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Abstract
Purpose Humans are daily exposed to many environmental pollutants, some of which being suspected to be thyroid disrup-
tors. Some populations could be particularly susceptible to thyroid disruption, such like diabetics due to the well-known 
relation between the thyroid function and the control of carbohydrate homeostasis by pancreas. Therefore, the aim of this 
study was to investigate the associations between the exposure to several persistent and non-persistent chemicals and thyroid 
hormones levels in children with type 1 diabetes.
Methods Blood and urine sample were collected from 54 children diagnosed for type 1 diabetes mellitus. The concentra-
tions of 7 phthalate metabolites, 4 parabens, 7 bisphenols, benzophenone 3 and triclosan were measured in urine, while 
15 organochlorine pesticides, 4 polychlorinated biphenyls (PCBs) and 7 perfluoroalkyl substances were analyzed in serum 
samples. In the same time, the blood levels of free thyroxine (fT4), thyroid stimulating hormone (TSH) and glycated hemo-
globin (Hb1Ac) were determined.
Results We highlighted positive associations between serum perfluorohexane sulfonate and urinary monoethylphthalate 
levels, and TSH level in blood. We also found that PCB 138 was positively associated to fT4 while urinary levels of bis-
phenol F were negatively correlated to this hormone. Finally, we observed positive associations between Hb1Ac levels and 
the contamination by PCB 153 and two urinary phthalate metabolites: mono-2-ethyl-5-hydroxyhexyl phthalate and mono-
2-ethyl-5-oxoxyhexyl phthalate.
Conclusion Our results showed that our small cohort of children with type 1 diabetes mellitus is potentially susceptible to 
thyroid disruptions by some pollutants. Moreover, for these children, both di-(2-ethylhexyl) phthalate metabolites would 
potentially hamper the glucose homeostasis. Nevertheless, additional studies are mandatory to further explore these findings.
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PFUdA  Perfluoroundecanoic acid
MEP  Monoethyl phthalate
MiBP  Mono-iso-butyl phthalate
MnBP  Mono-n-butyl phthalate
MBzP  Monobenzyl phthalate
MEHP  Mono-2-ethylhexyl phthalate
5-OH-MEHP  Mono-2-ethyl-5-hydroxyhexyl phthalate
5-oxo-MEHP  Mono-2-ethyl-5-oxohexyl phthalate
MeP  Methylparaben
EP  Ethylparaben
PrP  N-propylparaben
BP  N-butylparaben
BP3  Benzophenone-3
MRM  Multiple reaction monitoring
ECLIA  Electrochemiluminescence immunoassay
DF  Detection frequency

Introduction

The increasing incidence of thyroid disorders in the general 
population is suspected to be partly explained by the grow-
ing contamination of our environment and consequently the 
human organism by several chemicals able to disrupt the 
thyroid homeostasis (Boas et al. 2012). Several epidemiolog-
ical studies showed correlations between exposition to some 
chemicals and the thyroid function in humans. For instance, 
recently, Zhang et al. 2021 showed associations between the 
urinary concentration of several phthalate metabolites and 
modification of the levels of free thyroxine (fT4) in patients 
with thyroid nodules. A positive association between bisphe-
nol S (BPS) urinary levels and total thyroxine (TT4) con-
centrations measured during the first trimester of pregnancy 
was found in Dutch women (Derakhshan et al. 2021). In one 
of our previous works, we highlighted negative associations 
between contamination by 4,4’-dichlorodiphenyldi-chloro-
ethylene (4,4’-DDE) and perfluorononanoic acid (PFNA, a 
perfluoroalkyl substance (PFAS)) measured in cord blood 
and TSH determined 3 days after birth in a cohort of male 
newborns (Dufour et al. 2018).

Moreover, Webster et al. 2014, reported that an increased 
PFASs concentration in the serum of pregnant women with 
high concentration of anti-thyroid peroxidase antibodies was 
associated with higher thyroid stimulating hormone (TSH) 
levels and lower fT4 concentration. They suggested that 
individuals whose the thyroid function is weakened by the 
presence of multiple stressors (e.g., anti-thyroid peroxidase 
antibodies, pregnancy or diabetes) are more vulnerable to 
the effects of thyroid disruptor compounds, and these find-
ings would be explained by what they called a “multiple hit 
hypothesis”.

On the other hand, the relation between the control of the 
glycemia by the endocrine pancreas and the thyroid function 

is well established. It has been demonstrated that hypothy-
roidism is associated with an increased resistance to insulin 
(Cettour-Rose et al. 2005; Maratou et al. 2009) while hyper-
thyroidism promotes the hepatic gluconeogenesis and the 
glucose output from the liver and thus hyperglycemia (Li 
et al. 2017; Mokuno et al. 1999). Some impacts of the diabe-
tes on the thyroid function were also reported. For instance, 
diabetes was associated with a reduction of the nocturnal 
serum peak of TSH and the free triiodothyronine (T3) serum 
levels (Coiro et al. 1997). Moreover, insulin acts as a growth 
factor on thyroid tissue and higher concentrations of insulin 
are associated with a higher risk to develop thyroid nodules 
(Ayturk et al. 2009; Rezzonico et al. 2008). It is therefore not 
surprising to find that thyroid disorders are more prevalent 
in type 1 and type 2 diabetes patients than in healthy general 
population (Araujo et al. 2008; Jali et al. 2016; Perros et al. 
1995; Spaans et al. 2017).

