance imaging), the metabolic content of tissues, biopsies and cells can also be investigated. 

The use of extraction methods allows the analysis of such sample by using classical tools (ie 

MS and NMR). 
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Mass spectrometry and nuclear magnetic resonance spectroscopy are the two main analytical 

techniques used for metabolomics purpose. Rather than detailing the pro and cons of each 

analytical platform, that will be the main topic of the following chapter, we will here discuss 

about the different way to use them, and the specific outcomes provided by these ones. Indeed, 

if the choice of the samples to study is driven by the biological question, so do the instrumental 

platform and the way to use it. Herein, studying the metabolome can be achieved in a targeted 

or an untargeted way. Targeted metabolomics aims to analyze and quantify known metabolites 

proven to play a role in the biological process investigated. This approach is the one chosen for 

establishing the baseline metabolite levels of an organism or to define a cut-off value able to 

make the distinction between healthy vs “perturbed” status. In contrast, untargeted 

metabolomics is focused on the detection of as many features as possible in a single analysis. 

Rather than giving access to quantities, this profiling approach aims to discover novel 

biomarkers or metabolite profile that can be linked to the status of the studied individuals. If 

the first one has the inconvenient to have a limited coverage of the metabolome and thus 

enhances the risk of overlooking the metabolic response of interest, the absence of absolute 

quantification of the later limit the interlaboratory comparison and fail to assess the baseline 

metabolite response of an “healthy” individuals. The weakness encountered in one 

metabolomics philosophy is the respective strength of the other, therefore the use of one or 

another must fit with the goal of the study. In any case, the chosen analytical method has to be 

carefully optimized in the way to get rid of any unwanted instrumental drift or operator 

depending on variations.  

 

All the other steps (statistical analysis, pathway reconstruction, validation of biomarker, …) 

of the workflow depicted in Figure 19 will depend on the chosen approach. If all the above-

mentioned step where carefully conducted, univariate, multivariate analysis will give precious 

information that will be further validated and integrated to respond to complex biological 

questions. 
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1.3.2.4 Analytical Platform for untargeted metabolomics. 

The purpose of untargeted metabolomics is to measure and identify as many metabolites as 

possible in the way to give the most accurate overview of the metabolome at a given time point. 

From a chemico-physical point of view, the metabolome is a complex mixture of chemical 

entities exhibiting various properties in term of polarity, charge, pKa, solubility, volatility, 

reactivity, and stability. Moreover, these compounds are present at various concentrations 

among the different samples. As an example, the blood’s glucose concentration for a healthy 

adult individual is in the range of mmol/L while for the same individual thyroxin is present in 

pmol/L of blood. The heterogeneity of chemical entities and the possible 106  fold difference in 

their concentrations make the detection of the whole metabolome a very challenging goal. 

Therefore, due to the complexity of these samples, no single technique is currently able to 

provide the coverage of the whole metabolome. 

The main analytical tools used in metabolomics for untargeted approach are Mass 

Spectrometry (MS), usually coupled with a separative technique, Nuclear Magnetic Resonance 

spectroscopy (NMR), Infrared (IR) and Raman spectroscopy103,105,106. Despite this broad 

change of technique available, LC-MS and NMR are the most used platform for metabolomics 

purpose. Both techniques have their strength, and both have their weakness (see table 1). Over 

the past decades, advancement in the field of MS-based metabolomics makes this platform the 

main analytical technique for metabolomics studies and clearly overtakes NMR-based approach 

(Figure 20). However, NMR spectroscopy still offers many advantages over MS and these 

unique strength makes it part of the future of metabolomics107–110.  

Figure 20. Pubmed occurrence search “Metabolomics AND mass spectrometry (blue bars), 

“Metabolomics AND NMR” (red bars). 
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Mass spectrometry is a highly sensitive method able to detect feature at the nM range. When 

used with separative chromatographic technique such as liquid chromatography (LC-MS), gas 

chromatography (GC-MS), supercritical fluid chromatography (SFC-MS) and capillary 

electrophoresis (CE-MS), MS-based methods offer high resolution data of metabolite mass, 

fragments and molecular formulae111. The most advanced LC-MS platform enable the 

measurement of tens of thousands of features in one experiment, giving access to elemental 

formula with high mass resolution (HRMS) and matching metabolites to huge MS databases 

with tandem mass spectrometry analysis (MS/MS)112. If all the detected features cannot be 

directly related to metabolites, advance in metabolites’ annotation allows to expand the current 

knowledge and “illuminate” what is called the “dark metabolome”113,114. This have made LC-

MS the dominant analytical platform for performing metabolomics.  

The major drawback of NMR is the limited sensitivity (sub mM) and even if effort were made 

to fill the gap with MS, this technique is still a few orders of magnitude less sensitive115. 

Nevertheless, NMR spectroscopy have numbers of characteristic that made it attractive for 

metabolomics (see table 1). First, NMR is highly reproducible, and absolute quantification can 

be achieved easily using a single internal reference. Secondly, this technique leaves the sample 

intact and allow multiple analysis to be performed enabling unambiguous identification of 

unknown metabolites. Furthermore, NMR analysis is independent of the operator or system 

used and as no separative techniques are used, analytical robustness and therefore inter 

laboratory reproducibility are enhanced compared to MS.  

This thesis is focused on NMR based metabolomics, therefore analytical and technological 

aspects will be discussed in detail in the next chapter with special attention on the analysis of 

blood derived biofluids. The choice of NMR as analytical technique for this clinical 

metabolomics study is driven by its intrinsic quantitative property, its robustness and 

reproducibility, and its ability to detect a broad range of metabolites of different physico-

chemical properties. Indeed, this approach will allow us to analyze an elevated number of 

samples collected and analyzed over the time and will provide information about lipoprotein 

macromolecules and small molecule metabolites in the same experiment without any specific 

sample preparation. Furthermore, if needed, targeted metabolomics through NMR 

quantification is accessible with little sample preparation. This methodology will allow us to 

profile the metabolome of patient’s as well as study the variations of specific compounds during 

their follow-up.  
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Table 1. Comparison of analytical pro and cons of NMR and MS-based metabolomics. 

  

NMR MS

Non-destructive for sample Destructive for sample
Robust intrumentation Relatively unstable
High reproducibility Moderate reproducibility
Small sample preparation More complex sample preparation
No need of chromatographic separation Requirement for chromatography
No need of chemical derivatization GC need chemical derivatization
Predictable spectra Spectra difficult to predict
Allows structure determination Allows partial structure determination
Inherently quantitative Not inherently quantitative (need for reference standards)
Easily automated workflow Difficult to automate workflow
Low cost per sample Isotopically labeled reference standards for quantification can be expensive
Poor to moderate sensitivity (µM) Excellent sensitivity (nM)
Modest metabolite coverage Extensive metabolite coverage
Expensive intrumentation Modestly expensive instrumentation
Few sofware resources Many software resources
Expensive to maintain Moderately expensive to maintain
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1.3.3 NMR-based Metabolomics 

As IR or UV spectroscopy, NMR is an absorption spectrometry technique that aims to measure 

magnetic properties of a given nucleus when placed on an external magnetic field (B). Basically, 

under appropriate conditions, this nucleus will absorb electromagnetic radiation in the radio 

frequency (rf) domain at a frequency that depends on the intrinsic properties of the studied 

nucleus. In this chapter we will first describe the basic principle of NMR spectroscopy and 

details the instrumental platform that allows to record NMR spectra of biological samples. Then 

we will discuss some particularities of biofluid analysis for metabolomics purpose and focus 

on NMR data pre-processing. Finally, the part named “data analysis” will explain how key 

information can be obtained from multi- and uni-variate analysis of NMR pre-processed data. 

Identification of biomarker and model validation will close this chapter as this step generally 

end the NMR-based metabolomics workflow. 

1.3.4 Principle of NMR spectroscopy 

NMR spectroscopy takes advantage of an intrinsic property of nuclei, the so called “spin”. All 

nuclei carry a charge, and for some of them, this charge rotate on the nuclear axis. This 

circulating charge of the nucleus generate a magnetic dipole along the nuclear axis and the 

magnitude of this dipole is expressed in term of the nuclear magnetic moment µ.. The angular 

momentum of this moving charge is described in terms of its quantum spin number I that can 

take values of 0, ½, 1, 3/2, and so on.  

 

Figure 21. (a) representation of the magnetic dipole generated by the rotating charge of the nucleus and (b) its 

random orientation in absence of any external magnetic field.  

When considering NMR, the spin number is an important feature since this quantum number 

determine the number of orientation (2I + 1) that the nucleus can take when placed in an external 
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and uniform magnetic field (B0). For nuclei that have a spin value of 1/2, such as 1H, when 

placed in an external magnetic field, there are two energy levels named a and b depending on 

their orientation regarding B0. The difference of energy (DE) is given by the equation 1 and 

according to the Boltzmann distribution, a slight excess of population is observable in the state 

of lower energy (Na > Nb).  

 

Figure 22. Representation of nuclei in absence (a) and in presence (b) of an external magnetic field B0. The 

difference in energy between the two spin states is expressed by the equation on the right (equation 1).  

If DE is directly proportional to B0, it’s also depending on intrinsic magnetic properties of the 

studied nucleus as g  represent the magnetogyric ratio. This parameter is proper to each nucleus 

and is defined as the proportionality constant between the magnetic moment µ  and the spin 

number I (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛	2:	𝛾 = 2𝜋𝜇 ℎ𝐼⁄ ). Thus, if a well calibrated radiofrequency radiation (n1) 

is used, it is possible to induce transition between the two energy levels in the presence of B0. 

This is the basis of NMR, oncen1 is applied, the energy is absorbed by the proton that will raise 

higher energy level, the system is in resonance and by analyzing the return to the fundamental 

state, an NMR spectrum can be recorded. The equation 3 is the basic relation that correlate the 

applied radiofrequency n1 with the intrinsic magnetic properties of the nucleus, the 

gyromagnetic ratio g, and the magnetic field strength B0.  
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But how to induce and to record these energetic transitions of protons that are aligned in a 

magnetic field? By applying a perpendicular radiofrequency (rf) to the static magnetic field and 

recording the change of magnetization in the same plan. For a better understanding, lets 

represent the proton in the magnetic field: the spinning proton behaves like a magnet and 

therefore have a magnetic dipole, in presence of an external static magnetic field (B0), this 

magnetic axis will be oriented along B0 in the axis named z. When considering a bunch of 

equivalent protons in B0, their magnetization will be randomly phased along the z axis and the 

resulting macroscopic magnetization M0 can be represented as a vector following the z axis. By 

using a rf oscillator placed in perpendicular to z (in the x plan), the magnetization M0 can be 

tilted in the xy plane, and the magnetic component can be recorded by a probe positioned along 

the y axis. Indeed, when the magnetic field (B1) generated by the rf oscillator will have the 

adequate frequency n 1 that is equal to the processional frequency of the protons (Larmor 

frequency nL), the system will reach the state of nuclear magnetic resonance, the tilt of M0 is 

achieved and the resulting magnetization is named M.  

Figure 23. A bunch of equivalent protons in a static magnetic field B0 (a) and the resulting magnetization M0 

aligned along the z axis (b). The oscillator coil generates the magnetic field B1 on the x plan which results in a 

tilt of M0 in this horizontal plane to generate M (c) and (d). The longitudinal relaxation (T1) is responsible of the 

relaxation of the M magnetization to M0 (illustration from Spectrometric Identification of Organic Compounds, 

8th Edition). 
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In practices, a very short and powerful rf pulse (µs) centered on the frequency n 1 is applied 

along the x axis and generates the complete frequency range allowing all protons to reach the 

resonance state simultaneously. The magnetization M0 is tilted in the xy plane, and a signal can 

be recorded over a given period (t2). During this period, the magnetization M will process 

around the z axis and detected on the y axis. Therefore, right after the pulse, M is on the y axis 

and the signal is at maximum; it’ll evolve around the z axis and reach the x axis where the 

magnetization along y is null. Then the signal continues its procession movement and goes to 

the -y axis reaching the minimum and so on until the magnetization relaxes back to the 

equilibrium. The resulting signal represents a decaying interferogram called FID (Free 

Induction Decay) that represents the difference between the applied n 1 and the Larmor 

frequency of each proton (nL). Finally, the time-domain decaying signal is Fourier transformed 

into a frequency-domain NMR spectrum in which each peak will be present at a given chemical 

shift (d) expressed in ppm respectively to the one of the chosen references (d = 0 ppm). 

 

 

Figure 24. The detected NMR signal on the left and the processed spectra of the studied compound (L-alanine) 

with the peaks corresponding to the different protons at appearing at specific chemical shifts respecting to the peak 

of the reference compound (TMSP). 

The way the magnetization decreases over the time is governed by two time-components: the 

longitudinal relaxation (T1) and the transverse relaxation (T2). The longitudinal relaxation, also 

called spin-lattice relaxation, is a monoexponentially process that corresponds to the transitions 

between quantic states of the spin system allowing the system to return to its thermal 

equilibrium state. The values of T1 are characteristic for each proton and are the magnitude of 

the seconds in liquid. The second phenomenon involves interaction between two neighbors spin 

systems. The T2 relaxation, called transversal or spin-spin, is explained by local fluctuation of 

the magnetic field due to interaction between neighbor spins. Indeed, as interactions between 

magnetic dipole are generating local magnetic fields (BL), fluctuations of resonance frequency 

of individual spins can occur. Herein, after quantic state transition or by movement of spins 
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systems, these fluctuations of BL will induce a dephasing and signal loss. Unlike T1, the time 

of transversal relaxation is covering a large range of values. For example, for small molecules 

in liquid states, they can range seconds while for solids, or macromolecules, they can be shorter 

than a µs. This is due to the fact that in solids, the movement of neighbors’ spins are limited 

and therefore their total component of induced BL is not null while for small molecules in liquid 

the magnetization induced by movement is fluctuating fast due to Brownian movement. This 

resulting a mean effect of BL that reduces its amplitude and the effect on the relaxation allowing 

the system to relax slower. 

An important concept that allows the differentiation between protons of the sample is the 

chemical shift and the multiplicity. Till now, we spoke about a single proton without 

considering the effect of its own electron cloud, its neighbors, or its environment. All these 

parameters are influencing the way this proton will act in the magnetic field after the rf pulse. 

Thanks to these, each molecule will give a unique NMR pattern allowing their structural 

analysis and their discrimination in complex mixture (Figure 25).  

 

Figure 25. NMR spectra annotation of pure l-alanine compound in D2O. 

Under a magnetic field, circulating electrons generate their own magnetic field opposing the 

applied magnetic field. Thus, the proton is shielded by its electronic cloud which varies with its 

chemical environment. Therefore, the Larmor frequency can be re-written for all equivalent 

protons including the constant shield s that is characteristic for each proton in a given molecule. 

For organic molecules, the degree of shielding of a proton attached to a carbon atom will depend 

on the inductive effect of the other groups attached to the carbon atom. Hence, protons that have 

different chemical environments have different chemical shifts and equivalent protons that have 

the same environment have the same chemical shift.  
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This difference of chemical shift (d in ppm) can be calculated by using an external reference 

and is expressed as:  

n = n0.(1 – s) 

Equation 3. Effect of the constant shield on the resonance frequency of a processing proton in a magnetic field. 

Therefore, the chemical shift expresses the difference in the absorption position of a given 

proton in respect to the absorption position of a reference. By convention the peak of the 

external reference is located on the right of the NMR spectrum axis at 0 ppm. A common 

reference used in NMR is tetramethylsilane (TMS). This reference is chemically inert and 

soluble in most organic solvents. The particularity of this compound is that all its protons are 

equivalent and, due to its silane group, are more shielded than almost all organic protons. Thus, 

the more the proton is shielded, the effect of the magnetic field on the proton decreases and its 

signal will be closer to the one of the reference. The more the proton is deshielded, for example 

when an electronegative group is decreasing the electronic density, the more the proton is 

exposed and will be affected by the magnetic field; hence their resonance occurs at a higher 

frequency than the reference and the peak is located on the left of the spectrum. 

The multiplicity is describing the phenomenon responsible for the splitting of peaks due to the 

interaction between spin systems called spin-spin coupling. The spin-spin coupling is a 

magnetic interaction between two non-equivalent protons that is transmitted through their 

bonding electrons. Let’s consider two vicinal protons (separated by three bonds) in a very 

different chemical environment, such as HA2CCX2H. Each proton is in different chemical 

environment thus their resonance frequency will differ, and the two-absorption peak will be 

well separated. If the spin of each proton is slightly influenced by the two different orientations 

of the spin of the other proton, each will exhibit two absorption peak and the single signal 

(called a singlet) will be splitted in what is called a doublet. The difference of frequencies within 

the doublet is independent of the magnetic field but is characteristic of the coupling between 

the protons and thus is denoted by the coupling constant (J). If the coupling constant gives 

information about the bonding, the multiplicities give information about the number of 

neighboring protons on the adjacent carbon. Indeed, as we saw, if the adjacent carbon contains 

one proton, the signal will be a doublet; a triplet will appear if this carbon contains two protons 

and a quadruplet if three. The Pascal triangle (Figure 26) is representing the n+1 rule of peak 
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splitting for n equivalent coupling nuclei and their relative intensity. These properties are the 

basis of NMR identification and structure determination of organic molecules. 

Figure 26. Pascal triangle representing the n+1 rule for neighboring protons and the relative intensities of the 

resulting peaks. 

 

The last, but not the least, obvious information among the classic NMR spectra is the peak 

intensity and more precisely its area. Among the NMR spectrum, the peak area for each signal, 

even if it’s a multiplet, will be proportional to the number of protons that are in resonance at a 

given frequency. Therefore, this information will not only give access to the number of protons 

present on the studied molecule, but it will also allow the calculation of the concentration on 

this molecule if an internal standard is used, and the NMR experiment is properly set. Indeed, 

this property allows the absolute quantification of a molecule among complex mixtures using 

NMR and represents a major advantage over other technologies. By knowing the relaxation 

times of both internal reference and analyte, the NMR experiment can be optimized to provide 

absolute quantification (relaxation delay = 5*T1) 
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1.3.4.1 NMR instrumentation 

The instrumental platform required for NMR spectroscopy is composed of three major 

components: The superconducting magnet, kept under 9.5 K with liquid helium, generating the 

static magnetic field; a shim coils to assure the homogeneity of B0; a probe to record the 

generated NMR signal; and the necessary electronics to transform the measured signal into 

interpretable NMR spectra. 

 

Figure 27. Schematic representation of the instrumental platform for NMR spectroscopy116. 

Magnet 

The NMR magnet is the most important part of the NMR spectrometer as the magnitude of 

the field generated is directly related to the spectral resolution but also to its size and price115. 

Herein, these magnets are usually made of supraconducting wire which are wrapped into a 100 

km long wire coil. To ensure the supraconducting state, the coil must be kept under ~10K and 

thus is placed inside a large Dewar containing liquid He surrounded itself by liquid N2. Most 

of metabolomics studies are conducted on magnet operating between 400 and 600 MHz but it’s 

always a compromise between funding and space. Indeed, even if it’s clear that the resolution 

enhance with the strength of the magnetic field107,117, magnet of 600 MHz are produced at larger 

scale and thus are cheaper. Therefore, this making them the configuration of choice for routine 

metabolomics investigations as it’s a good compromise between good resolution and cost117.  
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The shim coils 

The shim coils are a bunch of conducting coil, placed along all three spatial axes, used to 

adjust the homogeneity of B0. These are used to correct all local magnetic distortion of the static 

magnetic field. Indeed, these perturbations can arise as well as from the environment in which 

the spectrometer is installed or resulting from variation in the sample. Thus, these changes are 

adjusted by changing the current in one or more shim coils to ensure the stability of the static 

magnetic field. This process is called “shimming”. 

The sample probes 

The sample probe is the sensor located in the center of the magnet and used both to send rf 

pulses and to detect the returning signal. Therefore, the choice and the quality of the probe have 

a direct impact on the spectral resolution of the NMR experiment. As an example, the size of 

the bore is an important aspect as small volume probes (3 to 1,7mm allowing experiment on the 

µL scale) give access to better sensitivity but larger volume bore is recommended to analyze 

higher viscosity samples. Cryogenically cooled probe, commonly named cryoprobe, allows an 

enhancement of signal to noise ratio by 3-5 time compared to conventional probe. This is 

therefore an interesting option to gain sensitivity for metabolite profiling and biomarker 

identification specially to compensate the lack of sensitivity due to the strength of the magnet118. 

Digital filter 

Digital filtering applied to NMR data aims to avoid baseline distortions, improves the 

sensitivity and provides a better dynamic range 119. Prior sampling, the unfiltered analog data 

passes through an analog antialiasing filter in order to suppress frequencies higher than the 

Nyquist frequency. Then the signal is sampled and digitized using an analog to digital converter 

(ADC) before being filtered and reduced in real time by the digital filter. Finally, the filtered 

FID is Fourier transformed and provide the spectral data for analysis. 
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Automation for NMR metabolomics 

The metabolomics approach usually involves large cohort studies with several hundreds of 

samples. The high throughput context of this approach therefore requires simple and robust 

NMR experiment and a high level of automation. From sample preparation, followed by 

automatic handling of sample for NMR acquisition and data-processing, all steps of the 

metabolomic-based NMR experiment have to be carefully set to avoid analytical variation. The 

analytical platform used for this work is therefore composed of a 500MHz operating NMR 

equipped with a TCI 5mm liquid nitrogen-cooled cryoprobe and used with a SampleJet sample 

charger allowing automatization of sample handling. All sample were analyzed using 1D NMR 

sequences dedicated to the biofluid investigated using IconNMRâ tool allowing automatic and 

reproducible NMR experiments. Recorded data were automatically pre-processed by an 

automated R package enabling Fourier transform, zero phase order correction, baseline 

correction and spectral alignment to ensure the consistency of NMR data across the study. All 

these aspects will be discussed in the following chapters.  
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1.3.4.2 NMR-based Metabolomics on blood sample 

1.3.5 Composition and metabolome coverage 

Blood is composed of two different parts, the first one is a cellular component which consists 

of blood cells (red and white) and platelets; the second one is the plasma, an aqueous solution 

in which the blood cells are suspended. Plasma, which accounts for 50-55% of blood volume, 

can be obtained from blood sample, by adding an anti-coagulant to the collection tube and a 

simple centrifugation step that removes the cellular content. If no anti-coagulant is added to the 

collection tube, the blood will clot, and the supernatant fluid is called serum. Plasma and serum 

are very similar and have almost identical endogenous metabolites composition; indeed, the 

main differences involve compounds linked to the clotting process as fibrinogens and 

prothrombin, a decreasing viscosity, and a slightly higher overall concentration for serum 

samples. Both plasma and serum are complex matrixes composed of 95% of water and a great 

diversity of substances including proteins and peptides (albumins, enzymes, hormones, 

lipoproteins), metabolites (carbohydrates, amino and organic acids, lipids), electrolytes and 

other small molecules that are suspended or dissolved in the media. As blood plasma and serum 

are the primary carrier of small molecules on the body and bathes every organ and tissue, most 

clinical tests are performed on these samples. 

1.3.6 Analysis of intact blood derived samples 

When speaking about NMR analysis of intact serum/plasma samples, the most obvious 

problem is the presence of water in the sample which the resonance will dominate the NMR 

signal. Therefore, water presaturation sequences must be used to recover the peak of molecule 

of interest without impacting the intensity or the integrity of the signals that do not resonate 

close to water frequency. The easiest way to achieve proper water suppression is to use a weak 

radio-frequency pulse centered on the Larmor frequency of water signal over a period 

corresponding to the water relaxation time T1 to selectively saturate its resonance and do not 

record the signal during the acquisition time (Figure 28). This presaturation method is the most 

convenient choice for metabolomics NMR experiments that involve other complex pulse 

sequence components. Indeed, this scheme allows good water signal elimination during specific 

analysis such as T2 discrimination methods or 2D experiment performed on intact 

serum/plasma samples. However, for more diluted samples or when a better water suppression 

is needed to improve baseline or signal/noise ratio, other more advanced pulse sequences are 

used. We will discuss them later. 
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The second aspect of intact blood sample to take in consideration is the presence of proteins 

and lipoproteins. Indeed, without the use of proper methods, the NMR spectra will be 

dominated by broad resonance peaks coming from these entities and the sharper peaks 

associated with small molecules metabolites will be poorly resolved. For these reasons spectral 

filtering techniques such as T2-editing cpmg sequence are used to make the small molecules 

signal more visible by suppressing the signal of high-molecular weight component. The Carr-

Purcell-Meiboom-Gill (cpmg) experiment takes advantage of the fact that large molecules such 

as lipoprotein, protein, and lipids, usually have faster relaxation time (T2) than small molecules 

metabolites. By attenuation of the signal of fast relaxing species, this filtering technique will 

allow important improvement in the observed metabolite detection and give access to robust 

spectral data (flat baseline, properly phased spectra, high reproducibility). The pulse sequence 

consists of a presaturation pulse followed by a 90° excitation pulse and 180° pulse train (Figure 

28). For each 180°, a spin echo* is generated after a time of the magnitude of 2t and the 

amplitude of these echoes will decay exponentially with a time constant that correspond to the 

transverse relaxation (T2) of the spin system. As large molecules exhibit smaller T2 than small 

molecules metabolites, their signal will decay, and the acquired signal will be dominated by the 

slow-relaxing compound. The spectrum resulting from this experience are close to classic 1D 

spectra since the attenuation of the signal is similar for all the studied metabolites as their NMR 

signature shows quite narrow linewidth.  

 

Figure 28. 1D Carr-Purcell-Meiboom-Gill (cpmg) Bruker® pulse sequence with water presaturation. A pulse 

sequence is a visual representation of the pulses and delays used in each NMR experiment. This sequence starts 

with a long pulse (white box) during all the relaxation delay d1 to saturate the water signal. After this period, a 

short 90° pulse (sharp black box) is applied, followed by a d20 delay, a 180° pulse (broader black box) and another 

d20 delay. This part of the pulse sequence is repeated x times to produce the desired T2-filtering effect. 

* Spin echo are generated to correct dephasing spins system that have different magnetic properties during the 

relaxation time. Indeed, by using a 180° pulse after a well-defined time, all the magnetizations will be reversed 

symmetrically from their original precession following the initial 90° pulse. Hence, the ones that were relaxing 

faster will be behind the other ones that were relaxing slower and therefore, at the end will have the same phase. 

This phasing will increase the signal by creating an “echo”. 
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1H-NMR cpmg spectra of intact serum/plasma samples as shown on Figure 29, are quite easy 

to interpret as sharp peaks from metabolites are well resolved and remaining broader peaks of 

lipids and lipoproteins moieties are simple to recognize. Lipoproteins are amphiphilic 

macromolecular complexes composed of various lipids and proteins that able lipids to circulate 

through the human body. Lipids within the lipoprotein structure are responsible of different 

resonance peaks from glycerol backbone, fatty acyl chains and the polar moiety, choline for 

example. But if the resonances peaks of these are poorly informative, the methyl and methylene 

group of various lipid components presents at low frequencies have been found to exhibit some 

interesting characteristics that will be discussed later in this work. 

Aside from these information, sharp peaks coming from different small molecules metabolites 

are easily identifiable. The most dominant species in the spectra of serum/plasma is glucose, 

which is present in the blood of healthy individual at a concentration » 5mM. This molecule, 

that is in equilibrium between its two anomeric forms a and b, have intense spectral 

contribution between 3.2 and 5.25 ppm and can be routinely quantified by 1H-NMR. Next to 

these peaks, smaller peaks are present and associated to various amino acids that can also be 

routinely identified and quantified such as glutamine, alanine, tyrosine, or proline. At lower 

frequencies, other small molecules are present in the spectra of intact serum/plasma. Hence can 

be found organic acids from TCA cycle such as lactate, formate or citrate, several ketone bodies 

included 3-hydroxybutyrate, acetone and acetoacetate. Finally, close to broad peaks of 

lipoproteins, branched chain amino acids are found and can be quantified using proton magnetic 

resonance spectroscopy.  

 

 

Figure 29. Cmpg-1D spectra from intact serum/plasma sample and the various molecules identifiable and 

quantifiable in routine analysis. Overlapped methyl and methylene group of lipoprotein lipids components (a) and 

(b) signal from various lipids. (adapted from 120). 

 

  

Chapter 486

analysis a few protocols have become well established and are used exten-
sively in large-scale studies. The maturity of the approach is reflected in the 
emergence of commercial service provision and serum NMR-based tests 
with regulatory approval and extensive clinical use. This chapter will seek 
to give the reader guidance as to what can be expected from NMR profiling 
of blood serum or plasma and the major factors that must be considered in 
setting up a study.

4.1.1  Sample Composition and Metabolome Coverage
Blood plasma, the extracellular fraction of blood that contains all soluble 
components, is from the analytical perspective a highly complex matrix 
that presents many challenges. It contains abundant proteins, such as albu-
min, lipid aggregates in the form of lipoprotein particles and small-mole-
cule metabolites, such as glucose. Plasma collection requires the presence 
of anticoagulants when blood is sampled; in the absence of these the blood 
is allowed to clot and serum is derived. Apart from a slightly higher global 
concentration and the removal of protein clotting factors, serum and plasma 
are almost identical in endogenous metabolite composition and NMR pro-
tocols treat both biofluids in the same way. Figure 4.1 shows an example 600 

Figure 4.1   (a) 1D NOESY and (b) 1D CPMG 600 MHz 1H NMR spectra of human 
blood serum. EDTA contamination from prior collection of plasma from 
the same blood draw can be observed (CaEDTA: Ca2+ bound EDTA). GlycA: 
N-acetyl peak from serum glycoproteins. Spectra recorded at 37 °C.
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The number of feature and the detection limit is highly dependent of the magnet and the probe 

used to record spectra, but also of the sample preparation. Indeed, here we discussed the analysis 

of intact blood samples, but with proper sample preparation, several examples in the literature 

report the ability of NMR spectroscopy to routinely detect and quantify up to 50-68 

metabolites102,107,121 at a minimal concentration above 2 to 10 µM depending on the multiplicity 

and the number of protons contributing to the peak resonance122. To achieve this, several 

methods are available to eliminate or separate the protein and lipid content from polar 

metabolites. From protein precipitation to ultrafiltration and solvent extraction methods, these 

methodologies use different steps that aim to improve spectral quality, eliminate overlapping 

broad signals and thus enhance metabolome coverage. For the minimal processing, and so the 

reproducibility, most of labs still use intact serum/plasma samples, but these strategies are 

becoming more and more popular. Pro and cons of these methods are summarized on Table 2 

and the choice of the technique is mostly driven by the subject of the study and the quantity of 

sample available as these are giving access to different information about the sample. 

