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Abstract 

Charles Nickmilder, 2023, Development of machine learning algorithms fed by 
meteorological and remote sensing data to assess the available grass on pastures. PhD 
Dissertation. Gembloux, Belgique, Gembloux Agro-Bio Tech, University of Liège, 223 p. 

Grasslands cover a large part of emerged lands. This large soil occupancy also 

occurs in Wallonia. This profusion of grasslands is the result of a combination of 

advantages that could be called Ecosystem Services (ES). These ES involve loads of 

stakeholders, from politics to farmers, also including industrial actors. Focusing 

the analysis on the agronomic prospect of grasslands, their inherent interest is 

underlined: grasslands constitute a relevant feed source for cattle breeding. Indeed, 

it is well suited for bovine breeding, bovine being the most represented animal in 

the Walloon ruminant livestock. Over the past years, the number of farms 

decreased with a steady state. Meanwhile, the total agricultural area did not 

change that much. Therefore, and due to a high level of splitting up of the Walloon 

parcels, some farms use parcels far apart for cattle breeding. Therefore, there is an 

interest to offer a set of tools to ease the remote management of grazing – tools 

that can be called decision support systems (DSS). This PhD thesis aims to 

contribute to the development of such a tool and more specifically its input 

information. 

So, this thesis covers the development of a standardised process to develop 

machine learning (ML) models using meteorological data and remotely sensed 

data, acquired through the Sentinel-1 (S1) and Sentinel-2 (S2) constellations of 

satellites, to predict a proxy of the available feed on pastures: the compressed sward 

height (CSH). These 124 ML models are intended to be at the heart of the DSS. 

Beside the ML algorithms, data pre-treatments included feature transformations. 

In the end, four models were found to be the most promising for the creation of 

generalisable models and the root mean square error (RMSE) of these models was 

around 20 mm of CSH when measuring at a pixel/sub-parcel level. After the model 

development, this thesis work focusses on the process of creating a platform 

performing the CSH prediction at the scale of Wallonia, with a 10-meter 

resolution. The handling of the massive amount of data required to get back to the 

basic concepts of big-data science and engineering. In order to assess the reliability 

of the platform, a retrospective analysis was performed over the grazing seasons 

from 2018 to 2021. It passed the tests searching for dates completely utterly 

predicted (less than 1% of the data were poorly predicted) and for instabilities in 
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the prediction (coefficient of variation of the CSH per parcel ranged from 0 to 

312%). 

In conclusion, it appears that the ML models and the associated platform, in their 

current state, passed the test for fine spatial representation, accuracy of the 

prediction and rapidity to deliver the information. However, they do not 

completely pass the criterion of temporal regularity due to the frequent 

unavailability of the satellite information. To solve this issue, complementary 

modelling might be needed to fill the missing data. 
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Résumé 

Charles Nickmilder, 2023, Développement d’algorithmes d’apprentissage automatique 
alimentés par des données météorologiques et issues de la télédétection afin d’estimer le 
disponible herbager en pâtures. Thèse de doctorat. Gembloux, Belgique, Gembloux Agro-
Bio Tech, Université de Liège, 223 p. 

Les herbages couvrent une large partie des terres émergées. Cette large 

occupation des sols se voie aussi en Wallonie. Cette abondance d’herbage est le 

résultat d’une combinaison d’avantages qui peuvent être appelés des services 

écosystémiques (SE). Ces SE impliquent une floppée de parties prenantes, du 

politique à l’agriculteur, en passant par des acteurs industriels. En focalisant 

l’analyse sur l’intérêt agronomique des herbages, leur intérêt est souligné : ils 

constituent une source de nourriture pertinente pour les animaux d’élevage, 

particulièrement adaptée aux bovins qui constituent la majorité du cheptel 

ruminant wallon. Ces dernières années, le nombre d’exploitations agricoles a 

diminué à un rythme soutenu, tandis que la surface agricole n’a que peu changé. 

De ce fait et dû à un morcellement élevé du parcellaire agricole wallon, certaines 

exploitations agricoles exploitent des parcelles relativement éloignées pour 

l’élevage. Par conséquent, il y a un intérêt à offrir un ensemble d’outils pour 

faciliter la gestion, à pareille distance, du pâturage – entrant sous l’appellation 

d’outils d’aide à la décision (OAD). Cette thèse de doctorat vise à contribuer au 

développement de pareil outil et, plus spécifiquement, des informations 

l’alimentant. 

Cette thèse couvre le développement d’un processus standardisé pour le 

développement de modèles d’apprentissage autormatique (machine learning - ML) 

utilisant des données météorologiques et issues de la télédétection, acquises par les 

constellations de satellites Sentinel-1 (S1) et Sentinel-2 (S2), pour prédire un proxy 

du disponible fourrager en pâtures : la hauteur d’herbe compressée (CSH). Ces 

124 modèles de ML seront au cœur de l’OAD. Au-delà des algorithmes de ML, le 

processus de pré-traitement développé inclue aussi des transformations de 

variables. Au bout du compte, quatre modèles ont été défini comme étant les plus 

prometteurs pour une généralisation/un passage à plus grande échelle. L’erreur 

quadratique moyenne (RMSE) de ces modèles s’élève à plus ou moins 20 mm 

lorsque l’échelle pixellaire/sous-parcellaire est considérée. Après le 

développement des modèles, cette thèse se focalise sur le processus de création 

d’une plateforme de prédiction de la hauteur d’herbe compressée à l’échelle de la 
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Wallonie, avec une résolution de 10 mètres. La manipulation des quantités 

importantes de données engendrées par ce processus a nécessité de revenir aux 

bases de la science et l’ingénierie des données. Afin d’estimer la fiabilité de la 

plateforme, une analyse rétrospective a été réalisée sur les saisons de pâturage de 

2018 à 2021. La plateforme a réussi les tests concernant la recherche de prédictions 

anormales (moins d’un pourcent des données ont été mal prédites) et concernant 

la stabilité des prédictions (les coefficients de variation de la CSH par parcelle et 

par date variaient de 0 à 312%). 

En conclusion, les modèles de ML et la plateforme associée, en l’état actuel, 

répondent aux critères de finesse spatiale, d’ajustement de la prédiction et de 

rapidité de délivrance de l’information. Par contre, ils ne répondent pas 

complètement au critère de régularité temporelle suite au fréquent manque 

d’information satellitaire. Pour résoudre ce problème, des modélisations 

complémentaires doivent être envisagées afin de combler les données manquantes. 
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1 Chapter 1 Introduction 

1.1 Outline 

The goal of this introduction is to present the general prospects related to this 

thesis. It will start with a global context related to the research topic. Then, there 

will be a presentation of the vocabulary related to the scientific area studied. 

Afterwards, the interests of stakeholders will be presented. From these interests, 

the relevancy of studying grassland areas from an agronomical point of view will 

appear clearly. Factors influencing these grasslands will be presented. Then, 

modelling of grasslands will be detailed. Given the inherent constraints to pasture 

modelling, the scope of disciplines constituting the context of this thesis will be 

widened to remote sensing and its relationship to grassland related researches. 

1.2 Story 

An usual tale would begin with a cliché expression like “Once upon a time” or 

“a long time ago”, or even “in ages now long forgotten”. This story shall not begin 

with such platitude. First and foremost, its subject is part of the most trending 

topics among scientists although paradoxically its origins are rooted thousands of 

years ago. Indeed, grazing has been done for years, decades, centuries and even 

millennia. Please, keep calm and let me explain before you begin arguing about 

the needlessness of working again with practises that are so deeply sown in our 

habits that it could be called as a sacred and basic custom by now. I know, the 

thrill of magical feeling that some other scientific areas might provoke does not 

come that easily when we speak of grassland, pasture, grazing, herds, cows… Yet 

this subject is back on the table and I suggest that we go through it together. I 

might have more arousing prospects to tell you afterwards. 
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1.3 Grassland overview and stakeholders prospective 

According to the Food and Agriculture Organisation (FAO), the percentage of 

grassland in the worldwide land area use was assessed to be around 25% [i-007] & 

[i-008]. Whilst O’Mara (2012) [i-009] also gives similar percentage of coverage, a 

more recent paper estimated the pasture part of the worldwide landcover, 

estimated as the land area without permanent ice cover, to be around 40% [i-010]. 

In Wallonia, according to the data provided through the anonymous agricultural 

repartitions of parcels (PAA) available on Walonmap [i-011], pastures covered in 

2020 around 23.9% of the total land area and 49.9% of the total Walloon useful 

agricultural area (UAA), although an estimation provided by the Public Services 

of Wallonia |i-163] indicates that 42.6% of the UAA are permanent grasslands and 

4.9% are temporary grasslands. To dig a bit further, the trends over the past 6 years 

were to have a decrease of the total UAA, an increase of the number of pastures, a 

decrease of the individual pasture size and an increase of the total pasture-

dedicated area. Meanwhile this evolution of land occupancy, there is a decrease in 

the number of farms using these lands [i-184]. Therefore, and due to the high level 

of splitting up of the Walloon parcels, some farms use parcels far apart. To offer a 

set of tools to ease the remote management of grazing – tools that can be called 

decision support systems (DSS) – the Walloon Region government funded the 

research program ROAD-STEP (“Réseau d’outil d’aide à la décision pour la 

surveillance des troupeaux en pâtures”, meaning network of DSS to monitor cattle 

herds on pasture). One of the prospects of that project is the core idea of this thesis: 

create a DSS aiming at assessing the available feed on pastures. 

1.3.1 Grasslands VS pastures 
Before going any further, I would like to make sure we understand well each 

term of this lexical field. Therefore, I suggest we rely on the definitions provided 

by Allen et al. (2011) [i-006] whose paper was used as a definition reference by the 

FAO and was updated in 2017, 2018, and 2020. As underlined in its preface, the 

definitions and terms used are going to change with the evolution of concepts, 

methods, and techniques. Therefore, it should be seen as a picture of the 

definitions as of now, end of 2022 - beginning of 2023. The main takeaways from 

this definition paper are highlighted below and some precisions are also provided. 

➢ The term grassland is synonymous with pastureland when referring to an 

imposed grazing-land ecosystem. The vegetation of grassland in this 

context is broadly interpreted to include grasses, legumes, and other forbs, 

and at times woody species may be present. In this work, grasslands are 

thus synonymous to pastures. 
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➢ The temporary grasslands differ from permanent grasslands by their 

age/duration of exploitation. In the context of this thesis, the threshold is 

set to five years, below grasslands are considered temporary. In the context 

of the area covered, around 5% of the total Walloon useful agricultural 

area were temporary in 2019, which means around 10% of the Walloon 

pastures are temporary [i-015] & [i-163]. 

➢ The food is human edible stuff while feed represents animal edible stuffs 

that do not suit for human. 

➢ The forage corresponds to the edible parts of plants, other than separated 

grain, that can provide feed for grazing animals or that can be harvested 

for feeding. 

➢ The sward represents a population or community of herbaceous plants 

characterised by a relatively short growth and relatively continuous 

ground cover, including both above- and below-ground parts. 

➢ The leaf area index (LAI) is the ratio of the area of green leaf (one side 

only) per unit area of ground. It refers to leaf only or to lamina plus half 

the surface area of exposed sheaths and petioles depending on the study-

case. 

➢ The biomass is the total dry weight of vegetation per unit area of land 

above a defined reference level, usually ground level, at a specific time. In 

the case of this thesis, the reference level is a key component for the whole 

system as there is a gradient of biomass and forage quality along the height 

of the plants (cf. the further section 1.4.1.4). 