In children with type 1 diabetes, the thyroid function is 
therefore under additional stress due to the presence of the 
metabolic disease. Consequently, considering the multiple-
hit hypothesis, we postulate that children with type 1 diabe-
tes are more susceptible to thyroid disruptors.

Thenceforth, the objective of the present work was to 
explore the associations between the exposure to several 
suspected thyroid disruptors and thyroid hormones levels 
in children with type 1 diabetes. For this purpose, 15 organ-
ochlorine pesticides or metabolites, 4 polychlorobiphenyls 
(PCBs), and 7 PFASs were measured in serum samples, 
while 7 bisphenols (BPs) including among others BPA, BPS, 
BPF, triclosan, 7 phthalate metabolites, 4 parabens, and ben-
zophenone 3 were quantified in urine samples collected from 
54 diabetics children (type 1). In parallel, blood thyroxin 
and TSH concentrations were measured to assess the thyroid 
function. Moreover, anti-thyroid peroxidase (anti-TPO) and 
anti-thyroglobulin (anti-Tg) antibodies were also determined 
in this cohort because of they are potentially additional thy-
roid stressors. In addition, we tested associations between 
glycated hemoglobin (HbA1c) a biomarker of diabetes con-
trol and pollutant contamination.

Materials and methods

Study population

Fifty-four children followed for type 1 diabetes at the 
Department of Pediatric Endocrinology of the University 
Hospital of Liege were recruited between March 2017 and 
April 2018 with parental consent. Blood samples were col-
lected for medical follow-up of children and were analyzed 
during the day for thyroid hormones and HbA1c. In addi-
tion, a clot activator tube without gel was collected as well 
as a spot urine sample. After collection, these samples were 
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transferred to the laboratory of Toxicology of the Univer-
sity Hospital of Liege. Blood samples were centrifuged at 
3000 rpm for 5 min to collect the serum fraction. Serum 
and urine samples were stored at − 20 °C until analysis. 
The protocol was approved by the Hospital Faculty Ethics 
Committee of the University of Liege (approval number: 
2016–296).

Analytical procedures

Analysis of PCBs and organochlorine pesticides in serum

In the serum of patients, 15 pesticides or metabolites, 
(namely alpha-, beta-and gamma-hexachlorohexane (α-, β- 
and γ-HCH), hexachlorobenzene (HCB), aldrin, dieldrin, 
endrin, trans-chlordane, oxychlordane, trans-heptachlor 
ep-oxide, cis-and trans-nonachlor, 2,4′- and 4,4′-dichlo-
rodiphenyldi-chloroethylene (4,4’-DDE), beta-endosulfan) 
and 4 PCBs (− 118, − 138, − 153 and − 180) were quanti-
fied according to the methodology described in Pirard et al. 
2018 (Pirard et al. 2018). Briefly, acetonitrile and a saturated 
potassium carbonate solution were added to the sample to 
denaturize proteins. Chlorinated compounds were extracted 
from the denatured sample with a hexane–acetone mixture 
(9/1 v/v). The organic layer was transferred on a solid phase 
extraction (SPE) cartridge for further purification and then 
evaporated nearly to dryness with nonane as keeper. Then 
extract was analyzed using a gas chromatography (GC) cou-
pled to a triple quadrupole mass spectrometer (MS) operat-
ing in negative chemical ionization mode.

Analysis of PFAS in serum

Perfluorohexane sulfonate (PFHxS), perfluorooctane sul-
fonate (PFOS), perfluoroheptanoic acid (PFHpA), perfluo-
rooctanoic acid (PFOA), PFNA, perfluorodecanoic acid 
(PFDA), perfluoroundecanoic acid (PFUdA)) were meas-
ured in serum as previously detailed (Dufour et al. 2018). 
In brief, after protein denaturation with a formic acid/water 
mixture (1/1, v/v), the sample was extracted on a weak ani-
onic exchange SPE cartridge. The eluate was evaporated to 
dryness and reconstituted in a mixture of mobile phases. The 
quantification was performed using a liquid chromatography 
(LC) coupled to a triple quadrupole MS.