The analysis of intact serum/plasma sample only requires a dilution step with phosphate 

deuterated buffer, for frequency locking and pH stabilization, and the addition of standard for 

calibration and quantification (if needed) as TMSP and Maleic acid or formate respectively. If 

this protocol has the obvious advantage to be fast, simple, and reproducible, it’s also the only 

way to obtain information about the lipoproteins content of the blood sample. However, when 

the aim is to have the best metabolome coverage or to quantify well identified metabolites, 

separating polar fraction or getting rid of large molecular weight compound by precipitation or 

ultrafiltration is the best way to recover greater information. Among the literature, three distinct 

methodologies exist to prepare serum/plasma samples for optimized 1H-NMR analysis: (i) 

ultrafiltration using molecular-weight filter in order to retain macromolecules and separate low 

molecular weight metabolites; (ii) protein precipitation technique by the addition of solvent or 

acid reagent followed by centrifugation and analysis of the supernatant; and (iii) extraction 

methods using polar and  non-polar solvents in order to recover both fractions and analyze them 

separately.  

Removing high-molecular-weight component from serum/plasma sample by centrifugation of 

the sample trough commercial 3-10 KDa filters is simple, inexpensive, and well adapted to high 

throughput metabolomics studies. Indeed, after centrifugation and addition of a solution of 

reference compound diluted in a deuterated solvent to calibrate the spectra and allow proper 

lock of the NMR instrumentation, small molecules are well resolved from the rest of the sample 
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and give access to robust spectral data. This process will provide a better peak resolution and 

flatter baseline that are essential for quantification through line fitting approach. In these 

conditions, by using proper NMR analysis, quantification up to 44 identified metabolites 

coming from various biochemical pathways is achievable102. The major drawback of the 

method is the need to remove glycerol that is present in high quantity in the commercially 

available filters using extensive washing process (up to 10 washing steps to completely 

removing the residual signal of glycerol from NMR analysis) and the possible variability in the 

amount of filtrate generated that could lead to express the quantified feature in relative 

concentration units. Finally, some metabolites could be retained on the filter as they can bound 

proteins and therefore not be present in the filtrate or in lower concentration.  

Deproteinization of serum/plasma samples is up to date the best methods reported in the 

literature in order to recover the highest metabolite content from blood samples with high 

reproducibility. Indeed, even if other several protocols exist123–125, adding methanol to 

serum/plasma sample in 2:1 ratio allows proteins to precipitate and lead to the assignation of 

67 distinct metabolites in NMR spectra121. When comparing the two methods in their paper, 

Gwonda and Raftery showed that protein precipitation methods exhibited higher concentration 

in half of the quantified metabolites with a 3 to 4-fold change for some metabolites such as 

tryptophan, benzoate and 2-oxoisocaproate126 comparing to the ultracentrifugation method. On 

the opposite way, the solvent evaporation step during protein precipitation protocol led to a loss 

or a reduction of some volatile metabolites such as dimethylamine, methanol, acetone, or 

ethanol compared to ultrafiltrated samples. Furthermore, this additional step decreases the 

ability of developing high-throughput workflow to analyze big sample cohorts. 
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Table 2. Summary of main blood sample preparation protocol for NMR analysis (adapted from 120). 

Until now, if the presented methods have the advantage to be simple and robust or in few steps 

give access to greater metabolome coverage, none of them can invest changes among the lipids 

profile of blood samples. Change in lipids and lipids composition are observable in 1H-NMR 

and even if very few examples are found in the literature, protocols able to separate polar and 

non-polar fractions are reported127. These protocols, based on solvent-solvent extraction 

involving chloroform and methanol in various ratio, extend the metabolome/lipidome coverage 

by the analysis of both fractions. Even if the reproducibility of dual-phase extraction remains 

an obvious challenge, interesting result can be obtained with these methodology as they have a 

largest metabolome/lipidome coverage than previously described methods. Indeed, spectra 

coming from polar fractions are comparable to one obtained via ultrafiltration or protein 

precipitation methods and give access to the quantification of polar metabolites, the NMR 

analysis of non-polar fractions make possible the identification and relative quantification of 

major lipid classes. The signal overlap between the different species of lipids is quite important 

in 1D-NMR spectra and, in order to improve the resolution, different solutions exist from 2D-

NMR analysis to the use of deconvolution methods. The later will be discussed in the chapter 

about the treatment of NMR data. Finally, in a recent publication, Giraudeau et al presented a 

Intact serum/plasma analysis Solvent extraction/ 
protein precipitation

Ultracentrifugation

Pros Quick and easy,
minimal processing,
widely used,
Lipoprotein information
volatiles retained

High metabolome
coverage,
best for aqueous soluble 
metabolites,
Lipids from apolar
fraction

No solvant or drying 
step,
volatile retained,
good coverage

Cons Low metabolome coverage, 
quantifitative accuracy 
limited

Volatile loss or less 
reproducible, 
time consuming

Protein-bound
metabolite may be
not recovered or less
reproducible, 
cost

Metabolome
coverage

Up to 20-30 metabolites,
lipoprotein information Up to 68 metabolites Up to 67 metabolites
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robust NMR workflow for lipidomic analysis using both 1D- and 2D-NMR spectroscopy and 

demonstrates that robust analysis can be performed in high-throughput process128.  

Despite all these improvements and the different methods available, investigations are needed 

to assess if the advantage of alternative sample processing methods prior NMR analysis can 

make NMR platform more competitive to mass spectrometry. Indeed, improving the 

metabolome coverage of NMR-based metabolomics cannot be due at the expense of the 

robustness, the absolute quantitative properties and the non-destructive character of NMR 

whose are part of the strength of this technique129.  

 

1.3.7 Analysis of treated blood samples 

When dealing with ultrafiltrated, deproteinized or polar fraction of blood samples, the use of 

NMR pulse sequence able to filtrate the signals is therefore needless. The presence of water in 

high concentration is the only problem the NMR spectroscopist will face and the best way to 

overcome this one is the use of 1D-NOESY sequence (also called noesypresat). This method 

provides NMR spectra with high reproducibility and great ability to reduce water signal without 

altering the remaining signals. To understand how noesypresat achieve better suppression than 

classic presaturation methods, we must take a closer look to the sequences. After the 

equilibrium recovery delay, the sequence begins with a long, lower power saturation period that 

allows for the selectively of the solvent resonance as its usually done in classic presaturation 

scheme. While using exclusively this method is not recommended as it led to the elimination 

of the resonance of the rapidly exchanging protons and can, via spin diffusion or direct NOE 

effect with water, attenuate the whole spectrum130, using a limited presaturation period is 

proven to be useful to achieve optimum solvent suppression. Following this, an inversion of the 

equilibrium state is achieved by two consecutive 90° pulses followed by a mixing period, a final 

90° excitation pulse and the acquisition (figure 30).  
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Figure 30.  The “1D noesy presat” pulse sequence used in this work to analyze filtrated plasma/serum samples. 

Compared to the original one, this pulse sequence uses gradient to achieve better water presaturation. This 

sequence starts with a long pulse (white box) centered on the resonance frequency of water to saturate the water 

signal. Right before the excitation pulses, the two short 90° pulses (sharp black box), a gradient G1 is applied. 

Exitation pulses are followed by another water presaturation pulse and gradient G2 is used before a final 90° pulse 

and signal acquisition period. 

 

The use of this sequence is largely spread among the different research groups as little 

optimization is needed to achieve high quality solvent suppression. The way the noesy presat 

suppress the signal of the solvent can be explained by three distinct aspects: the T1 

discrimination; the volume selection; and phase cycling131. These mechanisms aim to improve 

the suppression of the residual water signal that is due to field inhomogeneity in the region at 

the periphery of the tube and lead spectra with high quality solvent suppression with a good 

reproducibility. This sequence is one of the most used by metabolomics research groups dealing 

with urine or filtrated/deproteinized blood samples102,103.  
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1.3.8 1H-NMR data pre-processing  

In metabolomics studies, avoiding analytical and experimental variation that are unrelated to 

biological variation is of particular importance. Indeed, these variations can be originated from 

samples collection, storage, or preparation, as well as from the data acquisition and 

manipulation prior the statistical analysis. When the workflow of data treatment is not 

optimized, these variations can lead to uninterpretable results or to the discovery of false 

biomarkers. Therefore, after a well-planned study design and proper preparation and analysis 

of the samples, a good data pre-processing/pre-treatment is of particular importance as it will 

determine the interpretability of the acquired data. The objective of pre-processing steps is to 

minimize instrumental errors, enhance the signal to noise ratio (SNR) and transform the data in 

interpretable spectra that represents best the samples132. For 1H-NMR data, different solutions 

exist that aim to give access to high quality spectra and to robust data. Commercial software 

such as TopspinÓ and MestReNovaÓ are the most used tools for data pre-processing as they 

provide simple solution with friendly interfaces. If these tools are designed for the processing 

and the analysis of raw NMR data, they are rarely designed especially for metabolomics 

purpose. Thus, they lack advance editing steps and the need of manual adjustment led to 

operator dependent manipulation and therefore exhibit fewer robustness. Another way to 

process NMR data is the use of automated open-source software developed for metabolomics 

studies that provide exhaustive and flexible workflow to deal with raw 1H-NMR data, starting 

from the FID to interpretable NMR results.  

In this work PepsNMR, a R package developed by M. Martin and B. Govaerts from the 

UCLouvain133 in collaboration with our group, was used to pre-process our untargeted 1H-NMR 

metabolomics NMR data. Developed in collaboration with our lab, this software provides 

robustness and flexibility among the complete series of pre-processing functions that can be run 

independently or automatically. An overview of this workflow is depicted on the Figure 31 and 

all the different steps will be briefly discussed in the following section of this chapter. 
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Figure 31. PepsNMR workflow for NMR-based metabolomics133. 

Read FIDs 

This function imports raw Bruker files containing two matrices: the complex FID signal 

matrix and the acquisition parameters needed for the next steps. The FID recorded with the 

NMR is a complex time-domain decaying signal made of two parts named real (sx a cosinus 

phased signal) and imaginary (sy, a sinus phased signal) acquired by the two receptors x and y.  

1st order phase correction and Group Delay suppression 

The phase of the spectrum is corrected in such a way that the real part of the signal is in 

absorption mode and the imaginary part is entirely in dispersion mode. The total phase error 

has a frequency-independent and a frequency-dependent component that are corrected with the 

zero and first order phase correction. On Bruker spectrometer, a digital filter is used to increase 

the SNR, avoid baseline distortion, improve dynamic range and reduce signal folding119. If this 

tool has particular importance, it has several drawbacks that complicate the processing of the 

FID. Indeed, that implies that the first point of the FID is not the first point of the recorder signal 

as it starts after a time named “group delay”. So, the first order phase correction must be applied 

to the FID after the removal of the signal acquired during this “group delay”. With this function, 

each FID will be circularly shifted after a first Fourier transform, then finally back transformed 
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with the inverse Fourier transform to recover a processed FID without the signal arising from 

the group delay. 

Solvent suppression 

This step aims to suppress the solvent signal based on the assumption that the water, in the 

case of the analysis of serum/plasma sample, will be the main compound analyzed and therefore 

dominates the FID signal. The solution proposed by PepsNMR is to subtract the solvent residual 

resonance signal from the original FID by a smoothing function. The Whittaker smoother 

function will minimize V + l R where V is the sum of the squared differences between the 

original and the smoothed signal, R the measure of the roughness of the estimated signal and l 

the penalty on roughness used to calculate the smoothed version of the FID134,135. PepsNMR 

allows to tune the l parameter and different way to adjust it are available in the literature134,136.  

Apodization 

To improve the spectral sensitivity and resolution, the FID is multiplied by a an exponentially 

decaying signal in a step called “apodization”. During the acquisition, the NMR signal will 

decay in intensity over the time whereas the noise will continue to fluctuate randomly with a 

constant amplitude. Thus, multiplying the FID by a decaying signal will enhance the SNR as 

this ratio is higher at the start and decline over the time. The classical apodization method used 

in PepsNMR aims to principally enhance the SNR by using the decaying exponential: exp(-

t(1/T + LB)) where LB is the Line Broadening parameter. This parameter must be carefully 

assessed as an increase of LB will increase the SNR but at the expense of the peak height and 

thus the spectra resolution. For CPMG experiment the LB values are typically of 0.01 while 

usual values for the 1D NOESY are 0.3133. 

Zero Filling 

The zero-filling function will add points at the end of the FID before Fourier transform to 

increase the resolution of the spectra. It will improve the data quality by increasing the amount 

of point in the processed data to better define peaks. 

Fourier Transform 

The Fourier transform will transform the complex signal into an interpretable spectrum. It will 

extract each signal and convert it into peaks with specific heights, positions and widths that are 

depending on the amplitude of the signal, the frequency of the corresponding proton, and its 
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relaxation time (T1) respectively. At the end a matrix is created containing the spectral intensity 

at specific chemical shift, starting from 0 ppm and increasing toward the left. 

Zero order phase correction 

As mentioned above, spectrum exhibits zero order phase shift of a certain angle due to the 

instrumentation. This phase shift is independent to the frequencies and the present function will 

find the optimal angle that will maximize the positiveness of the spectrum signal.  

Internal referencing 

This step will calibrate the ppm scale to the resonance frequency of the internal standard, 

usually Trimethylsilyl-propanoic acid (TMSP) or 4,4-Dimethyl-4-silapentane-1-sulfonic acid 

(DSS). The chemical shift of such compound is referenced to 0 ppm. The function used in 

PepsNMR aims to locate the reference compound peak within a range of intensities by selecting 

the highest intensity on this range. Then the center of this peak is referenced as the 0 ppm value. 

Baseline correction 

To improve spectral quality and therefore the statistical analysis of the acquired data, baseline 

correction is an essential step. In PepsNMR, an algorithm is used to estimate the baseline and 

remove it from the spectra using a nonparametric method known as Asymmetric Least Squares 

Smoothing (AsLS)137. Two main parameters are of particular importance for tuning the baseline 

correction of the processed spectrum, p.bc and lambda.bc. The smaller is the first one, the less 

the estimated baseline will try to follow peaks. The larger is the second one, the smoother the 

estimated baseline will be thus if lambda.bc = 0, the baseline will be equal to the signal and the 

corrected signal will be 0. By default, these values are set to 0.05 and 1x107 respectively.  

Negative values zeroing 

Since negative signal values have no sense and create problems with statistical analysis, the 

function Negative value zeroing is used to set the remaining negative intensities to 0 after 

baseline correction. 

Warping 

Since samples studied in NMR based metabolomics studies are subjected to several variations 

(pH modification, temperature variation, salt concentration and modification in concentration 

of specific ions, etc.) it is therefore not surprising that small peak shifts are observable between 

identical features from different samples. The solution to obtain more consistent data is to apply 
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a peak alignment algorithm to increase the similarity between spectra. Several methods are 

described in the literature and all have their pro and cons138–140. The warping/alignment method 

implemented in PepsNMR is inspired by parametric time warping (PTW) function previously 

described in the literature133,141,142. This method will try to find a warping function (a distortion 

function in the ppm axis that combine a polynomial term and a penalized B-splines term) 

between a reference spectrum and a sample. The principle is to find a function that will 

minimize the distance between the warped spectrum and the reference spectrum. In PepsNMR, 

the choice of the reference spectrum can be done by different ways: (i) by manually referencing 

the spectrum; (ii) an automated selection of the spectrum that minimize the sum of squared 

distances with all other spectra before or after warping (if the choice is “after”, the process is 

slower as it will choose the reference after having been warping all spectra and test each single 

warped spectrum).  

Window selection 

This function is used to select informative areas of the spectra and therefore focus the analysis 

on relevant information. 

Bucketing 

Depending on the acquisition’s parameters, an NMR spectrum is composed of several 

thousands of points of given intensities at a respective ppm shift. As biofluids only contains 

more or less than 50 metabolites that could be identified by NMR, it’s a nonsense to describe 

the sample with such number of variables. Therefore, we need to reduce the dimensionality of 

the data before statistical analysis. The solution often used in untargeted NMR-based 

metabolomics is a segmentation method, called bucketing, that will divide each spectrum into 

several regions of the same width called bucket. The total area of each bucket is calculated and 

at the end of the process each spectrum is represented by a set of 200 to 1000 variables 

depending on the width of the bucket and the window selection (i.e: 500 for bucket width = 

0.02 over 10 ppm window selection). PepsNMR allows not only the selection of the bucket 

width, but also the choice between two integration options, trapezoidal or rectangular133.  

Region removal 

This step is focusing on removing resonance without interest from the spectra such as the 

water signal (4.5 to 5.1 ppm), the signal of an internal standard (5.8 to 6.2 for maleic acid) or a 
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region with residual baseline problems. Indeed, these features will add variability in our dataset 

and thus be problematic during the statistical analysis. 

Region aggregation 

Especially for sample with high pH variation and that contains ionized such as citrate, lactate, 

succinate, or taurine that cannot be properly aligned among spectra. This targeted data reduction 

will aggregate region of the spectra to condense the information in one larger bucket leaving a 

unique symmetrical triangular peak with null intensities at the border. 

Normalization 

Normalization is a crucial step as it will make all spectra comparable to each other prior the 

statistical analysis. It’s a row operation in which each bucket from each spectrum is multiplied 

by a constant term143. This will minimize biases introduced by the experimentation during the 

collection, preparation and analysis of the samples but also will address dilution factor problems 

that could occur in samples (especially urine samples). PepsNMR provides different 

normalization methods: 

- Mean: refer to constant sum normalization (CSN) in which each spectrum is divided by 

its mean so that its mean becomes 1. It assumes that the total peak area remains constant 

across all the samples143. 

- Median: each spectrum is divided by its median, so its median becomes 1. 

- First quantile: each spectrum is divided by its first quantile so that its first quantile 

becomes 1. 

- Peak: each spectrum is divided by the value of the peak of a selected compound or 

reference. 

- PQN: This method is specially designed to consider the difference in metabolites 

concentration that can be quite important in urine samples i.e. In this method a reference 

spectrum is calculated based on the median spectrum. Then, for each bucket, the quotient 

of a given spectrum and the reference spectrum is calculated, thus the median of all 

quotients is estimated. Finally, all buckets are divided by the median quotient144. 

 The choice of the normalization methods is not straightforward, and the choice will mostly 

depend on the type of the sample145,146. Applying CSN will be accurate when working on 

sera/plasma samples coming from human or animal cohort as the homeostasis of the blood 

media minimize the dilution effect. For urine sample, normalization based on the peak of 

creatinine can be recommended as creatinine concentration is expected to be correlated to urine 
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excretion and therefore sample concentration. Finally, for counteracting dilution effect or 

excretion difference between metabolites, PQN is often recommended144. 

Output data 

At the end of the workflow, the R package will return a matrix that contains samples in raw 

and the buckets corresponding to the NMR intensities in column. This “bucket table” will be 

used for the subsequent statistical analysis. 

 

Figure 32. Representation of NMR data processing and analysis workflow with PepsNMR. 

 

Here we presented PepsNMR, a R package that fits perfectly to untargeted NMR-based 

metabolomics (Figure 32). This methodology gives access to a robust pipeline in which manual 

intervention, and therefore bias, are minimized. Nevertheless, it’s not the only way to deal with 

NMR metabolites profiling data. Indeed, other methods are existing to generate untargeted 

profiles by using innovative bucketing approaches or alternative strategies.  
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However, if an equidistant bucketing approach has the advantage to not be sample dependent 

and highly reproducible, its lack of flexibility can be a problem when samples exhibit high 

chemical shift variations. Indeed, the information is often divided between several buckets and, 

if spectra are not well aligned, this approach will lead to inconsistent data analysis. To solve 

this problem, other methods such as Adaptative Intelligent Binning algorithms (AI-Binning) 

were developed. This algorithm uses variable bucket in size and determines automatically when 

to stop before made the next bucket147. Hence each single peak will be included on a single 

bucket and peak splitting will be avoided. Another solution found in the literature to achieve 

bucketing is the one proposed Laukens et al which is based on peak picking algorithm using 

wavelets to summarize peaks within the spectra148. That methodology will return a matrix in 

which spectra are expressed in term of their peak intensities at given chemical shift rather than 

their integrals values. 

Other alternative is the use of semi-targeted profiling methods that aim to quantify a set of 

identified metabolites among the sample99,149. Indeed, as metabolites resonances in NMR 

spectra are highly overlapped, bucketing will not give the best representation of metabolites 

levels and spectral deconvolution approach are the solution of choice. Typically, the set of 

metabolites will depend either on the biological question than on the tool and the size of the 

metabolite library available150. Indeed, most of the available tools for deconvolution are based 

on internal databased to work consistently. Hence free-access tool as BATMAN151, 

BAYESIL152, ASICS153, rDolphin154 and AQuA155 provide automated workflow for 

quantitative profiling of aqueous metabolites previously included in the metabolite library. A 

solution also exists for lipid profiling as LipSpin was recently published and available via 

Matlab interface156. If no in-house database is available, ChenomxÓ, a commercially available 

software, provide access to a database in which each metabolite is modeled using its peak center 

and J-coupling information149. Thus, users are allowed to quantify the identified compound 

using spectral fitting option and extract metabolites concentrations. Up to 70 compounds where 

identified and/or quantified in biofluids using this tool102,103. However, despite providing robust 

results for the set of studied compounds, these approaches don’t offer the opportunity to identify 

unknown features. An overview of all these tools is depicted in Figure 33. 
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Figure 33. Summary of NMR metabolomics data processing and analysis tools used in this work. 
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1.3.9 1H-NMR metabolomics data scaling 

In biofluid samples, metabolites are present in various concentration and due to their high 

concentration, a small number of metabolites can dominate the result of the statistical analysis 

at the expend of other metabolites. For that reason, scaling metabolites intensities among the 

dataset is mandatory to avoid bias by rescaling the weight of all variables through a 

mathematical operation for all samples145,157. All the different methods of scaling were 

reviewed by Van Den Berg et al., they all have their pro and cons and the choice of the method 

used is driven by the specificity of the dataset. Here some of the most used methods: 

- Centering: In this method the mean value is extracted for each variable and the mean of 

transformed variable is equal to 0. If this method is usually applied in most data prior PCA 

or PLS regression analysis, it’s not sufficient in heteroscedastic data (set of variables 

exhibiting different variances). 

- Autoscaling: In this method each column is centered by subtracting the mean intensity 

then divided by the standard deviation of each column. As all the variances will be equal, 

this methodology avoids the domination of variable with high variance in PCA and PLS 

analysis. However, this strategy will give noisy region as much importance as region of 

interest. Therefore, this may be a problem for NMR spectra that contain a lot of noisy 

regions. 

- Pareto scaling: This approach will apply mean centering then divide the column by the 

square root of the standard deviation. This is suitable to reduce the influence of high 

intensity region while increase the importance of small peak. All the variances will be 

roughly equal. Particularly relevant for NMR data as it will downgrade the importance of 

the noise. 

- Range scaling: After mean centering each column is then divided by the minimum and 

maximum range of that variable. This will make all variables roughly equal and is suitable 

for exploratory analysis. However, when the range between maximum and minimum, this 

method is quite insensitive and will enhance variable with smaller variability. 
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1.3.10 1H-NMR metabolomics data analysis 

As in NMR based metabolomics one individual is described by hundreds of variables and 

usually such studies potentially include hundreds of individuals, the amount of generated data 

is considerable. In metabolomics, several chemometrics methods were developed to produce 

interpretable and robust models that can handle this level of complexity158. These methods 

range from univariate statistical testing to multivariate regression methods as principal 

component analysis (PCA), partial least square (PLS) or orthogonal projection to latent 

structure (OPLS), cluster analysis, and finally machine learning or non-linear methods such as 

support vector machines (SVM) and neural network (NN) respectively. Basically, most of these 

tools can be classified into three different categories based on their uses for data overview (or 

unsupervised analysis), classification analysis (or supervised analysis) and identification of 

potential biomarker.  

 

Unsupervised methods 

The goal of unsupervised or data overview methods is to summarize the complex data. These 

exploratory tools are able to detect data patterns correlated with biological or/and experimental 

variables159. The most common method for metabolomics data overview is principal component 

analysis (PCA). PCA will summarize the dataset into a set of linearly uncorrelated variables 

called components160. The first component is composed of the variables that represent the most 

of variance among the dataset and therefore that maximize the dispersion between the 

individuals. The subsequent components will explain increasingly reduced amounts of variance 

and the created model will try to minimize the covariance between these components making 

them as much independent to each other as possible. Hence, after applying PCA analysis, all 

individuals will be represented in respect to their differences/likeliness to each other in a score 

plot while the weight of each variable within the component are plotted on the loading pot 

(Figure 34). Hence the score plot will allow to answer the question “how much are the different 

samples?” and the loading plot “What is different among the samples?”. 
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Figure 34. Most common plot of PCA analysis on metabolomics data: (a)a score plot on which each individual 

is represented on the model; (b) the corresponding loading plot on the right with all the variables used in the 

model; plot generated using demonstrating dataset of MetaboAnalyst®.  

 

This approach is often used to detect outlier, to highlight analytics/pre-analytics biases or 

possible grouping of individuals and/or variables without a priori161,162. For these reasons, 

unsupervised methods are often used prior to supervised analysis that will focus on differences 

among class of individuals. 

Another statistical method used for unsupervised analysis purpose is Hierarchical Clustering 

Analysis (HCA). This methodology will define groups of observation that exhibit similarities 

between them but that are different from the ones of the other groups. The main purpose of such 

approach is to put in light clusters of observation among the datasets. By using the Euclidian 

distance as metrics to show similarities between samples, a dendrogram is created. On this 

dendrogram the two closer observations will form a group, this group will be put in relation 

with the remaining dataset and will form another group with other close observation and so on 

(Figure 35). If this method does not allow a direct evaluation of the contribution of the variables 

to class construction, it will provide a good vision of the structure of our dataset and how 

samples are clustering together. 

Score plot Loading plot
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Figure 35. Schematic representation of HCA methodology. 
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Supervised analysis 

The goal of supervised analysis is to find the variables able to classify samples according to 

their group, in other word to find a correlation between the X matrix and the Y response matrix. 

This can be achieved using linear methods such as PLS(DA) and OPLS or non-linear methods 

like SVM and NN158 and the Y matrix can be quantitative (age, drug doses, …) or a qualitative 

binary response ( treated/control, hill/healthy, …) 

Partial Least Square (PLS) is the most used supervised analysis in metabolomics studies159. 

At the opposite of PCA, PLS will not maximize the variance of the dataset but the covariance 

between the response of interest and the metabolomic data163. Therefore, the loading plot of 

PLS component will represent which features are contributing to the discrimination of the 

different sample groups. The major drawback of this modeling method is that features 

uncorrelated to the variable of interest can influence the model and lead to less interpretable 

model. It is for solving this problem that orthogonal Partial Least Square (OPLS) was 

developed164. This model will factorize the data variance into a set of components: the first ones 

are correlated with the factor of interest, and the others contain variables uncorrelated with this 

factor and are therefore orthogonal. The features related to the separation of the sample groups 

are then summarized on one unique component while the others are not considered. This makes 

loading a score plot more easily interpretable as the effect of the studied factor is summarized 

in one component. 

Despite their usefulness, supervised methods must be used carefully as they can lead to 

overfitted models and thus to uninterpretable results. To avoid overestimated result and to 

produce robust model, each performance evaluation and the validation of each model coming 

from supervised analysis is mandatory.  

 

Performance assessment and validation methods 

The main objective of metabolomics, and therefore of applied classification methods, is the 

identification of biomarkers or use of spectral profiling as fingerprint. The use of supervised 

analysis allows to identify features/profile that are explaining the biology behind the dataset. In 

order to assure the usefulness of the identified feature, performance assessment and validation 

of the generated model are a crucial step.  
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Performance assessment tests will measure if the predicted outcomes are matching to the real 

outcomes. These tests will measure the percentage of well classified samples (predictive 

accuracy), the percentage of true positives correctly classified (sensitivity) and the percentage 

of true negative correctly classified (specificity)165. The most common performance assessment 

methods are the Receiving Operator Characteristic (ROC) curve. The ROC curves show how 

the specificity and the sensitivity change as the classification boundary is varied among the 

range of identified biomarkers. The ROC curve is often summarized by the area under the curve 

(AUC) metric. The AUC indicate the probability that a classifier will rank a randomly chosen 

positive sample higher than a randomly chosen negative one165. Thus, for a perfect classifier, 

that always classify samples in the good group, the AUC = 1. For a random classifier the value 

will be 0.5 while a value greater than 0.7 is considered as the minimal performance to reach for 

a clinically relevant biomarker165.  

The validation step will assess how the model will succeed when applied to a new cohort and 

is especially important when the model is based on a small number of samples159. The main 

tools used for this purpose are the permutation testing and the cross-validation166. 

 The permutation test will assess the probability of observing equal or better performance for 

model obtained by permuting class labels and/or randomly assigning them to different subjects. 

If the model is good, none of the randomly generated model will exhibit higher performance 

than the tested one166. 

The cross-validation method is another common tool in metabolomics. It’s based on two 

parameters to assess the model’s performance, R2 (x and Y) and Q2Y. The R2 represent the 

explained variance of the matrix of the x and y variables, while the Q2Y is representing the 

predictive quality of the model166. The closer to 1 these values are, more the model is predictive 

and the result of the separation significant. The cross-validation method will estimate these 

parameters using an iterative approach159. During this test, the total sample is split into two 

group, a training group and a testing group166. The training group is used to produce a predictor 

model using a specific set of parameters and the performance of this model is evaluated using 

the remaining group (testing group). This procedure is repeated numerous times so at the end 
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of the process each sample have been used once in the testing group. The average results will 

represent an unbiased estimation of the performance of the tested model (Figure 36)159,166.  

Figure 36. (a) OPLSDA score plot and (b) the corresponding permutation test; plot generated using 

demonstration dataset from MetaboAnalyst®. 

Important features and metabolites identification 

Once the supervised models are validated and the performance of the classifiers assessed, the 

important variables are represented in the variable importance in projection (VIP) plot (Figure 

37). In this plot, the importance of each variable that explain the discrimination between groups 

is estimated.  Typically, VIP-values larger than 1 indicates important variables while 

unimportant variables exhibit values lower than 0.5. As the important variables are 

corresponding to the buckets that are relied to the different spectral zone, a careful investigation 

of these zones is needed to identify the important metabolites and provide a correct biological 

interpretation of the data.  

OPLSDA score plot OPLSDA permutation test(a) (b)

OPLSDA score plot OPLSDA VIP score(a) (b)

Figure 37. (a) OPLSDA score plot and (b) the corresponding VIP score plot; plot generated using 

demonstration dataset from MetaboAnalyst®. 
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In first intention, the use of chemical shift list coming from literature for a given biofluid or 

tissue102,103 allow to visualize all the metabolites having spectral component on the zone of 

interest. Despite this information, identifying the metabolite remains a difficult task due 

overlapping peaks in most part of the 1D NMR spectra. To solve this problem, we use specific 

2D NMR experiments that allows to study connectivity between neighboring spins systems and 

thus overcome the overlapping problems (Figure 38). The most common 2D NMR pulse 

sequence is the Correlation Spectroscopy (COSY) that studies homonuclear 1H correlations 

through bond interaction. COSY experiment allows to study the structure of the molecules and 

therefore reveals specific connection able to individualize some metabolites. Another 

frequently used experiment is the Heteronuclear Single Quantum Correlation (HSQC) 

spectroscopy that allows to visualize connectivity between the 1H spins and their directly 

attached 13C spins. It provides unique signatures that allows identification of metabolites and is 

particularly useful to annotate singlet resonance signal coming from isolated spins systems. As 

for 1D NMR, web databased such as HMDB (www.hmdb.ca) give access to 1D and 2D spectra 

as well as theoretical concentration of metabolites among the different biofluids. An alternative 

to supplement NMR experiment for identification of unknown metabolites is the use of 

dedicated software like ChenomXÓ that allow the assignment and the identification of signals 

from an 1D NMR spectrum by matching peaks coming from an internal database. 