➢ The verb “to graze” means to consume predominantly herbaceous forage 

in situ by animals. 

1.3.2 Climate: IPCC & FAO 
The climate change phenomenon is nowadays widely acknowledged and the 

first working group of experts of the Intergovernmental Panel on Climate Change 

(IPCC) recently highlighted the high importance of understanding better the 

greenhouse gases (GHG) emissions in pastures [i-001]. Indeed, Roe et al. (2019) [i-

002] asserted that the main GHG – namely carbon dioxyde (𝐶𝑂2), methane (𝐶𝐻4), 

and nitrous hemioxyde (𝑁2𝑂) - emissions could be mitigated by grasslands. This 

mitigation catalyst role is further underlined by the involvement of grasslands in 

the global biomass stocks and subsequent carbon (C) storage [i-003]. Indeed, 

Gourlez de la Motte et al. (2016) [i-004] showed that grassland is a carbon sink and 

provided a calculated assessment of the average net annual productivity of this 

biome of 161𝑔𝐶 𝑦𝑒𝑎𝑟−1𝑚−2 on a Walloon pasture. This estimation reflects a 
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current trend and Henderson et al. (2015) [i-005] highlighted that better grazing 

management could lead to higher C sequestration rates. 

Unlike the recent dates of publication of the papers cited before might indicate, 

the awareness of the key role of grasslands in the C sequestration strategy has been 

arising for decades as reports published around 2009 – 2010 by the FAO underline. 

Indeed, they regroup the key investigations of dozens of papers back to the nineties 

and before like [i-012] & [i-013] & [i-014]. 

1.3.3 Ecosystem services 
Carbon storage/sequestration is in fact only one of the many interactions of 

grasslands with the human society, also called ecosystem services (ES). The 

structure of the presentation of the ecosystem services of grasslands in this thesis 

is adapted from Zhao et al. (2020) [i-138], Sollenberger et al. (2019) [i-140] and the 

FAO [i-161]. Four main classes represent the type of contribution with the human 

well-being: 

➢ Provisioning ES are related to products obtained from the ecosystem; 

➢ Supporting ES are the ecosystem perspectives related to habitat for other 

species; 

➢ Regulating ES mean the benefits due to the regulation of ecosystem 

processes. It is often related to the environment “raw material” such as the 

water, the soil and the air; 

➢ Cultural ES are the non-material and non-consumptive benefits, often 

related to intellectual description and subjective perception. 

Each class is then broken down in specific themes (Table 3-1), each associated 

with one or more ES. Some of these ES, depending on their formulation, may in 

fact be classified in multiple classes but in the context of this thesis, a singular 

relationship is considered. For instance, gene pools are described as part of 

provisioning ES in Zhao et al. (2020) [i-138] while they belong to supporting ES 

according to the FAO [i-160]. The relative importance of the number of ES cited 

in Table 3-1 is consistent with Guerra (2016) [i-135] assertion on the prospective: 

between multiple farming system, pastures provide the most soil preservation-

related ES [i-135]. 
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Table 1-1: Ecosystem services (ES) grouped by theme. Some studies not cited in [i-138] original table were added to illustrate the actual use 
of these ecosystem services 

“Class” Theme Detailed ES Complementary sources to [i-138] 

Provisioning 

Food supply Forage production  

 Livestock production  

 Meat/milk production  

 Honey production  

Fresh water supply Water yield/supply [i-134] 

Fuel supply Biofuel supply  

Habitat supply Habitat for wildlife species  

Genetic library/seed bank Gene diversity  

 Biological diversity  

Other biotic material (e.g. 

medicinal, fibers) 
Raw materials  

 Sources of natural medicines  

 Wool production  

 Fibre production  

Regulating 

Pest control Prevention and control of parasites  

 Pest control  

Waste treatment   

Wildfire control Control of the amount of fuel available for the fire by grazing [i-033] 

Air quality regulation   

Carbon storage/sequestration  [i-141] 

Water flow regulation   

Water purification   

Erosion regulation Wind erosion mitigation  

 Water erosion mitigation  

 Barrier against desertification through the root structure and soil cover [i-032] 

Soil accumulation   

Pollination service  [i-141] 
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Climate regulation   

Nutrients delivery/retention   

Cultural 

Recreation, recreational space and ecotourism Satisfaction of visitors  

 Ecotouristic suitability  

Aesthetic appreciation 
Flower cover; canopy and 

shrub layer cover 
 

Ecological knowledge/ 

education 
  

Spiritual and religious   

Horticulture/cultural identity   

Supporting 

Forage production [i-140] 

Nutrient cycling [i-140] 

Crop pollination [i-140] 
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As a side note, the relative confusion between grasslands and pasturelands that 

comes from the grazing status should be monitored carefully in the context of ES 

assessment. Although the water infiltration is higher in grasslands compared to 

other soil occupation, this advantage is mitigated by grazing [i-134]. 

The increased knowledge about the ES led to the will to compute the inherent 

financial implications as in Liu et al. (2022) [i-139]. They assessed an annual 

economic value of grassland per hectare ranging from $3,955 for semidesert 

grasslands to $5,466 for tropical grasslands (US dollars values). This value was a 

combination of avoided cost, benefit transfer, direct market value, replacement 

cost, and travel cost. 

1.3.4 Politics: From Europe to Wallonia  
The economic prospective of ES, together with the rise of awareness about the 

importance of pastures to mitigate levers of climate change led to politic trends. 

At the global level, we can speak about the Conference of the Parties (COP) and 

others international protocols. However, if we want to have the grassland included 

and stated in the recent policy, we must get down from a worldwide scale to a 

continental one. 

At the European level, Lessire et al. (2019) [i-016] underlined the high political 

interest of the European Union to deploy greening policies with pastures being a 

significant lever, as stated in European texts [i-017], [i-018], [i-019] and by Tamm 

et al. (2016) [i-020]. Amidst the repercussions of this rise of awareness, the new 

Common Agricultural Policy (CAP) was presented in December 2019. It was 

written to include general guidelines and it was up to the states or relevant regional 

governments to write specific policy including the answers to the guidelines. In 

this context, studies like Henits et al. (2022) [i-137] in Hungary have been 

conducted for crop classification. 

To answer the requirements of the new CAP, the Public Services of Wallonia 

(SPW) wrote the Walloon strategic plan for the CAP (PSwPAC) and submitted it 

in March 2022 to the European Commission [i-021]. The PSwPAC included 

focuses on the definition of pastures/grasslands, the safeguarding of permanent 

pastures in terms of area and dedicated a focus on the Natura 20001 related areas. 

To provide fulfilments to many sub-levels of the requirements of the CAP, the 

main action regarding pastures is: “preserve the permanent pastures and keep them 

in a good agronomical and environmental state”. In this context, studies like [i-

 
1 Natura 2000 is network of nature protection areas in Europe that aims at providing 

protection to threatened animals and habitats [i-185] 
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136] have been conducted to assess the management and therefore the 

preservation status of the pastures. 

1.3.5 Society prospective 
As suggested in the ES section, grasslands and pastures have impact on the 

human society. Therefore, a strong implication of the public is to be expected and 

thus grasslands and pastures users such as farmers should account for this. For 

instance, the preservation of landscape and the perception of consumers are points 

of attention for farmers as highlighted in Lessire et al. (2019) [i-016] and Michaud 

et al. (2020) [i-022]. Despite the importance of grasslands, grazed or not, in the 

landscape, questions arise from a general resilience perspective: when we let aside 

the biodiversity richness brought by pastures, how can we justify using arable 

lands to “produce”/let grow grass to feed cattle instead of using them to produce 

food? Furthermore, do we need to modify these habitats and thus interfere with 

their potential as habitat for wildlife? 

The answer to the second question is highlighted by the FAO [i-142]: without 

agriculture, the unmanaged natural systems can feed only 600 million people. The 

agriculture is thus needed to support our human society. Regarding the protein 

production competition prospect, complex feed/food debates exist, as highlighted 

by Mottet et al. (2017) [i-143]. On the one hand, pasture fed cattle like beef, lamb, 

and mutton and derived cheeses are related to the highest GHG emissions to 

produce 100 G of proteins once compared to chicken, pigs and plant-based 

alternatives, as shown in Poore and Nemecek (2018) [i-144]. The main drivers for 

this difference being the enteric fermentation and the feed management, i.e. the 

inclusion of concentrate in the feed and the improvement of pasture yields [i-144], 

pastures being a feed source. Adding itself to an already complex subject, the 

“biofuel” subjects also joined the party to compete for land use and especially plant 

biomass use, as highlighted by Muscat et al. (2020) [i-145]. This last addition led 

to the proposition of a priority list for the use of biomass from human food to feed 

to fuel [i-145]. However, this priority list is no “holy grail”, parameters must be 

taken into account, and this leads to the other hand of the problem: the biomass 

and land usability.  

Knowing the efficiency of meat protein production compared to the amount of 

protein consumed by animals, the competition for land resources that implies a 

clear disadvantage to the grazing strategy. However, human being can only eat 

and take advantage of a part of these proteins (the transfer ratio of human edibility 

can reach a 10-time multiplication between without and with the animal acting as 

a “transformer” according to Laisse et al. (2019) [i-177]) thus making the animals 

as human edible protein producers. Another prospect tipping the scale in favour 
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of grazing is related to the complexity of the land-use. In some areas like the 

Ardennes, the problem appears more clearly. Indeed, it is very hard to crop with 

the current techniques, technologies, and materials. For instance, using a tractor 

on steep areas, as found in the Ardennes, is complicated as tractors might lack 

power to tract the rest of the material or even tip over/fall on their side. Therefore, 

cattle grazing is the most sensitive choice in such areas. Regarding the provisioning 

needs for the health maintenance of the cattle, during the winter month in a full-

grazing scenario, the non-human edible parts of the plants grown for food can 

actually be valued as feed to enhance the biomass valorisation and improve the 

ratio between the energy invested for harvest and cropping and the energy and 

protein content retrieved. Therefore, cattle breeding could be a way to improve 

the efficiency of farming. 

1.3.6 Industry prospective 

1.3.6.1 Farmers prospective 
From an economic point of view, depending on the geographical study area, the 

competitive advantage of cattle grazing is more or less pronounced. Dillon et al. 
(2008) [i-026] performed a comparative analysis of the milk production cost 

through nine countries having different levels of grazed grass in the cow diet and 

a clear diminishing cost appeared along the increase of the amount of grass in the 

diet. Peyraud et al. (2010) [i-024] added the environmental prospect to this analysis 

and also highlighted the advantage of this production system. Lessire et al. (2019) 

[i-016] focused on an area (i.e., Wallonia) not taken in the previous analyses and 

ended up with the same conclusions, as did the more recent paper by Murphy et 
al. (2021) [i-025]. Reijs et al. [i-027] also assessed the economic viability of grazing 

but this time for one of the countries identified as with a low amount of grazed 

grass in the diet in Dillon et al. (2008) [i-026], The Netherlands, and they tended 

to find the advantage of this practice not that much pronounced, as Papadopoulou 

et al. (2020) [i-028] also found in Greece. This variability of competitiveness across 

areas and periods (milk prices crisis occurred between 2008 and 2021) probably 

influenced the perception of the advantage of grazing as it could be related to the 

intensive factor developed by Dalcq et al. (2020) [i-117]. 