Analysis of phthalate metabolites, parabens 
and benzophenone‑3 in urine

The urinary concentrations of 7 phthalate metabolites 
namely monoethyl phthalate (MEP), mono-iso-butyl phtha-
late (MiBP), mono-n-butyl phthalate (MnBP), monobenzyl 
phthalate (MBzP), mono-2-ethylhexyl phthalate (MEHP), 
mono-2-ethyl-5-hydroxyhexyl phthalate (5-OH-MEHP) 

and mono-2-ethyl-5-oxohexyl phthalate (5-oxo-MEHP), 
of 4 parabens namely methylparaben (MeP), ethylparaben 
(EP), n-propylparaben (PrP) and n-butylparaben (BP), and 
benzophenone-3 (BP3) were determined according to the 
methodology developed Dewalque et  al. 2014. Briefly, 
after an enzymatic hydrolysis performed overnight, sam-
ple was extracted on a SPE cartridge and injected on a 
LC–MS instrument operating in multiple reaction monitor-
ing (MRM).

Analysis of triclosan and bisphenols in urine

The level of triclosan and 7 BPs (namely, -A, -AF, -F, -Z, 
-AP, -P and S) were measured in 3 mL of urine sample. 
Twenty µL of an internal standard solution (BPA-d14, BPS-
d8 and triclosan-13C12 at 1 mg/L) were added to the sample 
and then a hydrolysis was performed with β-glucuronidase 
and sulfatase in sodium acetate buffer (1 M, pH = 4.5) at 
40 °C during 30 min. Two hundred µL of formic acid were 
added to the mixture to end the reaction. The sample was 
sonicated during 15 min, centrifugated and then loaded on 
an Oasis HLB SPE cartridge  (3cm3, 60 mg, Waters) previ-
ously conditioned by 3 mL of dichloromethane, 2 × 3 mL of 
methanol and 3 mL of LC–MS grade water. The cartridge 
was washed with 3 ml of water (LC/MS grade), and cen-
trifugated (5000 rpm during 5 min) to be completely dried. 
The elution of analytes was performed with 2 × 2.5 mL of 
a methanol/dichloromethane (1/1, v/v) mixture. The eluate 
was evaporated to dryness under a gentle stream of nitrogen 
at 30 °C and then reconstituted in 1 mL of water and 50 µL 
of KOH 2 M. This aqueous mixture was extracted with 3 mL 
of ethyl acetate. The organic layer was collected and evapo-
rated to dryness under a gentle stream of nitrogen at 30 °C. 
The residue was derivatized by the addition of 30 µL of ethyl 
acetate and 20 µL of N-methyl-N-(trimethylsilyl)trifluoro-
acetamide and injected on an Agilent 7890A GC/7000A 
GC Triple Quad mass spectrometer (Agilent Technologies, 
California, USA) equipped with an Agilent HP-5MS capil-
lary column (30 m × 0.25 mm i.d. × 0.25 µm internal film 
thickness). One microliter was injected in pulsed splitless 
mode (50 psi for 1.25 min) at 250 °C. The flow of carrier 
gas (Helium) was constant and set at 1.23 mL/min. The tem-
perature gradient was set as follows: the initial temperature 
was 70 °C held for 1.25 min, then increase to 210 °C at the 
rate of 75 °C/min, then to 250 °C at the rate of 7 °C/min and 
finally to 325 °C at the rate of 20 °C/min, the final tempera-
ture was held for 3 min. The ionization was performed with 
an electronic impact source (electronic energy: − 70 eV, 
temperature: 230 °C). The temperatures of the transfer line 
and the quadrupoles were set at 250 °C and 150 °C respec-
tively. Table 1 gathered MRM transitions, internal standard 
used and energy collision for each analyte.
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Thyroid hormones and anti‑thyroid antibodies

Thyroxine and TSH concentrations were measured using 
electrochemiluminescence immunoassay (ECLIA) kit pro-
vided by Roche Diagnostics (Cobas 8000 Analyzer e602 
module, Germany) following the manufacturer’s instruc-
tions. Anti-TPO and anti-Tg antibodies were also determined 
using an ECLIA kit provided by Roche Diagnostics, cutoff 
values for abnormal levels were set at 34 IU/mL and 115 IU/
mL respectively.

Glycated hemoglobin

HbA1c levels were determined on ion exchange HPLC 
HA-8180 from Menarini Diagnostics (Firenze, Italy). Pho-
tometer was used to identify (according to the retention 
time) and quantify the different hemoglobin fractions.