 

 

Figure 38. Overlapping peak (a) and (b) on the 1D spectra are resolved in the 1H-13C HSQC experiment and 

can be identified and/or quantified. 

Taken together, all these tools will provide successful identification of important feature 

spotted during the supervised statistical analysis. This makes possible the identification of 

biomarkers of interest and a better understanding of the biochemistry behind the design of 

experiment. Indeed, when metabolites are identified, the reconstruction of metabolic networks 
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is possible and constitute the final step for biological interpretation of the data. Pathway 

analyses will provide a visualization of the interactions among genes, proteins or other 

metabolites that relate to the identified features. This can be made using database such as KEGG 

(Kyoto Encyclopedia of Genes and Genomes), a web interface, or dedicated software such as 

Metaboanalyst167, Cytoscape168 or Metexplore169. It must be noted that several guidelines exist 

to publish new biomarkers in dedicated journals of metabolomics. Hence, the authors are 

encouraged to report the level of confidence (table 3) in metabolite identification following the 

guidelines defined by the Metabolomics Standard Initiative (MSI)170. Furthermore, some 

journals as Metabolites require the submission, in an open-access database, of all the 

information about the design experimental and the spectral data acquired in order to gain in 

transparency and reproducibility171. 

 

  

Table 3. Level of metabolite identification in published metabolomics literature. For NMR “identified 

compounds” relate for spectral matching with an authentic spectrum of the reference compound170. 

  

Level 1 Identified compounds (see below). 

Level 2
Putatively annotated compounds
(e.g. without chemical reference standards, based upon physicochemical properties and/or spectral similarity with 
public/com- mercial spectral libraries)

Level 3
Putatively characterized compound classes
(e.g. based upon characteristic physicochemical properties of a chemical class of compounds, or by spectral 
similarity to known compounds of a chemical class) 

Unknown compounds—although unidentified or unclassified these metabolites can still be differentiated and
 quantified based upon spectral data. 

Level 4
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1.4 Metabolomics and personalized medicine 

Personalized medicine is an emerging and promising clinical practice that relies on new 

technologies to help clinicians regarding prediction, prevention, diagnosis, and treatment of 

disease. These technologies aim to give access to the individual’s unique characteristics at the 

molecular, physiological, environmental, and behavioral levels that have a significant impact 

on their disease processes and therefore to the treatment they need for a maximized health care. 

In this context, metabolomics could provide a precise characterization of metabolic phenotypes 

and thus can be useful for underlying metabolic changes liked to disease, for the discovery of 

new therapeutic targets and biomarkers that can be used either for early diagnosis, patients 

stratification or treatment response evaluation172,173. 

The NIH174 define a biomarker as “a characteristic that is objectively measured and evaluated 

as an indicator of normal biological processes, pathogenic processes, or pharmacologic 

responses to a therapeutic intervention.” In a recent review, D.K. Trivedi et al. summarized 

several key metabolomics studies that have identified new biomarker candidates for diverse 

diseases175 and pointed out that metabolomics should not only be for pathological cure but also 

for preventive screening of healthy individuals. Indeed, early biomarkers have particular 

importance to prevent disease and may be useful in directing dietary or lifestyle change prior 

more radical intervention. For many diseases, screening healthy individuals make sense as any 

change in biomarker(s) levels is personalized. As an example, Prostate-specific antigen (PSA) 

is used for early detection of prostate cancer but people exhibiting enlarged prostate will already 

have higher PSA level176. Therefore, early screening and follow-up of individuals could be used 

in complement to current clinical practice and could dramatically improve patient’s health care. 

As concluded in a recently published white paper, the use of metabolomics data in clinical 

practice is a powerful tool for personalized medicine. Indeed, it will provide overview of the 

changes among the patient’s metabolism at baseline, prior to treatment, during the treatment 

and post treatment and can inform about treatment outcomes and variation in drug responses177.  
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1.5 AMD and metabolomics 

As previously described, biomarkers identified through metabolomics studies have particular 

importance for diagnosis, patient’s stratification and follow-up, drug responses evaluation. This 

approach aims to better understand the physiopathology of disease and can lead to new drug 

target discovery and improved therapeutic strategies. In the context of AMD several studies 

were conducted in order to investigate metabolome changes among diverse biofluids of AMD 

patients at different stages of the disease178. These approaches identified different compounds 

belonging to the oxidative stress and energetic pathway, to inflammatory processes or to lipid 

metabolism179–181. In this chapter we will describe some of them and discuss their role an 

implication into the different stages of AMD as well as their potential clinical application182.  

Oxidative stress is a condition that occurs within cells or tissues when exposed to an excess 

of molecules containing free radicals such as reactive oxygen species (ROS) and reactive 

nitrogen species. Even if antioxidative mechanisms exist to maintain the homeostasis, 

continuous presence of reactive oxygen species (ROS) can lead to oxidative modification of 

such cells or tissues183. ROS led to the degradation of all types of biological molecules such as 

proteins, DNA or lipids and can cause various pathological condition184. Because of its constant 

exposure to light, its high metabolic activity and the presence of oxidable species 

(Polyunsaturated fatty acids, PFUA, a content of membrane photoreceptive cells), the macula 

is highly exposed to oxidative stress. Indeed, photoreceptive shedding, light exposure, and 

environmental factors such as smoking, or alcohol consumption, are responsible of ROS 

production and accumulation and are proved to play a role in AMD pathogenesis. Therefore, 

it’s not surprising that potentially valuable biomarkers for AMD incidence or progression are 

related to this metabolic pathway. The following table (table 4) provides a non-exhaustive list 

of potential biomarkers investigated and the conclusions of the studies: 
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Compound Reference Conclusion Type of AMD Matrix 

Malondialdehyde (MDA) 185–188 Up nAMD/Early AMD/Any AMD plasma/serum 

Total Oxidation Status (TOS) 184,186 Up nAMD plasma/serum 

Oxidized LDL (Ox-LDL) 189–191 Up nAMD plasma 

Nitric Oxide (NO) 185,192,193 Up/Down Any AMD/Early AMD plasma 

Homocysteine (Hcy) 194–198 Up/N.D nAMD/Early AMD/Any AMD plasma/serum 

Total Antioxidant Capacity (TAC) 184,186,188 Down/N.D nAMD/Early AMD/Any AMD plasma/serum 

Thiol content (tSH) 184,190 Down nAMD plasma/serum 

Glutathione (GSH) 190,199,200 Down nAMD plasma/serum 

Carotenoids 182 Down nAMD plasma/serum 

Lutein 48,201,202 Down/N.D nAMD/Early AMD/Any AMD plasma/serum 

 

Table 4. List of potential biomarkers related to the oxidative stress pathway; Up and Down indicate the fold 

change in concentration for the case group in comparison the the control group; N.D is for no significative 

difference. 

As discussed above, life light exposure participates in the accumulation of oxidative damage 

within the retina that trigger age-related degenerative disease such as AMD. These damages 

will occur at different levels and will induce a pro-inflammatory response203. If inflammation 

caused by tissue damage is considered as an essential response of the immune system, chronic 

inflammation caused by recurrent event is a pathological condition. Indeed, it is well known 

that chronic inflammation plays a role in many age-related diseases such as cancer, Alzheimer’s 

disease and AMD204,205. In both wet and dry AMD, inflammatory immune response was 

associated with drusen as histopathological studies demonstrated the presence of complement 

cascade component in their composition17,206.  

Drusen, the major hallmark of AMD, are composed by at least 40% of lipids and many 

associations were made between AMD and lipid-linked genes such as CETP, ABCA1, APOE 

and LIPC42,206–208. Therefore, it’s not surprising that numerous studies have investigated lipid 

metabolism changes among serum or plasma of AMD patients. These studies included 

Triglycerides (TG) and cholesterol, phospholipids (PL), several fatty acids (DHA, EPA, ALA, 

DPA, AA, LA, PA, OA, SA), lipoproteins and apolipoproteins moieties. All these compounds 

and the conclusions of the linked studies are reported in the following table (table 5). Together 

these studies show that significant progress was made to identify interactions between lipids 
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and AMD. To fully understand this association, supplemental studies are needed using omics 

approach such as lipidomics, metabolomics, proteomics, and transcriptomics. These can help 

to clarify whether the concerned lipids are coming from the diet or produced locally by specific 

cells or tissues during AMD processes209.  

Compound Reference Conclusion Type of AMD Matrix 

Docosahexaenoic acid (DHA) 210–213 Up/N.D/Down Any AMD/Dry AMD/nAMD plasma/serum 

Eicosapentaenoic acid (EPA) 212,214 Down nAMD RBMC, serum 

α-Linolenic acid (ALA) 211,212 N.D/Down Dry AMD/Any advanced AMD Serul/plasma 

Docosapentaenoic acid (DPA) 211,212 N.D  Any AMD/Dry AMD  plasma/serum 

Arachidonic acid (AA) 210,211,213 N.D/Up Any AMD/nAMD plasma/serum 

Linoleic acid (LA) 210,211 N.D/Down Any AMD plasma/serum 

Oleic acid (OA) 210,211 Down/N.D Any AMD/Dry AMD plasma/serum 

Palmitic acid (PA) 210,211 Down/N.D Any AMD/Dry AMD plasma/serum 

Stearic acid (SA) 210,211 N.D Any AMD/Dry AMD plasma/serum 

 

Table 5. List of potential biomarkers liked to lipids pathways ; Up and Down indicate the fold change in 

concentration for the case group in comparison the the control group; N.D is for no significative difference.  

Lipoproteins are of particular interest as they aim to transport lipids trough the organism to 

achieve their role in energy storage, cell signaling or in the composition of cell membranes. 

This group of particles express different biochemical and physico-chemical properties and is 

divided into five classes according to their density209 (Figure 39).  

 

 

Figure 39. Lipoproteins and their lipids distribution for the 5 main classes based on their density (adapted 

from209). 
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The pathologic condition in which the level of circulating lipoproteins level is altered is called 

dyslipidemia and is associated with cardiovascular diseases. Therefore, measurement of 

circulating lipoproteins levels, as well as circulating cholesterol and triglycerides, is part of 

routine clinical practice for risk prediction and monitoring treatment efficiency215. For AMD, 

study suggested an increased risk for AMD for elderly patients with higher HDL 

concentration216. Moreover, HDL dysfunction seems to be implicated in AMD pathogenesis as 

change in their composition could lower their anti-inflammatory properties and lead to LDL 

oxidation217,218. Oxidation of lipoproteins content is thought to increase oxidative stress, 

inflammation and permeability of RPE cells, this induces dysfunction of outer blood retinal 

barrier and promotes VEGF production, the hallmark of nAMD219. Finally, higher levels of 

LDL and/or oxidized-LDL were found associated with nAMD in several studies190,220,221 

showing the potential usefulness of such entities as biomarkers linked to the severity of the 

pathology. It must be noted that if several studies find association between lipoproteins levels 

and AMD, other large population-based studies did not. Difference in result can be partially 

explained by the uses of different measurement methods across studies.  Indeed, if these can be 

measured directly by different methods including analytic ultracentrifugation, gradient gel 

electrophoresis, HPLC or 1H-NMR222, lipoproteins levels are often estimated using the 

Friedwald equation223 and the collected data are therefore less consistent224.  

In conclusion, data available seem to indicate the potential role of lipid metabolism and 

lipoprotein balance/composition in the occurrence/development of AMD. However, further 

investigations are needed to identify putative biomarker and highlight key mechanisms of the 

pathology.  
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1.6 AMD and NMR-based metabolomics 

As discussed in the first chapter, Age-related macular degeneration (AMD) is the leading 

cause of vision loss among elderly population in developed countries. This degenerative disease 

is evolving trough different stages and 90% of blindness due to AMD result from the exudative 

form of this pathology (nAMD). Up to now, diagnosis only relies on ophthalmologic exams 

and treatments of the most aggressive form are based on anti-angiogenic drug targeting the 

vascular endothelial growth factors (VEGF). Despite these, major clinical challenges must be 

overcome in order to improve patient’s care with early diagnosis methodology, refined patients’ 

stratification and improving evaluation of treatment responses. For this purpose, we decide to 

apply an NMR-based metabolomics approach based on both AMD patients and nAMD 

experimental mice model cohort. This work started few years before the beginning of this thesis 

and has set the foundation of this work. All the results reported below were published in 2020225. 

All the metabolomics’ related analysis reported here were done during this thesis. Either for 

human and mice cohorts, these analyses were performed on already acquired 1H-NMR data to 

confirm precedent assumption and refine generated information. 

NMR based metabolomics discriminate patients with late AMD225 

Our first study was based on a cohort of unrelated European Caucasian individuals (>59 y.o) 

affected with nAMD (n= 72) and healthy volunteers without sign of any AMD or known family 

history (n= 50). Plasma and serum samples were collected to perform NMR-based 

metabolomics analysis, lactate quantification and blood analysis (blood cell counts, leucocyte 

differential, and CRP measurement). For the NMR analysis, all samples were recorded at 298K 

on a Bruker Avance spectrometer operating at 500.13 Hz for proton acquisition. Maleic acid 

was used as internal standard for quantification and trimethylsilyl-3-propionic acid-d4 (TMPS) 

for signal calibration. 1H-NMR spectra were recorded using a 1D-CPMG relaxation editing 

sequence with water presaturation. Data were processed using Bruker Topspin 3.1 software 

with standard parameter set to prepare spectra for bucketing steps. Optimized 1H-NMR spectra 

normalized to total intensities and reduced to integrated regions of equal width (0.04 ppm) over 

the region comprised between 0.5-10 ppm. The former bucketing steps were conducted using 

AMIX software, provided by Bruker, and unwanted region were deleted from the processed 

spectra (water between 4.7-5 ppm and maleic acid 5.6-6.2 ppm) returning a matrix containing 

samples in row and buckets integration in column. The corresponding data matrix is then 

imported to SIMCA for statistical analysis. After Pareto scaling of the variables, non-supervised 

and supervised discriminant analysis were performed (PCA, PLSDA and OPLSDA). While 
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PCA was used for outlier detection and determination of intrinsic cluster, PLS-DA and OPLS-

DA were used for group comparison and biomarker detection.  

The prospective cohort of patients was sub-divided into 3 groups: active AMD (patients with 

exudative late AMD); inactive AMD (patients with stabilized AMD); and healthy volunteers. 

Supervised analysis of NMR metabolomics data allowed partial discrimination between all 

AMD patients (n= 72) and healthy donors (n= 50). Moreover, when focused on the 2 subgroups 

of AMD patients, discrimination between patients exhibiting active AMD and those in the 

inactive phase of the disease was noticeable (Figure 40a-b). Corresponding loading plots 

allowed the identification of the spectral zone responsible and metabolites for these separations 

(Figure 40c). Among these, lactate levels and lipoprotein profile changes appeared to be linked 

to the active phase of the pathology. Subsequent 1H-NMR and enzymatic dosage confirmed the 

increase of lactate in the blood of AMD patients in active phase compared to patients with 

inactive AMD and healthy donors (Figure 40d). This study highlights lactate and lipoprotein 

profile as marker for exudative AMD and could potentially be used as a marker of the active 

phase of the pathology. Further investigation has to be made in order to assess the changes 

among the lipoprotein profile and the possible pathologic role of lactate in the 

neovascularization processes. 
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Figure 40. Lactate and lipoproteins are the main increased discriminant metabolites in serum of patients with 

nAMD. (a) Score plot derived from an OPLS-DA of spectral data (3 components, R2 = 0.527, Q2 = 0.151) 

collected from patients with nAMD (blue dots, n = 72) and healthy volunteers (green dots, n = 50). Each data point 

represents an individual patient. (b) OPLS-DA score plot (2 components, R2 = 0.468, Q2 = 0.21) of spectral data 

collected from patients with active (red dots, n = 49) and inactive (blue dots, n = 23) nAMD. (c) Loading plot of 

spectral data collected from patients with active and inactive nAMD highlighting lactate and lipoproteins as 

biomarkers of active status. (d) NMR and (e) biochemical dosages of blood lactate in the serum of healthy 

volunteers and patients with active and inactive forms of AMD. Data are expressed as the percentage of healthy 

donors. (f) NMR spectrum of human serum highlighting the lipoprotein profiles (from 0.88 to 0.92 ppm)225. 
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NMR based metabolomics led to the identification CNV-linked metabolites in mice CNV model 

CNV is induced in 8-week-old C57BL/6J mice by laser impact as previously described. 

Neovascular lesions appear at day 5 post laser-burn and are the largest at day 7, collection of 

blood samples allows kinetics studies of CNV formations226. To study the kinetics of CNV 

formations, blood samples were collected from scarified mice at day 3, 5 and 7 post laser-burn. 

CNV were quantified through FITC-dextran labelled flat-mounted choroid and metabolic 

profile measured using 1H-NMR. Longitudinal NMR-based metabolomics analyses spotted a 

good concordance between changes in the metabolome and CNV progression. Indeed, most 

significant discrimination between control and induced mice occurred at day 5 and 7 post-laser 

burn concomitantly with CNV progression quantified on flat-mounted choroids. In accordance 

with the conclusion obtained in the clinical study, lactate and lipoprotein profiles were the major 

discriminant features responsible for the separation between groups. An increase of 

approximatively 15% of blood lactate concentration was measured by NMR in CNV mice at 

day 5 and the major changes among the lipoprotein profile were noted at day 7. These data 

suggest that lactate and lipoprotein profile are strong indicator for CNV occurrence and 

progression (Figure 41).  

  



- 89 - 
 

 

Figure 41. Lactate and lipoproteins are the main increased discriminant metabolites in the serum of mice 

subjected to CNV. Mice were subjected (CNV) or not (CTL) to a laser burn. FITC-dextran-labeled flat-mounted 

choroid observed at day 3 (a), 5 (b) or 7 (c) after laser induction. Dashed lines delineate the lesion. Scale bars, 100 

μm. Quantification of fluorescent neovessel area with ImageJ software (n ≥4 mice/group, n ≥ 12 laser 

impacts/group) at days 1, 3, 5, and 7 (d). *P < 0.05; ***P < 0.001. Error bars indicate SEM. Score plot resulting 

from a PLS-DA analysis of spectral data performed at day 3 (e), day 5 (f), and day 7 (g) after laser induction 

(control vs J3: 2 components, R2 =0.579 and Q2 = 0.119; control vs J5: 3 components, R2 = 0.669 and Q2 =0.841; 

control vs J7: 3 components, R2 = 0.793 and Q2 = 0.734). Laser-induced mice (green dots) were distinguishable 

from non-induced mice (blue dots) at day 5 and day 7. Each data point represents an individual mouse (n ≥ 4 

mice/group). Loading plot resulting from a PLS-DA analysis of spectral data performed at day 3 (h), day 5 (i), and 

day 7 (j) after laser induction. Lactate (blue dots) and lipoproteins (red dots) are the main discriminant 

metabolites225. 
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An interesting point of our study is that the normalization of blood lactate level trough 

dichloroactetic acid (DCA) treatment led to a reduction in CNV formation in our mice nAMD 

model. Indeed, DCA is a known inhibitor of pyruvate dehydrogenase kinase (PDK) and will 

modulate lactate level trough the deactivation of the pyruvate dehydrogenase (PDH) involved 

in pyruvate conversion into Acetyl-CoA in the mitochondria (Figure 42). Data recorded on 

treated mice demonstrated the functional implication of lactate in CNV progression and paved 

the way to a new therapeutic axis based on blood lactate level normalization. Interestingly, on 

our experimental mice model, lactate level normalization led to a reduction of CNV and a 

normalization of lipoprotein profiles with the same efficiency as anti-VEGF drug did.  

 

Figure 42. DCA treatment normalizes lactate level and reduces CNV surface. (a) Schematic overview of how 

DCA can impact lactate levels. DCA inhibits mitochondrial PDK activity, thereby maintaining PDH in its 

(unphosphorylated) active form and facilitating the decarboxylation of pyruvate to acetyl-CoA. As the flux of 

pyruvate is accelerated, the equilibrium between lactate and pyruvate is unbalanced towards pyruvate. (b–e) Mice 

subjected to laser-induced CNV were treated or not with DCA (3 mg DCA/day/mouse) (n ≥ 5 mice/group). 

Untreated mice (laser) were used as controls. bNMR dosage of serum lactate level at day 7 after DCA treatment 

(n ≥ 5 mice/group). The results are expressed as the percentage of laser-induced mice without treatment. *P < 0.05; 

**P < 0.01. Error bars correspond to SEM. Flat-mounted choroid of (c) an untreated mouse and (d) a DCA-treated 

mouse at day 7: Dashed lines delineate the lesion. Scale bars, 100 μm. (e) Quantification of CNV after DCA 

treatment at day 7 (n ≥ 6 mice/group, n = 26–27 laser impacts/group). The results are expressed as the percentage 

of laser-induced mice without treatment. **P < 0.01. Error bars correspond to SEM. (f) Quantification of CNV 

after Avastin treatment at day 7 (n ≥ 6 mice/group, n = 26–27 laser impacts/group). The results are expressed as 

the percentage of laser-induced mice without treatment. (g) NMR dosage of serum lactate level at day 7 after 

Avastin treatment; the results are expressed as the percentage of laser-induced mice without treatment (n ≥ 6 

mice/group). **P < 0.01. Error bars correspond to SEM225. 
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To determine the cellular source of lactate present at day 5, we measured by NMR lactate 

concentrations in different organs (eye, bone marrow, spleen and liver) at day 3 and 5 post-laser 

burn (Figure 43). At day 3, lactate increase is only noticed locally in the injured eye and no 

significant modification was detected neither in serum, bone marrow, spleen, or liver. 

Interestingly, increased lactate level was measured in the bone marrow at day 5 indicating a 

two phases release of this metabolite.  

Indeed, these data reveal a two-site production of lactate at two-time point: early and locally 

in the eye, followed by a systemic release in blood circulation promoted by bone marrow 

derived inflammatory cells. Lactate is known to be implicated in angiogenesis and 

inflammation processes227,228, two underlying causes of AMD. Moreover, in this study we 

provided evidence that lactate control the recruitment of macrophage, which are recognized as 

key cellular regulator of CNV formation229,230. Indeed, lactate was found to modulate the 

macrophage recruitment and influence the M1/M2 balance in favor of M2 macrophage by 

converting M1 macrophage to M2-like type (Figure 44). M2 macrophages are considered as 

pro-angiogenic and their implication in different pathologies including cancer and AMD is well 

documented231,232. 

 Consistently, our finding is in line with a previous study implicating lactate in the M2 

macrophage polarization in the context of cancer233. Altogether, our data highlight the interest 

of monitoring lactate level to evaluate disease progression and that targeting lactate metabolism 

could not only be promising for cancer234, but also for AMD.  
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Figure 43. Lactate mediates the recruitment of inflammatory cells during CNV. Mice subjected to laser-induced 

CNV were treated or not with DCA (3 mg DCA/day/mouse). Summary diagrams of the kinetics formation of 

inflammation, CNV formation, and lactate levels in eye and sera (a). NMR dosage of the lactate level at day 3 and 

day 5 in eye (b), bone marrow (c), spleen (d), and liver (e) (n ≥ 5 mice/group). *P < 0.05; **P < 0.01; ***P < 

0.001; ****P < 0.0001; data are expressed as the mean ± SD. Macrophage/neutrophil density defined as the volume 

occupied by cells divided by the total laser impact volume with or without treatment with DCA (f, g)225.  
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Figure 44. Boyden chamber assay showing the differential migration of human macrophages polarized in vitro 

into the M1 (a) or M2 (b) subtype (n = 6 wells/condition). M1 cells were attracted by high and M2 by low-lactate 

concentrations. Rdm corresponds to random cell migration in the absence of chemoattractant and CTL>O to cell 

migration in response to BSA-containing medium (positive control). Cultures of M1 macrophages were treated or 

not with 10 mM lactate for 48 h (b). The results obtained after phenotypic analysis showed that lactate induced the 

conversion of M1 into M2 macrophages (n = 5). *P < 0.05; **P < 0.01; ***P < 0.001; ns, nonsignificant. Data are 

expressed as the mean ± SEM (i, n, o) or mean ± SD (p, q)225.   
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 Of great interest is our finding that lactate levels and lipoprotein profiles are normalized and 

modified upon anti-VEGF and PDK inhibitor treatments. This paves the way for developing a 

personalized therapeutic approach of patients with late AMD under anti-angiogenic treatment. 

Indeed, clinicians are lacking tools for rationale decision-making and usually are following 

general guidelines. These biomarkers could help for patients’ stratifications, evaluations of 

treatment responses and/or to personalize the therapeutic interventions for nAMD by adjusting 

the frequencies of anti-VEGF injection. In addition, the normalization of lactate level trough 

oral administration of a PDK modulator is representing a new therapeutic opportunity and/or a 

complementary treatment to reduce CNV progression.  

This work put in light innovative concept of PDK/lactate axis as a functional, traceable, and 

targetable mediator of CNV and nAMD evolution. Metabolite profiling and lactate/lipoprotein 

profiles monitoring during anti-angiogenic therapy are of interest for the follow-up of nAMD 

patients and should be considered in future clinical studies to offer new tools to help clinicians 

to set up a more personalized approach on their patients. If results about lipoprotein must be 

refined to assess which lipoprotein classes are involved in CNV processes, a follow-up cohort 

of nAMD patients is mandatory to evaluate the usefulness of lactate measurement. Indeed, with 

such cohort we could go deeper in our observation and find out if following lactate levels and 

lipoprotein profile changes could be helpful for patient’s status determination and evaluation of 

treatment responses. Associating these changes among the metabolome with morphological 

changes among the retina of nAMD patients under treatment represent a great opportunity to 

confront clinical NMR metabolomics to real patients’ health care. 
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2 Aims of the thesis 

Age-related macular degeneration (AMD) is the leading cause of blindness among the elderly 

population in developed countries. 90% of all vision loss due to AMD result from the exudative 

form of this pathology, which is characterized by a choroidal neovascularization (CNV). 

Currently, diagnosis of AMD relies on ophthalmologic exams and treatments of the exudative 

form are based on the use of anti-angiogenic drug targeting vascular endothelial growth factors. 

Despite these advances, several clinical challenges must be overcome. Among those, the 

identification of biomarkers that could allow to refine patient stratification and assess the 

severity of the pathology, to follow disease progression and evaluate responses to treatment are 

mandatory. Our previous work has demonstrated the potential of metabolomics to deep insight 

n-AMD and opened the way for the putative use of this new approach in the clinics and in a 

personalized approach of this pathology.  

Thus, we decide to continue our investigation on n-AMD with the aims using NMR-based 

metabolomics in order to refine our first results and to explore how these results could be use 

in a preventive and/or patient’s follow-up. 

Our works will particularly focus on 3 axes: 

 

i. As previous investigations have indicated that changes among lipoprotein profiles 

could be correlated to the most advanced stage of the disease (neovascular AMD), 

we aim to provide more precise information about these changes by a specific and 

innovative analysis of the lipoproteins NMR data coming from our previous cohort. 

To achieve this goal, it is necessary to set up an original methodology able to extract 

lipoproteins’ information from old NMR data. Through this approach we aim to 

provide new insights for AMD patient stratification and evaluation of patients’ 

status.  

 

ii. To evaluate changes among the metabolome linked to the evolution of nAMD over 

treatments and improve patients’ follow-up, we collected plasma samples of patients 

over a period of 2 years. All patients were diagnosed with pathologic nAMD and 

undergo anti-VEGF based therapy. During this period clinical data regarding nAMD 

status of patients were collected as well as several clinical parameters (lactate levels, 

HDL and LDL-cholesterol levels) and blood samples for NMR metabolomics 

analysis. These data were used to evaluate the ability of our previously identified 
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biomarkers for improving patient’s healthcare. Furthermore, this work represents an 

interesting opportunity to explore the applicability of metabolomics in real clinical 

practices.  
 

iii. To study metabolic changes that occur during aging and lead to pathologic AMD, 

plasma samples were collected from 471 peoples with no sign of AMD and followed 

during a period close to 8 years. During this period, clinical data were recorded 

regarding their AMD incidence. The incidence of early or advanced AMD was 

defined by the progression of healthy individuals at the time of enrolment and 

evolving trough early or advanced AMD during the follow-up. This cohort will help 

to unravel the metabolic changes that occurs during the development and 

progression of pathologic AMD. This work will benefit of a close collaboration with 

INSERM of Bordeaux (Population Health Research Center Unité INSERM U1219) 

for the statistical analysis and will aim to improve diagnosis and prevention 

strategies for early AMD.  

 

In this work we will apply proton NMR based metabolomics approach to study the 

development/progression of Age-related Macular Degeneration and improve patients’ 

monitoring at various levels. From early diagnostic to the evaluation of treatment responses, we 

aim to provide useful information and demonstrate that metabolomics can play a role in daily 

clinical practices. 
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3 Lipoprotein profile for AMD patients’ classification 

3.1 Introduction 

In a previous study, we used proton nuclear magnetic resonance to analyze sera samples 

collected from a human cohort composed of: (i) bleeder AMD patient that are under treatment, 

(ii) non-bleeder AMD patient and (iii) Healthy volunteers. In parallel, this methodology was 

also applied to our experiment laser-induced choroidal neovascularization mice model, a model 

that mimic the effect of advanced stage of AMD226. NMR metabolomics analysis allowed the 

differentiation between control and AMD patients and between laser-induced and control mice 

group. Moreover, this study led to the emergence of different putative biomarkers. Among 

these, lipoprotein signatures are of particular interest since we found an association between 

lipoprotein levels and active phases of the disease in both human and mice model. In addition, 

some studies associated high density lipoprotein cholesterol and oxidized low-density 

lipoprotein with early AMD216,235 and para-inflammatory process inducing pathologic AMD 

respectively236. Taking together, these information suggest that investigating lipoproteins 

profile could be a turning point in the comprehension of the pathologic process that occurs 

during the apparition and/or the development of pathologic CNV process. 

 

Lipoproteins are amphiphilic macromolecular complexes composed of various lipids and 

proteins that able lipids to circulate through the human body. The core is composed mainly of 

non-polar lipids (triacylglycerol and cholesterol esters) while on the surface are found polar 

lipids (free cholesterol and phospholipids) and the protein components named apolipoprotein. 

This group of proteins is highly diversified and will define the structure, the functionality and 

how a given lipoprotein class will be metabolized and will interact in the liver and with the 

different peripherical tissues. They are defined regarding their density and divided into five 

main classes: chylomicrons; very low density lipoproteins (VLDL); intermediate density 

lipoproteins (IDL); low density lipoproteins (LDL), and high density lipoproteins (HDL)237. 