The reasons for the grass advantage in areas like Wallonia are: a production cost 

of the feed relatively low, depending on the fertilisation and work levels; the high 

level of feed autonomy this resource provides as the nutrient profile is quite 

complete and only a minimal supplementation is required for demanding animals 

like dairy cows, although this assertion should be mitigated with the changes 

observed during the grazing season, as illustrated in section 1.4.1.3; the 

transformation of agricultural constraints (e.g. topography and thus slopes) into 
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opportunities, e.g. the Walloon case of the Ardennes where cropping is harder 

than cattle breeding given that the topological conditions don’t allow for tractors 

safe usage. 

1.3.6.2 Transformation industry 
The grazing impacts also the milk characteristics which have a beneficial effect 

on the human health. Indeed, Chilliard et al. (2000) [i-041] reviewed the impact 

of the diet on the fatty acid profile of milk and underlined especially the link 

between the grass and C18:3 which translates in a change of the organoleptic 

properties of the products when grazing is performed. An illustration of the 

differences of the fatty acid profiles between grazing cows and cows fed with a 

total mixed ration is provided by Elgersma et al. (2006] [i-042], Kelly et al. (1998) 

[i-043] and Frelich et al. (2012) [i-044]. Beside the fatty acid profile, there is also 

an impact of grass-based diet on the protein content [i-045]. 

Therefore, for these nutritional advantages and the potential increase in well-

being associated to grazing, the industry promotes grazing. Soyeurt et al. (2022) [i-

158] identified quality labels and protected designation of origin (PDO) including 

the need for grazing (Table 1-2). These specifications are mostly based on the 

access to the pastures. 

Table 1-2: Labels and protected designation of origin promoting grazing, inspired from 
Soyeurt et al. (2022) [i-158] 

Name Type Detail 

CANDIA 
Specifications of a 

milk producer 
150 days of grazing year for at least 6 hours per day 

“Lait de pâturage” (aka “Milk 

from pastures”) 
Label 

150 days of grazing year for at least 6 hours per day with 

at least 10 m² available per cow per days on the parcel [i-

035] 

“Grand Pâturage” (aka “Big 

grazing”) 
Label At least 180 days of access to pastures per year [i-182] 

“MARGUERITE HAPPY 

COW” 

Specifications of a 

milk producer 

180 days of grazing with at least 2500 m² available per 

cow & at least 70% of the ration must be grass [i-036] 

“Abondance” 
PDO specifications 

for cheese 

Herd’s ration includes >50 % grass (summer) or mostly 

hay (winter) [i-037] & [i-158] 

“Comté” 
PDO specifications 

for cheese 

Put the cows on pastures as soon and as long as possible 

[i-038] & [i-158] 

“Laguiole” 
PDO specifications 

for cheese 
>120 days of grazing [i-039] & [i-158] & [i-183] 

“Beurre et crème d’Isigny” 
PDO for dairy 

products 
210 days of grazing [i-040] 

“Camembert” 
PDO specifications 

for cheese 
180 days of grazing [i-040] 
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1.4 Grassland: back to an agronomic prospective 

Now that the interests of the different stakeholders have been explained, diving 

into a traditional agronomic view of the pastures might be relevant. This 

“traditional” calling encompasses the following prospect: the use of grassland as 

feed providers. Falling under this generic scope, one can mention the following 

research areas: the assessment of the adequation of the grassland-sourced feed 

(through a direct or indirect consumption) to the animals’ needs; the impact of the 

composition of the grassland on this adequation. Understanding the underlying 

relationships and, more importantly in the context of this thesis, transferring the 

resulting knowledge require the creation of abstracted representations of the 

reality, i.e. models. Multiple modelling paradigms are detailed and the temporal 

evolution between those is illustrated. 

1.4.1 Grassland direct and indirect use for feed 
This thesis is focused on the use of grassland resources to feed cattle, and more 

specifically through pasture grazing. However, grazing is, luckily for the winter 

months in Wallonia, not the only way to feed cattle. Grass-based alternatives are 

the dried hay (on the field or in an on-farm drier) or silage of the freshly cut grass 

(in windrow or plastic balls).  

For the sake of completeness, it should be mentioned that the Walloon breeding 

systems are not all completely based on grass. Although this is a trend and a 

specification often required in organic farming, as far as the Walloon status, 

published on Biowallonie (2020) [i-110], compares to the total numbers of the 

“Service public de Wallonie” (2023) [i-111], organic only represents 10% of the 

total bovine livestock. This means that 90% of the Walloon farms could remain 

prone to more “classical”/intensive approaches although the use of pastures is often 

considered as a sound – from an economic point of view, as illustrated by Dillon 

et al. (2008) [i-026] that observed a decrease of the ration cost with the increase of 

the grass proportion- feed source. This so-called “classical”/intensive approach 

tends to consider pastures as playgrounds, or as nurseries for heifers or as feed 

supplement to a balanced diet. This diet should include cereals, oleaginous, protein 

crops, roots and the direct or industry produced derivative of these products. 

Theoretically, the balance between these products is the result of the research for 

an economic optimum while satisfying the cattle needs. However, Dalcq et al. 
(2018) [i-159] performed a study, based on the accounting sheets of 390 Walloon 

herds. It indicated that Walloon dairy farms used grass in their feed balance and 

also demonstrated a different degree of grass use depending on the level of 

intensification. This corroborates the highlights of Lessire et al. (2019) [i-016]’ 
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survey, covering 926 exploitations. Indeed, in that survey, 96.5% of the lactating 

dairy cows were grazing. 

In Wallonia, it is more common to find bovine than ovine and goats, as their 

respective population were ± 1,114,000 (in 2018) and ± 51,000 (in 2016) [i-163]. 

Therefore, the rest of this state-of-the-art chapter will be illustrated with bovine 

related features. 

Cattle needs are associated with metrics that are defined differently across the 

world. The terms, units and definition used in Belgium for ruminants, inspired 

from Sillon Belge (2018) [i-146] and Beckers (2019) [i-147], are developed in Table 

1-3. Beside fulfilling these needs, the feed balance should also aim to minimise 

noxious compounds content and offset the potential quality variability. 

Table 1-3: Cattle needs terminology. 

Need Unit Definition 

Energy 
VEM 

[VEM/kgDM] 

Net energy that an animal can use for its own health and its milk production. 

There is no need for conversion of the VEM values between the feed. 

Expressed in ‘VEM’ per kg of dry matter 

Energy 
VEVI 

[VEVI/kgDM] 

Similar to VEM, instead of relating to the energy available for milk production, it 

relates to the net energy available to the animal for intensive growth/fattening 

Proteins 
DVE 

[gDVE/kgDM] 

Total amount of proteins that could be digested in the intestine. The amino acids 

might come from the direct digestion of the feed or be synthesized by the bacteria 

of the rumen 

Expressed in g of DVE per kg of dry matter 

 
MAT/MPT 

[%DM] 

total protein matter/ crude protein content 

Expressed in % of the dry matter 

 OEB 
Balance between proteins and energy usable for rumen synthesis of proteins and 

volatile fatty acids 

 VS Measurement of the fibre content of the feed 

Macro-

nutrients 
 Ca, P, K, Na, Mg, S 

Micro-

nutrients 
 Mn, Cu, Co, Se, Zn … 

Vitamins  A, D, E 

Water   

From a practical point of view, VEM and DVE are the most observed indicators. 

However, the quality indications of these values, related to the chemical 

composition and the digestibility of the ration, might be hindered by sub-optimal 

OEB, i.e. poor balance between energy and proteins could hinder the synthesis of 

amino-acids and volatile fatty acid by the bacteria living in the rumen. Another 

hindering prospect is a sub-optimal VS, i.e. the fibre content. High enough fibre 

content in the feed induces increased chewing and thus increased saliva 

production that would regulate the pH of the rumen and ensure an appropriate 

rumen mobility.  
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1.4.1.1 Numerical approach 
Before venturing into the assessment of the fulfilment of these needs, attributing 

numbers to these needs is required and done in Table 1-4, inspired from Beckers 

(2019) [i-147]. Globally, with the exception of the rapidly growing young cattle, 

the characteristics of the intake stay the same. 

Table 1-4: Energy and proteins needs, and quantity ingested by cattle category. 

Cattle category Energy need 
Proteins need (g 

DVE/kgDM) 
Ingestion 

Dairy cow 
940 VEM/kg 

DM 
80-90 9-20 kg DM/day 

Young beef /bull, fast growth 

and fattening 

1050 VEVI/kg 

DM 
80-90 

1.5% to 2% of the 

bodyweight 

 

To fulfil these needs, feeds show a wide variety of characteristics. The Requasud 

association [i-186] provides an overview of feed analysis performed between 2006 

and 2018 [i-187]. Table 1-5 illustrates the mean and standard deviation computed 

across all the monitored municipality. This overview does not provide definitive 

numbers, as Beckers (2019) [i-147] underlined the variability of the feed 

characteristics, altogether with the impact of the storage quality. Depending on 

the needs of the cattle, there might be a need to combine feed sources to fulfil all 

the criterion without excesses. 

Table 1-5: Energy and protein content of feeds (mean ± standard deviation) inspired from [i-
187] 

Feed Energy content (VEM, kgDM) Protein content - MPT (%DM) 

Maize 930.65 ± 44.32 7.45 ± 0.86 

Pure ryegrass 850.5 ± 77.68 13.91 ± 3.9 

Mixed grass 838.38 ± 83.53 14.21 ± 3.83 

 

Beside the feed composition and the storage adequation, another prospect to take 

into account to create the feed mix is the impact of the phenological status, as 

illustrated in Figure 1-1 translated from FourragesMieux (2017) [i-148]. This 

change along the phenological status of the plant and the heterogeneity of the 

characteristics for different plant-based feeds advocate for a management based on 

mixing the feed for a better resiliency of the feed. However, understanding factors 

related to these differences is of high scientific interest. These are: the floristic 

composition; the time; the vegetation status; the plant inner heterogeneity; and 

the pasture inherent heterogeneity. 
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Figure 1-1 : Protein and energy content of white clover and English ryegrass along the 
phenological status. Figure translated from FourragesMieux (2017) [i-148]. 

1.4.1.2 Impact of the floristic composition 
To sum up this numerical parenthesis, assessing the nutritional quality of the 

grass is of interest to achieve the objective of fulfilling the cattle needs. However, 

it is challenging as this quality will change following different factors. The main 

one, illustrated in Figure 1-1 with the different protein and energy content 

between two species, is related to the floristic composition. Indeed, as mentioned 

earlier, grasslands are not strictly defined by the vegetation. As long as the 

vegetation can be used as forage by grazing and/or cutting, there is no constraint 

on the exact floristic composition and grassland could include grasses, legumes, 

forbs, or even woody species [i-006]. 

This absence of constraints on the pasture composition makes more complex 

their modelling as models fitted for one floristic composition could not suit other 

conditions of applications. This characterisation of pasture composition is so 

important that Lavorel et al. (2007) [i-104] called the classification of plants, the 

“Holy Grail”, for pasture modelling as it conditions the parametrisation of the 

models reviewed. This subject of classification is still widely discussed. As Perez-

Harguindeguy et al. (2016) [i-107] explained, the classification could be based on 

taxonomic, morphological, physiological, and phenological attributes to help make 

more homogeneous the functions and properties of the plants, their response to 

environmental factors, the way they affect other trophic levels, and influence 

ecosystem properties. Similarly, Funk et al. (2017) [i-106] highlighted the high 
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diversity of classification strategies and their implication regarding the 

understanding and modelling of grasslands and the related ecological processes. 