Statistical analysis

The statistical analyses were performed using Excel 
2013 (Microsoft, Redmond, WA) and RStudio (version 
3.4.1; R Project for Statistical Computing). Statistical 
significance was set at p < 0.05. Pollutant concentrations 

measured below the limit of quantification were set at 
LOQ × detection frequency (DF) (Ali et al. 2013; Dirtu 
et al. 2010). Because of left skewed distribution, natural 
logarithmic transformation was applied to the concentra-
tions of pollutants, fT4, HbA1c and TSH + 1 (the constant 
1 was added because some measurements of TSH were 
close to zero (Dufour et al. 2018)). Statistical analyses 
were solely performed with pollutants showing DF > 20%. 
When DF ranged from 20 to 70%, the contamination sta-
tus (detected vs. non-detected) was used while pollutants 
with DF above 70% were treated as continuous variables. 
Two outlier measurements of TSH were excluded from 
the analyses. Generalized linear models were computed 
to assess the association between TSH, fT4 or HB1Ac on 
one hand and individual pollutants on the other hand. All 
statistical models were adjusted for age and gender. Fur-
thermore, additional models for thyroid hormones were 
computed with the presence of anti-thyroid antibodies 
and overweight status (according to age, gender and BMI) 
and overweight status was added to the models assess-
ing the relation between pollutant concentrations and 
HbA1c levels. For the computation of models assessing 
the association between urinary pollutant concentrations 
and biomarkers, urinary concentrations were corrected by 
creatinine level.

Table 1  MRM transitions 
monitored, internal standard and 
energy collision used for the 
analysis of each analyte

MRM transitions used for the quantification are in bold

Compounds MRM transition (m/z) Collision 
energy (eV)

Internal standard LOQ (ng/mL)

BPAF 411→ 73 33 BPA-d14 0.06
480 → 411.1 14

BPF 343.9 → 73 36 BPA-d14 0.07
343.9 → 179 22

BPA-d14 368 → 73 39
368 → 197 26

BPA 356.9 → 73 39 BPA-d14 0.29
356.9 → 191.1 21

BPZ 368.9 → 73 32 BPA-d14 0.06
368.9 → 203 14

BPS-d8 401.7 → 73 39
386.7 → 73 36

BPS 394 → 73 39 BPS-d8 0.09
379 → 73 34

BPAP 418.9 → 73 37 BPA-d14 0.21
433.9 → 419.2 14

BPP 474.9 → 73 39 BPA-d14 0.09
474.9 → 207.1 26

Triclosan-13C12 371.7 → 206.1 20
358.8 → 206.1 20

Triclosan 359 → 200 15 Triclosan-13C12 0.20
344.7 → 200 15
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Results

Sociodemographic information about the study population 
are gathered in Table 2. Briefly, children were aged from 3 
to 18 years with a median age of 14 years. Among them, 33 
(61.1%) were boys and 21 (38.9%) were girls. Anti-thyroid 
antibodies were found in 8 (14.8%) children and 20 (37%) 
were overweight (according to age and gender specific refer-
ence values). Among the pollutants measured in urine and 
serum, 23 were positively quantified in more than 20% of 
the samples, i.e.: 3 PCBs, 5 PFASs, 7 phthalate metabo-
lites, 3 parabens, 3 bisphenols, triclosan and BP3. Among 
organochlorine pesticides, only HCB, b-HCH and 4,4’-
DDE were highlighted in few samples (in 9.3, 9.3 and 1.9% 
respectively) while all others were never detected. Detec-
tion frequencies (DF), mean, median and ranges concen-
trations are reported in Table 3. Adjusted regression coef-
ficients and associated p-value computed for associations 
between each pollutant and the endocrine parameters are 
gathered in Table 4. Regarding the serum pollutants, we 
reported positive associations between PFHxS (β = 0.159, 
95% confidence interval (95% CI): (0.016, 0.302)) and TSH, 
and between PCB 138 and fT4 (β = 0.112, 95% CI: (0.006, 
0.219)) but these associations disappeared when adjusted 
for the presence of anti-thyroid antibodies and overweight 
status. We also found positive association between HbA1c 
and PCB 153 but solely when model was adjusted for over-
weight status (β = 0.058, 95% CI: (0.003, 0.114)). Concern-
ing the urinary markers, we observed a positive association 

between MEP and TSH (β = 0.213, 95% CI: (0.071, 0.356)) 
while negative correlation between BPF (β = − 0.138, 95% 
CI: (− 0.253, − 0.023)) and fT4 was observed. Finally, we 
showed positive associations between HbA1c and both 
5-oxo-MEHP (β = 0.070, 95% CI: (0.001, 0.139)) and 5-OH-
MEHP (β = 0.070, 95% CI: (0.004, 0.137)). In our models, 
we used natural log transformed values for the pollutant con-
centrations, therefore the β coefficient should be interpreted 
as the increase in biomarker level for each increase by a 
factor of 2.72 of the pollutant concentration.

Discussion

The first objective of our study was to assess the associations 
between pollutants contamination and thyroid biomarkers. 
Our results highlight that increased serum levels of PFHxS 
and PCB 138 were associated with respectively increased 
levels of TSH and fT4 (however, these associations disap-
peared when the models were adjusted for obesity status and 
the presence of anti-thyroid antibodies), while higher levels 
of TSH and fT4 were observed for children showing respec-
tively higher MEP levels and lower BPF levels in their urine. 
The second objective of the present work was to explore 
the correlations between pollutant exposure and the glucose 
homeostasis estimated by the measurement of the HB1Ac. 
We reported negative association with PCB 153 (but only 
when the model is adjusted by overweight status) and posi-
tive associations with 5-oxo-MEHP and 5-OH-MEHP.