For each classis, several subclasses exist but the number is depending on the 

separation/characterization methods and, since no discrete value corresponding to a given class, 

lipoprotein density is considered as a continuum and going deeper in the separation between 

the main classes have poor clinical interest. The core of lipoproteins is composed of 

hydrophobic lipids such as esterified cholesterol, triglycerides, and some cholesterol, while in 

surface are founds amphiphilic species as apolipoproteins, phospholipids, and free cholesterol. 
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Compositions and repartitions of lipids is characteristic of a given class and thus each class 

exhibit proper physico-chemical properties (Figure 45).  

Lipids within the lipoprotein structure are responsible of different resonance peaks from 

glycerol backbone, fatty acyl chain and the polar moiety, choline for example. But if the 

resonances peaks of these are poorly informative when aim to discriminate the different 

lipoprotein classes, the methyl and methylene group of various lipid component presents at low 

frequencies have been found to exhibits some interesting characteristics (Figure 45). Indeed, 
1H-NMR signals from the methyl (-CH3) and methylene (-CH2) groups in the hydrocarbon 

chains of lipids moieties shift to lower frequencies for higher density lipoprotein classes (HDL). 

This effect is due to differences of radii of the particles. Indeed, ratio of the core to surface 

lipids differs with the particle diameters and as lipids from both shells have different magnetic 

susceptibilities, a size-related frequency shift is observed238. This shift is then varying 

continuously with the decreasing radii of particles from VLDL to HDL lipoproteins (Figure 

45). 

 

 
Figure 45. 1H-NMR spectra of pure lipoprotein fractions on the left and on the right how they overlapped to 

produce the final signal recovered on 1H-NMR analysis of blood samples (adapted from239).  
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To get deeper in the analysis of lipoprotein changes already observed, we need a new tool that 

could be used on NMR data readily available. Indeed, NMR investigation of lipoprotein content 

from blood derived samples is well documented in the literature. These methods are mostly 

based on curves fitting approach that fit the signals coming from isolated lipoprotein moieties 

analyzed in the same conditions than the samples of interest240–243. Other powerful methods 

using diffusion edited NMR pulses sequence, such as DOSY experiments, aim to resolve peaks 

of several lipoprotein subclasses based on their diffusion coefficient and allows their 

quantification244. Nevertheless, even though these methods are robust and provide the best 

representation of lipoprotein content of blood samples, they require to analyze again all samples 

or use the same NMR instrumentation. This was not possible in our case and therefore we 

needed a methodology that used already processed NMR data.  

 

In this work we taken advantage of the differences of chemical shift that exist between the 

different lipoprotein classes. Here we used a peak-picking method that allows the representation 

of the lipoprotein profile on NMR spectra of sera samples (Figure 46). This simple method 

gives a representation of the shape of the total lipoprotein signals and allows the comparison of 

profile between individuals. Indeed, the whole lipoprotein signals was fractionated into 4 and 

5 signals for human and mice samples respectively. This decomposition is based on the evident 

maxima of the overlapped signals coming from the various lipoprotein classes. Using this 

strategy, we were able to differentiate VLDL rich samples and samples exhibiting a higher 

proportion of HDL moieties. This methodology allowed us to reuse our acquired NMR data 

providing a valuable information about our human and mice cohorts. All methods and results 

described in this chapter were published in the Journal of Molecular Medicine225. 
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Figure 46. Representation of the cohort used for lipoprotein profile investigation and examples of rich VLDL 

and HDL samples for human and mice individuals. This representation shows the fragmentation of the 

overlapped peak of lipoprotein moieties and how we used these data to represent profiles changes among 

samples. 
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3.2 Dataset 

The dataset used for this section is composed of 122 individuals (49 bleeders, 23 non-bleeders 

AMD patients and 50 healthy volunteers) for which the NMR lipoprotein profile was evaluated 

through a peak picking approach (see material and methods). Lipoprotein profile measurements 

were made on previously acquired NMR data and are representing the 4 main classes of 

lipoproteins (VLDL, IDL, LDL and HDL). Thus, each human sample are described by 4 values 

representing each class as the part of the whole lipoprotein contribution to the NMR signal. For 

mice samples (n≥4/group) coming from our experimental CNV model, the whole profile was 

subdivided into 5 classes from VLDL to HDL. These data allow us to statically analyze 

variations among lipoprotein profile of human and mice blood derived samples in different 

conditions. 

 

3.3 Lipoproteins 1H-NMR profile for nAMD 

As described in the previous section, the NMR signal of the main lipoproteins classes was 

separated into 4 fractions, namely, F1 to F4 representing the shift of the signal from a fraction 

rich in VLDL (F1), to IDL (F2), LDL (F3) and HLDL (F4). We compared changes among the 

lipoprotein spectral zones in the 3 patients groups based on their AMD status: healthy, inactive, 

and active patients. During this analysis we observed a shift toward a VLDL rich profile for 

patients with active nAMD. Both VLDL and IDL (F1 and F2) proportions were higher, while 

LDL and HDL (F3 and F4) fractions were reduced in the active group compared to inactive and 

healthy ones (Figure 47).  

 

Figure 47. Enlarged view of the lipoproteins NMR spectral zone showing the chemical shift corresponding to 

the maximum intensity of the signal of the 4 lipoprotein classes (a) and, modification of the lipoprotein profile 

during CNV development (b). Fraction 1 is mainly composed of VLDL, while fraction 4 is mainly composed of 

HDL. *P < 0.05; **P < 0.01; ***P < 0.001. Error bars are SEM. 
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Interestingly, when the same strategies were used on spectra coming from NMR analysis of 

mice CNV model samples, the same shift of lipoprotein profile was observed (Figure 48). 

Indeed, higher proportion of VLDL rich fraction was noticed in serum sample of mice at day 7 

post laser burn compared to control mice in kinetics CNV formation analysis. Of great interest 

is that these changes in lipoprotein profile are normalized upon anti-VEGF/PDK inhibitors 

treatment indicating that these modifications are related to the CNV status.  

 

 

 

 

 

 

Figure 48. Enlarged view of the lipoprotein NMR spectral zone showing the chemical shift corresponding to the 

maximum intensity of the signal of the 5 lipoprotein classes (a). Modification of the lipoprotein profile during 

CNV development (b). Fraction 1 is mainly composed of VLDL while fraction 5 is mainly composed of HDL (n 

≥ 5 mice/group). *P < 0.05; **P < 0.01. Error bars are SEM. 

 

These results refine the previous observation in which the spectral zone corresponding to 

lipoprotein content was identified through discriminant multivariate statistical analysis (see 

section 1.6). Shift in the lipoprotein profile toward VLDL rich balance was noted during the 

active phase of the pathology either in human or mice CNV model cohort. The good correlation 

between the two metabolomic studies conducted support our concept to use lipoprotein profile 

changes as indicator of AMD status. Moreover, effect of treatment against pathologic CNV is 

also reflected by our approach since the switch to a VLDL rich profile is decreased for CNV 

mice that were treated with anti-VEGF or PDK inhibitors (DCA) compounds. This clearly 

shows that lipoprotein levels are modified through CNV events and that monitoring changes of 

this maker during AMD follow-up could help to refine the diagnostic regarding the evolution 

of the pathology. Together with lactate level, lipoprotein profile could offer a new tool to help 

clinicians to personalize the therapeutic approach and rationalize patient’s nAMD management. 
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3.4 Conclusion and prospect 

In this chapter we refine information previously reported concerning the impact of nAMD on 

the lipoprotein profile. We demonstrate that active phase of neovascular AMD is associated 

with a shift in the lipoprotein profile toward rich VLDL balance. Monitoring such modification 

of the NMR lipoprotein signals could be interesting for assessing patient’s CNV status and 

figure out when treatment must be applied. Moreover, this pattern could be used to predict 

patients’ responses to treatment and set up a personalized therapeutic strategy that fit better to 

the need of the individuals. 

 The usefulness of our discovered biomarker must be evaluated in a real case patient’s follow-

up study. Indeed, switching from case-control study to real life clinical practices represents a 

turning point that will definitively determine the ability of our methodology to improve nAMD 

patients’ health care. Following lactate levels, monitoring change among lipoprotein profile and 

NMR metabolome of such patients is mandatory. By this, we aim to evaluate if such 

information could be correlated with retinal morphologic changes due to disease progression 

and treatment responses. 

3.5 Material and Methods 

Patients’ selection and samples collection 

The study population consisted of unrelated European- Caucasian individuals (>59 years old) 

affected with nAMD (n = 72) and healthy volunteers without signs of macular disease or a 

known family history of AMD (n = 50). Patients with AMD and volunteers were not matched 

for age or sex. Trained ophthalmologists examined all patients with nAMD and divided them 

into clinically active or inactive subgroups depending on the presence or absence of intraretinal 

or sub-retinal exudative fluids as assessed by OCT, respectively. A complete medical history 

of each patient was obtained by using a standardized questionnaire (i.e., lifestyle, pathologies, 

treatments, BMI, etc.). For all the participants, peripheral blood was collected after 

ophthalmological exams in: (1) K2 EDTA blood collection tubes for blood cell counts, 

leucocyte differential, and C-reactive protein (CRP) measurement using CRPLX kit (Cobas®, 

Roche/Hitachi); (2) serum-separating tubes (Greiner); and (3) sodium fluoride/oxalate tubes 

(Greiner) for the lactate quantification. Serum samples were routinely taken in the morning with 

a fasting period of at least 2 h. Samples were treated according to clinical standard processes 

and stored at − 80 °C after sampling until the metabolomics analysis. Clinical biology analyses 
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(lactic acid, CRP, red and white blood cells) were also performed on the sera to evaluate patient 

inflammatory status. 

 
NMR metabolomics analysis 

All samples were recorded at 298 K on a Bruker Avance spectrometer operating at 500.13 

MHz for the proton signal acquisition. The instrument was equipped with a 5-mm TCI 

cryoprobe with a Z-gradient. Maleic acid was used as an internal standard for quantification 

and trimethylsilyl-3-propionic acid-d4 (TMSP) was used for the zero calibration. Human sera 

(500 μl) were mixed with D2O phosphate buffer (100 μl) (0.1 M, pH 7.4), a 35 mM solution of 

maleic acid (100 μl) (Aldrich, Germany), and TMSP (30 μl) (sodium trimethylsilyl[2,2,3,3-D4] 

propionate) in D2O (10 mg/ml). Mouse sera (200 μl) were mixed with D2O phosphate buffer 

(400 μl) (0.1 M, pH 7.4), 35 mM solution of maleic acid (100 μl), and TMSP (30 μl) in D2O 

(10 mg/ml). 1H-NMR spectra were acquired using a 1D-CPMG (Carr- Purcell-Meiboom-Gill) 

relaxation-editing sequence with presaturation for serum samples. The CPMG experiment used 

a RD-90-(t-180-t)n-sequence with a relaxation delay (RD) of 2 s, a spin echo delay (t) of 400 

ms, and the number of loops (n) equal to 80. The water suppression pulse was placed during 

the RD. The number of transients was typically 32. The acquisition time was set to 3.982555 s, 

and a quantity of four dummy scans was chosen. Data were processed with the Bruker Topspin 

3.1 software with a standard parameter set. Phase and baseline corrections were performed 

manually over the entire range of the spectra, and the δ scale was calibrated to 0 ppm using the 

internal standard TMSP. 
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Lipoproteins profile 1H-NMR analysis 

Estimation of lipoproteins profile modification among spectra collected from patients and 

mice was performed by using peak picking methods that compare intensities between the 

different fractions. In human and mouse blood NMR spectra, the global signal of lipoproteins 

between 0.80 and 0.95 ppm is due to an overlap of several peaks that could be linked to the 

main classes of lipoproteins: very low-density lipoproteins (VLDL), low-density lipoproteins 

(LDL), intermediary density lipoproteins (IDL), high-density lipoproteins (HDL), and 

chylomicron. Then, it could be decomposed into distinguishable signals corresponding to these 

different classes or to a mixture of 2 classes (4 in humans and 5 in mice).  

To evaluate the proportion of each lipoproteins fraction in the samples, a method based on 

normalized peak intensity calculation was developed. Then, for each class, we determined the 

chemical shift corresponding to the peak of signal intensity. For human samples, 4 fractions are 

selected (F1 = 0.92 ppm (mainly VLDL), F2 = 0.91 ppm, F3 = 0.89 ppm, and F4 = 0.88 ppm 

(mainly HDL). For mouse samples, 5 fractions are selected (F1 = 0.93 ppm (mainly VLDL), 

F2 = 0.92 ppm, F3 = 0.90 ppm, F4 = 0.89 ppm, and F5 = 0.88 (mainly HDL)). For each sample, 

the signal intensity at these different chemical shifts was measured and then normalized to the 

total intensities of all fractions to reduce the impact of the global lipoproteins concentrations 

that could differ between samples. Therefore, the obtained values represent a fraction of the 

total signal. This method allows the comparison between lipoprotein profiles issued from the 

spectra of blood samples collected from patients with AMD, control subjects, and induced/ non-

induced mice (Figure 49).   
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Figure 49. Human lipoproteins profile evaluation trough peak-picking approach of VLDL rich sample (above) 

and HDL rich sample (bottom). This methodology allows the direct comparison of profile from already processed 

NMR data. 

 

Statistical analysis 

Univariate statistical analyses were performed on each lipoprotein fraction (see above 

“Lipoproteins profile 1H-NMR analysis”) of both mouse and human serum spectra using 

GraphPad Prism version 7.0. A nonparametric Kruskal-Wallis test with Dunn’s multiple 

comparison was used to compare Fx controls with Fx AMD patients and Fx mice control versus 

CNV mice (J5 and J7 post-laser) with Fx being the lipoprotein fraction number 1 to 4 for 

humans and 1 to 5 for mice. 
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Chapter 4: 

NMR metabolomics and nAMD 
patient’s follow-up 



- 112 - 
 

  



- 113 - 
 

4 NMR metabolomics and nAMD patient’s follow-up 

4.1 Introduction 

In the previous study we highlighted a functional role of lactate in AMD and in CNV 

progression that could be used for patient’s stratifications, follow-up, and evaluation of 

treatment responses. Moreover, changes among the lipoprotein profile toward an increase of 

VLDL moieties were found to be associated with CNV development events and provide a new 

tool to monitor the evolution of the pathology. Taken together, these information paved the way 

to a new patient follow-up and personalized medicine approach for AMD225. Indeed, by 

following lactate concentration’s evolution and changes among the lipoprotein balance, we 

aimed to better characterize the patient regarding its own evolution through the pathology and 

provide information that leads to a more rationalized treatment. 

Indeed, as these tools seems able to assess the CNV status of AMD patient, this could be the 

key for clinical decision of intra-vitreal injections of anti-VEGF. Adaptative treatment regimen 

are proved to improve AMD healthcare but failed in practice due to a lack of “handleably” 

markers of the pathology. Considering this, we are convinced that our biomarkers could fill the 

gap between scientific evidence and clinical practices65. 

In this chapter, we’ve followed 32 AMD patients under anti-VEGF treatments over 2 years. 

By collecting blood samples for NMR analysis and several clinical data and information, we 

aimed to use our previously discovered biomarkers in a real-life patients’ management context. 

Following the evolution of these marker through the evolution of these patients will assess their 

usefulness and determine if they can be used for a more rationalized healthcare of AMD. 
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4.2 Datasets 

 
For this study several datasets on the same cohort were generated in order to answer specific 

questions. The cohort is composed of 32 patients aged of 62 y/o or older, all diagnosed for their 

nAMD and followed over 2 years of treatment. Over the 269 time points (an average of 9.6 

visits/patient), several clinical parameters from serum analysis, retina measurements and 

plasma samples for NMR analysis were collected. Hence for each visit the measured parameters 

included: lactate, glucose, HDL cholesterol and LDL cholesterol levels (calculated), and pH 

measurements. NMR analyses were performed on plasma samples to generate three distinct 

way to analyze metabolome related changes: (1) an untargeted metabolic profile of patients 

composed of hundreds of buckets of the NMR metabolic signature; (2) a targeted metabolic 

profile that results from the quantification of 60 known metabolites using a dedicated 

methodology; finally, (3) an NMR lipoproteins profiles (VLDL, IDL, LDL and HDL fractions) 

obtained through peak picking methods described on the later chapter. The evolution of patients 

regarding their pathology is represented by clinician’s comment about patient’s status, 

evolution of visits schedule, clinician’s decision of intra-vitreal injections and responses 

evaluation, and finally, several measurements of OCT imaging biomarkers of morphological 

changes among the retina: Intra Retinal cystoid Fluid (IRC), Sub Retinal Fluid (SRF), and 

Pigment Epithelium Detachment (PED). In particular, IRC is representative of the accumulation 

fluid leakage from pathologic CNV processes. Therefore, this measure will allows to assess if 

the studied patient is in active phase of the disease and to monitor its evolution through the 

treatment65,74. PED is also associated with bad prognostic and loss of visual acuity as this 

morphologic manifestation is a consequence of macular hemorrhagic events. On the other hand, 

SRF is one of the rare makers of the pathology correlated with positive outcomes. Indeed, these 

events are considered as a sign of healing retina and are associated with gain of visual acuity74,81. 

Finally, these markers will help to refine patient’s status and provide the closest information 

about the evolution of the pathology. 
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At the end, we generated 5 datasets, 4 concerning metabolic information/profile of each 

patient (dataset 2-5) and one dataset focused on their pathology evolution (dataset 1). All these 

datasets will be used in distinct analysis that aims to put in relation variations of the metabolome 

with changes among health status of nAMD patients (Figure 50). 

 

 
Figure 50. Schematic representation of the generated datasets and their uses. All the data were collected during a 

two-year follow-up during which each patient had an average of 9.6 visits. 
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4.3 Lactate and Lipoprotein profile for AMD management 

In previous studies, we identified new conceptual insights into the pathogenesis and evolution 

of advanced AMD. Indeed, our data supported lactate as a new functional, traceable, and 

targetable mediator of pathogenic CNV process involved in AMD progression. Moreover, 

metabolites profiling and lactate/lipoprotein level monitoring suggested to be helpful for AMD 

management as they are linked to CNV events and are normalized upon anti-VEGF treatment. 

Therefore, our follow-up cohort of AMD patients under treatment represent a unique chance to 

evaluate the usefulness of our biomarkers (Figure 51). For this, we collected blood samples for 

nAMD patients over a period of two years for both NMR lipoprotein profile analysis (dataset 

3) and for the quantification of circulating lactate and glucose levels, pH and HDL/LDL 

cholesterol measurement (dataset 2). At each visit, parameters regarding patients’ status were 

collected (dataset 1): clinicians’ comments; treatment schedule and; OCT biomarker images 

measurements (IRC: Intra Retinal Cystoid fluid, SRF: Sub Retinal Fluid and, PED: Pigment 

Epithelium Detachment). 

 

Figure 51. Schematic representation of use of available dataset and expected evolution of markers, these 

simulated data represent our expectation regarding the evolution of both patients ‘status and related biomarkers. 

In this representation the measured values (measured clinical parameters and lipoprotein profile) are evolving 

concomitantly with IRC values. As IRC values are the measured parameters that give the best representation of 

the nAMD status as its directly related to CNV evolution, our previously biomarker should be able to follow its 

evolution. 
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In first, we aimed to follow the variations of lactate levels measured from clinical analysis and 

the lipoprotein profile from the NMR analysis of plasma samples. We will determine if these 

values can reflect the variation of the ones measured from OCT images (IRC, SRF and PED) 

and improve disease status characterization. Indeed, by using our tools we will try to determine 

whether the patient is responding well to the treatment or not. We expected to find a similarity 

between the evolution of lactate levels and/or the lipoprotein profile and OCT data collected; 

in particular, in an ideal world, trajectories of lactate values and VLDL rich lipoprotein fraction 

would followed the IRC surfaces as this marker is the best representation of CNV status. 

 

Figure 52. Representation of the evolution of lactate (in black) and IRC values (in red) for a selection of 4 

patients. 

From the analysis of the data displayed in Figure 52 it’s clear that no relevant information 

can be extracted. Even if lactate concentration seems to follow at some time points the IRC 

values for some patients, nothing consistent and systematic can be highlighted for the whole 

cohort and at all the time point. The same observation can be made from the use of lipoprotein 

VLDL rich fraction as depicted in Figure 53 and when other OCT markers are used (data not 

shown). 
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Figure 53. Representation of the evolution of VLDL rich lipoprotein fraction (in black) and IRC surface (in 

red) for some AMD patient. 

From this first observational analysis, it clearly appears that our previously identified 

biomarkers are not evolving concomitantly with the used markers of the pathology. Therefore, 

looking at the trajectory of these values will not be helpful for patient monitoring as they aren’t 

providing a good representation of dramatic CNV events that are occurring during patient’s 

management. Maybe our previous discoveries cannot be translated into a less controlled 

environment than case control studies. Indeed, the time course of patient’s follow-up in clinics 

add complexity to the cohort as all individuals doesn’t evolve in the same way regarding their 

pathology. Moreover, as the disease may evolve differently from one individual to the other, 

the visit’s schedule fixed by the clinician could not be optimized to give the best representation 

of the pathologic events. We need to change our way to use the data and try to find stronger 

markers of the pathology.  

In first intention, we tried to analyze if any correlations existed between OCT values and the 

different clinical measurements that were made on the blood samples of patients (Lactate, pH, 

glucose, HDLc, LDLc, TG-fatty acids and cholesterol). For this we made a Pearson correlogram 
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in which the correlation between all values across the whole dataset are measured. If any 

correlation exist, bright red/blue circles for negative and positive correlations respectively 

appears; thus, strong correlations are easily spotted as big dark red or blue dots.  As shown in 

Figure 54a, no correlation can be visualized between clinical parameters and OCT derived 

values. The same observation can be made when we tried to analyze the correlation between 

lipoproteins fractions, IRC, SRF and PED values (Figure 54b). This analysis only shows 

correlation among the datasets. For example, strong correlation can be seen between IRC and 

SRF values that suggests that these pathologic events are linked. This make sense as SRF fluids 

are sign of retina’s responses to the CNV process that led to IRC fluid accumulation. In the 

same line, correlation between lipoproteins fraction measured by proton NMR spectroscopy 

also makes sense as negative correlation is observed between VLDL and HDL rich fraction. 

 

Figure 54. (a) Pearson correlogram of OCT data vs clinical measurement made on blood samples coming from 

AMD patients, (b) Pearson correlogram of OCT data vs lipoprotein fraction determined from NMR data of plasma 

sample collected from AMD patients. Notes: “diff IRC” and “diff PED” are representing the difference between 

two consecutives visits for IRC and PED values respectively. This was made to represent patient’s evolution. 

“LDLcHDLc” represents the ratio between the two lipoprotein moieties, made to rationalize the values between 

individuals and focus on lipoprotein balance. 

It appears that none of the measured parameters that we planned to use can explain the 

pathological OCT markers. These results forced us to reconsider the goal of our research that 

is no longer the use of previously identified biomarkers but rather to discover new one that can 

explain/predict the morphological changes among the retina of nAMD patients. 
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4.4 Biomarker discovery for nAMD management 

Since our biomarkers failed in real life practice, this chapter will describe all the analysis that 

were performed to find new biomarkers that could be used in daily clinical practice. We will 

first discuss about the NMR analysis and give an overview of the final dataset that will be used. 

The analytical strategy was set up to answer to several questions than can be asked during a 

two-year follow-up of AMD patients. By this, we aimed to discover robust biomarkers that 

gives the best representation of patients regarding their pathology. 

4.4.1 The “d20” problem 

 To capture changes among the metabolome that can be related to the studied pathology, we 

need the most robust data analysis workflow possible. For this reason, we decide to process our 

NMR data using PepsNMR software previously described for untargeted NMR metabolomics 

analysis. After pre-processing, bucketing and normalization of data, the first step is a 

previsualization of the whole dataset using PCA analysis. This unsupervised analysis will put 

in light some differences among the dataset and possible “natural” clusters.  

 

Figure 55. PCA analysis of bucketed NMR spectra from AMD patients. In green samples analyzed with the 

Bruker Avance platform and in blue samples analyzed with the Bruker Neo platform. Strong effect of platform is 

visible.  
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Figure 55 shows the score plot of the PCA model generated on our dataset. A clear separation 

appeared between two groups of samples. Among the two groups are found samples from each 

individual and no specific distinction regarding their AMD status can explain this separation. It 

was found that this separation can be explained by changes in NMR sequences parameters. 

Indeed, during the two years of follow-up, we periodically analyzed our plasma samples in 

order to recover the information about the lipoprotein profile. The stability of NMR over time 

normally allows us to compare data acquired at different time points as the result will not 

depend on experimental condition such as the ones that can affect results in LC-MS analysis. 

This statement is true if analytical parameters of the NMR sequence remain the same; here our 

platform has been upgraded at the electronic level during the project.  

 

After the upgrade of the NMR electronics (from Bruker Avance to Neo console), some 

parameters such as pulses duration, gradients values were re-calibrated and re-adapted to the 

new instrument. These small changes and adaptations led to differences in the applied sequence. 

Then, an unexpected scalar coupling problem was noted for strong coupling signals (ie. lactate 

signals). Scalar coupling issues are known as J-modulation and are current in NMR experiment 

that uses spin-echo. Herein, J-modulation is well documented and several strategies are 

available in the literature to avoid this effect245. This effect mainly arises from improper value 

of total echo time namely d20 on Bruker sequences lexicon. Thus, this parameter can be 

modified to suppress J-modulation and increase spectral quality. 

 

Another parameter that can be responsible of spectral quality is pulse duration. Indeed, well 

calibrated pulses are mandatory to avoid field inhomogeneity and therefore prevent coherence 

losses and preserve J-modulations246. Thus, to obtain useful spectra, the effect of the spin-echo 

sequence during cpmg experiment was therefore modified, and the total echo time (d20) has 

been adapted to the new pulses’ durations. These changes had dramatic consequence in our 

dataset as depicted in Figure 56. 
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Indeed, this parameter has strong effect on our NMR dataset as the efficiency of the T2 filter 

is directly linked to this increment of time. Thus, signals of lipoproteins and lipids moieties will 

be upper in samples analyzed with shorter d20. This can be visualized on the spectra colored 

from VIP predictive score of the OPLS-DA analysis generated on the dataset by setting classes 

on the used value of d20 (Figure 56). This clearly shows which signals are impacted by the 

changes of this parameter. 

 

Figure 56. Predictive VIP representation plot from OLPS-DA analysis showing important NMR signals linked 

to d20 signature. 

Fortunately, if this have a strong effect on the intensity of several signals, it has no impact on 

peak shape and is not depending on the size of molecules. Thus, if the intensity of signals 

coming from lipoproteins is modified, the effect is almost the same for all fractions. Therefore, 

as lipoprotein fractions are calculated as a part of whole, no discrimination can be made between 

the spectra acquired with one or another platform (Figure 57). Indeed, non-parametric t-test 

(generated using GraphPad Prism8®) are unable to discriminate group based on the analytical 

platform. 

Anyway, if NMR lipoprotein profile measures will remain useful, this problem minimizes to 

zero the chances to perform NMR profiling analysis. For these reasons we decide to take a step 

back and analyze again our samples. Indeed, avoiding bias induced by instrumentation and 

batch effect is always challenging in longitudinal studies where samples are collected during a 

long period and sometimes analyzed at different time point. If different normalization methods 

allow to correct the batch effect, this relies on QC samples carefully designed regarding the 
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experimental design. Regarding our experience, we could had avoided the “d20” issue by 

analyzing all samples at the same time point at the end of the study. To have information about 

the variability that could come with aging samples during their storage, QC samples based on 

reference materials should have been included. These QC samples could consist of reconstituted 

plasma with known metabolites concentrations that could have been stored at different time-

points during the study. Following the evolution of known concentration values of metabolites 

during the storage would give us information about possible bias induced by the stability of 

plasma samples during their storage. 

 

Figure 57. Mann-Whitney non-parametric t-test generated using GraphPad Prism8® on lipoprotein fraction data 
obtained through NMR lipoprotein profile evaluation approach. No differences can be made between the two 
batch of samples acquired on the Bruker® Avance or Neo platform.  
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4.4.2 Quantification, final dataset, and analytical strategy. 

To perform valuable statistical analysis on our longitudinal dataset, we decide to quantify 

metabolites of our NMR plasma samples. For this, an ultrafiltration step dedicated to protein 

elimination is mandatory as well as the use of proper NMR pulses sequence (1D-noesypresat) 

in order to fit with ChenomXÓ software requirement. This commercially available software 

allows the identification and the quantification of plasma metabolites through line fitting 

algorithm allowing spectral deconvolution of resonance peaks. This led to the quantification of 

60 metabolites coming from various biochemical pathways (list 1) in all plasma samples 

coming from nAMD patients involved in the follow-up study. 

 From the initial 269 visits, 13 have no NMR data because of blood sampling issues and 15 

have no OCT data. From the remaining 241 samples analyzed in NMR, 10 were excluded from 

the analysis because of poor spectral quality. At the end the dataset is containing 231 samples 

from 29 patients as PS29 and PS19 was removed because having one single time-point, and 

PS11 was removed because only one value has clinical data from all visits. 

From the initial 269 visits, a final number of 231 samples were used for the following analysis 

(see section Materials and Methods 3.1.2 for more details) 

To better represent our cohort and evolution of patients during the study, we made several 

groups of individuals according to 8 criteria (C1-C8) based either on clinicians’ 

conclusion/decision and OCT data (Figure 58). The first two groups are based on the initial 

injection planning and its evolution, this plan is set by the ophthalmologist regarding the initial 

status of the patient and its own evolution. Two other groups are based on the clinicians 

‘conclusions and their evaluation of treatment responses. All other groups are based on the OCT 

markers and should represent a more rational way to characterize patients. This represents the 

best way to make clear correlation between the metabolome and the pathologic CNV events 

occurring during nAMD. All groups and their frequency are represented below: 
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Figure 58. Representation of all groups formed for statistical analysis and their frequency (n=x). Groups from 

C1 to C5 were made from information provided by clinicians and groups from C6 to C8 were made on the basis 

of OCT data and their evolution. 
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4.4.3 Exploratory analysis of NMR data 

In this section we used the dataset in which each sample is described by the concentration of 

the 60 metabolites measured by NMR (Figure 59). We will represent the dataset using 

unsupervised analysis and color samples according to their identity (PS), their clinical 

evaluation (comment from the clinicians), their response to treatment or the evolution of the 

measured OCT markers (IRC, PED and SRF).  

 

 

 

Figure 59. Exploratory analysis workflow of the dataset generated using ChenomX. 

To begin our analysis, we will explore our dataset using principal component analysis. At first 

this will help us to detect any outliers, to figure out how our data are represented by the model 

and to determine the major sources of variations. From the analysis of the score plot of the first 

PCA model (Figure 60), we can identify two outliers from the same individual. These samples 

shouldn’t be considered for the rest of the analysis as they present abnormally high 

concentration values for all metabolites compared to other samples and therefore were excluded 

from the dataset.  