Illustrating these different prospective with different approaches might better 

highlight the inherent complexity of pasture plant composition. 

Taking the prospective of a Walloon farmer’s advisers association, 

FourragesMieux [i-108], the taxonomic approach is the most relevant. Indeed, in 

one the documents they distribute (FourragesMieux (2017) [i-148]), they 

recommend a mixture approach of the floristic composition: a pasture should be 

made of: more than 75% of Poaceae; between 10 and 20 % of legumes; and contain 

less than 15% of other dicotyledons, although they do not mention whether this 

should be percentage of dry matter or surface cover or number of plants per square 

metre. 

Switching to a more scientific prospective, Cruz et al. (2002) [i-105] adopted a 

two-level approach: first-off they discriminated 4 main plant forms in grasslands 

i.e., Poaceae, legumes, “rosettes”, and the other dicotyledons; then they focused on 

Poaceae and discarded the rest of the plants, despite scientific illustrations of 

interaction resulting in nutrient transfer between plants [i-178]. As Graux (2017) 

[i-055] mentioned, Cruz et al. (2002) [i-105] discriminated 4 groups within that 

Poaceae family were defined based on the combination of the trend to capture 

loads or only small amounts of resource and on rapid or slow change in the 

foliation level, classification that was used in models such the one developed by 

Jouven et al. (2006) [i-109]. Cruz et al. (2010) [i-115] enlarged this discrimination 

of Poaceae to 6 groups and included the notion of potential use. Cruz et al. (2002) 

[i-105] and Cruz et al. (2010) [i-115] based their classification on the species level 

and they associate a species to a group. 

This association of a species to a “group” and thus this association of taxonomic 

classification to functions is still being discussed and another type of classification, 

i.e., plant classification based on “traits”, is gaining more and more interest from 

the scientific community. Violle et al. (2007) [i-102] attempted to fix the confusion 

in “traits” terminology for plant studies and defined multiple levels to discriminate 

traits and parameters. The smallest unit was the individual level and traits were 

defined at that individual level without reference to the environment, the 

functional traits being morpho-physio-phenological traits which have an impact 

on fitness [i-102]. In the meantime, they proposed a standardisation of the 

equation related to the plant traits computation stressed the importance of 

integration functions to scale from individuals to ecosystems [i-102]. Based on 

these functional traits Diaz et al. (2013) [i-120] developed a framework to assess 

species’ effects on ecosystems and their tolerance of environmental changes. 
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Similarly, based on these functional traits, Diaz et al. (2015) [i-188] explored the 

spectrum of functional traits and provided a standardised tool to compare plants. 

1.4.1.3 Time and vegetation status relationships 
As illustrated in Figure 1-1 translated from FourragesMieux (2017) [i-148], the 

nutritional quality of the grass “mixture” does not stay the same along the time. 

Therefore, computing the nutritional quality of the grass based on the sole floristic 

composition is not possible. The specific behaviour illustrated in Figure 1-1 leads 

to advice to farmers such as intensive grazing and mowing promotion to avoid 

advance in the phenological status. In more concrete terms, it is often 

recommended to place the cattle on pastures when the sward height is between 10 

and 15 cm FourragesMieux (2017) [i-148]. Higher sward cover translates into 

higher number of ears and thus a decrease of the nutritional quality and the 

palatability of the grass mixture. 

At a smaller scale, the nutritional quality of each plant depends on 

meteorological features such as: the temperature, the water availability (and thus 

the precipitation and the soil geopedological and topological characteristics), and 

the solar radiation for the photosynthesis. This translates, at the larger scale of 

Wallonia, into a season with intensive grass growth from the end of March until 

the beginning of November, although, as underlined in FourragesMieux (2017) [i-

148], there could be a drop in the grassland production during the summer (around 

August) as some grasses (alike some ryegrass) don’t like hot weather. This drop is 

dependent on the species and functional groups present in the pasture [i-152], and 

might also express itself as a structural change inside the plant organism [i-164]. 

Resulting from this temporal production-feed need difference, feeding cattle 

requires to plan its grazing and include mowing events and grass drying or silage, 

or even include other feed sources for the winter months. This planning requires 

models to assess the available feed. 

1.4.1.4 Heterogeneity inside the plant 
Moreover, before starting to talk about the pasture modelling, a key element has 

to be defined now: a plant is not a uniform organism. It has roots, stem and leaves. 

Within these compartments there are variations in terms of chemical constituent 

and properties. In the case of the stem, there is a lignification gradient, with a 

higher level of lignification at the basis and lower at the higher end. Similar 

gradients exist for nitrates [i-097] and other chemical constituents. It matters in 

the context of this thesis as cows mechanically don’t have access to the full height 

of the stem and mowing events need to define a lower cut height threshold. 

Therefore, considering the full height might not always be relevant, especially in 
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the context of assessing the available feed for cows, in terms of quantity and 

quality. 

1.4.1.5 Pasture spatial heterogeneity 
As suggested, pastures are heterogeneous in terms of species and the dependency 

towards local conditions contributes to a spatial heterogeneity of the sward cover. 

Notwithstanding topological specificities, this spatial heterogeneity is in fact 

inherent to grazed pastures as (1) the animals show spatial and specific selectivity 

when they graze [i-151], (2) there is an asynchronism between the relatively 

steady feed consumption by animals and the seasonal growth dynamics, (3) plant 

defoliation lasts for a few seconds while the growth afterwards takes weeks. As a 

result, extensive grazing practices tend to increase heterogeneity compared to 

intensive practices [i-153]. Beside the will to seize the heterogeneity of the feed 

available, better understanding and reflecting the spatial repartition of the feed is 

critical for the farm management, as Şahin Demirbağ et al. (2009) [i-154] showed 

that areas with a sward height superior to 12 cm represent more than 50% of the 

total pasture growth at the beginning of the growing season. 

1.4.2 Grassland modelling 

1.4.2.1 Ways to understand grasslands 
As stated earlier, grasslands grazing has been done for centuries. Human’s 

experience added up and trends were progressively understood and represented 

under the form of abstracted representation of the reality i.e. models. These models 

can be distinguished based on the level of knowledge of the studied phenomenon 

and on the acceptation of randomness. Regarding the level of knowledge, models 

are discriminated between mechanistic or empirical models. The first ones use a 

theory to predict a phenomenon whilst the second ones study real-world events. 

These two categories are loose and there exists a gradient of inclusion of theories 

and experiments in the modelling. Regarding the acceptation of randomness, 

models that do not accept randomness in the modelling process, and thus always 

deliver the same prediction for the same data entering the process, are called 

deterministic. These deterministic models are opposed to stochastic ones that are 

characterised by the consideration of uncertainty and randomness. The two 

categorisations (mechanistic VS empirical and deterministic VS stochastic) can be 

combined. A further layer of characterisation, that also can be added to the two 

other characterisation dimensions, is the automation of the model creation 

through informatic support, also called machine learning. Lastly, another layer of 

characterisation is the consideration of time that define static (no consideration) 
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and dynamic (consideration of time with e.g., differential equations) models. [i-

055] 

The importance of the models, no matter their categorisation, is twofold. On the 

one-hand these are crucial for a transmission of the information. On the other 

hand, if they are developed to perform the assessment of a feature (i.e. a category 

of information, also called a variable in some contexts) of interest from another 

one called a proxy, they allow for the recording and analysis of the proxy to 

determine the actual feature of interest. In the case of grasslands grazing, as 

explained earlier, the amount of biomass, and the content of energy, protein, 

micro- and macro-nutrients and water are to be accounted. Although some 

variations have been shown and demonstrated earlier regarding the content of the 

different component in the dried feed, the scientific standard of the feed 

availability assessment is the dry biomass. The method to assess this standard is 1) 

cut 3 or 4 sub-parcels of the parcel of interest (the area is often a quarter of a square 

meter), 2) dry and weight the mown grass to assess the dry biomass in kg, and 3) 

extrapolate that biomass to the total area of the parcel of interest, with the 

assumption that the entirety of the pasture is covered the same way [i-123], [i-149] 

and [i-150]. This method presents the inconvenient to be destructive (dried mown 

grass is not valued anymore), time-consuming, and there is a potential bias coming 

from the assumption of the parcel homogeneity, although grazed areas are known 

to be heterogeneous [i-151] (section 1.4.1.5). Furthermore, these measurements 

need to be repeated during the grazing season [i-165]. A model using rapidly and 

non-destructively acquired data, such as compressed sward height (CSH) – 

recorded with a rising platemeter (RPM) or a falling one, as proxies allows to 

bypass some of the disadvantages [i-162], notably with the combination with a 

GPS [i-166]. However, this better representation of the spatial heterogeneity 

requires a specific attention to the number and the repartition of the sampling 

points to minimize the sampling error [i-171]. Another advantage of this CSH 

proxy is its wide acceptation by farmers and the scientific community [i-131], [i-

066] and [i-149]. 

The biomass is not the only feature modelled to assess the feed availability on 

the pastures. During a recent review of the literature covering articles between 

2000 and 2021 searching for ways to understand and manage pastures, we 

discriminated mechanistic and deterministic models and found 11 published 

models corresponding to these combined designations. Most models aimed at 

modelling one or more of the following grass-focused indicators: the biomass [i-

124], [i-119] and [i-125]; a form of grassland height [i-114]; the LAI [i-063], [i-116] 

and [i-068]; the quality of the grass indicators like the structural composition [i-
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118], [i-109], [i-119] and [i-074]. One of the reviewed models, called “SEPATOU”, 

focused on evaluating multiple farm management strategies through their 

simulation [i-112] and [i-113]. The last main prospect modelled were the resulting 

soil and environmental conditions [i-121], [i-122] and [i-123] of the pasture 

management. Studies based on other model categorisation focused on the other 

feed indicators: the response of the sward cover to an ultrasonic exposure [i-167], 

[i-168] and [i-169]; the response of the sward cover to an electrical exposure [i-

170]; the height deduction from ground-taken pictures [i-094]. 

Focusing on the modelling process revealed that most models used linear 

equations, some included feature transformation, based on the biophysical 

processes. The input features of those models were mainly meteorological data 

(temperature, precipitations, solar radiation, evapotranspiration, wind speed and 

direction, and the relative humidity), soil related data (drainage, geopedological 

conditions and soil water content), pasture management indicators (NPK input, 

management event like mowing and grazing) and grass properties (including the 

initial biomass/LAI status). As Shalloo et al. (2018) [i-029] and Shalloo et al. (2021) 

[i-030] stated, grass-based livestock ruminant production did not completely 

leverage the whole range of advances in precision technologies to better 

understand and manage pasture, most probably due to the constraints inherent to 

outdoor applications. In this context, Shishodia et al. (2020) [i-031] proposed a 

wide range of technologies, methods and applications related to remote sensing 

and the internet of things currently used in precision agriculture in general. 

However, only three studies out of the pool of mechanistic and deterministic 

studies reviewed related to biophysical modelling [i-063], [i-068] and [i-074] tried 

to get out of that pure biophysical modelling and linked the models to 

visible/hyperspectral remotely sensed data (acquired through SPOT-4, Formosat-

2 and Planetscope satellites) although there has been a rise of the use for this type 

of data in recent studies focused on grassland understanding. A next section will 

deepen this aspect of remote sensing data implication in grassland studying. 