In the present study, serum and urinary markers were con-
sidered separately because they do not represent the same 
time windows of exposure. Indeed, the pollutants measured 
in serum (e.g., PFASs and PCBs) belong to the family of 
persistent organic pollutants characterized by long half-life 
in the human body (several months or even years) and thus 
the levels measured are representative of a long-term expo-
sure, or even a whole life exposure. The potential associa-
tions between persistent pollutants and endocrine biomark-
ers could thus be explained by long-term effects. On the 
other hand, the pollutants measured in urine (e.g., BPs, BP3, 
triclosan, parabens and phthalate metabolites) are rapidly 
eliminated from the organism (some hours), and urinary lev-
els are thus representative of short term exposure. Therefore, 
putative correlation between urinary pollutants and endo-
crine biomarkers are more probably explained by short term 
mechanisms. For instance, BPA and some phthalates would 
be able to displace thyroid hormones from transthyretin (a 
serum protein involved in the thyroid hormone transport) 
(Ishihara et al. 2003) and could thus rapidly interfere with 
free thyroid hormones levels. Therefore, measuring both 
long and short term exposure markers should be relevant 
even if the underlying biological mechanism would likely 
differ.

Table 2  Sociodemographic information about the study population

N Mean Median Range %

Age (years) 54 12.9 14 3–14
Sex
Girls 21 38.9
Boys 33 61.1
Overweight
Yes 20 37.7
No 33 62.3
Anti-thyroid antibodies
Yes 8 17.0
No 39 83.0
Maximal parental level of 

education
Primary 1 1.9
Secondary 30 55.6
Short cycle higher education 12 22.2
Long cycle higher education 2 3.7
University 8 14.8
Post university 1 1.9
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In Tables 5, 6 are gathered the findings of other stud-
ies assessing the associations between some pollutant con-
taminations measured in serum and in urine respectively, 
and thyroid hormone levels in children and/or adolescents. 
If our results seemed to be not corroborated by any other 
studies, these tables also highlight the lack of consistency 
between all study results. According to the multiple-hit the-
ory (Webster et al. 2014), our diabetic children population is 
suspected to be particularly vulnerable to pollutant actions 
on their weakened thyroid function compared to healthy 
children, therefore it was not entirely unexpected to observe 
some associations not previously reported for healthy popu-
lations. Only two other studies, but involving a very low 

number of individuals, explored the thyroid function regard-
ing the pollutant exposure levels in children with thyroid 
function potentially hampered by other pathologies (Kim 
et al. 2016; Sur et al. 2019), but neither of them observed 
an association between phthalate or PFAS exposure levels 
and thyroid hormone levels. Several parameters may explain 
these apparent discrepancies between all studies gathered 
in Tables 5, 6. First, the levels of exposure may differ from 
one study to another. For instance, the median concentra-
tion measured in our population for PFOA was 1.08 ng/
mL while the median level determined in the population of 
children recruited by Lopez-Espinosa et al. 2012 and living 
near a chemical plant was 29.3 ng/mL. Second, some racial 

Table 3  Detection frequencies 
(DF), median concentrations, 
mean concentrations and 
ranges measured in serum 
for PCB 138, PCB 153, PCB 
180, hexachlorobenzene 
(HCB), beta-
hexachlorohexane (b-HCH), 
4,4′-dichlorodiphenyldi-
chloroethylene (4,4’-DDE), 
perfluorohexane sulfonate 
(PFHxS), perfluorooctane 
sulfonate (PFOS), 
perfluorooctanoic acid (PFOA), 
perfluorononanoic acid (PFNA), 
and perfluorodecanoic acid 
(PFDA), and in urine for 
monoethyl phthalate (MEP), 
mono-n-butyl phthalate 
(MnBP), mono-iso-butyl 
phthalate (MiBP), monobenzyl 
phthalate (MBzP), mono-2-
ethylhexyl phthalate (MEHP), 
mono-2-ethyl-5-hydroxyhexyl 
phthalate (5-OH-MEHP) and 
mono-2-ethyl-5-oxohexyl 
phthalate (5-oxo-MEHP), 
methylparaben (MeP), 
ethylparaben (EP) and 
n-propylparaben (PrP), triclosan 
(TCS) and bisphenols (BP) -F, 
-A and -S

PCB: polychlorobiphenyl, OCP: organochlorine pesticide, PFAS: perfluoroalkyl substance

Compounds DF (%) Median (ng/mL) Mean (ng/mL) Range (ng/mL)

Serum
 PCB
  PCB 138 61.1% 0.38 0.40  < LOQ-1.22
  PCB 153 55.6% 0.08 0.11  < LOQ-0.41
  PCB 180 55.8% 0.06 0.07  < LOQ-0.27