C1 to C2

C3 C4 to C5 C6 to C8
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Figure 60. PCA analysis of the studied dataset, data were scaled prior the analysis and each individual are 

represented by a single color. Samples codes can be read as follow: first two number accounts for the patient ID 

and the two following number accounts for the visit number (i.e: 0104 code for the fourth visit of the patient 

PS01) 

All the following PCA model were generated using Mixomics R package, an open access R 

package. The advantage of this package is the integration of the multilevel tool for different 

multivariate statistical methods. This method was developed by Dr. B. Liquet to take into 

account the longitudinal structure of complex dataset that involves repeated measurements247. 

In this approach, the “within variation” is split from the “in-between variation” and is called 

internally to perform the statistical analysis on the desired part of the original dataset (equation 

4). This method is based on the “split-up” variation approach developed by Westerhius et.al248 

and enable to extract the stimulation effect from each subject by getting rid of the between-

subject effect. Hence, we have a better representation of the changes effect within the subject 

than by considering all sources of variations. This will avoid the formation of clusters made of 

samples coming from the same individuals and better represent their evolution during their 

follow-up. 

𝑋 = 	𝑋… + 𝑋" + 𝑋# 

Equation 4. Representation of the split-up approach of the multilevel normalization method. (X= matrix; 

X…=residuals; Xb=between-subject variation; Xw=within-subject variation). 
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On Figure 61 the two PCA score plot, with and without the application of multilevel, are 

represented and we can clearly see the effect of this operation on the individual PS01. As we 

see, the samples coming from the different time points of this patient are no longer clustering 

together. From the explained variance graph of our PCA model (Figure 61), we can see that 

the proportion of variance is mostly captured by PC1 and after PC4 the remaining PCs are 

explaining less that 5% of the variation among our datasets. Therefore, for the remaining 

analysis we will focus on the four first components.  

 

 

Figure 61. (a) PCA model generated without the use of multilevel; (b) PCA model showing the effect of the 

multilevel approach on our model; (c) the explained proportion variance of the final model. 

To explore our cohort and see if some samples are naturally cluster together and if these 

clusters are related to some pathological condition, we have generated different score plots that 

are representing the patients regarding to their AMD status. In the file “Exploratory-Analysis” 

from https://github.com/MS28uliege/These_MS_Results can be found all score and loading plot 

regarding this analysis, but all conclusions from these remain the same. Here are only shows 

the results where the samples are represented based on the evolution of OCT markers. The 

evolution of IRC is calculated using the difference of the measured values between two visits 
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and samples where then divided in three groups: those for which the IRC values are increasing 

(IRC up), decreased (IRC down), or remained stable (IRC stb) between visits.   

Based on the analysis of the score plot, no clustering exists between visits that had the same 

clinical outcomes even when analyzing smaller components. Moreover, the loading plot of the 

generated demonstrates the poor variabilities of our dataset. Indeed, the contribution of the 

variables to the different components is small indicating that values are close for all samples. 

This doesn’t allow us to analyze our cohort in an unsupervised way as we planned. The 

exploration of our dataset using PCA models will not be able to capture the variability that 

could exist during AMD patient’s follow-up (Figure 62). 

 

 

Figure 62. PCA score plot representing the individuals regarding PC1 and PC2 (a); and PC3 over PC4 (b); the 

corresponding loading plots (c) and (d) (Total variance explained for PC1 and PC2 = 24%; Total variance 

explained for PC3 and PC4= 10%).  
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4.4.4 Discriminant analysis 

On this part we aim to perform different discriminant analysis to find features able to make 

distinctions between groups of samples. For all analysis performed, the multilevel correction 

was applied to consider the repeated measurement of each subject. Groups were formed to 

answer specific question about AMD evolution and treatment’s responses as depicted in Figure 

59. As no separation between groups were noticed in unsupervised analysis, our primary 

concern was to not produce over-fitted supervised statistical analysis that would produce non-

consistent results. Overfitting can appear when the model is too complex and start to explain 

the dataset using noise or irrelevant information. This produces a model that seems to describe 

well the original dataset but will fail on a new one. If a generated model fails to be generalized 

to other new data, it cannot be used to perform the classification or prediction task that it was 

created for. 

To reduce the risk of over-fitting in our analysis and to optimize the chance to select important 

variables linked to group separation, we will use MixOmics package. This R package allow the 

tuning of sparse PLS-DA (sPLSDA) models by returning the optimal number of components 

and how many features to retain for each component. These parameters are kept for the 

generation of the final model and the performance will be than evaluated using multivariate 

ROC curves and permutations test. Sparse PLS-DA performs variable selection and 

classification in a one-step procedure improving the interpretability of the results249.  

To determine the ideal number of component and variables used to construct them, the 

Balanced Error Rate (BER) is used as the performance measure (Figure 63). For this, a five-

fold cross-validation is repeated ten times to calculate the classification error rate that is then 

averaged to consider the weight of each class. The BER value is from 0 to 1 and lower value 

indicates accurate model. This process is performed iteratively in the way that each component 

is tuned one at a time to allow the determination of the ideal number of variables. From the plot 

below, key parameters (ideal number of components= ncomp; optimal number of variables= 

keepX) are extracted to build our final model. 
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Figure 63. Example of balanced error rate (BER) plot from a simulated dataset: BER is calculated for each 

component regarding the number of variables taken in consideration. Diamonds indicate the optimal number of 

variables to select per component. As low BER values indicate accurate model, the lowest diamond will return the 

ideal number of component (ncomp) and the number of variables to consider (keepX).  

The first discriminant analysis on groups was made on the clinicians’ conclusions. This was 

performed using the dataset in which each patient/visit is described by the 60 metabolites 

obtained from ChenomX. For each visit clinicians left comments about AMD status of patients 

that can be classified as “positive”, “negative” or “stable” regarding their evolution. After 

tuning, the number of components was fixed at 2 with 5 to 7 variables to consider for the 

component 2 and 1 respectively. If the loading plot does not show any separation between 

groups (Figure 64b), the ROC curves generated was more optimistic as the AUC calculated 

was above 0.7 for almost all the three classes (Figure 64c). Nevertheless, permutation test 

showed us the poor predictability of our model as important number of misclassifications is 

observed among all classes (Figure 64d).  
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Figure 64. Plot resulting from the tuning of sPLSDA model (a) and the loading plot of the final model (b). 

ROC curves based on the selected components and their ability to classify the samples regarding their groups 

(GA for people with positive evolution, GB for negative and GC for patients that are stable) (c) and the 

permutation test showing the predictability of our model (d). 

Results of all discriminant analysis performed are summarized on Table 6 and conclusions 

remained the same. None of the model were able to make good classification of patients in any 

kind of groups based on the different clinical information. The tuning step for some analysis 

was already a good indicator of how poorly informative the models are. Indeed, for most of 

them the ideal number of components was 1 and most of the time, the keep X parameter was 

equal to the number of variables.  

We need to change our way to analyze this dataset as this approach is clearly not adapted to 

our case study. Indeed, as classification of patient is the main problem in AMD management, 

and since all patients evolves from different starting point regarding their OCT data, it’s not 

surprising that our class analysis was not satisfying. Therefore, changing our way to explore 

our dataset is essential to be able to refine the way to classify and follow AMD patients.  

Permutation test:

(a) (b)

(c) (d)
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Table 6. Summary of discriminant analysis performed on groups made on clinical information and OCT data. 

For analysis for which the ncomp= 1, two components were kept to run the entire analysis. For permutation test, 

considered as fail ones that were exhibited an important number of misclassified samples. 

Notes: All results from this analysis can be viewed in the file “Discriminant-Analysis” from GitHub repository:  

https://github.com/MS28uliege/These_MS_Results 

4.4.5 Correlation and regression analysis 

Since all exploratory and discriminant analyses based on or defined groups failed, we decided 

to change our approach. In this section, we will focus on the relation that can exist between 

information about the metabolome and the clinical measures based on OCT images of AMD 

patients’ retina. The measured parameters, namely IRC, SRF and PED, is expected to give us 

the best representation of the pathology status and of its evolution. Finding biomarkers related 

to their evolution could therefore be helpful for patient monitoring, classification, and 

evaluation of treatment responses. 

For this purpose, we plan to analyze our dataset using Pearson Correlation test, Partial Least 

Square regression 2 (PLS2) and Principal Component Regression (PCR) analysis. The objective 

of such approach is to identify variables coming from our metabolomics dataset (X) that can 

explain other continuous variables such as OCT measurements (Y). The dataset using here 

didn’t undergoes any kind of normalization to consider the patient’s effect (multilevel i.e.). 

Indeed, these analyses are performed rather to find association between continuous variable 

than try to discriminate group of samples. 

Pearson Correlation test are done to find linear associations or dependency between two 

quantitative variables. Through this basic approach, we aimed to find metabolites that are linked 

to some OCT values such as IRC, PED or SRF. On the correlogram represented in the Figure 

65, positive or negative correlations are represented by bright red or blue circles respectively. 

Correlation values rages from -1 to 1 and therefore 0 values, that are not represented by colored 

Groups ideal ncomp AUC Roc Perm.

Initial inj. Plan 4 0,4 Fail !

Adaptation plan inj. 2 0,7 Fail !

Conclusion 4 0,5 Fail !

Injection 1 0,6 Fail !

Response 1 0,5 Fail !

SRF? 1 0,5 Fail !

IRC up/down 1 0,6 Fail !

PED up/down 1 0,7 Fail !
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circles, indicate independent variables. By analyzing the correlogram generated on our two 

datasets, none of the variables coming from the metabolome can be linked to the ones coming 

from OCT images. This indicates that only weak linear associations exist between the two 

datasets. 

  
Figure 65. Correlogram of Pearson’s correlations tests performed between variables coming from the 

metabolomics NMR analysis and OCT measurement of AMD patient’s retina. Vertical and Horizontal boxes 

represent area in which interesting correlations could be seen. 
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If correlation analysis is made to highlight the link between continuous variables, it is not 

made to handle the complexity of multivariate data. Indeed, all variables coming from the 

metabolomic analysis are not independent and therefore more robust statistics are needed to 

better use our dataset. Therefore, we decide to use Partial Least Square regression 2 (PLS2) and 

Principal Component Regression (PCR) analysis.  

PLS2 regression is a multivariate methodology that is used to integrate two datasets measured 

on the same individuals by extracting correlated information. This model allows the analysis of 

correlated variables and is suited to handle noisy, collinear, and missing variables. If PCA 

maximize the variance of components from the original dataset, PLS will maximize the 

covariance of components. Note that covariance is a measure of the strength of the relationship 

between two variables and its value has no upper or lower bound. From the PLS model, the 

score plot (Figure 66a) is representing all samples regarding the measured NMR metabolites 

concentrations (X) and measured parameters in OCT images (Y).  

The corresponding correlation circle plots (Figure 66b) show the variables correlated with 

the different components. Since both datasets are represented using the same set of axes, 

correlation between variables from the two datasets can be highlighted. Some variables seem 

weakly correlated with IRC and SRF values and could be worth considering (3-methyl-2-

oxovalerate, methylmalonate, acetone, 2-hydroxybutyrate, fumarate, isovalerate, 3-

hydroxybutyrate). 
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Figure 66. (a) score plot for the PLS analysis of data coming from the measured metabolites (X) and OCT data 

(Y); (b) Correlation circle plot showing the correlations between variables and components. 

From this information a relevance network plot can be generated in which the correlations are 

represented. In this plot we can identify some features that are correlated to IRC and SRF values 

(Figure 67). It’s important to note that for generating the network, the tuning threshold for the 

relevant associations network had to be lowered. Indeed, no association stronger than 0.31 was 

found.  

Obviously, association below 0.5 are not worth of interest but here are shown to evaluate 

tendency that could be further validated by other analysis. Indeed, knowing the weakness of 

our approach (highly unbalanced design, weak variations between visits/individual, missing 

value), all features that could be identified by different statistical analysis could be interesting. 

(a)

(b)
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Figure 67. Relevance network representing the interesting correlations between metabolites and OCT 

measurements. The color of the lines indicate the strongness of the correlation. Notes: bubbles’ dimensions are 

function of the names variables and have no statistical significance. 

Principal Component Regression (PCR) is a regression technique that uses the principal 

components coming from classic PCA analysis as the predictor variables. Instead of using all 

variables for regression, this model only utilizes a subset of the principal components that 

represent most of the variability. This will reduce overfitting and eliminate multicollinearity 

leading to better performance than using a standard linear regression model on all original 

features. This works in three steps, first a PCA is generated on the data, the PCs that explain 

most of the variance are selected through cross-validation process and a linear regression is 

fitted on the selected PCs. P-values are returned for each selected component and those <0.05 

are worth considering. Loading plot of interesting components are then generated to extract 

information about the metabolome.  

All results from PCR analysis can be inspected on the Figure 68. From this analysis the 

principal component PC3 was identified as interesting to explain IRC and SRF values (p-values 

< 0.01). The interesting point of this analysis is that some features already identified during the 

PLS analysis can be retrieved in the PCR approach. Hence, fumarate, isovalerate, 3-

hydroxybutyrate and 2-hydroxybutyrate were found to have an important weight on PC3.  
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From this analysis, some interesting features can be highlighted as metabolites correlated with 

important OCT markers for AMD evolution. Nevertheless, results must be refined as most of 

variables selected by the PLS and PCR model are not the same. Moreover, for variable selection 

with PLS, the cutoff selected for variable selection was lowered. This shows that result could 

not be that significant as it seems. This could be explained by the fact that the variations between 

all samples is week and maybe effect of AMD are diluted. Indeed, variations among patients 

regarding their pathology are small as the variations of their metabolome. Therefore, analyzing 

all individuals together may not be the best approach. Applying the analytical strategies that 

was used here could be more helpful by considering one patient at a time. By individualizing 

the statistical workflow, we would have greater chance to capture the variability that can be 

correlated with AMD evolution. Then, if these changes are consistent from one patient to 

another, these changes could be used to build up a new healthcare strategy based on metabolites 

measurement. 

  

Loading scores PC3

(a) (b) 

(c) 

Figure 68. Results from PCR analysis performed to find components able to explain the variation 
of (a) IRC and (b) SRF values. (c) the loading scores associated with the component PC3. 



- 139 - 
 

4.4.6 Individualized approach for biomarker discovery 

To better capture the metabolic variability of patients that occurs during their treatments and 

put it in relation with their pathologic conditions, we aim to analyze patients separately. Indeed, 

when generating the heatmap of OCT values for all patients, it appears that some people have 

very higher values than other meaning that they’re evolving from different starting points. 

Hence, improvement or degradation of their health status may not occur at the same level for 

all patients. Thus, minor but important changes in the measured values between visits of a single 

patients could be hide by higher and stable values of patients that are constantly in bad 

conditions (Figure 69). Therefore, it seems obvious that the best approach is to deal with a 

single patient at once and examine if results are consistent from one patient to another.  

 

Figure 69. On the left the heatmap of OCT data based on all patients and on the right the heatmap of OCT data 

from patient PS16. For each visit (abscissa) are represented the measured OCT values (ordinate). On the right 

panel, we can better observe the positive evolution of the pathologies. This positive evolution is occurring on a 

small scale and is not reflected when considering all patients on the left panel. 

In this section we will use different datasets: the one related to the clinical parameters 

measured from serum samples collected (dataset 2); the dataset which gives information about 

the lipoprotein profile obtained from NMR analysis of plasma samples (dataset 3); and the 

quantified metabolites coming from the quantification analysis (ChenomX) of NMR data 

(dataset 5); finally, the measured OCT markers will be used to characterize patient’s status 

(dataset 1). The statistical workflow (Figure 70) applied to each patient’s group of samples is 

as follow: 1) an heatmap of OCT values is generated to analyze the way the patient evolved and 

possible interesting point in the treatment; 2) a correlation analysis between OCT and clinical 

data; 3) a correlation analysis between OCT and the quantified metabolites data; 4) PCA on 
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NMR data on which the evolution of IRC values is represented; and finally, 5) PLS/PCR 

regression analysis of NMR and OCT data. All these tests are performed for each of the 32 

patients involved in the study. In this section, only few results will be discussed as they reflect 

the results obtained for all the analysis.  

 
Figure 70. Statistical workflow for important feature identification in the context of nAMD management: 
Correlation analysis will be made between OCT measured parameters and the clinical parameters measured on 
serum samples collected at each visit (lactate level, pH, glucose level, HDL cholesterol and LDL cholesterol). The 
same correlation analysis will be performed between OCT data and the NMR lipoprotein profile obtained from 
the plasma analysis of patient’s samples. The values of the quantified metabolites through ChenomX NMR 
analysis will be used for exploratory PCA analysis that will represent the variations of the whole metabolome 
through the follow-up. The same values will be engaged in PLS/PCR regression analysis to find correlation 
between the whole metabolome and the values of OCT markers collected at each time points.  

Heatmap of OCT markers

PCA exploratory analysis

Metabolites profile linked to the 
evolution of OCT markers

PLS/PCR regression analysis

Important features related to OCT
markers

Correlation analysis

OCT data vs 
clinical data

OCT data vs 
quantified

metabolites

Measured parameters, lipoprotein
fraction and metabolites correlated

with OCT data

New tool for personalized nAMD management!
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Analysis of data from patient PS16 

Here are shown the results obtain on samples coming from the follow-up of patient PS16. The 

interesting point with this patient is that is AMD status evolves positively during the period of 

treatment. Therefore, it might be possible to find relationships between the metabolomic 

profiles and some metabolites and the positive evolution of IRC values or other OCT measures.  

 PCA analysis performed on the data coming from NMR quantification of metabolites is 

interesting as it seems representing well the evolution of the patient. Indeed, on the score plot, 

we can see a distinction between visits in which IRC values are higher along PC1 (Figure 71). 

The more samples are exhibiting a positive score along PC1 (located on the right of the score 

plot, Figure 71a), the better their AMD status seems evolved as the IRC values associated with 

these samples are lower. Thus, samples on the right of the PCA score plot seem have a positive 

evolution compared to the samples on the left. The interesting point is that the concentration of 

some metabolites such as fumarate seems to be increased in visits with higher IRC values, this 

metabolite was already highlighted in previous analysis concerning all samples. Importantly, 

none of the previously identified biomarker (lactate level and lipoprotein profile) can explain 

these changes. 

 

Figure 71. (a) PCA score plot representing PS16 samples colored on the basis of the IRC values and (b) the 
corresponding loading plot. 

 

Correlation analysis based either on clinical or NMR data (Figure 72) seems also provide 

useful information.  These analyses allow us to highlight strong correlation between some 

variables and markers of the disease (IRC, PED and SRF). Furthermore, it can confirm 

observations obtained using the PCA score and loading plots since metabolites as fumarate are 
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also strongly correlated with IRC values. It will be interesting to see if we can observe the same 

tendency from one patient to the other using the same approach. 

 

Figure 72. Correlogram of Pearson’s correlation test between (a) OCT data and clinical data, and (b) OCT data 
and metabolites concentration data. On these plots, some strong correlation can be observed, and the analysis 
of the plots generated from data of the others patients will allow us to identify interesting features. 
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Principal Component Regression analysis didn’t allow to spot some useful components for 

explaining OCT values of PS16. Nevertheless, PLS regression analysis provided some feature 

with great coefficient of correlation with IRC, SRF and PED values (Figure 73). Moreover, 

fumarate and 3-methyl-2oxovalerate were already identified in analysis conducted on the whole 

dataset (chapter 4.4.5-Figure 68) and by correlation test analysis made on PS16 data. If these 

features are also depicted using this approach on other patients, it will be of particular interest. 

 

 

Figure 73. (a) Correlation circle plot from PLS regression analysis between metabolites concentration and OCT 

data; and (b) the corresponding correlation network representing correlation >0.65. 
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Analysis of data from patient PS32 

Patient PS32 has a similar evolution to PS16, therefore it would be interesting to examine if 

related outcomes can be observable. As for PS16, none of the correlation test provided 

interesting results. Regarding the PCA analysis, the evolution of IRC values is well represented 

along PC1 and represent 37% of the total variation. This observation is reflected what we saw 

in PCA analysis of PS16 indicating that effect of IRC evolution might impact the metabolism. 

The loading plot representing the most important variables of PC1 didn’t give us the same 

features as the model made on PS16 data. Thus, when PLS analysis was performed, even if 

highly correlated feature was identified, none of these was already identified (Figure 74). This 

means that if IRC evolution impact the metabolism of PS32, it does not do it in the same way 

than it does is PS16 and therefore results lack consistency. In the same line with results coming 

from PS16 data’s, PCR analysis returned no PCs able to predict measures coming from OCT 

images of PS32.  

(a) (b)

(c) (d)

Figure 74. (a) Heatmap representation of OCT data from PS32; (b) score plot of metabolites 
concentration dataset of PS32 with trajectories representing the evolution of IRC values and (c) 
the corresponding loading plot showing important variables of PC1; and finally (d) variables 
highlighted from the PLS regression analysis between OCT dataset and metabolites concentration. 
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Analysis of data from patient PS31 & PS26 

PS31 and PS26 are both patients that exhibited almost no IRC at the beginning of the follow-

up. Again, PCA analysis can capture the evolution of IRC status by analyzing the trajectories 

of the samples along PC1 and PC2 (Figure 75). Moreover, as for the precedent patients, effect 

on the metabolome is different for both patients. Indeed, PLS regression analysis once again 

returned original features as highly correlated with OCT data while PCR methods provide no 

relevant PCs.  

 

  
(a) (b)

(c) (d)

Figure 75. (a) score plot of metabolites concentration dataset of PS31 with trajectories representing the 

evolution of IRC values and (b) variables highlighted from the PLS regression analysis between OCT dataset and 

metabolites concentration; (c) score plot of metabolites concentration dataset of PS26 with trajectories 

representing the evolution of IRC values and (d) variables highlighted from the PLS regression analysis between 

OCT dataset and metabolites concentration. 
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When combining the results from all analysis performed on all AMD patients, 98% of 

variables from NMR metabolites quantifications are identified as relevant by PLS analysis 

(correlation >0.7) at least one time and 26% 5 times. Furthermore, this conclusion can also be 

made from all the correlation test made on each individual (Figure 76). This shows that our 

approach is not able to provide consistent results for the whole cohort. No clear information 

can be extracted from all these tests that could be used for AMD monitoring. If our data allow 

to highlight metabolites changes that can occur concomitantly with the variation of OCT 

measures, these changes and the metabolites involve are inconsistent across the cohort. This 

made these findings poorly relevant and didn’t allow us to provide useful information for 

refining patient’s status during AMD management.  

 
Figure 76. Correlogram of Pearson’s correlation test between OCT data and metabolites concentration data for 

patient PS16, 26, 31 and 32. On these plots, some strong correlation can be observed but these are inconsistent 

from one patient to the other. This observation can be made with all other combination of patients. 
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4.5 Conclusions 

The initial goal of our study was to use the biomarkers previously identified, namely lactate 

and lipoprotein profile, to monitor the evolution of AMD patients in real-life clinical situation. 

During a two years patients follow-up, we collected blood samples and recovered relevant 

information about patient’s AMD status. All included patients were diagnosed with advanced 

and exudative AMD and were under anti-VEGF treatments. They were involved in a treatment 

regimen adapted by the clinician and based on their evolution. Patients that are not responding 

well to treatment were followed each month while for some others, visits occurred each 3 

months. This regimen is submitted to changes as if a patient involved in a 3-month regimen 

exhibit bad visit outcomes it can be adapted to a monthly injection schedule. This resulted in 

an extremely complex and uncontrolled study design driven by the reality of clinical practices. 

It ends with a cohort of individual in which each patient was followed independently from the 

others.  

The original idea was to compare evolution of our biomarkers with markers coming from OCT 

images that give the best representation of nAMD evolution. This approach failed as 

biomarkers’ evolution didn’t follow the evolution of OCT markers and their values weren’t 

even correlated. This forced us to change our approach by considering our dataset as a chance 

to find new or more adapted biomarkers that could better fit to our goals. Indeed, if case-control 

studies are suited to highlight some biomarkers, forced to see that real-life clinical practices 

don’t provide such controlled environment. Therefore, it’s not surprising that such markers as 

lactate or lipoprotein failed when applied to cohort in which people are so heterogenous 

regarding their lifestyle, ages, health condition (other pathologies than AMD included) or even 

how they are taken in charges during their treatment. Thus, we hoped that working on samples 

that are such close to “real” condition could provide more robust and usable information. 

Following this goal, we set up a new statistical analysis strategy that suited to the specificity 

of our dataset. By taking account its longitudinal aspect, we analyzed our dataset using the most 

relevant approach described in the literature and that could be used on our cohort. Despite all 

the statistic test performed, by taking all samples together or by individualizing the statistical 

approach, no consistent result could be found reminding the quote of Thomas Alva Edison “I 

have not failed. I’ve just found 10,000 ways that won’t work”.  

At the end, our previously discovered biomarkers were unsuitable for patients monitoring and 

all data collected during visits were not informative for new biomarker discovery. If the 
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preliminary study didn’t fit to the clinic reality, did our follow-up cohort fitted to statistic 

reality?  

Indeed, by looking at how the study was conducted, and this choice is fully assumed, did we 

had a chance to extract any relevant information? On the Figure 77 is represented the timetable 

of patient’s visits. This schedule is fixed by the clinician regarding the evolution of patient’s 

nAMD.  Therefore, this schedule is evolving in the way that patient’s that are responding well 

are seen less than the ones that didn’t responded to treatments.  

Therefore, a patient that was seen each month is not evolving a lot and a patient that was 

responding well will not come back until his pathology hits back. Thus, we will only have 

complete dataset for patients that are not presenting evolution regarding their nAMD and we 

will probably miss the most interesting time points in which the patient that was in a better 

evolution started to be bad again. At the end the dataset is not as interesting as expected and no 

relevant information can be extracted.  
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The interest of this study results in the questions that comes at the end: Does case-control 

studies give the best chances to identify usable biomarkers in pathologies that need constant 

follow-up? Are current clinical practices suited to incorporate metabolomics approach to 

improve patients’ health care? Does metabolomics approach suit to such application?  

We need to better determine the metabolome baseline of healthy individuals and its time 

evolution. Knowing the normal variation of metabolites levels through different time points 

could help to evaluate the usefulness of a discovered biomarkers when applied in real clinical 

environment. Indeed, for a 10% concentration variation of a given metabolite in a case-control 

study, the intrinsic and natural variation of this compound over the time must be quite smaller. 

If not, you might be not able to highlight pathologic events using this biomarker in a real-life 

context. 

Therefore, when the goal is to improve patient’s healthcare and monitoring, the study design 

must include times related variations. This could be directly made by collecting samples at 

different time points in case-control studies or by already know the intrinsic variation of the 

studied metabolite under healthy conditions. Anyway, some improvements must be done to 

produce consistent, pertinent, and useful results that aim to be considered by clinicians as “new 

tools” for patients’ monitoring. 

 

  

Figure 77. Representation of patients’ follow-up schedule for the twelve first month of 
the study. 
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4.6 Materials and Methods 

Patients’ selection, clinical data, and samples collection 

For two years, 14 male and 18 female patients, from 61 to 92 y/o, were followed at each 

ophthalmologic visit for which blood samples and OCT images of retinas were collected (n 

total visit= 269). For each sample, lactate concentration, blood pH and HDL/LDL cholesterol 

were measured in collaboration with the Analytical Chemistry Lab of the CHU. Lactate, 

glucose levels and HDL/LDL cholesterol values were obtained using dedicated enzymatic 

dosage kits from Alinity® (Lactic acid, Ultra HDL, Direct LDL and Glucose reagent kit). 

Measurement of blood pH was obtained using GEM 500 Premier (Werfen) analyzer. Collected 

plasma samples were conserved at -80°C prior samples preparation and proton NMR 

metabolomics analysis.  

OCT images analysis 

Analysis of OCT images (Figure 78) has a crucial importance since it’ll give access to the 

best visualization of the pathological event occurring during the follow-up of patients. All data 

were acquired on Heigelberg HRA+ OCT by the team of the EOL. Analysis of images were 

made by our team and followed guidelines described in the literature to assess AMD status65,74. 

Based on these, 3 main markers were followed: intra retinal cystoid fluids (IRC), pigment 

epithelium detachment (PED) and subretinal fluids (SRF). 

 

Figure 78. Makers of advanced age-related macular degeneration that can be highlighted from optical coherence 

tomography images of retinas. In bright red can be found the intra retinal cystoid fluid (IRC), sub retinal fluid 

(SRF) in blue and pigment epithelium detachment in dark red74. 
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From each analysis, 12 scans were taken from each eye and from each scan were measured: 

the surface of each IRC spot (in mm2), SRF spot (in mm2) and the largest pigment epithelium 

detachment section were calculated from the initial pigment epithelium baseline (in µm). From 

the 269 visits, a total of 6456 images (12 scan/eye/visits) were generated and 19368 

measurements (3 measure/scan/eye/visits) were done to provide a single value for each 

parameter at single time points. As described in the introduction (section 1.2.2), IRC and PED 

measurement can be used to monitor nAMD progression. Indeed, presence of IRC fluids is 

linked to CNV processes that is the hallmark of nAMD and PED growth is reported to be 

associated to long-term vision loss in flexible treatment regimen74. On the other hand, the 

presence of SRF fluids is a sign of healing retinas and is the only measured parameter that is 

correlated with an improvement of visual function74.   

NMR metabolomic analysis 

1H-NMR metabolomic profiles were obtained from plasma samples collected during the two 

years follow-up and conserved at -80°C. All samples were measured at 298K on a Bruker 

Avance (or Neo) spectrometer operating at 500,13 MHz for proton detection. The NMR 

instrument is equipped with TCI 5mm cryoprobe equipped with Z gradients. Maleic acid was 

added to samples as internal standard allowing quantification and trimethylsilyl-3-propanoic 

acid-d4 sodium salt (TMSP) for ppm calibration. For sample preparation, 500µL of plasma were 

mixed with 200µL of deuterated phosphate buffer added of 100µL of 35mM maleic acid 

solution and 30µL of 10mg/mL TMSP solution in D2O. Final solution is vortexed and placed 

in a new 5mm NMR tube before being analyzed in NMR. For the NMR analysis, an edited 1D-

CPMG sequence with water presaturation was used: RD-90-(-t-180-t)n with relaxation delay of 

4s (RD), spin echo delay of 300ms (t) and 128 loop (n). Pulse for water presaturation is 

occurring during the relaxation time (RD) and the number of scans fixed at 64. The total 

acquisition time is of 3.1981568s with 4 dummy scans.  

Due to an electronic update (from Avance to Neo), the parameters had to be updated due to 

signal coupling issues and the spin echo delay was set to 400ms (t). The total acquisition time 

is of 3.2767999 with 4 dummy scans. 

All acquired data were processed using PepsNMR® software, an open-source R package 

developed by Manon Martin and Bernadette Govaerts from University of Louvain-la-Neuve 

and our group. After Group Delay Correction, Solvent Suppression, Apodization, Fourier 

Transform, Zero Phase Order Correction, Internal Referencing, Baseline Correction 
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(lambda.bc= 105), Negative Value Zeroing and Window Selection, the processed spectra were 

bucketed from 0.5 to 10 ppm with a bucket width of 0.02 ppm. After Region Removal (4.6 to 

5.1 ppm for water and 5.85 to 6.3 ppm for AM) and Normalization (mean), the data matrix 

consisted of 438 spectral zones of 0.02 ppm width containing metabolites information for each 

sample. 