Concerning the modelling prospect of the papers reviewed, the main trends were 

a change in the representation of the categories: in the recent years, there was an 

increase of the proportion of empirical models altogether with an increase of the 

stochastic modelling and with a rise of machine learning. These paradigm shifts 

altogether with the increasing use of remote sensing represent a challenge 

regarding the data science and engineering approach as the related databases grew 

in size and largely outgrew the methods and algorithms developed for less 

demanding modelling. This change in size induced a need for revising algorithms 

and tests as the hardware needed to satisfy the old tests had to evolve (e.g. to 
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compute a covariance matrix requires a matrix inversion and therefore loads of 

RAM once you get in big datasets, like >50.000 rows) and the power of the 

previous tests applied on huge datasets was too high and therefore, even non-

meaningful information could be flagged as significant, therefore impacting the 

results. 

For the sake of better understanding pastures and the different prospective/use-

cases, models and algorithms had to evolve and had the opportunity to evolve 

thanks to recent hardware advancements (increased number of CPU cores, CPU 

hyper-threading, increased CPU-IPC, increased clocks on the CPU and the RAM, 

addition of computation accelerators, …). This can be seen in our recent review as 

all the studies we found before 2014 relied on linear regressions with variable 

transformation (sometimes resulting in “exponential regressions”) no matter the 

“categorisation” of the model. In 2014, we saw the first forms of neural networks 

(NNet) appear in Ali et al. (2014) [i-069], under the form of perceptron and 

adaptative neuro fuzzy inference system (ANFIS). In 2016, Monte-Carlo 

simulations joined the portfolio of algorithms used in pasture data science in 

Nakagami (2016) [i-127]. The same year the Cubist hybrid approach combining 

decision-tree principles to linear regression, resulting in iteratively corrected 

linear regressions, also joined the toolbox [i-073], alongside a version of the partial 

least square regression (PLS-R) modified to deal with sparse data [i-093]. The 

unmodified PLS-R [i-066], random forests (RF) [i-095] and the principal 

component regression (PCR) [i-070] only appeared in 2017 in our review. Support 

vector machines (SVM) only appeared in 2018 in Pullanagari et al. (2018)[i-128]. 

2019 witnessed the rise of recurrent (RNN) [i-056], long short-term memory 

(LSTM) [i-129] and “U-shaped” (U-Net) [i-086] NNet and the use of the generalised 

linear model theory (glm) [i-131]. In 2020, extreme gradient boosted models 

(xgboost) [i-079] also joined the ball. Finally in 2021, the generalised additive 

model (GAM) [i-132] and the convolutional NNet (CNN) [i-133] were added to 

the inventory of modelling tools. The resulting number of models using each 

algorithm is shown in Table 1-6. These presented occurrence values should not 

cast shadow on the numerous studies combining the algorithms and on the fact 

that we reviewed models. Therefore, a team that made more than one paper on 

one model appears as only one entry in our 93-entry model review to avoid over-

representing some technical algorithms mastered only by a small number of team. 
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Table 1-6 : Amounts of models reviewed per modelling algorithms reviewed, between 2000 
and 2021 

Modelling algorithm Amount of models based on these algorithm 

Exponential linear regression 7 

Multiple linear regression (MLR) 31 

Logistic regression 1 

Generalised linear model (glm) 2 

Mechanistic and deterministic model 11 

Monte carlo simulation 1 

Discriminant analysis (DA) 3 

Principal component analysis/regression (PCR) 5 

Generalised additive model (GAM) 1 

Partial least square regression (PLS-R) 10 

Sparse Partial least square (S-PLSR) 3 

random forest (RF) 13 

cubist 5 

Support vector machine/regression (SVM/SVR) 5 

Adaptative neuro fuzzy inference system (ANFIS) 3 

Perceptron 10 

Recurrent neural network (RNN) 3 

U neural network (U-NET) 1 

Convolutionnal neural network (CNN) 1 

Long-short term memory neural network (LSTM) 2 

Extreme gradient boosted algorithm (xgboost) 1 

1.4.2.2 And now that we model pastures, what are we going to do? 
Modelling grassland is great from the scientific, political, and economical 

prospective and for the technological opportunities it represents. However, 

science for science does not help the majority of the population, to do so requires 

transferring the knowledge to field actors. Therefore, beside the in silico 

approaches, more practical approaches have been developed. In Wallonia, the 

FourragesMieux association [i-108] gained importance in the recent years by 

offering information and advice based on actual values, e.g.: yields for different 

varieties of grasses or technical deed and management practices implications. To 

automate and widen the range of people helped and advised, the main alternative 

to this type of institution is to elaborate decision support system (DSS). This 

alternative should in fact be seen as a “and/or”/ non-exclusive solution, as it might 

be a complementary tool for such institution. 

Unfortunately, only 11% of the 93 models studied in the literature review 

mentioned earlier are implemented in a DSS. The reasons for this poor transfer 

rate to the end-users might either be due to the poor performances of the 

underlying models as stated in Cockburn (2020) [i-048] or to a lack of adoption by 

the said end-users (here farmers). The latter option is justified in Eastwood et al. 
(2016) [i-049] with the DSS design and information delivery choices not matching 
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the farmers’ expectations. Another prospect also hindering the actual decision-

making is the time lag induced by the information overload and the integration of 

new data sources and treatments [i-050]. To sum up, to promote the adoption of a 

DSS, the key points are being cheap and rapid and provide relevant information. 

To enhance this prospect of relevancy of information and increase the adoption 

rate of this type of helping tool, modularity should also be noted as recommended 

in Power (2003) [i-051]. 
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1.5 Grassland and remote sensing 

1.5.1 Story 
As you may have noticed, this research area is not yet much explored. I know, it 

is a bit disappointing and I don’t want to slay your expectations. Hence, I suggest 

we move on to another mind arousing subject that is at the hearth of this phD 

thesis tale: remotely sensed data. It is commonly defined as data acquisition about 

an object or phenomenon without physical contact. Currently, it mainly refers to 

data acquired from satellites and drones/unmanned aerial vehicles. You are 

probably wondering on how these highly technological devices relate to pastures. 

I suggest we quickly review the current state of its use and implementation in the 

grassland and pasture scientific areas. 

1.5.2 Categories description 
As stated earlier, there is a rise in the use of remote sensing technologies, as 

highlighted in Reinermann et al. (2020) [i-046] and confirmed by a short up to 

date review we performed (the same that led to the previous grassland modelling 

section). Most papers using it underline its convenience to seize the spatial 

heterogeneity of the pastures and therefore have a better grasp of the grazing 

dynamics [i-047] and decrease the risk of sampling bias, spatially speaking. 

In the recent years, there has been an increase in the use of remotely sensed data 

to study grasslands and other natural areas. Garioud et al. (2021) [i-065] offers a 

review of remote sensing application in a grassland context. Given the time of 

publishing of that review, we had already performed a review and now offer you 

another approach. We can mainly categorize the considered data according to the 

acquisition platform and the type of sensor. Moreover, the overview can be 

completed by the treatments applied to the data recorded and the 

sensitivity/weaknesses of the sensors. 

Concerning the platforms, we identified the following, although we did not find 

scientific literature on grasslands application for every one of them: 

➢ Satellites 

➢ Unmanned aerial vehicles/drones 

➢ Airplanes 

➢ Balloons 

➢ Kites 

Concerning the types of sensors, we can distinguish them based on their passive 

or active operation, the spatial and sensor specific resolution and range. Therefore, 
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offering a classification of sensors is complex. Here we first distinguish passive 

from active sensors. 

Passive sensors, in this remote sensing context, are associated to a measure of 

reflectance. As illustrated in Figure 1-2, further discrimination is based on the 

parts of the electromagnetic spectrum sampled and the number of samplings 

performed. With an increasing sampling frequency, one can cite visible, 

multispectral, and hyperspectral sensors. Visible sensors often operate in a tri-

channel mode, i.e. they sample in Red-Green-Blue, hence they are sometimes 

called RGB sensors. Multi- and hyperspectral sensors sample spectrum outside of 

the visible, for instance ultraviolet and infra-red, Hence the usage of the Vis-NIR 

calling for some sensors that operate in the visible and near-infrared wavelengths. 

Beside these sensors types, thermal cameras are also passive sensors, they sample 

in the far-infrared area of the electro-magnetic spectrum. 

 

Figure 1-2: Illustration of the difference between the reflectance sensors in terms of parts of 
the electromagnetic spectrum covered and the number of samplings performed in that 
spectrum, reproduced from Zabalza (2015) [i-126] 

Active sensors are based on the emission of electromagnetic waves and reception 

and analysis of the reflected signal. The type of signal emitted and received 

discriminates: 
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➢ Radar sensors emit electromagnetic signal. The most determining factor is 

the wavelength. In the case of this literature search, only the C and X 

bands were found to be used. The respective length wave and frequency 

range covered of both bands are: 3.75-7.5 cm and 2.5-3.75 cm, 4-8 GHz 

and 8-12 GHz, respectively. 

➢ LiDar sensors emit a laser signal. The frequency range is beyond 10 THz 

while the wavelengths range from 250 nm to 10 µm depending on the 

laser. 

Concerning the sensitivity of the sensors to exterior conditions, reflectance 

sensors are very sensitive to illumination conditions. Satellite-based reflectance 

sensors acquire irrelevant information for earth surface monitoring when clouds 

are on the way of the reflected light. Drone-based sensors could still provide 

relevant information for structure from motion photogrammetry under 

homogeneous cloudy conditions if they are equipped with a correction sensor 

measuring the incident light energy. The radar sensors are also sensitive to the air 

and soil humidity as shown in Tamm et al. (2016) [i-020] regarding the impact of 

the rain on the S1 signal. 

Concerning the treatments, besides the utilisation “as it” of the spatialized 

imagery (“simple” feature extraction), other treatments exist in the remote sensing 

field: 

➢ Photogrammetry: construction of three dimensional models to perform 

measurements from images (that could result from an image stitching 

process); 

➢ Image stitching: construction of a global image from multiple small images. 

The goals can be to improve the resolution by introducing different view 

angles and increase the area covered. The most common algorithm, in the 

context of remote sensing and at the time of writing, is known as structure 

from motion (sfm); 

➢ Geocoding: It is the step that transforms generated images into a map 

projection; 

➢ Convolution treatments allows to loosen the focus and the analysis of a 

wider scope of data. 

Another type of surface monitoring is proximal sensing. It consists in using 

sensors while being ground-based, these sensors being hand-held [i-181], pole-

mounted [i-180] or mounted on rolling platforms [i-179]. Most sensors of the 

remote sensing area could be used here. We monitored only one “type” of sensor, 

not present in the remote sensing area: Red-Green-Blue-Depth (RGB-D) maps 

generating sensors. It includes time of flight (TOF) cameras and structured light 
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sensors. For the types of sensors already present in the remote sensing area, many 

of these sensors were in fact used to get “reference ground measurements” in 

combination with other data sources like in Lugassi et al. (2019) [i-099]. This data 

source is not considered in the rest of this work as it requires measurements from 

the ground. 

 

1.5.3 Practical characteristics of remote sensing platforms 

1.5.3.1 Comparative approach 
A brief introduction about the characteristics of the main satellite constellations 

found in the literature related to pastures monitoring is proposed in Table 1-7. 

Although the acquisition cost column might indicate that some data are free to 

acquire, hidden costs are inherent to: 

➢ the download: there is a need for a sufficient bandwidth to download 

rapidly enough the data to avoid signal and connection losses. 

Furthermore, the amount of data consumed is consequent. 

➢ the storage: all the data downloaded must be stored at a certain point in 

time.  

➢ the processing: some products have to be translated into actually usable 

products for the study. 