 OCP
  HCB 9.3%  < LOQ  < LOQ  < LOQ-0.11
  b-HCH 9.3%  < LOQ  < LOQ  < LOQ-0.08
  4,4’-DDE 1.9%  < LOQ  < LOQ  < LOQ-0.18

 PFAS
  PFHxS 100.0% 0.42 0.71 0.15-12.8
  PFOS 96.2% 1.51 1.77  < LOQ-5.66
  PFOA 100.0% 1.08 1.35 0.30-4.76
  PFNA 98.1% 0.36 0.44  < LOQ-1.51
  PFDA 53.8% 0.16 0.19  < LOQ-0.88

Urine
 Phthalate metabolites
  MEP 100.0% 20.2 77.9 1.21-818
  MnBP 100.0% 13.6 21.7 3.01-193
  MiBP 97.9% 9.87 16.5  < LOQ-93.4
  MBzP 81.3% 1.65 3.74  < LOQ-46.7
  MEHP 65.2% 1.12 6.70  < LOQ-212
  5-OH-MEHP 97.9% 5.72 13.5  < LOQ-303
  5-oxo-MEHP 95.8% 4.32 9.34  < LOQ-187

 Parabens
  MeP 37.0%  < LOQ 44.7  < LOQ-625
  EP 25.6%  < LOQ 7.64  < LOQ-291
  PrP 22.9%  < LOQ 2.63  < LOQ-26.8

 Bisphenols
  BPF 69.8% 0.17 0.38  < LOQ-2.50
  BPA 80.4% 1.16 3.07  < LOQ-53.8
  BPS 65.1% 0.18 0.55  < LOQ-6.97

 Miscellaneous
  BP3 61.0% 0.90 9.61  < LOQ-26.4
  TCS 45.7%  < LOQ 1.33  < LOQ-26.3
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differences may also contribute to the inconsistency of the 
results. Indeed, the incidence of endocrine diseases (thyroid 
diseases included) was demonstrated to differ from a race 
to another (Golden et al. 2012), with some being more sus-
ceptible to endocrine disruption than others. Finally, to the 
best of our knowledge, no study assessed the mixture effect: 
each individual is daily exposed to hundreds of chemicals, 
and among them, several are potential thyroid disruptors and 
their effects may be additive or even synergic. Consequently, 
the study of pollutants considered individually may be an 
inappropriate way to explore the endocrine disruptor prob-
lematic. However, currently, several issues are associated to 
the study of mixture effect in epidemiological studies and the 
exploration of mixture effect in epidemiological studies is 
still in its infancy (Billionnet et al. 2012; Dufour et al. 2020).

Beside thyroid homeostasis disruption, it has been 
increasingly suggested that some environmental pollut-
ants (i.e., organochlorines) may act as additional risk fac-
tor in the glucose homeostasis disruption although the 
involved biological mechanisms have not been yet fully 
established (Hectors et al. 2011). Indeed several studies 
have already assessed the association between pollutant 
internal contaminations and HbA1c levels, but results 
seemed inconsistent. For instance, in the present work, we 
found a positive association between PCB 153 and HbA1c 
while Arrebola et al. 2015 did not find any association 
with PCB 138, 153 or 180 in a cohort of Spanish women 
with history of gestational diabetes mellitus. Conversely, 
Esser et al. 2016 found significant positive correlations 
between several PCB congeners and HbA1c in a German 
cohort of formerly PCB-exposed workers. Although the 
associations between urinary concentration of pollutants 
(short term exposure markers) and HbA1c levels (repre-
sentative of the mean glycemia during the previous four 
months) should be considered with caution, positive asso-
ciations between HbA1c levels and two DEHP metabolites 
(i.e., 5-oxo-MEHP and 5-OH-MEHP) were highlighted, 
consistently with the observations of two other studies. 
Dales et al. 2018 who investigated the relations between 
phthalate exposure and several glucose homeostasis mark-
ers in a large population of Canadian people, found posi-
tive associations between the levels of HbA1c and MBzP, 
MiBP, 5-oxo-MEHP, MEHP and the sum of DEHP metab-
olites. Similarly, Duan et al. 2019 highlighted in a popula-
tion of Chinese individuals a positive association between 
the urinary concentrations of 5-OH-MEHP and HbA1c 
levels. DEHP is a well-known activator of peroxisome 
proliferator-activated receptors (PPAR). These receptors 
have a key role in the glucose homeostasis (Stojanoska 
et al. 2017). Moreover, several investigations showed a 
glucose homeostasis disruption in rats experimentally 
exposed to DEHP (Boberg et al. 2008; Martinelli et al. 
2006). Nevertheless, we cannot exclude that our findings Ta
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are due to lifestyle or diet habits simultaneously associated 
with high exposure to phthalates and higher risk to present 
glucose homeostasis disruption. Large scale longitudinal 
studies are thus required to explore the mechanism linking 
DEHP and DEHP metabolites and HbA1c. On the other 
hand, no association between HbA1c levels and BPs was 
observed, while Tai and Chen 2016 and Silver et al. 2011 
found positive association between BPA and HbA1c levels 
in Canadian adult males and American individuals. 