As it was be explained before in this chapter (see section 4.4.1), all samples were analyzed 

again due to some changes in the experimental NMR sequence that are linked to the upgrade of 

our analytical platform and led to un-avoided variability between the samples. For this, all NMR 

samples were filtered through wash-up 10K filter for 60 min at 13000 rpm at 4°C. 270µL of 

filtrate were added with 30µL of Calcium formate 5mM solution and placed in 3mm NMR 

tubes. All samples were measured at 298K on a 700MHz Bruker Avance HD spectrometer 

operating at 700.17MHz for proton detection. The sequence used is a 1D NOESY sequence 

with presaturation for urine samples. The Noesypresat experiment used a RD-90°-T1-90°-Tm-

90°-acquire sequence with a relaxation delay of 4 s, a mixing time (Tm) of 10 ms and a fixed 

T1 delay of 4 μs. Water suppression pulse was placed during the relaxation delay (RD). The 

number of transients is 64 (64K data points) and a number of 4 dummy scans is chosen. 

Acquisition time is fixed to 3.2769001 s.  

This step assures the elimination of all lipids and proteins moieties from plasma samples and 

the NMR sequence used allowed NMR quantification using ChenomX® software.  

Lipoproteins profile evaluation 

From data recovered using 1D-CPMG NMR analysis of plasma samples, the NMR lipoprotein 

profile was evaluated using the methods described in the chapter 3 section 3.5. Then, we 

determined the chemical shift corresponding to 4 lipoprotein fractions: F1 = 0.92 ppm (mainly 

VLDL), F2 = 0.91 ppm, F3 = 0.89 ppm, and F4 = 0.88 ppm (mainly HDL). The signal intensity 

at these different chemical shifts was measured and then normalized to the total intensities of 

all fractions to reduce the impact of the global lipoprotein concentrations that could differ 

between samples. Thus, the obtained values are representing a fraction of the total signal and 

allow the comparison between the different lipoproteins profiles across all plasma samples. 
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ChenomX® metabolites quantification 

Metabolites concentration was measured by 1H-NMR using spectral data from the analysis of 

filtered plasma samples. Spectral deconvolution was achieved using the ChenomX® NMR suite 

software in profiler mode by manually fitting the resonance peak of 61 metabolites. The 

quantification was based on the signal of the chosen reference, calcium formate at 8.46 ppm. 

Since samples were not prepared following the guideline of ChenomX® SOP, the concentration 

values are not absolute but therefore relatives. Anyway, this step allows us to analyze the 

variations among the different metabolites’ concentration among all measured samples.  

Statistical analysis 

All statistical analysis, tools and codes used in this section can be viewed in the following 

GitHub repository: https://github.com/MS28uliege/These_MS_Rmd. All analysis were made 

using dedicated R packages. Unsupervised and supervised multivariable models were generated 

using MixOmics packages as well as PLS1 regression models. Correlation plots were generated 

using cor function and pls package used for PCR analysis.  
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5 Identification of Biomarkers for AMD risk assessment: Prospective cohort from 

MIRA project 

5.1 Introduction: 

Over a lifetime, nutritional and environmental factors can alter metabolism and putatively 

influence the occurrence of AMD and its progression through its last stages44,250. As better 

medical outcomes are obtained with early diagnosed patients215, identifying new biomarkers 

able to early predict the occurrence of AMD would be very interesting in view of preventive 

medicine. If several studies aimed to explore AMD through metabolomics approach, none of 

them were based on prospective cohorts including patients without any sign of AMD179–181,251–

257. The objective of the present study, carried out in collaboration with the University of 

Bordeaux and within the framework of the MIRA project, is to identify metabolic signatures 

associated with the risk of developing AMD (all stages included) by using untargeted NMR-

based metabolomics. 

 

Samples were selected from the ALIENOR216 cohort and plasma samples were provided by 

Inserm of Bordeaux Unit U1219. All NMR analysis and data pre-processing were conducted at 

the University of Liege by the Metabolomics group of the CIRM (Center for Interdisciplinary 

Research on Medicine) and, after exploratory analysis for outliers’ detection, the data were sent 

to INSERM of Bordeaux (Population Health Research Center Unité INSERM U1219) for 

statistical analysis.  

 

Once spectral zones were found to be relevant for risk assessment for AMD, we were in charge 

for the identification of potential biomarkers related to these spectral zones. By this approach, 

we aimed to identify one or several early biomarkers associated with the risk of developing 

AMD and to contribute to a better understanding of complex processes that play a role for the 

development of AMD. 
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5.2 NMR-based metabolomics: 

5.2.1 Dataset 

The cohort from MIRA project (Figure 79) consist of plasma samples coming from 327 

healthy individuals aged of 73 y/o or more at their first ophthalmologic examination (2006-

2008). All subjects didn’t exhibit any sign of ocular disease at the time of enrolment. They 

underwent to ophthalmologic exams 4 times with two years gap between each visit during the 

entire follow-up period (2009-2017). During this period, examinations allowed to assess the 

progression of healthy individuals through early or advanced AMD.  Moreover, information 

about genetic background, lifestyle, and environmental factors (tobacco uses, sunlight 

exposure) were collected. More information about the cohort and its origins can be found in the 

“Materials and Methods section 5.5.1”. 

 

Proton NMR metabolomics approach allowed to analyze the metabolic profile of each plasma 

samples. In house pre-processing tools was used to construct robust dataset in which each 

individual was described by 411 spectral zone (buckets) containing metabolites information. 

The former dataset will allow the use of dedicated multivariate and univariate analysis able to 

capture the metabolic variations that could appear prior the development of AMD.  

 

 
Figure 79. Schematic representation of MIRA project pipeline. 

  

327 indiv.
≥ 73 years old
No sign of AMD!

2006-2008
sex

Genetic ”AMD” score

Mediterranean Diet score

Lifestyle information

Relative Risk

7.8 years follow-up of control individuals to assess
AMD incidence (AMD n=107; noAMD n=220)2009-2017:

Plasma NMR metabolomic profiling

Spectral data pre-processing

Outlier removal

Statistics for AMD risk assessment



- 159 - 
 

5.2.2 Multivariate exploratory analysis 

Principal component analysis (PCA) model was built using the plasma metabolic NMR 

profiles coming from all patients included in the Mira project to identify source of variations 

and outliers. From all people included in the study (n=327), 7 exhibited bad spectral data and 

were not included in the analysis. By analyzing the first PCA model generated, 3 outliers were 

identified as they exhibited higher contribution for the buckets 1.189, 3.669 and 1.209 (Figure 

80). These variables are characteristic of the presence of ethanol that is sometimes used during 

the sampling step to clean the zone of blood taking.  

 

Figure 80. (a) PCA score and (b) loading plot generated with NMR metabolic profiling analysis of patient’s 

plasma samples, control individuals are in blue and case patients, people who had developed AMD during the 

study, in red. On the score plot the outlier individuals are easily recognized and the buckets involved are spotted 

on the loading plot. The NMR spectra of the sample coming from the individual 11872 (c) allow the 

identification of the ethanol as source of contamination. According to this information, these samples were not 

included in the remaining analyses.  
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Thus 3 samples were removed from the dataset and a new PCA model was generated (Figure 

81). From this plot no clear separation can be spotted between control patients and those who 

had developed AMD during the study. The dataset is well represented, and the loading plot 

gives information about how samples are different, but no relevant information could arise from 

this analysis. 

 

Figure 81. PCA score plot (on the right) and loading plot (on the left) generated from plasma metabolic NMR 

profiling analysis after outlier removal. No discrimination can be seen between the two groups and as the loading 

plot shows, only few variables are contributing to the model. This highlights the fact that most of individuals have 

a close metabolome and only small differences can be found (explained variance of each PCs: PC1 = 74.7, 

PC2=8.4, PC3=5.3, PC4=2.1). 

OPLS-DA models are supervised analysis that allows to investigate the variables able to 

explain the separation between the two groups. On the score plot a separation is revealed and, 

even though a big overlap is existing between groups, some variables can be identified (Figure 

82). Thus, from the loading plot and the VIP score table, four variables are picked out for their 

ability to discriminate patients with AMD prevalence. These variables are listed on the Figure 

82 and are all part of lipid’s related signals indicating that such species could be interesting. 

Then, a permutation test was made to assess the performance of the model. With a p value of 

0.0104 over 100 permutations, the model shows an encouraging performance, and the spotted 

variables are worth considering.  
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Figure 82. On the top left an (Kernel) OPLS-DA based (Q2= 0.053) on the NMR metabolic profile from plasma 

samples of patients that have developed AMD during the study (in red) and control patients (in blue). Below on 

the left the corresponding loading plot with in red the variable positively correlated with tp1 and in purple the 

variable negatively correlated with tp1 (Expl.var.tp1= 21.3%). On the top right the permutation test (method: K-

fold, 100 permutation) with p-value: 0.01049 assessing the performance of the OPLSDA model. Below on the 

right the most predictive variables from the VIP score list able to predict the AMD outcomes based on the 

metabolic profile.  
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When looking at multiple t-test analysis, different spectral zones seem relevant to explain the 

risk of developing AMD since these are higher in the “case” group (figure 83). Interestingly, 

all these buckets are linked to lipids species and further analysis will confirm their 

usefulness/ability to predict AMD events. Indeed, by associating this information with data 

collected from the individuals regarding their ages, sexes, genetics, and lifestyle, we aim to 

better explain these variations in the metabolic profile and their association with AMD 

prevalence. 

 

Figure 83. Most important variables from Multiple t-test (with FDR correction) analysis performed on data 

from NMR metabolic profiling experiment on plasma samples from patients who had developed AMD in red 

and control patients in blue. Important variables are listed with their corresponding p-values. 
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5.2.3 Univariate Analysis for risk assessment (statistical results provided by Soufiane 

Ajana)258 

The analysis of the association of each bucket with the risk of early or advanced AMD after 

adjusting values based on the sex, level of education, tobacco use, the genetic score and the 

Mediterranean diet score allowed the selection of 7 variables of interest (Table 7). Each of the 

selected buckets had a relative risk (RR) near 2 and higher the value of RR, higher the risk of 

developing AMD is. 

 

Table 7. Selected variables associated with early or advanced AMD incidence258. P-value are adjusted for test 

multiplicity using Benjamini-Hochberg methodology. All models were adjusted on the sex, the education level, 

tobacco use, genetic score and Mediterranean diet score. 

Figure 84 shows the boxplot for each of the selected buckets having higher values for 

individuals that have progressed through an early or advanced form of AMD compared to 

healthy individuals. Figure 85 shows the correlation between buckets and demonstrate a strong 

positive correlation between buckets 5.12967, 5.14967, 5.16967, 5.18967 and 5.20967 while 

buckets 5.26967 and 5.28967 ppm are part of their own cluster. 

To go further in the work provided by Soufiana Ajana, please refer to: https://theses.hal.science/tel-03415718 

or scan the QR code below: 

 

RR (95% C.I) P-value

5,12967 2,23 (1,50 - 3,32) 0,01
5,14967 2,09 (1,44 - 3,02) 0,01
5,16967 1,99 (1,40 - 2,83) 0,01
5,18967 1,92 (1,36 - 2,71) 0,01
5,20967 1,93 (1,36 - 2,75) 0,01
5,26967 1,89 (1,37 - 2,61) 0,01
5,28967 1,93 (1,35 _ 2,73) 0,01

Abbreviation: RR, Relative Risk; C.I, Confidence Interval

Buckets
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Figure 84. boxplot of selected buckets with increased relative risk for AMD progression258. 

 
Figure 85. Buckets correlation analysis showing two distinct cluster. Strong correlations (near 1) are showed 

in dark red while weak correlations (down to 0.5) are in pale red258. 

 

  



- 165 - 
 

With this information in hands, we aimed to identify the metabolites behind these spectral 

zones. All the selected buckets were in the same spectral window, a poorly resolved zone 

situated near the anomeric peaks of the glucose (proton attached to C2 of a-glucose). Indeed, 

this spectral zone is mainly composed of signals coming from varieties of lipid moieties, hence 

the broader and overlapping signals didn’t allowed clear identification. However, based on the 

literature, it’s possible to determine which lipids are contributing to these signals: CH from 

Cholesterol/Cholesterol ester; -CH=CH- from Fatty Acid chains and CH from Glycerol 

backbone C2 (Figure 86) 

Figure 86. Spectral zones of the selected buckets and the compound having spectral component in these zones. 

On the left the comparison between 1H-NMR spectra from plasma sample on a healthy individual (control) and 

an individual that have developed AMD (case). On the right the different lipid moieties having NMR signal in 

the spectral zone associated with greater risk for AMD progression. 

 

As we demonstrated with our study about lipoprotein profiles changes (see chapter 3)225, lipid 

metabolism could play a role in the development and progression of AMD. It’s not surprising 

if change in lipid profile is linked to the diet and it proved that the diet play a role in AMD1,55,59. 

Moreover, several studies already published association between lipid and AMD180,208,209,213 

showing the interest of these feature for risk prevision. However, further analysis must be done 

to clearly identify the lipids associated with the risk of developing AMD. Indeed, this 

information could give clues to understand of the complex processes involved in the 

pathogenesis of AMD. Furthermore, quantification of lipids moieties could be added to 

predictive models in order to refine them and increase their efficiency to detect individuals with 

high risk of AMD (such predictive model already exists and allows to patients to calculate their 

own risk for developing AMD based on their lifestyle, genetic test, … see www.macutest.net for 

more information). 

 

⍺-glucose

⍺-glucose
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5.3 NMR-based Lipidomics: 

The role of lipids in cell, tissue and organ is crucial since an altered lipid metabolism is 

associated with several diseases including diabetes, cancer, neurodegenerative and infection 

disease and in degenerative disease such as AMD. It is therefore not surprising that the concept 

of “Lipidomics” emerged from related -omics sciences. Thus, lipidomics can be defined as “the 

study of the structure and function of the complete set of lipids (the lipidome) produced in a 

given cell or organism as well as their interactions with other lipids, proteins, and 

metabolites”127. 

Even if NMR-based lipidomics methods are less sensitive and suffer of severe peaks overlap, 

numerous studies reported the use of 1H-NMR for investigating changes among lipid 

profile127,128,259–261. In this work we decided to extract lipids from our plasma samples through 

solvent-solvent extraction step and analyze the extract by 1H-NMR to perform discriminant 

statistical analysis on the generated data and identify lipid species responsible for groups 

separation (Figure 87). 

 

Figure 87. General lipidomic workflow for AMD risk assessment. 
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5.3.1 Univariate statistical analysis for risk assessment (Soufiane Ajana)258 

By using the same strategies than for the metabolomics data, none of the generated buckets 

were found to be relevant by the team of Bordeaux in charge of the statistical analysis. 

Moreover, when they analyzed the correlation between the new matrix and the previously 

selected buckets related to the metabolomic profile, only weak correlations were found (Figure 

89). We explained that lack of correlation and the absence of significative result by an 

inappropriate processing step. 

Indeed, the NMR spectra coming from lipid extract analysis are quite different than those 

obtained while using classical metabolomics methodology (Figure 88). Hence, this analysis 

results in a poorly resolved spectra where all the information is condensed in a small part of the 

spectral width (Figure 90). Thus, applying a classic bucketing step results in a huge number of 

useless variables that have no significance. Furthermore, the highly overlapping signals coming 

from the different lipids’ classes lead to non-informative buckets when they are taking at fixed 

intervals as each bucket that are containing signals can be attributed to different lipids 

compounds off different lipids’ classes. On Figure 90 we are comparing spectra coming from 

(88a) classic total plasma analysis and (88b) extracted apolar lipid fraction. As we can see, on 

the same ppm range, analysis of total plasma sample allows to recover the information about 

approximatively 7 different polar compounds while the spectra from lipid extract only give 

information about Glycerol and Glycerophospholipids moieties. 

 

Figure 88. Examples of NMR spectra coming from intact plasma analysis (on the top) and the analysis of lipid 
apolar fraction recovered from solvent extraction step (on the bottom).  

Total plasma 1H-NMR analysis

Lipid apolar fraction 1H-NMR analysis

Solvent extraction 
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Figure 89. Correlation heatmap: bright and large circles show strong correlations and the color indicate the 

directions of the correlations (red: positive; blue: negative). As only correlation of 0.6 are worth to be 

considered, anything that would not appear as evident is not worth seeing258. On the top left, the discriminating 

spectral zone previously identified during the analysis of intact plasma. As shown here, none of the variables 

from the analysis of extracted lipids are correlated with the variables of interest. 
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Figure 90. Significance of buckets arising from a traditional bucketing step on (a) plasma sample coming from 

a healthy donor and (b) the lipid extract coming from the same sample. While analysis of intact plasma samples 

give access to information on 7 compounds, the lipid extract provides only information about 2 lipid species, 

Glycerol (PL: phospholipids; TAG: Triacylglycerol) and Glycerophospholipids (GPL). 

 

For these reasons, we decided to change our approach by considering only the interesting part 

of the spectra and thus reduce redundancy. By using an Adaptative Intelligent-bucketing 

approach, we aim to build a consistent data matrix in which samples are described mostly by 

independent variables. Indeed, by reducing the correlation among our buckets table, we hope 

to better describe the individuals regarding changes in their lipidomes.  Moreover, as bucket 

from all the samples were normalized in respect to the internal standard, the generated buckets 

will relate to the concentration of the species having NMR component on these spectral zones. 

 

  

a b c d e f

Bucket ID Compound
a /
b Lactate
c Lactate
d Creatinine
e Serine, Phenylalanine, Asparagine, …
f Serine, Tyrosine

i j k l m n
Bucket ID Compound

i /
j PL glycerol backbone
k GPL
l GPL + TAG glycerol backbone
m TAG glycerol backbone
n /

(a)

(b)
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5.3.2 Multivariate analysis for feature identification 

In order to identify the lipids behind the zone identified as relevant to prevent AMD 

prevalence, we changed our bucketing approach to build a more reliable data matrix. In this 

data matrix, the lipid extracts of each individual are represented by 222 variables extracted from 

the Adaptive Intelligent-bucketing step. By allowing variable size bucketing and automatic 

detection of peaks edges, this method provide only relevant buckets that are containing signals, 

avoid peak splitting and reduce the overlapping of lipid species among the buckets. All the 

bucket’s value were normalized in respect to the value of the internal standard (DMSO2) to 

have information about the concentrations of lipids species. Hence, we aimed to produce a data 

matrix that can better individualize the different lipid species among the extract and identify 

putative lipids for risk assessment. After removal of bad spectral data, our dataset is containing 

268 individuals in which 177 have no sign of AMD and 91 had developed AMD during the 7 

years of follow-up.  

We first performed a PCA analysis to characterize our data set, identify potential outlier and 

having an overview of how individuals are spread. When we look on the calculated PCA, no 

clear discrimination between the two groups can be identified and no outliers must be removed.  

The model is well describing the cohort of samples as the cumulative R2 is of 0,95 and the 

corresponding loading plot allows to determine how individuals are represented in the variables 

cloud. PC1 account for 53% of the whole variation among the dataset but, as shown in Figure 

91, all variables have small weight on the components meaning that their contribution to the 

model is weak. All individuals seem to have a similar lipidomic profile as they are all located 

in the middle of the score plot and poorly resolved. A Pearson correlations heatmap plot was 

generated to investigate how the variables are correlated among the datasets (Figure 92). 

Similarly, with the analysis made on the previous dataset generated with a classical bucketing 

approach, all variables are strongly correlated together. This strong correlation explains why no 

clear discrimination between the individuals can be found in PCA analysis. Indeed, only a few 

samples located down to PC2 (Figure 91) seems to be different from the remaining of the 

dataset. By looking closer to the variables that are contributing negatively to PC2 (red variables 

spotted on the loading plot), we can observe that these variables are the ones negatively 

correlated with the other variables. This in fact due to spectra that contain a higher amount of 

methanol coming from the sample preparation step. This led to a greater distortion of the 

baseline near the solvent peaks that, even if these signals are removed from prior bucketing 

step, will give a higher contribution to noise signals. Therefore, as the buckets are normalized 
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upon the total intensity, a higher contribution of noise background will lead to smaller buckets 

intensity. Therefore, these variables are negatively correlated with all other variables as a 

reduction of noise will give higher buckets intensity and vice versa. 

 

Figure 91. PCA score plot and loading plot of NMR analysis of lipid extract after IA-bucketing step. The score 

plot on the left allows an overview of the dataset and show how stacked together are the healthy individuals (in 

pale green) and the subject that has developed AMD (in red). On the right the loading plot identify the variables 

correlated with the different component of the PCA. Only a small number of variables weighted for the 

discrimination between the individuals, and most of the variables remain unchanged or only give small 

contribution. 

 

Figure 92. Person’s correlations plot showing the correlation between variables (blue positive and red 

negative). 
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Our strategy didn’t give the expected result and to explain this, several aspects of the 

dataset/strategies are worth considering:   

- Identified spectral zone in intact plasma analysis were not immune from polar 

compound overlap. 

- NMR analysis of lipid extract gives highly poorly resolved spectra. 

- The expected changes would be small to fulfill the goal of the research. 

 First, it is worth mentioning that the spectral zone identified in intact plasma analysis could, 

aside from lipids, contain hidden signals of polar compounds. These compounds could have 

been eliminated during extraction step and therefore our samples would have been cleaned from 

the relevant information. Anyway, NMR analysis of lipid extract gives poor resolved spectra in 

which all signals coming from the different lipids’ species are highly overlapped. Even if 

several studies were able to identify changes in the lipidome using NMR, most of them were 

using 2D approach, spectral deconvolution strategies or involved the detection of specific 

features among samples128,262,263. Regarding this information, using classical bucketing 

approach could only work if strong effect of the pathological condition is impacting the 

lipidome. If small effects are suspected, more advanced spectral data treatment and acquisition 

must be made to improve spectral resolution and overcome peaks overlapping.  

Indeed, to evaluate how much one lipid species is contributing to the whole data matrix, one 

lipid extract sample was spiked with 5mM solution of standard Cholesterol and analyzed in 

NMR. The spectra generated is compared with the original sample and after using an identical 

pre-processing and bucketing approach than for the whole cohort, the bucket tables of the two 

spectra were compared. It appeared that 35% (74 over the 206 buckets) of the total amount of 

buckets were impacted by the addition of Cholesterol (Figure 93). Therefore, it’s not surprising 

that the whole data matrix is highly correlated as each lipid classes exhibit similarities in their 

structural composition. The chance of finding one spectral zone corresponding to one single 

lipid species is quite small when bucketing even with improved approach is applied.   
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Figure 93. Contribution of cholesterol spiking on lipid extract samples. In blue the original spectra of the lipid 

extract of plasma sample and in red the corresponding spiking spectra. All signals were assigned using 1D 

proton NMR and 2D HSQC 1H-13C correlation spectroscopy. 

In aging related pathologies, small changes in the metabolome/lipidome are usually the trigger 

of bigger event. These events are usually diagnosed lately and thus are difficult to prevent. 

Therefore, we need the most sensitive methods to detect these changes and being able to predict 

what can occur later. As this study aimed to identify changes in the plasma of an aged 

population that are linked to the risk of developing AMD over 7 years of follow-up, we need to 

be able to detect small changes and variability. For these reasons we need to analyze these data 

using innovative approach that gives access to more relevant information. 

To solve these problems, and valorize the dataset, a spectral deconvolution approach could be 

used to quantify the different lipid species in our plasma lipid extracts. In the literature different 

tools exist and one retained our attention for its availability, its dedication for lipid analysis and 

the possibility to work with homemade spectral database. LipSpin is an open access Matbalb 

package developed by R. Barrilero et al156 (Figure 94). This package allows the use of in-house 

spectral database comprised of lipid standard that will line fitted on the samples spectra. This 

package uses a constrained line shape fitting (CLS) algorithm based on Voight profile and 

template from standard lipids spectra to automatically analyze overlapped spectral region 

coming from lipids signals. Hence, Lipspsin provide the most complete quantification of lipids 

feature in lipid extract samples by 1H-NMR to date and proved is usefulness in real-case 
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study156. By applying this approach in further investigations, we could access to unique 

information about changes in the lipidome that could be correlated with AMD prevalence. 

 

 

Figure 94. Representation of Lipspin package for lipids quantification in lipid extract samples156. 

 

5.4 Conclusion and perspective 

By collecting plasma samples from healthy donors that were followed over 7 years of 

ophthalmologic examination follow-up, we aimed to correlate changes in the metabolic profile 

able to predict AMD issues. This cohort contained plasma samples from people that didn’t 

exhibit any sign of AMD at the date of the enrolment. After 7 years of follow-up, some of them 

(n= 105) developed sign of AMD compared to the people that remained healthy from all signs 

of AMD (n= 222). Plasma samples were analyzed in 1H-NMR spectroscopy and, after pre-

processing and data reduction through bucketing approach, multivariate and univariate 

statistical analysis were performed (PCA, OPLS-DA and multiple t-test). Processed data were 

sent to Inserm of Bordeaux to analyze the association between each bucket and the risk of early 

or advanced AMD, by using adjusted multivariate Cox models. 

 

From these analyses, a link between lipids metabolism and risk for AMD development was 

put in light. Indeed, from all analyses, the spectral zone that were able to explain the pathologic 

condition of patients with AMD were found to contain lipids related signals. However, the lack 

of resolution of these signals didn’t allow us a clear identification of the lipid’s species 

responsible of this effect. This forced us to adapt our strategies and re-analyze our samples to 

extract the lipid content of the sample and perform new 1H-NMR analysis.  
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ABSTRACT: The structural similarity among lipid species and
the low sensitivity and spectral resolution of nuclear magnetic
resonance (NMR) have traditionally hampered the routine use of
1H NMR lipid profiling of complex biological samples in
metabolomics, which remains mostly manual and lacks freely
available bioinformatics tools. However, 1H NMR lipid profiling
provides fast quantitative screening of major lipid classes (fatty
acids, glycerolipids, phospholipids, and sterols) and some
individual species and has been used in several clinical and
nutritional studies, leading to improved risk prediction models. In
this Article, we present LipSpin, a free and open-source
bioinformatics tool for quantitative 1H NMR lipid profiling.
LipSpin implements a constrained line shape fitting algorithm
based on voigt profiles and spectral templates from spectra of lipid standards, which automates the analysis of severely overlapped
spectral regions and lipid signals with complex coupling patterns. LipSpin provides the most detailed quantification of fatty acid
families and choline phospholipids in serum lipid samples by 1H NMR to date. Moreover, analytical and clinical results using
LipSpin quantifications conform with other techniques commonly used for lipid analysis.

Lipids play an important role in multiple cellular functions,
including: membrane composition and anchoring, protein

trafficking, signaling, and energy reservoirs.1 The vast number
of different species2 and their influence in homeostatic
processes and disease states have motivated the advent of
lipidomics, a branch of metabolomics focused on the large-scale
analysis of lipids in biological systems.3 Lipid profiling provides
a powerful means to monitor and understand lipid imbalance in
pathophysiological conditions such as inflammatory disorders,
metabolic syndrome, diabetes, cardiovascular diseases, neuro-
degenerative diseases, and cancer, among others,4 leading to
improved risk prediction models.5 Similarly, lipid profiling has
been applied to assess the health benefits of diets and
nutritional supplements5,6 and the effects of drug therapies in
clinical trials.5 Moreover, lipid profiling has become an
important tool in food technology for the determination of
nutritional and technological properties of foodstuff.4,6

From the analytical perspective, techniques based on
chromatography and mass spectrometry (MS) are the most
widespread in lipidomics,7 as they provide a comprehensive

characterization of all the constituent species based on their
different physicochemical properties. Contrary to MS, the
detailed characterization of lipid species by proton nuclear
magnetic resonance spectroscopy (1H NMR) is unfeasible, as
magnetically equivalent molecular structures of lipids give
largely overlapped resonances.6 However, 1H NMR spectra of
lipids from most biological matrices provide a fast overview of
their major lipid classes (fatty acids, glycerolipids, phospholi-
pids, and sterols) and some individual species.8 Additionally, 1H
NMR has some interesting features for high-throughput lipid
profiling and large-scale metabolomics studies: no derivatiza-
tion or compound separation is required, the spectral area is
equivalent to the molecular abundance, and its spectral linearity
avoids the use of multiple internal standards for quantitative
calibration. In other words, 1H NMR is fully quantitative and
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The same analytical strategies were used to process the data coming from the NMR analysis 

of lipid extracts and to analyze the data. At first, no result was obtained when trying to 

investigate the association between the generated buckets and the risk of developing AMD. 

Indeed, the highly correlated data matrix didn’t provide useful information and an innovative 

data-processing strategy giving access to more informative bucket tables had to be done. By 

these methods we aimed to produce a bucket table containing relevant information about the 

different lipid’s species, the intelligent-bucketing step used here was able to better individualize 

the different signals coming from highly overlapped regions of the spectra. Unfortunately, the 

data matrix remained highly correlated and no changes between the individuals were able to be 

found. The resulting analyses were thus poorly informative as the generated models were not 

able to differentiate properly the individuals.  

 

Hence, despite all the different strategies used, we were not able to assess which are the lipids 

related modulation that were able to predict AMD outcomes. To solve this problem, a 

possibility is the use of an in-house lipid database and spectral deconvolution software that can 

recover the signal of specific lipid species from the overlapped spectral zone. Once these 

information in hand, changes among the lipidome of patients that have developed AMD could 

be spotted and used for risk assessment. Another option is the use of Mass Spectrometry 

lipidomic approach. Indeed, MS is the most suited tool for lipidomic purpose264. The analysis 

of the remaining samples by such method could provide better lipidome coverage that could be 

achieved with NMR approach. Indeed, using MS the information about more than hundreds of 

lipids’ species could be recovered using referenced methods. Investigating the change in the 

lipidome of AMD patients represents a unique opportunity to better characterize AMD patients, 

allowing a better diagnostic and prevention. 

 

As lipids are representing approximatively 20% of the dry mass of the retina, its thus not 

surprising that lipid metabolism and lipid oxidation is suspected to play a role in the 

pathogenesis of AMD. Hence, different studies have investigated the role of lipids in AMD and 

based on these, several preventive strategies have been tested involving different modification 

of patient’s diet that impact lipid metabolism. For example, recent studies suggested that a 

Mediterranean-type diet may help to reduce AMD development and progression as these diets 

are rich in PolyUnsaturated Fatty Acids (PUFAs) and antioxidant. In other studies, the dietary 

intake of nutrient showed positive effect on AMD defense, but further investigation and clinical 

trials must be made to better assess and understand the role of nutrition for AMD management. 
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Photoreceptors require a high quantity of cholesterol to daily replace the shed membrane disk 

and, even if both RPE and photoreceptors can synthetize their own cholesterol, a large amount 

of lipids remain to be acquired from the blood circulation. As component of the retina blood-

barrier, RPE will achieve this lipid uptake by controlling the efflux of lipoproteins into the 

retina. Its therefore of particular interest to investigate how the lipoprotein balance and its 

composition can alter their functional role in the retina. Moreover, determining whether the 

circulating lipoprotein balance affect the homeostasis within the retina is of great interest. More 

studies must be made to understand how change in the lipoprotein balance/composition is 

implicated in the onset and development of AMD. 