To illustrate better the hidden cost, the specific case of Sentinel-2 (S2) products 

might be of interest. 8 S2 Tiles cover the area of Wallonia. Each weight around 

2 GB. This means that this many data have to transit through the internet 

connection, consuming bandwidth and data quotas for each date of acquisition. 

Afterwards, depending on the data management strategy, these tiles should be 

stored under one or more format. This consumes disk space and thus requires 

investments in hardware. Afterwards, the S2 data don’t require much pre-

processing. Other products, such as S1 do. Indeed, S1 products need to be geocoded 

to become easily usable in GiS. This represents another hardware requirements 

based on the processing power. For all these reasons, freely acquired data are 

sometimes referenced to as low-cost data and not freely available. 
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Table 1-7 : Remote sensing satellite platforms main characteristics.  

Name Nature of the 

acquisition 

Acquisition 

frequency 

Acquisition 

width 

Spatial resolution Acquisition 

cost ? 

Still 

acquiring ? 

Sentinel-1 Radar C-band 3-5 days +- 80 km +- 5 m NO YES (1/2) 

TerraSAR-X Radar X-band 2.5 days 
 

+-1 m YES NO 

Spot-4 multispectral / 
 

10 m/20 m YES NO 

Modis multispectral 1 day 2330 km 250 m/1000 m NO YES 

Landsat-8 multispectral 16 days 185 km 15 m/30 m/100 m NO YES 

Formosat-2 multispectral / 24 km*24 km 8 m 
 

NO 

WorldView-2 multispectral 1.1 day 16.4 km 0.46 m/1.84 m YES YES 

Sentinel-2 multispectral 3-5 days 290 km 10 m/20 m/60 m NO YES 

Planet : Dove  multispectral 1 day 24.6 km 3 m/5 m YES YES  

Planet : Skysat multispectral 5 to 7 times a 

day 

11 km 0.5 m YES YES 

Planet : Rapid 

Eye 

multispectral / 77 km 5 m YES NO 

 

Concerning the use of unmanned aerial vehicles like drones, gathering these 

characteristics is not as easy as for satellites as each acquisition campaign could be 

different given the amount of combination possible. Indeed, in such study, a choice 

has to be made regarding: 1) the platform between a “fixed-wing” or a (multi-)rotor 

drone; 2) the type of sensor (Red-Green-Blue (RGB), multispectral, hyperspectral, 

thermal, …); 3) the spatial resolution needs for the study; 4) the battery 

availability; 5) the time and storage limitations for the acquisition. Given the huge 

amount of combination possible, comparative analysis such as Table 1-7 is not 

conduced for drones. However, for the record, using this technology has costs in 

terms of platform, human time and computation power after the acquisition that 

are partly dissolved in the case of satellite data as they are founded by public 

organisations, or the companies intend to share the cost between multiple users. 

Airplanes are an air-borne platform mainly used in cases where the payload is 

too heavy for a drone or the range to cover is too big to get a proper resolution 

within a decent time, while the cost and recurrence of acquisition, or the payload, 

or technical constraints do not justify satellites. The last 2 airborne acquisition 

platforms (balloons and kites) were not found to be used in studies related to 

grassland. 

Given the will to get a decision support system with the lowest costs possible, it 

was chosen to discard the platforms requiring human time for the acquisition. As 

a result, only the satellites platform seemed sensitive for their higher automation 

level. 
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1.5.3.2 Complementary information for each platform 
Sentinel-1 (S1) is a satellite constellation conducted by the European space 

agency in the context of the Copernicus program. Each satellite operates a C-band 

synthetic aperture radar instrument. At the time of writing, out of the two 

satellites operating during the first phase, only one remains operational and two 

more are planned. When the two first satellites were operational, one might have 

expected a recording every 2 to 3 days over Wallonia, accounting for overlaps in 

data acquisition. Nowadays, you should rather expect a 3 to 5 days revisit 

frequency. Given the increased interest since the launch, there has been an 

interest for standardising the geoprocessing, e.g. Filipponi et al. (2019) [i-052] and 

Filipponi et al. (2020) [i-053] presented a standardised framework based on the 

s1tbx which is part of the SNAP software edited by the ESA [i-054]. The 

underlying datasets used for corrections present the advantage of being widely 

available. There are multiple operational/acquisition modes and operating patterns 

for these satellites. Over the area of interest in this thesis, we focused on ground 

range detected (GRD) products, which means without the phase information with 

VV and VH polarization and a spatial resolution around 5 m.  

TerraSAR-X is an older satellite operating in the X-band conducted by a public-

private-partnership. 

Spot-4 was part of the 7 satellites of the SPOT constellation (SPOT stands in 

French for “Système probatoire d’observation de la Terre”, lit. “Satellite for 

observation of Earth”). It was operated by a French research institute, the CNES, 

and it stopped working in 2013. It acquired multispectral imagery: RG & Near- 

and mid-infrared; with a resolution of 10 to 20 m. According to Di Bella et al. 
(2004) [i-063] it acquired in the blue range while ESA does not mention that range 

of wavelength [i-062]. 

The Moderate Resolution Imaging Spectroradiometer (MODIS) sensors are 

onboard two satellites and data can be retrieved from the NASA. They record 36 

spectral bands from 620 nm to 14.0385 µm with spatial resolution ranging from 

250 m to 1.000 m. 

Landsat-8 is a multi-spectral satellite acquiring 11 bands with medium spatial 

resolutions (15-30-100 m depending on the band) with a width of acquisition of 

185 km and it is operated by a national organisation of the USA. 

Formosat-2 was a satellite acquiring in the RGB-Near infrared with a spatial 

resolution of 8 m, sensor footprint of 24*24 km, temporal resolution of one day 

operated by a national organisation of Taiwan. It was decommissioned in 2016. 



Chapter 1 Introduction 
 

31 

WorldView-2 is a commercial satellite providing panchromatic imagery with 

0.46 m of resolution and a multispectral imagery, including the red-edge and the 

near-infrared with 1.84 m of resolution. 

S2 is a satellite constellation conducted by the European space agency in the 

context of the Copernicus program. These are multi-spectral satellites acquiring 12 

bands with medium spatial resolutions (10-20-60 m depending on the band) with 

a width of acquisition of 290 km. 

Planet is an American private corporation operating two constellations of 

satellites now, a third was retired in 2020: 

➢ Dove: also called cubesats. These satellites have a 3 to 5 m resolution and 

an acquisition width of 24.6 km 

➢ Skysat: these 21 satellites have nowadays a resolution of approximately 

0.5 m and an acquisition width of 11 km; they acquire RGB, and near 

infrared bands. 

➢ RapidEye: now retired. The satellites were recording reflectance in RGB, 

red-edge and near-infrared. It had a spatial resolution of 5 m and an 

acquisition width of 77 km 

Although the 3 constellations of Planet satellite are represented separately in 

Table 1-7, they will be designed as the Planet satellites in the rest of this section 

dedicated to the description of the remotely sensed data as they present similar 

characteristics, especially regarding the cross-sensor radiometric consistency. 

1.5.4 Applications of satellite remote sensing on pastures 
Regarding the application of remotely sensed data, we identified 9 main 

scientific areas of interests more or less closely related to pastures: the detection of 

mowing events (MowEve); the validation and exploration of other data 

sources/modelling tools, also sometimes called “data fusion” (Val_df); the pasture 

phenology determination (Phen); the LAI estimation; the estimation of the pasture 

biomass (Biom); the estimation of any form of grass height (HH); the estimation of 

the grass quality (QH); the longitudinal -temporally speaking- monitoring of 

pastures (MonLon); the land cover classification (Clc). Per platform per study area 

classification of scientific papers is represented in Table 1-8. 

The impressive number of references in the “Val_df” column, representing the 

data fusion related studies, is explained by the scientific curiosity regarding the 

possibility to use data acquired at different moments, the use of data of different 

natures, the combination of multiple modelling paradigms, and the integration of 

spatialised data to model more precisely parameters than with simple 

extrapolation. This last justification is also shown in the “Biom” column.  
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Table 1-8 : Scientific use of satellite remote sensing platform in an agricultural context, with 
a focus on papers related or including pastures. 

Name MowEve Val_df Phen LAI Biom HH QH MonLon Clc 

S1 

[i-020] 

[i-056] 

[i-010] 

[i-097] 

[i-136] 

[i-059] 

[i-097] 

[i-060] 

[i-136] 

[i-058] 

[i-060] 

[i-060] 

 
[i-060] [i-130]  [i-059]  

TerraSAR-X   [i-061]       

Spot-4  [i-063] [i-064]  [i-064]     

Modis  
[i-073] 

[i-101] 
 [i-088] 

[i-069] 

[i-070] 

[i-072] 

[i-088] 

[i-101]   [i-071] 

Landsat-8  

[i-073] 

[i-067] 

[i-085] 

[i-087] 

[i-088] 

[i-095] 

[i-101] 

[i-060] 

[i-060] 
[i-095] 

[i-060] 

[i-072] 

[i-078] 

[i-088] 

[i-060] 

[i-094] 

[i-101] 
  

[i-090] 

[i-064] 

Formosat-2  [i-068]        

WorldView-2  
[i-067] 

[i-066] 
  

[i-067] 

[i-066] 
    

S2 
[i-097] 

[i-136] 

[i-067] 

[i-085] 

[i-093] 

[i-096] 

[i-097] 

[i-099] 

[i-100] 

[i-060] 

[i-103] 

[i-136] 

[i-077] 

[i-058] 

[i-060] 

[i-100] 

[i-060] 

[i-076] 

[i-077] 

[i-130] 

[i-080] 

[i-082] 

[i-084] 

[i-092] 

[i-093] 

[i-098] 

[i-060] 

[i-103] 

[i-130] 

[i-089] 

[i-094] 

[i-080] 

[i-084] 

[i-089] 

[i-098] 

[i-099] 

 

[i-081] 

[i-090] 

[i-096] 

[i-137] 

Planet [i-136] 

[i-073] 

[i-074] 

[i-085] 

[i-087] 

[i-095] 

[i-096] 

[i-100] 

[i-103] 

[i-136] 

 
[i-095] 

[i-100] 

[i-079] 

[i-083] 

[i-091] 

[i-103] 

[i-079] 

[i-091] 
  

[i-086] 

[i-096] 

 

For the sake of completeness and although drones have been discarded for the 

lack of automation of the acquisition, it should be mentioned that this is an active 

area of research related to pastures and grasslands. The main trends found in the 

literature were the use of sfm algorithms to combine the images acquired into 
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bigger point-clouds and maps. The resulting modelling is a height map [i-172]. 

This output is often associated with an analysis of spectral indicators (direct 

reflectance values or composite indices combining multiple bands such as the 

normalised difference vegetation index (NDVI)) [i-173]. As for the other 

platforms, models have been developed and tested to confront these derived 

features to feed quality indicators such as the dry biomass, the protein content, … 

[i-174] and [i-175]. The question of the spatial representativity of the 

measurements through drones is also heavily discussed [i-174]. 

Given the low cost of S1 and S2 data, given the high number of studies using 

these data and given the quality of the products (e.g. high calibration of the 

spectral resolution), it was chosen to work with S1 and S2 data in the context of 

this thesis. 
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1.6 Thesis objective 

This journey explored the grasslands stakeholders prospective (section 1.3), the 

agronomic point of view (section 1.4) and the relationship of grasslands with 

remote sensing (section 1.5). One of the main takeaways is the non-adequation of 

the feed need of the ruminants with the grass growth (section 1.4.1.3). Therefore, 

managing grazing is a complex task. This job is eased with an accurate knowledge 

of the available feed. The most used reference is the assessment of the available 

biomass (section 1.4.2.1). The scientific standard to perform the assessment is the 

cutting-drying-weighting-spatial interpolation process (section 1.4.1.5). 