The results reported in the present work should be con-
sidered with caution because of some limitations. First, 
the number of individuals included in our population is 
low which reduces the statistical power of the analysis. A 
larger cohort would allow the stratification of the statistical 
analyses by gender or age category, and the adjustment for 
additional cofounders such as food habits or physical activ-
ity. Furthermore, due to the lack of statistical power, we 
were unable to use statistical methods suited to exploring 
mixture effects such as Weighted Quantile Sum regression 

(Czarnota et al. 2015) or Bayesian Kernel Machine Regres-
sion (Bobb et al. 2015). Second, given the exploratory nature 
of our investigations, we did not apply any correction on 
p-value. Nevertheless, in regards of the number of covari-
ates computed in the statistical models, we cannot exclude 
that some of our findings are due to chance. The transversal 
character of our study is a third limitation, indeed, we can-
not exclude an inverse causation. For instance, the thyroid 
function is linked to many metabolic processes, which could 
potentially have an impact on the pollutant concentrations 
rather than the opposite. Finally several studies indicated 
that the concentrations determined in spot urine samples are 
moderate to poor predictors of exposure to non-persistent 
pollutants (Casas et al. 2018; Dewalque et al. 2014; Morgan 
et al. 2018), therefore questioning the representativeness of 
the levels measured and the associations highlighted espe-
cially with HbA1c which is a long-term marker of glycemia. 
Increase the number of urine samples collected per indi-
vidual or increase the size of the population studied could 

Table 5  Comparison of our findings with studies assessing the rela-
tions between pollutant contaminations measured in serum of chil-
dren and thyroid hormone levels. PFNA perfluorononanoic acid, 

PFOA perfluorooctanoic acid PFHxS perfluorohexane sulfonate, 
dl-PCBs dioxin like PCBs, marker PCBs PCB 138, 153 and 180; 
↑ = Positive association; ↓ = Negative association

Study Population Associations with

TSH fT4

Perfluoroalkyl substances
Caron-Beaudoin et al. 2019 (Caron-

Beaudoin et al. 2019)
Children (3–19 years), First Nation chil-

dren, Canada, n = 198
None PFNA ↑

Kim et al. 2016 (Kim et al. 2016) Infants with (n = 27) or without (n = 13) 
congenital hypothyroidism, South 
Korea

None None

Lopez-Espinosa et al. 2012 (Lopez-
Espinosa et al. 2012)

Children (1–17 years) living in proximity 
of chemicals facility, USA (n = 10,725)

PFOA ↓ (girls 
1–5 years); PFNA ↑ 
(boys > 10 years)

Not assessed

Present study Children (3–18 years) with diabetes 1 
diagnosed, n = 54

PFHxS ↑ None

Alvarez-Pedrerol et al. 2008 (Alvarez-
Pedrerol et al. 2008)

Children (4 years), general population, 
Menorca (Spain), n = 259

None PCB 118 ↓

Croes et al. 2014 (Croes et al. 2014) Adolescents (14–15 years), general popu-
lation, Belgium, n = 200

None ∑dl-PCBs ↑ ∑marker PCBs ↑

Han et al. 2011 (Han et al. 2011) Children (6–8 years), E-waste recycling 
area, China, n = 369

∑PCBs (18 congeners) ↑ Not assessed

Leijs et al. 2012 (Leijs et al. 2012) Adolescents (14–18 years), general popu-
lation, the Netherlands, n = 33

None None

Schell et al. 2004 (Schell et al. 2004) Adolescents (10–16.9 years), First Nation 
adolescents, Canada and USA, n = 115

∑PCBs (8 congeners) ↑ ∑PCBs (8 congeners) ↓

Schell et al. 2008 (Schell et al. 2008) Adolescents (10–16.9 years), First Nation 
adolescents, Canada and USA, n = 252

∑PCBs (8 congeners) ↑ ∑PCBs (8 congeners) ↓

Xu et al. 2014 (Xu et al. 2014) Children (8 years), E-waste recycling 
area (n = 21) and remove location 
(n = 24), China, = 369

None None

Present study Children (3–18 years) with diabetes 1 
diagnosed, n = 54

None PCB 138 ↑
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help although it was demonstrated to not perfectly compen-
sate the high intra-individual variability (Frederiksen et al. 
2013; Philippat and Calafat 2021). Instead of increasing the 
number of urine spots, alternative matrices can be consid-
ered to more accurately measure long-term exposure to non-
persistent pollutants, such as hair (Claessens et al. 2022) or 

silicone wristbands (Samon et al. 2022) but these matrices 
also have their limitations.