 

Lipidomic studies gives a unique opportunity to identify new biomarker related to lipids 

metabolism and function and understand their role in AMD pathogenesis and development. The 

identification of such markers could help for risk assessment, patients’ stratification across the 

different stage of AMD and clinical monitoring. Its therefore important to apply such 

methodologies in order to study cohort of patients that will or have developed AMD and have 

evolved through the different stage of the pathologies. 

 

Worth considering, in this work we used NMR data from a subset of the 3C cohort. The 327 

samples used for the MIRA project were thus part of the 1825 plasma samples received from 

the University of Bordeaux. Over years they collected information about genetics, lifestyle, and 

health of all these individuals constituting. Together with our metabolomic NMR data, this 

constitutes an interesting resource for clinical research. Hence, in the future, data could be 

reused in a different context and could provide interesting results. 

  



- 177 - 
 

5.5 Materials and Methods 

5.5.1 NMR based metabolomics 

Study population 

All participants were selected from the ALIENOR cohort (Figure 95) and included people 

aged of 73 y/o and more at their first ophthalmologic examination (2006-2008)216,235. All these 

subjects underwent ophthalmologic exams 4 times after the date of enrolment with 2 years gap 

between each visit (since 2009 to 2017). 

 

The ALIENOR (Antioxydant, Lipides Essentiels, Nutrition et maladies OculaiRes) 

epidemiologic cohort aimed at finding correlations between nutritional factors and ocular 

pathologies such as AMD, glaucoma, cataract or dry eye disease216. Other factors such as 

genetic factors, environmental factors (tobacco use, sunlight exposure) and vascular factors 

were also investigated. This cohort is part of the “étude des 3 Cités (3C)”, an epidemiologic 

study started in 1999 with volunteers from Bordeaux aged of 65 y/o or more. From the 1450 

members of the 3C cohort, 963 were enrolled for the ALIENOR study and at the end, 471 

people with no sign of AMD at the date of enrolment were selected for our study (MIRA 

project). 

 

From these 471 individuals, 71 had no NMR data, 50 didn’t had genetics information and 23 

no nutritional data. At the end, our prospective cohort included 327 subjects with 107 

examination events during an average of 7.8 year of follow-up. 

 

Clinic examination 

AMD classification was based on retinal images data using an International Classification12. 

The incidence of early or advanced AMD was defined by the progression of healthy individuals 

that exhibited no sign of AMD in both eyes at the time of enrolment and evolving trough early 

or advanced AMD during the follow-up in at least one eye.  
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Figure 95. Schematic representation of origins of MIRA cohort. 
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NMR analysis 

 
1H-NMR metabolomic profiles were obtained from plasma samples collected at the enrolment 

time of the 3C study (1999-2001) and conserved at -80°C. All samples were measured at 298K 

on a Bruker Avance spectrometer operating at 500,13 MHz for proton detection. The NMR 

instrument is equipped with TCI 5mm cryoprobe equipped with Z gradients. Maleic acid was 

added to samples as internal standard allowing quantification and trimethylsilyl-3-propanoic 

acid-d4 (TMSP) for chemical shift calibration. For sample preparation, 200µL of plasma were 

mixed with 400µL of deuterated phosphate buffer added of 100µL of 5mM maleic acid solution 

and 10µL of 10mg/mL TMSP solution in D2O. Final solution is vortexed and placed in a new 

5mm NMR tube before being analyzed in NMR. For the NMR analysis, an edited 1D-CPMG 

sequence with water presaturation was used: RD-90-(-t-180-t)n with relaxation delay of 4s 

(RD), spin echo delay of 400ms (t) and 128 loop (n). Pulse for water presaturation is occurring 

during the relaxation time (RD) and the number of scans fixed at 64. The total acquisition time 

is of 3.1981568s with 4 dummy scans. 

 

All acquired data were processed using PepsNMR® software133, an open-source R package 

developed by Manon Martin and Bernadette Govaerts from University of Louvain-la-Neuve in 

collaboration with our group. After Group Delay Correction, Solvent Suppression, 

Apodization, Fourier Transform, Zero Phase Order Correction, Internal Referencing, Baseline 

Correction, Negative Value Zeroing, Warping (alignment), and Window Selection, the 

processed spectra were bucketed from 0.5 to 10 ppm with a bucket width of 0.02 ppm. After 

Region Removal and Normalization (mean), the data matrix consisted of 411 spectral zone of 

0.02 ppm width containing metabolites information for each sample coming from the 327 

individuals. 
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Statistical Analysis 

 

At first BioStatFlow (http://biostatflow.org) was used for generating PCA enabling outlier 

detection and data visualization. BioStatFlow was also used for group analysis and 

classification case/control was provided by the team of Bordeaux and was based on AMD 

incidence. PCA, PLS-DA and OPLS-DA model were generated, and important features 

identified for the discrimination of the two groups. These results were used in complement of 

results coming from statistical analysis performed by the INSERM team of Bordeaux. 

 

Statistical analysis performed by INSERM of Bordeaux was made as follows:  In order to 

analyze the association between each bucket and the risk of early or advanced AMD, they used 

multivariate Cox models by adjusting values on the sex, the level of education, tobacco use, a 

genetic score based on 49 SNPs42 and a Mediterranean diet score. Correlation between buckets 

was evaluated with Pearson’s coefficient of correlation. The Cox model is a semi-parametric 

survival analysis that describe the link between the event incidence (AMD outcome) and a set 

of covariates265. This model will assess the Relative Risk (RR) for each variable of interest. 

Briefly, a RR above 1 indicate a variable that is positively associated with the event probability 

and therefore negatively associated with the survival (AMD outcomes). All statistics were 

performed by Soufiane Ajana from INSERM of Bordeaux on R 3.4.4. 
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5.5.2 NMR based lipidomics 

Study population 

Plasma samples coming from the 327 individuals included in the precedent study were used 

for the lipidomics analysis. All these samples were stored at -80°C before analysis. 

Lipid’s extraction 

 The extraction procedure is adapted from solvent-solvent extraction methods described in 

literature. Through the addition of methanol (MeOH), chloroform (CHCl3) and water (H2O) 

followed by centrifugation step, the organic phase can be extracted and analyzed by proton 

NMR spectroscopy.  

200µL of plasma introduced in a glass tube and 1300µL MeOH, 800µL H2O and 2500µL 

CHCl3 are added, and the mixture is vortexed for 20s. After centrifugation, 30 min at 3000 rpm, 

4°C, 2000µL of the organic phase are collected and placed into a vial. The chloroform is 

evaporated to dryness under reduced pressure and the dry extract is preserved at -80°C prior 

NMR analysis. 

Sample preparation 

The lipidic fraction obtained from plasma is suspended in 660µL of deuterated Chloroform 

CDCl3 containing 0,03% of trimethylsilane (TMS) as internal reference. To allow 

quantification, 35µL of a solution 0,3mM of dimethylsulfone (DMSO2) in CDCl3 0,03%TMS 

was added to the solution. The final solution is placed in a new 5mm NMR tube before being 

analyzed in NMR 

NMR analysis 

All samples were measured at 298K on a Bruker Neo spectrometer operating at 500,13 MHz 

for proton detection. The NMR instrument is equipped with TCI 5mm cryoprobe equipped with 

Z gradients. For NMR data acquisition, a conventional 1D proton spectrum is recorded using 

zg30 pulse program (RD-30-acq) with a relaxation delay (RD) of 1s, 64 scans and 2 dummy 

scans for a total acquisition time of 3,2767999s. 

In first intention, all acquired data were processed using PepsNMR® software, an open-source 

R package developed by Manon Martin and Bernadette Govaerts from University of Louvain-

la-Neuve in collaboration with our group. After Group Delay Correction, Solvent Suppression, 

Apodization, Fourier Transform, Zero Phase Order Correction, Internal Referencing, Baseline 
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Correction, Negative Value Zeroing, Warping (alignment), and Window Selection, the 

processed spectra were bucketed from 0.5 to 10ppm with a bucket width of 0.02ppm. After 

Region Removal and Normalization (mean), the data matrix consisted of 411 spectral zone of 

0.02 ppm width containing metabolites information for each sample coming from the 327 

individuals. 

A second approach was used in order to improve bucketing steps by using NMRprocflow, a 

free web interface that allow to perform Adaptative, Intelligent Bucketing  (AI-Bucketing) 

method147. This approach will improve the standard, equidistant bucketing, by using a variable 

buckets sizes technique that will avoid peak splitting and peak alignment modification is 

minimized. This algorithm determines automatically when to stop further bucket without using 

references spectra or arbitrary parameters. Thus, this approach aimed to enhance the resolution 

and the recovery of buckets holding unique information about lipid species. After pre-

processing using TopSpin 4, NMR spectra of lipids extract were imported into NMRprocflow 

web platform. After alignment, selection of the spectral window (0.4-6.2ppm) and suppression 

on uninformative spectral zone (1.5-7.5ppm, highly misaligned zone containing residual water 

peaks), Adaptative Intelligent bucketing step was applied, and the corresponding data matrix 

exported. The data matrix was than imported in Metaboanalyst and samples were normalized 

upon the peak of the internal reference DMSO2 to provide the final bucket table used for further 

statistical analysis. 

 

Statistical Analysis 

 

Statistical analysis performed by Inserm of Bordeaux was conducted on the bucket table 

obtained after the first processing option and was made as follows:  In order to analyze the 

association between each bucket and the risk of early or advanced AMD, they used multivariate 

Cox models by adjusting values on the sex, the level of education, tobacco use, a genetic score 

based on 49 SNPs42 and a Mediterranean diet score. Correlation between buckets was evaluated 

with Pearson’s coefficient of correlation. All statistical were performed by Soufiane Ajana from 

Inserm of Bordeaux on R 3.4.4. 

 

BioStatFlow was here used to generate all PCA, PLSDA and OPLSDA models created on the 

data obtained after the second processing option. Variable’s correlation analysis was computed 

on GraphPad Prism9. 
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6 General conclusions 

By providing an overview of patient’s metabolic status, metabolomics approach is a powerful 

and interesting tool for personalized medicine. Indeed, this gives access to unique information 

about patient’s health at molecular, physiological, and environmental levels. With current 

analytical platforms, it’s possible to establish a real snapshot of the metabolism based on 

hundreds of descriptors of the metabolome. This could refine patient’s status and help clinicians 

for clinical decision and build up new therapeutic strategies. Moreover, information about 

metabolic changes under pathological conditions gives a chance to better understand the 

biochemical and biological mechanisms that driven the disease evolution or the treatment 

efficacy.  

In the context of AMD, our research group applied NMR metabolomics to find biomarkers 

that might fill some clinical challenges as early diagnostic of AMD patients, patients’ 

stratification, and evaluation of treatment responses for a better individual follow-up. Identified 

biomarkers, lactate and lipoprotein levels, could represent an interesting option to improve 

AMD patient’s healthcare and would provide a better understanding of complexes biological 

mechanisms underlying AMD occurrence and development. Therefore, we decide to continue 

our study of AMD using the same approach on two different cohorts: a prospective cohort 

composed on healthy individuals followed over 10 years that focuses on AMD occurrence; and 

a cohort of AMD patients already diagnosed, engaged in a constant follow-up and under anti-

VEGF treatment. Together, these studies represent a unique opportunity to overcome clinical 

challenges linked to AMD management by providing new tools that could help clinicians to 

improve diagnostic and individualize the therapeutic approach in a more efficient way.  

The first part of this thesis has been done in close collaboration with the Department of 

Ophthalmology of University Hospital of Liège and aimed to identify key metabolites linked 

to neovascular Age-related Macular Degeneration (nAMD) process. The objectives were to 

better characterize patients’ status regarding their stage of the pathology (active or non-active 

nAMD), and their responses to anti-VEGF treatments. Two cohorts were studied for this 

purpose:  the first cohort consisted of a collection of sera samples from healthy volunteers and 

AMD patients divided on two subgroups “active” and “non-active” depending on the presence 

of intra ore sub-retinal fluids in OCT analysis; linked to this study, sera samples from mice 

CNV model that mimic the effect of nAMD were also collected and analyzed; the second cohort 

involved 32 nAMD patients under anti-VEGF treatment that were followed over 2 years. If first 

cohort was already constituted and results partially generated before this work, for the second 
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one the patients had to be recruited and the sampling method, samples storage and analytical 

workflow had to be optimized. 

In the first study conducted either on human or mice CNV model led to the identification of 

specific lipoprotein signatures of CNV processes. This NMR metabolomics approach identified 

changes among lipoprotein profile linked to the severity of the pathology. Indeed, we observed 

a shift toward a VLDL rich lipoprotein profile for patient with active nAMD. These results were 

confirmed during a kinetics CNV formation NMR metabolomic analysis on mice CNV model. 

This refined previous observations and identified lipoprotein profile as a new tool for patient’s 

stratification and evaluation of treatment’s responses. 

For the second study, we applied 1H-NMR metabolomics approach to a two-year follow-up 

cohort composed of 32 nAMD patients under anti-VEGF treatment. The initial goal was to use 

the biomarkers previously identified, namely lactate level and lipoprotein profile. The dataset 

consisted of 269 visits. On each visit blood samples and clinical data were collected as well as 

OCT images of retinas allowing the measurement of CNV parameters (IRC, SRF, PED). The 

selected biomarkers were not able to provide good explanation of CNV status and therefore 

results were not satisfying. This forced us to change our mind and set up new analytical 

strategies in the way to find new metabolic signatures of CNV events recovered from OCT 

images of nAMD patients. Analyzing this longitudinal dataset was quite challenging and 

required to use specific and adapted statistical tools to better describe our samples.  

Even if no consistent results were found with this approach, this work pointed out some 

important questions regarding how metabolomics research and applications should be used in 

the context of personalized medicine. Indeed, if the lack of consistency of our previously 

identified biomarkers can be explained by how far from clinical reality are the case-control 

studies, metabolomics must overcome some challenge to be adapted to the clinic life. Indeed, 

collection and analysis of samples should take in consideration the reality of daily clinic routine 

to provide results that could be transposed and used by clinicians. On the other part, this routine 

does not match with the requirement of current metabolomics and statistics approach and 

therefore results are difficult to extract from such experimental design. Thus, we need to rethink 

our way to conduct case-study analysis with the aim to produce results could be used in real 

clinical situation.  

In addition, to take advantage of results that can provide metabolomic-based studies, patient’s 

healthcare routine should be aware of their specific recommendations. By understanding and 
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merging the exigence of both world, metabolomics, and in particular NMR-based 

metabolomics, could play a key role for patient’s monitoring and development of new 

therapeutic strategies that put the uniqueness of patients in the center of the playground. This 

represent a challenging task but is essential to put metabolomics on the center of personalized 

medicine approach.  

The last part of our work aimed to identify metabolite-based biomarkers able to predict AMD 

occurrence. This work was made in collaboration with Inserm of Bordeaux that provided 

samples from 471 healthy donors aged of 73 y/o and more and followed over 7 years. Over this 

period, ophthalmologic examination allowed to identify individuals that developed AMD and 

snap their evolution through the pathology. Plasma samples were analyzed by 1H-NMR 

spectroscopy and, after preprocessing and data reduction through bucketing approach, relevant 

multivariate and univariate analyses were performed. Interesting features were identified and 

associated with lipids’ containing spectral zone. To go deeper, we extracted lipids from our 

samples and performed new 1H-NMR analysis. Generated lipids profile was analyzed using the 

same strategies than initially but gave poor results.  

Despite all improvement made on our data treatment and analysis strategies, no relevant 

information was recovered from this highly correlated data matrix. Further studies on this 

dataset should use in-house lipid databases and spectral deconvolution methods to better 

characterize lipids samples and identify the lipids correlated with AMD occurrence.  

Nevertheless, with our approach we identified interesting spectral zones liked to AMD 

occurrence and associated with lipids metabolism. The NMR lipidomic study conducted to 

refine these results wasn’t successful as planned but highlighted the weakness of usual NMR 

metabolomics approach when applied to lipid’s extract samples. Indeed, the lack of resolution 

in 1D 1H-NMR spectra of lipids doesn’t allow informative analysis. Highly overlapped spectra 

generated produce highly correlated dataset that are not suitable for untargeted metabolomics 

approach. Rapid and robust 2D NMR approach and lipids NMR quantification methods should 

be developed and could provide interesting tools for NMR metabolomics purpose. Creating a 

lipid database and performing spectral deconvolution analysis on our NMR data of AMD 

patients could open the way to new prediction/diagnostic tool for age-related macular 

degeneration management. 
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This work was focused on the use of the metabolomic approach for improving patients’ 

healthcare. From early diagnostic using prospective cohort to personalized follow-up in real life 

clinical routine, we aimed to add metabolomics to the toolbox of clinicians. If none of our 

attempts gives us satisfying results, it brings to our attention that clinical practices and 

metabolomics must evolve together to reach the exigence of both fields. Indeed, clinical 

practices could take massive benefits from the metabolomic approach. For this, we need to 

optimize the way our research group evolve in this particular environment to be able to move 

from biomarker discovery to real clinical application.  

By standardization of experimental procedure and data analysis through the adoption of 

standard operating procedure (SOP), we could assess the robustness of our approach and 

provide to clinician quality assurance of our approach. Moreover, this would set up the exigence 

of metabolomics and pave the way to a better communication with the hospital environment. 

In this way, we could encourage medical unit to take an active part of studies by providing 

quality samples, improve study design and set up achievable goals in concertation with the 

research team.  

In addition, we need to better define individual’s metabolome variability among healthy and 

unhealthy individuals coming from any class of the population. This could help to better 

determine if a given variation of a biomarker, identified case-control study, could be truly 

relevant for daily clinical practices. By having an idea of how variations of the metabolome are 

occurring for a given individuals during time course, the usefulness of discovered feature could 

be assessed. With this information we could therefore adapt the way to conduct metabolomics 

studies. Indeed, especially for degenerative pathologies and pathologies that are in continuous 

evolution, this time course evolution of the metabolome is mandatory.  

By taking a step back and looking at all our work, having such information would help us to 

be more critical regarding our results and force us to conduct more controlled studies regarding 

the patient follow-up cohort. With a better communication with the medical unit of the hospital, 

maybe we would have realized that the goals of the study weren’t achievable in a small-time 

gap regarding the evolution of the pathology. At the end, even if a lot of efforts were made to 

add value to the generated datasets, information collected, and the developed analytical 

strategies could be the starting point of a more controlled, optimized, and rational study that 

could make NMR-based metabolomics the new Amsler chart for ophthalmologist.       
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Abstract
Neovascular age-related macular degeneration (nAMD) is the leading cause of blindness in aging populations. Here,
we applied metabolomics to human sera of patients with nAMD during an active (exudative) phase of the pathology
and found higher lactate levels and a shift in the lipoprotein profile (increased VLDL-LDL/HDL ratio). Similar
metabolomics changes were detected in the sera of mice subjected to laser-induced choroidal neovascularization
(CNV). In this experimental model, we provide evidence for two sites of lactate production: first, a local one in
the injured eye, and second a systemic site associated with the recruitment of bone marrow–derived inflammatory
cells. Mechanistically, lactate promotes the angiogenic response and M2-like macrophage accumulation in the eyes.
The therapeutic potential of our findings is demonstrated by the pharmacological control of lactate levels through
pyruvate dehydrogenase kinase (PDK) inhibition by dichloroacetic acid (DCA). Mice treated with DCA exhibited
normalized lactate levels and lipoprotein profiles, and inhibited CNV formation. Collectively, our findings implicate
the key role of the PDK/lactate axis in AMD pathogenesis and reveal that the regulation of PDK activity has
potential therapeutic value in this ocular disease. The results indicate that the lipoprotein profile is a traceable
pattern that is worth considering for patient follow-up.
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Key messages
& Lactate and lipoprotein profile are associated with the active phase of AMD and CNV development.
& Lactate is a relevant and functional metabolite correlated with AMD progression.
& Modulating lactate through pyruvate dehydrogenase kinase led to a decrease of CNV progression.
& Pyruvate dehydrogenase kinase is a new therapeutic target for neovascular AMD.

Keywords Neovascular AMD .Metabolomics . Inflammation . Angiogenesis . Therapeutic target . Lactate

Introduction

Age-related macular degeneration (AMD) is the leading
cause of vision impairment in the elderly, in the Western
world [1]. Clinically, AMD is classified into early asymp-
tomatic retinal abnormalities, an intermediate form, and
two advanced forms associated with severe visual impair-
ment: “dry” AMD (or geographic atrophic form) and
neovascular/exudative AMD (nAMD or “wet” AMD).
The nAMD is the most severe form of this pathology and
the major cause of blindness in people over 50 years old.
Choroidal neovascularization (CNV), the hallmark of
nAMD, results in the formation of immature and fragile
blood vessels causing exudates in the sub-retinal spaces.
In the clinics, optical coherence tomography (OCT) exam-
ination can monitor disease activity (i.e., the presence of
intraretinal and sub-retinal fluids) [2, 3]. Numerous studies
have established age, lifestyle, and genetic predispositions
as key risk factors for AMD [4–6]. The disease is charac-
terized by a low-grade/subclinical degree of inflammation
termed “para-inflammation” [7]. Several cytokines, such as
IL-1b [8], IL-18 [9], and IL-33 [10], have been implicated
in immune and vascular responses. Moreover, altered cho-
lesterol homeostasis and higher concentrations of high-
density lipoproteins have been linked to AMD [11].
Despite these advances, a comprehensive understanding
of the pathogenesis and the evolution of this complex mul-
tifactorial disease remains incomplete.

The intravitreal administration of anti-vascular endothe-
lial growth factor (anti-VEGF) drugs such as bevacizumab
(Avastin®, Genentech), ranibizumab (Lucentis®, Novartis),
and aflibercept (Eylea®, Regeneron Pharmaceuticals) repre-
sents the cornerstone of the current treatment for patients
with nAMD [12, 13]. Non-response to those drugs occurs
in up to 21% of eyes [14, 15]. Non-responders to a specific
anti-VEGF compound might benefit from a switch to an
alternative anti-VEGF drug [14, 15]. Currently, patient
follow-up mainly relies on ophthalmologic exams [16]
and crucially lacks powerful tools for unbiased biological
analyses. Furthermore, the identification of novel therapeu-
tic targets is mandatory to overcome resistance to anti-
VEGF treatments.

Metabolomics, defined as the comprehensive identification
and quantification of low molecular weight endogenous me-
tabolites in biological samples, offers new opportunities to
obtain innovative insights into pathologies and to identify
biomarkers/patterns that could be helpful for personalized
medicine and improve patient care [17, 18]. Directly linked
to the phenotype, this approach provides unique challenging
opportunities to correlate dynamic variations in the metabo-
lome with pathological disease status (occurrence and pro-
gression) and/or to identify metabolites that are markers and/
or key players of the disease [17, 19]. Notably, recent studies
have highlighted the implication of metabolism and some en-
ergetic metabolites in inflammation and angiogenesis, two
identified processes involved in CNV development [20, 21].
In this context, metabolomics has emerged as a relevant tool to
obtain new insights into nAMD development through exper-
imental and clinical approaches. Nevertheless, in comparison
with other omics sciences, only a small number of metabolo-
mics studies applied to different stages of AMD have been
reported [22]. Most of them, based on a mass-spectrometry
approach, identified relevant markers and putative biochemi-
cal pathways that could be implied in this pathology, mainly
in lipid and energetic metabolism [23–25]. Studies using nu-
clear magnetic resonance (NMR)–based metabolomics are
scarce and report small differences between AMD stages
[26]. None of those studies has combined a metabolomics
screening with an experimental study with the aim of estab-
lishing the functional impact of an identified metabolite/
marker that could lay down the foundation for novel therapeu-
tic approaches.

Here, we report a NMR-based metabolomics analysis ap-
plied to the sera of mice subjected to laser-induced CNV and
to serum samples of patients with nAMD. In both experimen-
tal and clinical settings, alterations in lactate levels and lipo-
protein profiles were detected. Laser-induced CNV [27] was
used to mechanistically explore the functional implication of
the pyruvate dehydrogenase kinase (PDK)/lactate axis, which
is a targetable pathway to modulate the lactate levels [28, 29].
The exciting discovery of lactate as a functional and targetable
molecule and the lipoprotein profile as a traceable pattern
opens new perspectives for optimizing AMD treatment and
patient follow-up.
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Methods

Patient selection

The study population consisted of unrelated European-
Caucasian individuals (> 59 years old) affected with
nAMD (n = 72) and healthy volunteers without signs of
macular disease or a known family history of AMD (n =
50). Patients with AMD and volunteers were not matched
for age or sex. Trained ophthalmologists examined all pa-
tients with nAMD and divided them into clinically active
or inactive subgroups depending on the presence or ab-
sence of intraretinal or sub-retinal exudative fluids as
assessed by OCT, respectively. A complete medical history
of each patient was obtained by using a standardized ques-
tionnaire (i.e., lifestyle, pathologies, treatments, BMI, etc.).
Patients and volunteers with diabetes mellitus were exclud-
ed from the cohort, while those under treatment for hyper-
cholesterolemia and hypertension were accepted.

Blood sample collection

For all the participants, peripheral blood was collected after
ophthalmological exams in: (1) K2 EDTA blood collection
tubes for blood cell counts, leucocyte differential, and C-
reactive protein (CRP) measurement using CRPLX kit
(Cobas®, Roche/Hitachi); (2) serum-separating tubes
(Greiner); and (3) sodium fluoride/oxalate tubes (Greiner)
for the lactate quantification. Serum samples were routinely
taken in the morning with a fasting period of at least 2 h.
Samples were treated according to clinical standard processes
and stored at − 80 °C after sampling until the metabolomics
analysis. Clinical biology analyses (lactic acid, CRP, red and
white blood cells) were also performed on the sera in order to
evaluate patient inflammatory status.

Laser-induced choroidal neovascularization in mice

CNV was induced in 8-week-old C57BL/6J mice by laser
burns as previously described (n = 4 to 6 mice per experimen-
tal group, minimum 4 impacts per eye) [27]. Mice developing
cataracts were excluded from further analyses [27].
Dichloroacetic acid (DCA)was provided in the drinking water
according to a described protocol [30]. After measuring the
average volume of water consumed by mice every day, the
DCA concentration in the drinking water was determined to
achieve a daily dose of 3 mg/mouse per day (150 mg/kg/day).
At mouse sacrifice, the posterior segments of enucleated eyes
were flat-mounted for immunostaining or treated with colla-
genase for FACS analyses. For CNV quantification, we used
FITC-dextran-labeled flat-mounted choroids, as described
[27]. In some assays, intravitreous injection of saline or
Avastin solution (2 μl −50 μg Avastin/eye) was performed

immediately after laser induction, during anesthesia. All ani-
mal experiments were approved by the Animal Ethics
Committee of the University of Liège.

1H-NMR spectroscopy and post-treatment of spectra

All samples were recorded at 298 K on a Bruker Avance
spectrometer operating at 500.13 MHz for the proton signal
acquisition. The instrument was equipped with a 5-mm TCI
cryoprobe with a Z-gradient. Maleic acid was used as an in-
ternal standard for quantification and trimethylsilyl-3-
propionic acid-d4 (TMSP) was used for the zero calibration.
Human sera (500 μl) were mixed with D2O phosphate buffer
(100 μl) (0.1 M, pH 7.4), a 35 mM solution of maleic acid
(100 μl) (Aldrich, Germany), and TMSP (30 μl) (sodium
trimethylsilyl[2,2,3,3-D4]propionate) in D2O (10 mg/ml).
Mouse sera (200 μl) were mixed with D2O phosphate buffer
(400 μl) (0.1 M, pH 7.4), 35 mM solution of maleic acid
(100 μl), and TMSP (30 μl) in D2O (10 mg/ml). For analyses
on other organs, samples were weighed (liver, spleen) or cells
were counted (bone marrow) to normalize data (per mg or
cell). Samples were prepared as previously described [31].

1H-NMR spectra were acquired using a 1D-CPMG (Carr-
Purcell-Meiboom-Gill) relaxation-editing sequence with
presaturation for serum samples. The CPMG experiment used
a RD-90-(t-180-t)n-sequence with a relaxation delay (RD) of
2 s, a spin echo delay (t) of 400 ms, and the number of loops
(n) equal to 80. The water suppression pulse was placed dur-
ing the RD. The number of transients was typically 32. The
acquisition time was set to 3.982555 s, and a quantity of four
dummy scans was chosen. Data were processed with the
Bruker Topspin 3.1 software with a standard parameter set.
Phase and baseline corrections were performed manually over
the entire range of the spectra, and the δ scale was calibrated to
0 ppm using the internal standard TMSP.

Metabolomics analyses

Optimized 1H-NMR spectra were automatically baseline-
corrected and reduced to ASCII files using AMIX software
(version 3.9.14; Bruker). The spectral intensities were nor-
malized to total intensities and reduced to integrated re-
gions of equal width (0.04 ppm) corresponding to the
0.5–10.00 ppm region. Because of the residual signals of
water and maleic acid, regions between 4.7 and 5 ppm
(water signal) and 5.6 and 6.2 ppm (maleic acid signal)
were removed before analysis. The reduced and normalized
NMR spectra were imported to SIMCA (version 14.1,
Umetrics AB, Umea Sweden). Pareto scaling was applied
to bucket tables, and discriminant analysis (DA), such as
principal component analysis (PCA), partial least squares
discriminant analysis (PLS-DA), and orthogonal partial
least squares discriminant analysis (OPLS-DA), was
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performed. SIMCA was used to generate all PCA, PLS-
DA, and OPLS-DA models and plots. Unsupervised multi-
variate analysis (PCA) was first used to determine intrinsic
clusters within the data set, while PLS-DA maximized the
separation and OPLS-DA facilitated the graphic visualiza-
tion of differences and similarities between groups. The
quality of OPLS-DA models was determined by the good-
ness of fit (R2), and the predictability was calculated on the
basis of the fraction correctly predicted in one-seventh
cross-validation (Q2). This workflow was applied for both
human and mouse serum samples.

Lipoprotein profile 1H-NMR analysis

Estimation of lipoprotein profile modification among spectra
collected from patients andmice was performed by using peak
picking methods that compare intensities between the differ-
ent fractions. In human and mouse blood NMR spectra, the
global signal of lipoproteins between 0.80 and 0.95 ppm is
due to an overlap of several peaks that could be linked to the
main classes of lipoproteins: very low-density lipoproteins
(VLDL), low-density lipoproteins (LDL), intermediary densi-
ty lipoproteins (IDL), high-density lipoproteins (HDL), and
chylomicron. Then, it could be decomposed into distinguish-
able signals corresponding to these different classes or to a
mixture of 2 classes (4 in humans and 5 in mice). To evaluate
the proportion of each lipoprotein fraction in the samples, a
method based on normalized peak intensity calculation was
developed. Then, for each class, we determined the chemical
shift corresponding to the peak of signal intensity. For human
samples, 4 fractions are selected (F1 = 0.92 ppm (mainly
VLDL), F2 = 0.91 ppm, F3 = 0.89 ppm, and F4 = 0.88 ppm
(mainly HDL). For mouse samples, 5 fractions are selected
(F1 = 0.93 ppm (mainly VLDL), F2 = 0.92 ppm, F3 =
0.90 ppm, F4 = 0.89 ppm, and F5 = 0.88 (mainly HDL)). For
each sample, the signal intensity at these different chemical
shifts was measured and then normalized to the total intensi-
ties of all fractions to reduce the impact of the global lipopro-
tein concentrations that could differ between samples.
Therefore, the obtained values represent a fraction of the total
signal. This method allows the comparison between lipopro-
tein profiles issued from the spectra of blood samples collect-
ed from patients with AMD, control subjects, and induced/
non-induced mice.