Unfortunately, this methodology is destructive, requires to be repeated, is time 

consuming and thus costly, and the related spatialisation is limited (section 

1.4.2.1). Therefore, there is an interest in using other indicators directly or 

indirectly related to the grass growth and the feed availability, such as CSH 

(section 1.4.2.1). 

In the same context of acquisition constraints, remotely sensed data present the 

attractive advantage of a reduced recording time requirement compared to the 

reference method and the spatial heterogeneity of the parcels is directly 

considered, within the limits set by the resolution of the sensor. In the context of 

this thesis, the goal was to get fine spatial and temporal resolution at the lowest 

cost possible. The scope of remotely sensed data was scanned regarding 

optical/multi-spectral and SAR data. In that context, for their high-quality 

standard, no-cost, fine spatial and temporal resolution, and relative ease of access, 

S1 and S2 constellations were selected as data providers (section 1.5.3). Both have 

already been used in pasture related areas (section 1.5.4) such as mowing event 

detection [i-020], the assessment of the LAI or the above-ground biomass [i-060], 

[i-134], [i-067] and [i-076], the phenology of pastures determination [i-058]. 

Supporting this combination choice, some studies already included the 

combination of both data sources [i-097] and [i-058]. 

An additional source of information are the meteorological data as vegetation is 

sensitive to meteorological features such as the solar radiation, the temperature 

and the precipitations to grow, as illustrated in the choice for these data entering 

most mechanistic models (section 1.4.2.1). Therefore, meteorological data were 

used altogether with the remotely sensed data. The innovative prospect of this 

thesis is to mix innovation steps regarding remotely sensed data together with 

meteorological data to apply the resulting model on an under-studied research 

area, the pastures, using state of the art machine learning modelling algorithms, 

while keeping transferability to a larger scale in mind. 
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Indeed, as illustrated in section 1.4.2.1, modelling algorithms have evolved in 

the recent years. One could sum up the evolution as a transition from linear 

regression to automated learning models, also called the machine-learning area. A 

review of the literature highlighted the dominance of multi-feature linear 

regression, RF, and NNet with varying architectures. Beside these modelling 

algorithms, the nature of the relationship between the proxies and the modelled 

feature was also questioned as Oliveira et al. (2020) [i-155] tested multiple feature 

transformation within machine learning models (the range of models explored 

came from Fernández-Delgado et al. (2019) [i-156] and Garcia et al. (2020) [i-157]). 

All these innovations were integrated to overcome the complexity to transfer 

the models to an actual decision support system, as illustrated with the 11% of 

achievement mentioned in section 1.4.2.2. The barriers identified for the specific 

pasture study-case were the complexity (time and meticulousness) of the data 

acquisition process; the complexity of the conversion of the acquired data to an 

actually meaningful feature, as some traits modelled need a second layer of 

conversion or the usage of coexisting features to seize the full meaning of the 

modelled trait; the need for seizing the spatial heterogeneity of pastures. In the 

context of this thesis, these barriers were clearly identified, and multiple steps 

were made towards the creation of the final DSS. 

All these steps contributed to the answer this thesis aimed to bring to the 

following research question: “Is it possible to develop machine learning algorithms 

fed by meteorological and remotely sensed data to assess the available feed on 

pastures at the scale of Wallonia?”. The presentation of the answer will be sub-

divided in smaller objectives that will each be developed in their own chapter 

(Figure 1-3). 
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1.7 Plan 

1.7.1 Story version 
Narrated tales begin either with an overview of the landscape on which the 

action will take place, either in the middle of the action. This story began to unfold 

with the approach of the scenery description. The next step will be the preparation 

of the bags we will use during the journey. Remaining at a local scale, we will pick 

up the best tools, a.k.a. the machine learning models assessing the available feed 

on pastures under the form of CSH from S1, S2 and meteorological data. Now that 

we are ready, a second part of the journey will consist in exploiting our tools on 

unencountered conditions across the region we wander. At night, near the 

campfire dreams of the future DSS will come. Drafts will be drawn and constraints 

directly appearing together with challenges underlined through discussions with 

other travellers will be noted down and these mock-ups will pave the way towards 

the DSS. The multiplicity of end-user possible will open the eyes for other 

exploitation of the learnings made during the exploitation of the tools at a larger 

scale. A particular study-case, the parcel management detection, will also be 

explored. After these exhausting parts of the journey, we spent the night at a 

tavern and took the time to think about the path travelled. Our shoes are worn out 

and not all our tools were useful, the last part of this tale will focus on what 

changes we should have made during the preparation and the unfolding of the trip. 

 

1.7.2 Scientific version 
As illustrated in Figure 1-3, now that the state of the art/introduction chapter set 

up the scenery in which the journey will take place, the second chapter will relate 

the process used to develop models predicting the CSH, a proxy of the biomass 

available on pastures, using remotely sensed S1 and S2 and meteorological data 

through multiple machine learning models and feature transformation. 

The next chapter will narrate the development and implementation of a platform 

performing the assessment of this CSH at the scale of the whole Walloon Region 

through models developed using the pipeline described in the previous chapter. It 

will also discuss the constraints that were encountered and the limitations 

regarding the availability of these assessments. Indeed, given the transition from 

datasets with a limited number of records acquired over no more than fifty parcels 

at the time of writing to databases covering more than 190.000 parcels and almost 

4.000 km² in 2018, the application of the models will require to manage properly 

the acquisition and fusion of data and to take into account software limitations. 
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Afterwards, a chapter will be dedicated to the presentation of specifications on 

which the final DSS should be based, and the first mock-ups attempt will also be 

presented. 

The fifth chapter will be a discussion and perspective chapter that will include a 

feedback-type of discussion on the improvements that could be made. This will be 

followed by a conclusion chapter that will recall the answer to the research 

question, regroup the perspectives and develop my personal takeaways. 

 

 

 

 

Figure 1-3: Graphical representation of the organisation of the thesis 
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2 Chapter 2 Model creation 

2.1 Outline 

The main topic of this chapter is the generation of models predicting a proxy of 

biomass from Sentinel-1 radar satellite data, Sentinel-2 optical and multispectral 

satellite data and meteorological data. These models come from the 

statistical/machine learning area. The process workflow that led to the 

development of these model in this thesis is further developed in the article below. 

2.2 Abstract 

Accurate information about the available standing biomass on pastures is critical 

for the adequate management of grazing and its promotion to farmers. In this 

paper, machine learning models are developed to predict available biomass 

expressed as compressed sward height (CSH) from readily accessible 

meteorological, optical (Sentinel-2) and radar satellite data (Sentinel-1). This study 

assumed that combining heterogeneous data sources, data transformations and 

machine learning methods would improve the robustness and the accuracy of the 

developed models. A total of 72,795 records of CSH with a spatial positioning, 

collected in 2018 and 2019, were used and aggregated according to a pixel-like 

pattern. The resulting dataset was split into a training one with 11,625 pixellated 

records and an independent validation one with 4952 pixellated records. The 

models were trained with a 19-fold cross-validation. A wide range of performances 

was observed (with mean root mean square error (RMSE) of cross-validation 

ranging from 22.84 mm of CSH to infinite-like values), and the four best-

performing models were a cubist, a glmnet, a neural network and a random forest. 

These models had an RMSE of independent validation lower than 20 mm of CSH 

at the pixel-level. To simulate the behavior of the model in a decision support 

system, performances at the paddock level were also studied. These were 

computed according to two scenarios: either the predictions were made at a sub-

parcel level and then aggregated, or the data were aggregated at the parcel level 

and the predictions were made for these aggregated data. The results obtained in 

this study were more accurate than those found in the literature concerning 

pasture budgeting and grassland biomass evaluation. The training of the 

124 models resulting from the described framework was part of the realization of 

a decision support system to help farmers in their daily decision making. 
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2.3 Keywords 

Sentinel-1; Sentinel-2; machine learning; pastures; compressed sward height 

2.4 Introduction 

Grazed pasturelands play multiple roles in agroecosystems that can benefit the 

sustainability of ruminant-based agriculture. This includes lower feeding costs [1], 

higher animal welfare and lower occurrence of lameness and mastitis, and 

increased milk quality compared to indoor feeding [2]. However, despite these 

advantages, Walloon intensive dairy farmers increasingly turn away from grazing. 

This is because of the higher difficulty of managing grazed pastures as their main 

feeding method, especially with a decreasing workforce available on the farm and 

increases in herd sizes [3]. Indeed, due to the high variability of plant growth with 

weather conditions, grazing management requires a frequent assessment of the 

standing biomass available for animals to feed on. Tools like decision support 

systems (DSS) could ease this management from the farmer’s perspective by 

providing an assessment of the standing biomass without having to travel to the 

pasture. Such a DSS, based on the simulation of the behavior of a dairy farm 

practicing rotational grazing, was for example developed by Cros et al. [4] and 

Amalero et al. [5] to help farmers plan their activities. Other examples of DSS, like 

Pasture Growth Simulation Using Smalltalk (PGSUS) [6,7] and PastureBase Ireland 

integrating the Moorepark St Gilles grass growth model (MostGG) [8], focus on 

the assessment of available forage in pastures. Both tools rely on reference field 

measurements used as inputs in mechanistic models. The reference measurement 

method consists of the cutting and drying of forage samples to get the actual dry 

biomass per area unit. This procedure was developed for researchers and is time-

consuming, destructive, expensive and never applied by farmers. Moreover, the 

limited number of samples that can be taken strongly reduces the possibility of 

assessing the spatial variability of the pastoral resource. Objectives other than 

biomass might also be included in the DSS, such as leaf area index (LAI), real height 

or visual correspondence to standards. 

Several alternatives to this reference measurement have been proposed, such as 

the indirect estimation of standing biomass [9,10,11] via the measurement of 

compressed sward height (CSH) using a rising platemeter (RPM). The CSH 

readings can be converted into biomass with varying levels of accuracy, depending 

on the structure of the assessed vegetation [12]. While this method can provide a 

high number of estimates and also spatialize the data if combined with a GPS 
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sensor [13], it requires time to perform the measurement on the pastures. It also 

requires consideration of the sampling pattern to capture the spatial variability of 

height on a given pasture, MacAdam and Hunt [14] recommends a “lazy W” 

sampling pattern while Gargiulo et al. [15] shows that for a homogeneous pasture, 

the impact of the sampling pattern is negligible. In addition, no consensus exists 

on which part of the biomass to consider. The CSH measurement implicitly 

considers all standing biomass, while some scientists, like Wang et al. [16], advise 

considering biomass above 1 cm. Others, like Hakl et al. [17] and Walloon farm 

advisers, use a threshold of 4 cm, while Crémer [18] and Nakagami [19] bound the 

limit to 5 cm. Other methods to assess standing biomass include the response of 

the sward canopy to ultra-sonic [20,21,22] or electric [23,24] signals, ground-level 

photography analysis [25]. All the methods cited previously require attention to 

be paid to the size, number and repartition of the sampling spots [26] in order to 

minimize sampling error. Aside from these ground-based methods, the estimation 

of standing biomass has also been explored through remote sensing from either 

satellite or airborne platforms (e.g., [27,28,29]). This offers already-spatialized data 

and reduces the risk of sampling bias. However, other constraints might appear, 

such as computation power requirements and the sensitivity of unmanned aerial 

vehicles to flight autonomy, weather and regulatory constraints. In the context of 

the current study, these constraints, together with the time-consuming aspect of 

acquiring data with unmanned aerial vehicles (UAV) led to the choice of not using 

this technology. However, it is worth mentioning that UAV based systems are at 

the core of current researches establishing relationships between the biomass and 

remotely sensed data like digital surface/elevation models derived from aerial 

pictures (using structure from motion), LiDAR pointclouds acquisition and 

treatment, and spectral vegetation indices data [11,30,31]. 