Table 6  Comparison of our findings with studies assessing the rela-
tions between pollutant contaminations measured in urine of chil-
dren and thyroid hormone levels. MMP monomethylphtalate, DBP 
dibutylphthalate, PA  phthalic acid, DHEP di(2-ethylhexyl) phthalate, 

MECPP  mono(2-ethyl-5-carboxypentyl) phthalate, MCPP mono(3-
carboxypropyl) phthalate, ↑ = positive association, ↓ negative associa-
tion

Associations wi

Study Population TSH fT4

Bisphenols
Meeker and Ferguson 2011 (Meeker 

and Ferguson 2011)
Adolescents (12–19 years), general popu-

lation, USA, n = 329
None None

Sur et al. 2019 (Sur et al. 2019) Children (8–16 years), children with 
Hashimoto thyroiditis, Turkey, n = 29

None BPA ↓

Present study Children (3–18 years) with diabetes 1 
diagnosed, n = 54

None BPF ↓

Parabens
Koeppe et al. 2013 (Koeppe et al. 

2013)
Adolescents (12–19 years), general popu-

lation, USA, n = 352
None None

Present study None None
Triclosan
Koeppe et al. 2013 (Koeppe et al. 

2013)
Adolescents (12–19 years), general popu-

lation, USA, n = 352
None None

Braun et al. 2018 (Braun et al. 2018) Children (3 years), general population, 
USA, n = 153

None TCS (mean of repeated measures) ↑

Present study Children (3–18 years) with diabetes 1 
diagnosed, n = 54

None None

Phthalates
Huang et al. 2017 (Huang et al. 

2017)
Children (2–9 years), general population, 

Taiwan, n = 337
None MEHP ↓ (girls)

Huang et al. 2020 (Huang et al. 
2020)

Children (2–14 years), potential victims of 
phthalates tainted foods, Taiwan, n = 166

MMP ↓; MBzP ↑ MMP ↓; MEP ↓

Kim et al. 2018 (Kim et al. 2018) Children (0–19 years), general population, 
South Korea, n = 302

PA ↑ (girls < 11 years); 
DEHP ↓ 
(girls ≥ 11 years)

MnBP ↓ (boys < 12 years); 
DBP ↓ (girls < 11 years); PA ↑ 
(girls < 11 years)

Kim et al. 2020 (Kim et al. 2020) Children (6 years), general population, 
South Korea, n = 492

None MnBP ↓ (girls)

Meeker and Ferguson 2011 (Meeker 
and Ferguson 2011)

Adolescents (12–19 years), general popu-
lation, USA, n = 329

5-oxo-MEHP ↑; 5-OH-
MEHP ↑; MECPP ↑

MCPP ↓

Morgenstern et al. 2017 (Morgen-
stern et al. 2017)

Children (3 years), general population, 
USA, n = 229

None 5-OH-MEHP ↓ (girls); MnBP ↓ 
(girls); MiBP ↓ (girls); MEP ↓ 
(girls); 5-oxo-MEHP ↓ (girls)

Sur et al. 2019 (Sur et al. 2019) Children (8–16 years), children with 
Hashimoto thyroiditis, Turkey, n = 29

none none

Tsai et al. 2016 (Tsai et al. 2016) Children (< 18 years), potential victims of 
phthalates tainted foods, Taiwan, n = 250

MnBP ↑; MBzP ↑ MnBP ↑; MiBP ↑

Weng et al., 2016 (Weng et al. 2017) Chidlren (9–10 years), general population, 
Taiwan, n = 189

MnBP ↑ (girls) MiBP ↑ (girls); MEHP ↑ (girls); 
5-oxo-MEHP ↑ (girls)

Wu et al. 2017 (Wu et al. 2017) Children (5–7 years), region with numer-
ous electronic manufacturing facilities, 
China, n = 216

None MEP ↑; MnBP ↑

Present study MEP ↑ None
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Conclusion

This work investigated the link between the exposure to 
some environmental pollutants, from Persistent Organic 
Pollutants to some non-persistent plasticizers and antimi-
crobials, and thyroid disorders in type 1 diabetes children. 
Associations between the levels (in serum or urine) of some 
PFASs, PCBs, phthalates and bisphenols and thyroid hor-
mone levels were highlighted, suggesting an impact of these 
pollutants on the thyroid function in this population sus-
pected to be particularly vulnerable toward endocrine dis-
ruption. These findings should be confirmed by larger scale 
studies. Moreover, we found positive associations between 
HbA1c and di-2-ethylhexylphthalate metabolites consist-
ently with previous observations on Chinese and Canadian 
cohorts. These findings should be explored more in depth 
by large scale longitudinal epidemiological studies and 
mechanistic investigation should be performed in labora-
tory to examine physiological processes associating these 
compounds and glycemia.
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