Enzymatic and NMR lactate dosages

Enzymatic lactate measurements in whole blood were per-
formed using lactate kit (Cobas®, Roche/Hitachi). NMR lac-
tate quantification was conducted in sera following a de-
scribed procedure [32].

Immunostaining

Flat-mounted posterior ocular poles of mouse eyes were incu-
bated with blocking buffer (PBS containing 10% bovine serum
albumin) for 30 min, followed by an overnight incubation, at
room temperature with primary antibodies: rat anti-mouse Ly-
6B.2 (dilution 1:100) (AbDSerotec, MCA771G) or rat anti-
mouse Alexa Fluor 647-conjugated F4/80 (dilution 1:100)
(Invitrogen, MF48021). To reveal Ly-6B.2 staining, flat-
mounted samples were incubated for 1.5 h with a goat anti-rat
Alexa Fluor 555-conjugated antibody (dilution 1:1000)
(Invitrogen, A-21434). Samples were mounted in Vectashield
mountingmedium (Vector Laboratories, Burlingame, CA) after
washing with PBS. Images were captured with a confocal Leica
TCS SP5 microscope using a × 20 objective lens.

Bone marrow isolation

In some assays, at sacrifice, bone marrow (BM) cells were
isolated, as previously described [22], from the tibia and femur
of mice subjected or not to laser-induced CNV.

Macrophage isolation in mouse eye and staining for
FACS analysis

After excision, posterior ocular segments were immediately
incubated with 2.5 mg/ml collagenase (Sigma) for 1.5 h at
37 °C. The mixture was subjected to mechanical dissociation
using a 23G syringe needle and filtered through a 50-μm cell
strainer. After FcR blockade with a control isotype (anti-CD16/
32, clone R35-95 from BD Biosciences, Erembodegem,
Belgium), the immunostaining was performed with the follow-
ing antibodies: anti-F4/80 (PE, clone BM8, eBioscience, San
Diego, CA, USA), anti-CD45 (APC-Cy7, clone 30-F11,
eBioscience), and anti-CD206 (APC, clone FAB2535A,
R&D systems,Minneapolis, MN, USA). Cell percentages were
measured using a FACS Canto II flow cytometer (BD
Biosciences) and FACS Diva V 6.1.2 software. F4/80+/
CD206− cells were considered M1-like macrophages and F4/
80+/CD206+ cells were considered M2-like macrophages.

Generation of human M1/M2 monocyte-derived
macrophages

Human peripheral blood mononuclear cells (PBMCs) were
plated overnight in 6-well flat bottom plates (107 cells/well)
(Nunc, Roskilde, Denmark). The adherent PBMC fraction
was grown in complete Roswell Park Memorial Institute
(RPMI) medium 1640 containing 50 mM 2-mercaptoethanol
and antibiotics (all from Gibco, Merelbeke, Belgium), at 37 °C
and 5% CO2. For macrophage differentiation, monocytes were
incubated with M-CSF (100 ng/ml), for 6 days. The M1-like or
M2-like polarized macrophages were generated by stimulating
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cells for 3 days with lipopolysaccharide (LPS) (100 ng/ml)
(Sigma-Aldrich, St Louis, MO, USA) and IFN-γ (20 ng/ml)
(PeproTech) or IL-4 (20 ng/ml) (ImmunoTools, Friesoythe,
Germany), respectively [33, 34]. In some experiments, lactate
or lactic acid (10 mM) was added to M1-like macrophages, for
2 days. Macrophage phenotypes were analyzed through label-
ling with anti-CD68 (APC, clone Y1/82A, Miltenyi), anti-
CD80 (FITC, clone L307, BD Biosciences), and anti-CD206
(PE, clone 19.21, BD Biosciences). CD68+/CD206−/CD80−

cells were considered M0, CD68+/CD206−/CD80+ were con-
sidered M1-like, and CD68+/CD206+/CD80−were considered
M2-like macrophages. Positive cell percentages were analyzed
on a FACS Canto II flow cytometer using FACSDiva software
V 6.1.2 (BD Biosciences).

Boyden chamber migration assay

The chemotactic migration of macrophages was evaluated
using Boyden chambers (48-well Boyden microchamber;
Neuroprobe, Cabin John, MD, USA) and gelatine-coated filters
in the presence of serum-containing RPMI [35]. Briefly, lower
wells were filled with 27 μl of RPMI medium containing 0.1%
bovine serum albumins (BSA) (as a control for random migra-
tion) or 1% BSA (as a positive control). Lactate was added at
different concentrations (0.1 to 20 mM) to RPMI in the pres-
ence of 0.1% BSA. Cell suspension (15 μl) (1 × 106 cells/ml of
RPMI + 0.1% BSA) was added to the upper wells for 5 h at
37 °C. Six wells were used for each experimental condition.
One random field/well was counted using an eyepiece with a
calibrated grid to evaluate the number of migrating cells.

Statistical analyses

For the in vivo assays, the results related to CNV formation, cell
densities, and cell percentages were compared by using a linear
mixed model as described [27]. Lactate measurements and
Boyden chamber assays were analyzed by using a one-way
ANOVA (with Tukey’s multiple comparison test), while in-
flammatory cell quantification was compared by using a two-
way ANOVA. For metabolomics studies, unsupervised PCAs
and supervised multivariate PLS-DAs and OPLS-DAs were
used to discriminate between groups and to identify the main
biomarkers (see above in “Metabolomics analyses”). For hu-
man and mouse samples, computations were conducted with
SIMCA 14.1 software with Pareto scaling of bucket variables.

Univariate statistical analyses were performed on each li-
poprotein fraction (see above “Lipoprotein profile 1H-NMR
analysis”) of both mouse and human serum spectra using
GraphPad Prism version 7.0. A nonparametric Kruskal-
Wallis test with Dunn’s multiple comparison was used to
compare Fx controls with Fx AMD patients and Fx mice
control versus CNVmice (J5 and J7 post-laser) with Fx being

the lipoprotein fraction number 1 to 4 for humans and 1 to 5
for mice.

Hypothesis tests were used to compare AMD cases and
controls. P values of homogeneity (chi-square or Fisher
exact tests) are reported for qualitative variables. For quanti-
tative variables, the P values result from one-way ANOVA
(parametric or nonparametric (Kruskal-Wallis test) according
to D’Agostino and Pearson normality test).

Study approval

The human study was conducted under protocols approved by
the Ethical Committee of the University Hospital of Liège,
B7072006295 (Belgium). Informed consents were obtained
from all study subjects before participation. All animal exper-
iments were approved by the Animal Ethics Committee of the
University of Liège.

Results

Metabolomics discriminates patients with AMD from
volunteers and active patients from inactive patients

The prospective cohort of patients with and healthy volunteers
(Supplemental Table 1) was sub-divided into 3 groups: active
AMD (patients with AMD associated with CNV development
and exudate), inactiveAMD (patientswith stabilizedAMDwith-
out exudate), and healthy donors. Supplemental Table 1 de-
scribes patient parameters (sex, age, BMI, clinical biology pa-
rameters, treatments). Blood cell counts and C-reactive protein
(CRP) measurements were similar in all groups (Supplemental
Table 1). However, a slight subclinical increase in monocyte and
basophil percentages was noted in patients with active AMD and
in patients with inactive AMD compared to healthy volunteers,
respectively (Supplemental Table 1). Partial discrimination be-
tween all AMD patients (n= 72) and healthy volunteers (n = 50)
was highlighted by supervised PLS-DAs and O-PLS-DAs of the
NMR-based metabolomics spectral data (Fig. 1a). We next fo-
cused on the 2 subgroups of AMD patients and noticed also
discrimination between patients who are in an active phase
(active) and those in a non-active phase (inactive) (Fig. 1b).
Importantly, some specific spectral zones and metabolites were
responsible for the discrimination of these groups, as shown in
the loading plot (Fig. 1c). Increased lactate levels and changes in
lipoprotein profiles were linked to the active phase of the pathol-
ogy (Fig. 1c). Both 1H-NMR (Fig. 1d) and enzymatic (Fig. 1e)
dosages in blood samples of patients confirmed increasing lactate
concentrations in patients with active AMD, as compared to
patients with inactive AMD and healthy volunteers. The NMR
signal corresponding to the main different classes of lipoproteins
(Fig. 1f) was separated into 4 fractions, namely, F1 to F4, which
progressively shifted from a fraction rich in VLDL (F1), to LDL
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(F2), IDL (F3), and HDL (F4) (Fig. 1g). The analyses of the
lipoprotein spectral zone in the 3 patient groups again revealed
a shift in the lipoprotein profile. Indeed, both VLDL and LDL
(F1 and F2) proportions were higher, while IDL and HDL (F3
and F4) fractions were reduced in the active group compared to
inactive and healthy individuals (Fig. 1h).

Metabolomics of mice subjected to CNV led to
identification of CNV-linked metabolites

When mice were subjected to laser-induced CNV,
neovascular lesions appeared at day 5 after induction and were

the largest at day 7 (Fig. 2a–d), in agreement with previous
reports [12, 27, 36]. Concomitant longitudinal metabolomics
analyses performed on blood samples highlighted a good con-
cordance between CNV occurrence and the evolution of the
metabolome patterns observed during the first week following
laser burn (Fig. 2e–g). The most significant discrimination
between control (CTL) and induced mice occurred at days 5
and 7 post-laser burn when the CNV was detectable on flat-
mounted choroids (Fig. 2b, c, f, g). In line with the clinical
data generated in the human study, lactate and lipoprotein
profiles were the main discriminating metabolites (Fig. 2h–j)
between the two experimental groups. Consistently, lactate

Fig. 1 Lactate and lipoproteins are the main increased discriminant
metabolite in serum of patients with nAMD. a Score plot derived from
an OPLS-DA of spectral data (3 components, R2 = 0.527, Q2 = 0.151)
collected from patients with nAMD (blue dots, n = 72) and healthy vol-
unteers (green dots, n = 50). Each data point represents an individual
patient. b OPLS-DA score plot (2 components, R2 = 0.468, Q2 = 0.21)
of spectral data collected from patients with active (red dots, n = 49)
and inactive (blue dots, n = 23) nAMD. c Loading plot of spectral data
collected from patients with active and inactive nAMD highlighting lac-
tate and lipoproteins as biomarkers of active status. d NMR and e

biochemical dosages of blood lactate in the serum of healthy volunteers
and patients with active and inactive forms of AMD. Data are expressed
as the percentage of healthy donors. f NMR spectrum of human serum
highlighting the lipoprotein profiles (from 0.88 to 0.92 ppm). g Enlarged
view of the lipoprotein NMR spectral zone showing the chemical shift
corresponding to the maximum intensity of the signal of the 4 lipoprotein
classes. h Modification of the lipoprotein profile during CNV develop-
ment. Fraction 1 is mainly composed of VLDL, while fraction 4 is mainly
composed of HDL. *P < 0.05; **P < 0.01; ***P < 0.001. Error bars are
SEM
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Fig. 2 Lactate and lipoproteins are the main increased discriminant
metabolites in the serum of mice subjected to CNV. Mice were
subjected (CNV) or not (CTL) to a laser burn. FITC-dextran-labeled
flat-mounted choroid observed at day 3 (a), 5 (b) or 7 (c) after laser
induction. Dashed lines delineate the lesion. Scale bars, 100 μm.
Quantification of fluorescent neovessel area with ImageJ software (n ≥
4 mice/group, n ≥ 12 laser impacts/group) at days 1, 3, 5, and 7 (d).
*P < 0.05; ***P < 0.001. Error bars indicate SEM. Score plot resulting
from a PLS-DA analysis of spectral data performed at day 3 (e), day 5 (f),
and day 7 (g) after laser induction (control vs J3: 2 components, R2 =
0.579 and Q2 = 0.119; control vs J5: 3 components, R2 = 0.669 and Q2 =
0.841; control vs J7: 3 components, R2 = 0.793 and Q2 = 0.734). Laser-
induced mice (green dots) were distinguishable from non-induced mice
(blue dots) at day 5 and day 7. Each data point represents an individual

mouse (n ≥ 4 mice/group). Loading plot resulting from a PLS-DA analy-
sis of spectral data performed at day 3 (h), day 5 (i), and day 7 (j) after
laser induction. Lactate (blue dots) and lipoproteins (red dots) are the
main discriminant metabolites. NMR dosage of serum lactate levels at
day 7 (n ≥ 5 mice/group) (k). The results are expressed as the percentage
of the control. *P < 0.05; **P < 0.01. Error bars indicate SEM. NMR
spectrum of mouse serum highlighting the lipoprotein profiles (from
0.88 to 0.93 ppm) (l). Enlarged view of the lipoprotein NMR spectral
zone showing the chemical shift corresponding to the maximum intensity
of the signal of the 5 lipoprotein classes (m). Modification of the lipopro-
tein profile during CNV development (n). Fraction 1 is mainly composed
of VLDL while fraction 5 is mainly composed of HDL (n ≥ 5
mice/group). *P < 0.05; **P < 0.01. Error bars are SEM

1743J Mol Med (2020) 98:1737–1751



concentrations measured by NMR were increased by approx-
imately 15% in the blood of laser-induced mice at day 5 (Fig.
2k) (P < 0.05). The NMR signal corresponding to the main
different classes of lipoproteins (Fig. 2l) was separated into
5 fractions, namely F1 to F5, which progressively shifted from
a fraction rich in VLDL (F1), to LDL (F2), to one richest in
HDL (F5) (Fig. 2m). The kinetic analysis of lipoprotein pro-
files revealed that the proportion of LDL/VLDL-containing
fractions (mainly F1 and F2) progressively increased, while
HDL fractions (mainly F4 and F5) decreased during CNV
development (Fig. 2n). Collectively, these data highlight two
main discriminant metabolites between control and CNV-
induced mice: lactate whose increased levels were detected
at day 5, and a shift in the lipoprotein profile (VLDL-LDL/
HDL ratio), which was the highest at day 7.

Lactate has a functional role in CNV development

Lactate is a targetable metabolite whose level can be modu-
lated by interfering with pyruvate dehydrogenase kinase
(PDK), which inactivates the pyruvate dehydrogenase
(PDH) involved in pyruvate conversion into acetyl-CoA in
the mitochondria (Fig. 3a). In the mouse model, PDK activity
was blocked by treatment with dichloroacetic acid (DCA)
[37]. In line with our expectation, DCA treatment decreased
blood lactate levels at day 5 (Fig. 3b) and led to a significant
reduction in CNV formation of 46%, at day 7 (Fig. 3c–e).
These data demonstrate the functional role of lactate in CNV
development. Notably, similar effects on blood lactate levels
(Fig. 3g) were observed by using anti-VEGF antibodies
(injected intravitreously at day 0), which are highly potent
anti-angiogenic agents (Fig. 3f). In line with the clinical data,
DCA treatment restored the lipoprotein profiles (Fig. 3h) with
a distribution of the fractions similar to that seen under control
conditions (lower F1/F2 and higher F4/F5 proportions)
(Fig. 3h). Thus, DCA treatment induced a normalization of
lipoprotein profiles. Interestingly, anti-VEGF antibodies also
modified the lipoprotein profile with reduced VLDL/LDL
(F1–F3 fractions) and increased HDL (F4 and F5 fractions)
proportions as compared to control mice (Fig. 3i).

Lactate produced locally and systemically modulates
inflammation and macrophage polarization

To determine the cellular source of lactate detected in the
serum at day 5 (Fig. 2k), we conducted NMR dosages in
different organs at days 3 and 5 post-laser induction.
Increased lactate levels were detected locally in injured eyes
as early as day 3 (Fig. 4a). At this time point, no significant
modification of lactate levels was detected in the serum (Fig.
2k), bonemarrow, spleen, or liver (Fig. 4b–d). Interestingly, at
day 5, a substantial increase in lactate levels was noted in the
bone marrow (Fig. 4b). Notably, DCA-treated mice displayed

normalized lactate levels in eyes at day 3 (Fig. 4a) and in the
bone marrow at day 5 (Fig. 4b). A slight decrease of lactate
level was seen in spleen after DCA treatment at day 3 (Fig.
4c). These data reveal two sites of lactate production: an early
and local production of lactate in the injured eye, followed by
a release of lactate in the blood circulation by bone marrow–
derived inflammatory cells.

Ly6b2+ neutrophil infiltration occurred at day 1 post-laser
burn and then rapidly decreased from days 3 to 7 (Fig. 4e–i),
while the F4/80+ macrophage density progressively increased
after CNV induction and peaked at day 5 (Fig. 4j–m). Upon
DCA treatment, neutrophil recruitment was slightly decreased
at day 1 (Fig. 4i). An earlier infiltration of macrophages (Fig.
4n) was observed upon DCA treatment and associated with a
1.85-fold reduction in the percentage of pro-angiogenic M2-
like macrophages (CD45+, F4/80+, and CD206+ cells) (Fig.
4o). The impact of lactate on macrophage migration and polar-
ization was next evaluated in vitro. Human peripheral mono-
cytes were first polarized in vitro into M1 or M2 subtypes and
then subjected to a lactate gradient in a Boyden chamber assay.
Lactate was a potent chemoattractant for M1-like macrophages
(at 10 mM and 20 mM) and M2-like macrophages (at 1 and
2 mM) (Fig. 4p, q). We next hypothesized that lactate can
repolarize M1-like macrophages into M2 macrophages. To ad-
dress this issue, macrophages were stimulated with LPS and
IFN-γ to polarize them into an M1-like phenotype (Fig. 4r).
Under those conditions, approximatively 30% of the macro-
phage population were M1-like and < 4% were M2-like mac-
rophages. The subsequent addition of lactate for 2 days led to a
shift in the macrophage population, which was then composed
of approximatively 25% M2-like macrophages and < 2% M1-
like macrophages. Collectively, these data reveal that lactate
modulates macrophage recruitment and the M1/M2 balance in
favor of M2-like macrophages by converting M1 macrophages
to M2 macrophages.

DCA is more efficient during the angiogenesis phase

Our experimental data allowed us to correlate the systemic
increase in lactate levels with macrophage recruitment and
the angiogenic phase (CNV formation) (Fig. 5a).
Interestingly, CNV formation and macrophage recruitment
in the eye were concomitant with the increase in lactate levels
observed in the bone marrow and in the serum. To define the
best therapeutic window for DCA treatment, we designed
several treatment schedules to target several steps of disease
development: (i) the whole process (D0–D7); (ii) the neutro-
philic response (D0–D2); (iii) the initial macrophage recruit-
ment associated with increased local lactate levels (D0–D4);
and (iv) the boost of systemic lactate production associated
with early (D3–D5) and late (D4–D7) CNV formation (Fig.
5b). CNV inhibition was optimal when DCA treatments were
applied during the whole process (D0–D7) (Fig. 5c). In
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contrast, only a partial CNV impairment was observed upon
treatment during earlier periods (D0–D2, D0–D4, and D3–
D5). Of note, when we reproduced the clinical situation by
applying DCA treatment during the late-angiogenic phase

(D4–D7), CNV inhibition was optimal and reached that ob-
served with a treatment applied during the whole process.
These findings emphasize the interest of the PDK/lactate axis
as a therapeutic target to treat patients with active AMD.

Fig. 3 DCA treatment normalizes lactate level and reduces CNV surface.
a Schematic overview of how DCA can impact lactate levels. DCA
inhibits mitochondrial PDK activity, thereby maintaining PDH in its
(unphosphorylated) active form and facilitating the decarboxylation of
pyruvate to acetyl-CoA. As the flux of pyruvate is accelerated, the equi-
librium between lactate and pyruvate is unbalanced towards pyruvate. b–
e Mice subjected to laser-induced CNV were treated or not with DCA
(3 mg DCA/day/mouse) (n ≥ 5 mice/group). Untreated mice (laser) were
used as controls. bNMR dosage of serum lactate level at day 7 after DCA
treatment (n ≥ 5 mice/group). The results are expressed as the percentage
of laser-induced mice without treatment. *P < 0.05; **P < 0.01. Error
bars correspond to SEM. Flat-mounted choroid of c an untreated mouse
and d a DCA-treated mouse at day 7: Dashed lines delineate the lesion.

Scale bars, 100 μm. e Quantification of CNV after DCA treatment at day
7 (n ≥ 6 mice/group, n = 26–27 laser impacts/group). The results are
expressed as the percentage of laser-induced mice without treatment.
**P < 0.01. Error bars correspond to SEM. f Quantification of CNV after
Avastin treatment at day 7 (n ≥ 6 mice/group, n = 26–27 laser impacts/
group). The results are expressed as the percentage of laser-induced mice
without treatment. g NMR dosage of serum lactate level at day 7 after
Avastin treatment; the results are expressed as the percentage of laser-
induced mice without treatment (n ≥ 6 mice/group). **P < 0.01. Error
bars correspond to SEM. h Modification of the lipoprotein profile at
day 7 after DCA treatment (n ≥ 6 mice/group). i Modification of the
lipoprotein profile at day 7 after Avastin treatment. Fraction 1 is mainly
composed of VLDL while fraction 5 is mainly composed of HDL
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Discussion

The present holistic study highlights that metabolomics is a
relevant tool to obtain new insights into nAMD. Here, we
assign a functional role for the PDK/lactate axis in AMD
and in CNV progression that holds promise for new treatment.
Moreover, a shift in the lipoprotein profile towards higher
VLDL-LDL proportions was associated with CNV develop-
ment providing novel markers of pathology progression that
could be suitable for patient treatment follow-up and person-
alized medicine. The clinical relevance of our innovative

findings is supported by similar metabolomics changes detect-
ed in samples of patients with nAMD and in murine samples
in a pre-clinical model.

The most important finding of our human study is the de-
tection of metabolomics differences between patients with ac-
tive AMD (in an active exudative phase of the pathology) and
healthy or non-active patients. This original observation un-
derlines the underappreciated nonlinear features of this chron-
ic disease and reveals that the exudative phase in patients is
concomitant with serum changes detectable by metabolomics.
Notably, increased serum lactate levels and a shift in the

Fig. 4 Lactate mediates the recruitment of inflammatory cells during
CNV. Mice subjected to laser-induced CNV were treated or not with
DCA (3 mg DCA/day/mouse). NMR dosage of the lactate level at day
3 and day 5 in eye (a), bone marrow (b), spleen (c), and liver (d) (n ≥ 5
mice/group). *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; data
are expressed as the mean ± SD. Immunostaining of neutrophils (e–i) and
macrophages (j–n) on flat-mounted choroids collected at day 1 (D1: e, j),
day 3 (D3: f, k), day 5 (D5: g, l), and day 7 (D7: h, m) after laser
induction. Scale bars, 100 μm. Dashed lines delineate the lesion.
Macrophage/neutrophil density defined as the volume occupied by cells
divided by the total laser impact volume with or without treatment with
DCA (i, n). Percentage of M2 macrophages among CD45+ cells deter-
mined by flow cytometry (n = 9 eyes/group) (o). CTL corresponds to

mice not subjected to laser burn. Boyden chamber assay showing the
differential migration of human macrophages polarized in vitro into the
M1 (p) orM2 (q) subtype (n = 6 wells/condition). M1 cells were attracted
by high and M2 by low-lactate concentrations. Rdm corresponds to ran-
dom cell migration in the absence of chemoattractant and CTL>O to cell
migration in response to BSA-containing medium (positive control).
Cultures of M1 macrophages were treated or not with 10 mM lactate
for 48 h (r). The results obtained after phenotypic analysis showed that
lactate induced the conversion of M1 into M2 macrophages (n = 5).
*P < 0.05; **P < 0.01; ***P < 0.001; ns, nonsignificant. Data are
expressed as the mean ± SEM (i, n, o) or mean ± SD (p, q). See also
Fig. S1 for the gating strategy used in FACS analyses to identify the M2
macrophage subset in posterior eye segments after laser-induced CNV
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lipoproteins profile (increased VLDL-LDL/HDL ratio) were
noted during the active phase of the pathology. Furthermore,
the increase in the VLDL-LDL proportion is in line with re-
ported data that associated AMD with a higher level of LDL
[38]. Similar metabolic alterations as those seen in the human
study (increase in lactate levels and changes in the VLDL
profile) were identified in mice during CNV formation. The
good correlation between the metabolomics data generated
from mouse and human samples validates our concept and
also indicates that the animal model correctly reflects the ac-
tive phase of nAMD [27].

We next focused our investigation on the PDK/lactate axis
as a putative therapeutic target for AMD treatment. The im-
plication of lactate in angiogenesis and inflammation, the two
underlying causes of AMD, is well documented [39, 40].
However, its role in ocular disease has not yet been reported.
In the present study, we provide evidence that lactate controls
the recruitment of macrophages, which are well recognized as
key cellular regulators of CNV formation [41, 42].
Importantly, the normalization of lactate levels by pharmaco-
logical inhibition of PDK in mice modified the kinetics of
macrophage recruitment and regulated M1/M2 balance by
reducing the percentage of the M2 subtype. M2 macrophages
are considered pro-angiogenic cells that contribute to different
pathologies including AMD [43, 44]. Our data reveal that
lactate can exert direct and differential effects on M1 and
M2 macrophage properties. Lactate is a chemoattractant for
M1- andM2-like macrophages with different optimal concen-
trations for each macrophage subtype. Of note, a key finding
here is that lactate promotes the repolarization of M1-like to
M2-like macrophages. Our observations are in line with a
previous study implicating lactate in the M2 macrophage po-
larization in the context of cancer [45]. Therefore, increasing
concentrations of lactate could attract M1 macrophages that
can locally repolarize into pro-angiogenic M2-like macro-
phages. Altogether, our data support the interest of targeting
lactate metabolism as a promising approach, not only for can-
cer [46] but also for AMD.

The source of lactate and its increased levels detected in the
serum are intriguing issues. We are providing evidence that
the increased lactate levels detected in eyes preceded those in
sera. This result supports the local production of lactate at an
early stage following eye injury, which can be caused by laser
burn in mice and likely by lifelong exposure of the retina and
the underlying retinal pigment epithelium (RPE) to different
stimuli (light, oxidative stress) in aging patients. At the cellu-
lar level, lactate could be secreted by cells exhibiting aerobic
glycolysis, such as RPE [47] and endothelial cells [48].
Hypoxia could also trigger glycolysis and lactate production
by resident and inflammatory cells. A progressive enhance-
ment of lactate production was observed in eyes until day 3,
excluding neutrophil involvement in this secretion. A very
important finding is the increased lactate production observed

Fig. 5 DCA treatment during the angiogenic phase of CNV formation is
as efficient as anti-VEGF treatment in the murine model. a Summary
diagram of the kinetics of inflammation (neutrophils and macrophages),
CNV formation, and lactate levels in eyes and sera. b The schedules of
DCA treatment (3 mg DCA/day/mouse) are indicated below. c
Quantification of fluorescent neovessel area (n ≥ 5 mice/group) showing
the maximal reduction of CNV development obtained with the DCA
treatments applied from day 0 to day 7 or from day 4 to day 7. The results
are expressed as the percentage of laser-induced mice. *P < 0.05;
***P < 0.001; ns, nonsignificant. Error bars are SEM
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at day 5, concomitantly in bone marrow extracts and sera. We
provide evidence for lactate production in two sites: a local
one caused by ocular tissue injury and a systemic one induced
by circulating inflammatory cells.

This observed dual production of lactate explains the sim-
ilarity in metabolomics fingerprints detected in patients with
nAMD and in the experimental model, which could be con-
sidered intriguing. In the course of AMD, age-related chronic
para-inflammation (an intermediate between basal and inflam-
matory states) occurs in the retinochoroidal tissues [7, 49].
Constant exposition to light stimulation and other oxidative
stresses generates large amounts of oxidized materials and
reactive oxygen species (ROS) that promote complement ac-
tivation, cell damage, drusen formation, and irreversible pho-
toreceptor degeneration. Prolonged ROS augmentation, hyp-
oxia, and chronic inflammation can then trigger angiogenic
signaling leading to CNV, a hallmark of advanced stage of
the disease. In the experimental CNV mouse model, the laser
injury induced Bruch’s membrane rupture, cell damage, and
hypoxia, finally causing CNV formation. Although the events
leading to human CNV are clearly different from those in
laser-induced trauma, the subsequent angiogenic response that
occurs in human CNV due to the breakdown of Bruch’s mem-
brane is reproduced in the laser injury model [27]. Thus, the
murine laser-induced CNV model reproduces the late events
occurring in nAMD progression. This concept is further sup-
ported by our following findings: (1) in clinical samples,
higher lactate levels and lipoprotein profile shifts are detected
in patients with active AMD; (2) in the experimental model,
metabolite changes are detected from day 5 in blood and are
concomitant to late-inflammatory and angiogenic phases; (3)
lactate level normalization through a pharmacological ap-
proach is more potent when applied at late (> day 4 post-
cauterization) than at early (< day 4) time points; and finally
(4) the inhibition of angiogenesis through anti-VEGF anti-
body administration normalized lactate levels. These observa-
tions further support the relevance of the laser-induced CNV
model in reproducing the AMD pathology [27].

Of great interest is our finding that lactate levels and lipo-
protein profiles are normalized and modified upon anti-VEGF
and PDK inhibitor treatments. Our study opens a new horizon
for personalized medicine and the follow-up of patients with
nAMD during anti-angiogenic therapy. Indeed, to determine
the number and frequency of anti-VEGF intravitreous injec-
tions, clinical practitioners are currently mostly following gen-
eral guidelines in the absence of evidence-based methods to
guide them. Personalized-based protocols of treatment are not
yet available, and tools are lacking for providing a rationale for
decision-making and guiding clinicians. In this context, our
metabolomics results offer an opportunity to monitor some me-
tabolite levels in biofluids such as lactate and the lipoprotein
profiles. The lactate level is followed as a prognostic/predictive
marker in cancers [50, 51], and combined with the lipoprotein

profile, it could be used for the follow-up of patients with
nAMD during anti-angiogenic treatment and/or in order to per-
sonalize therapeutic interventions for nAMD. Moreover, the
normalization of lactate levels by oral PDK modulators clearly
represents a new therapeutic option and/or a complementary
treatment to reduce CNV progression.

In conclusion, our study provides new conceptual insights
into the pathogenesis and evolution of poorly understood
nAMD and supports the innovative concept of the PDK//lac-
tate axis as a functional, traceable, and targetable mediator of
CNV and nAMD progression. In addition to offering a novel
therapeutic option for AMD treatments, our work suggests
that metabolomics profiling and lactate/lipoprotein level mon-
itoring during treatment are worth considering for the follow-
up of patients with AMD in future clinical studies and offer
new tools to help clinicians in personalized therapeutic design.
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