All these methods are part of a set of recent technological advancements that 

may help grazing management to embrace the smart farming approaches relevant 

to this sector [32], provided their adequate integration in DSS and a good level of 

acceptance by farmers. The latter requires DSS to be based on information 

routinely available at a large scale and at minimal cost. Moreover, it must be 

possible to improve the DSS in an iterative and interactive process [33]. 

In order to address the challenge of providing a tool offering a rapid estimation 

of pasture biomass under the above-mentioned constraints, the current study 

developed an analysis method to predict CSH measured on pasture using readily 

available meteorological data, space-borne synthetic-aperture radar (SAR) and 

optical imagery. Indeed, despite CSH being an indirect measurement of biomass, 

RPM has been widely used and benefits from widespread acceptance among 
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farmers and pasture scientists (e.g., [7,9,34]). Meteorological data have the 

advantage of being routinely available at the Walloon scale (i.e., for all the 

Southern part of Belgium which is the area of interest in this study) and provide 

insight into the key drivers of growth dynamics for various types of pasture plants 

growth dynamics [35,36,37]. Such models are at the heart of most DSS (e.g., STICS 

[38] and MostGG [39]). 

Concerning the space-borne remote sensing data, a choice was made between all 

the existing optical and SAR sensors according to their spatial, temporal and 

spectral resolution, as well as their cost. The Sentinel-1 (S1) and Sentinel-2 (S2) 

constellations were chosen. S1 was used for mowing event detection [40], LAI and 

above ground biomass estimation [16], or to detect meadow phenology [41]. 

S2 mission was used for biomass estimation [42,43] or monitoring [44,45] or for 

LAI retrieval [46]. Some studies predicting standing biomass in grasslands have 

already included analysis of both S1 and S2 data [41,47]. However, they did not 

encompass any transformation of those signals, which might enhance some 

properties, such as how NDVI highlights the presence of chlorophyll in the 

vegetation. Nor did they test a wide range of machine learning (ML) methods that 

could catch different parts of the information. The methods appearing most 

frequently in these studies are multiple linear regression (lm), neural networks 

with or without recurrent layers, random forests (rf) and cubist, alone or together 

(e.g., rf and lm were used to predict the quantity and quality of grass swards in 

Alves et al. [48]). This study encompasses multiple variable transformations and 

ML methods (amidst the wide range of methods highlighted in Fernández-Delgado 

et al. [49] and in García et al. [50]) with the objective of extracting more 

information on those signals. The framework described in this study aims to 

predict biomass in Walloon pastures through the CSH proxy using more than 

100 different ML models, in order to provide a tool offering a rapid estimation of 

pasture biomass on the basis of readily available meteorological data, SAR and 

optical imagery. 

2.5 Materials and Methods 

The structure of this section follows the workflow presented in Figure 2-1. The 

main steps are the following: data acquisition and pre-processing, data fusion to a 

grid, separation of training and validation datasets, selection of the most 

informative variables, model training and validation. The processing framework 

was made in R v3.6.2 using Rstudio IDE v1.2.5033 [51,52]. The framework can be 

summarised according to the following equation: 𝐶𝑆𝐻 =

𝑓(𝑡𝑖𝑚𝑒, 𝑤𝑒𝑎𝑡ℎ𝑒𝑟, 𝑆1, 𝑆2). 
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Figure 2-1: Framework developed in the study to process Sentinel-1, Sentinel-2 and 
meteorological data to predict standing biomass in grazed pastures. The first steps are the pre-
treatment and the (re-)sampling of the different dataset according to the same reference grid. 

Then the datasets are merged to get a tabular dataset. Transformations of the variables are 
then computed. Afterwards, machine learning models are trained and validated on distinct 
parts of the dataset. Based on the results of the validation, the most promising models are 

determined. 
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Figure 2-2: Location the studied farms in the agricultural areas of Belgium and their grazing 
parcels. 

2.5.1 Datasets 

2.5.1.1 Compressed sward height 
A total of 72,975 CSH records were acquired approximately weekly during the 

grazing seasons of 2018 on Farm A (N = 13,753, 16 sampling dates) and Farm C (N 

= 9,309, 6 sampling dates), and 2019 on Farm A (N = 28,497, 27 sampling dates) 

and Farm B (N = 21,416, 22 sampling dates), using a Jenquip EC20 G rising 

platemeter (NZ Agriworks Ltd t/a Jenquip, New Zealand). The relationship 

between CSH and time was integrated by considering two variables: the number 

of the month of the year (e.g., 1 for January) and the day of the year (e.g., 1 for 

01/01). 

2.5.1.2 Meteorological data 
The meteorological data used came from the meteorological station located on 

the experimental farm. It consisted of the daily rainfall and the degree-day-18 

(DD_18): 𝐷𝐷18 =
𝑇𝑚𝑎𝑥+𝑇𝑚𝑖𝑛

2
− 18 , where Tmin and Tmax are the minimum and 

maximum temperature of the day. This formulation of the degree-day variables is 
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introduced in studies like the ones of Moot et al. [53] and Balocchi et al. [54]. In 

some cases, the minimum and maximum temperatures may have upper and lower 

threshold whose value depends on various factors including the ability of the plant 

to take water [55], family and photosynthetic pathways (see the sensitivity of the 

Rubisco to temperature in Salvucci et al. [56] and Greco et al. [57]). Given that the 

pastures are multispecific, it was chosen to ignore the threshold on minimum and 

maximum temperatures and the base temperature of 18°C was considered. In order 

to take the historical succession of meteorological events into account, the 

meteorological data were used in a cumulative way: the precipitation and the 

degree-day-18 were summed over periods of 3, 7 and 15 days and a mean of both 

variables since the last CSH measurement was also computed. Eight meteorological 

variables were thus considered in this study. 

2.5.1.3 Sentinel-1 data 
The S1 mission offers SAR data in the C band (C-SAR) with a mode-dependent 

spatial resolution of roughly 5 m and a revisit frequency of approximately three 

days over the studied area. It also has the advantage of providing data even in 

cloudy or night-time conditions. The S1 C-SAR data were acquired as level-1 GRD 

products with VV+VH dual polarisation from the Copernicus Hub [58,59] through 

the use of a dedicated R package: getSpatialData v0.0.4 [60]. The pre-processing 

was done in accordance with the standardized framework described by Filipponi 

[61,62], based on the s1tbx toolbox [63] from SNAP software v7.0.0. This gave 

products of roughly 5 m of spatial resolution, and consisted of: 

➢ applying a precise orbit file: the real and precise orbit file was computed 

after the passage and is thus retrieved online to correct satellite position 

and velocity in the metadata; 

➢ removing thermal noise; 

➢ removing border noise: the artefacts at the image border were removed 

with the following two parameters: “borderLimit = 500” and 

“trimThreshold = 50”; 

➢ calibrating SAR backscatter: place to choose the output between 𝜎0, 𝛾0 

and 𝛽0. The second index is related to the first through the cosine of the 

reflection angle: 𝛾0 =
𝜎0

cos(𝑟)
, with r being the reflection angle. The third 

one is described by equation: 𝛽0 =
𝑆𝐸𝑅

𝑆𝑟𝑎𝑑
 , where SER represents the 

surface perpendicular to the beam, reflecting the totality of the power of 

the signal in an isotropic way and Srad the surface of the pixel in radar 

geometry [64]. As recommended by Rudant and Frison [64], only 𝜎0 was 
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considered in this study because 𝛽0 is more suited for punctual targets 

and 𝛾0 for dense forests; 

➢ speckle filtering: the noise coming from the interference of reflected 

waves was removed with a ‘Refined Lee filter’ with a filter size of 3x3. 

➢ terrain correction: the correction was made using the Shuttle Radar 

Topography mission data (SRTM 3sec); 

➢ converting to decibel. 

The S1 data were represented in the dataset through two variables: 𝜎0 of VV and 

VH channels. 

2.5.1.4 Sentinel-2 data 
The S2 mission was chosen for its 13 optical bands, including the three in the 

red-edge spectral region. The resolution is band-dependent and is either 10 m, 

20 m or 60 m with a revisit frequency of approximately three days over the studied 

area. The S2 data were acquired as L2A-BOA/TOC (Level 2A corresponds to the 

reflectance at the bottom of the atmosphere or top of canopy) products from the 

Copernicus Hub [58,59] through the use of a dedicated R package: sen2r v1.3.3 

[65]. Some tiles were only available as L1C-TOA products. The pre-processing to 

transform them into L2A-BOA/TOC tiles was done with the Sen2Cor toolbox [59] 

and managed by the sen2r package. The main steps behind this transformation are 

precisely described in Mueller-Wilm [66] and are summarised as: 

➢ scene classification based on band and band ratio values comparison to 

threshold into 12 classes: 0—No Data; 1—Saturated or defective; 2—

Dark area pixels; 3—Shadows of cloud; 4—Vegetation; 5—Not 

vegetated; 6—Water; 7—Unclassified; 8—Cloud medium probability; 

9—Cloud high probability; 10—Thin cirrus; 11—Snow; 

➢ atmospheric correction, consisting of: retrieving the aerosol optical 

thickness and water vapor, removing the cirrus and retrieving the impact 

of terrain to get BOA reflectance. It was chosen to ignore the DEM 

impact; 

➢ product formatting into JPEG2000. 

Another processing step involved the resampling of the bands at the same 

resolution and the fusion of the tiles per acquisition date. The sen2r package 

managed gdal v 3.0.2 [67] for both operations. The resampling resolution was set 

to 10 m which was the smallest resolution of S2 images. The scene classification 

was also recorded. In order to avoid major bias in reflectance measured, only tiles 

with less than 75% of clouds signalled in the metadata were downloaded and 

processed. The S2 data were represented into 12 variables in the dataset (bands 1 

to 12 without bands 9 and 10 and the scene classification layer). The first band was 
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included although it is supposed to be related only to atmospheric correction. Its 

integration in the scope of studied variables aimed at detecting potential artifacts 

related to the S2 pre-treatment. 

2.5.2 Grid 
A sub-division of the studied area was performed, as done by Higgins et al. [68] 

and Lugassi et al. [69]. In Ruelle and Delaby [70] and Ruelle et al. [8], a grid with 

a resolution of 2 m was the best compromise between precision and speed of 

computation. Here a resolution of 10 m was chosen, representing a compromise 

between the spatial resolution of satellite images (it corresponded to the highest 

resolution of S2 images) and the conservation of the variability of the CSH dataset. 

The CSH records were first attributed to a pixel (i.e., a square unit of the grid) 

and when there was more than one record for a pixel, the CSH median value was 

considered. The S1 and S2 data were resampled using the same method (called 

“bilinear”): the pixel of the satellite image containing the centre of the grid pixel 

was identified, then the four nearest satellite pixels were also identified, and a 

median value of these four neighbouring values were allocated to the grid pixel. 

The resampling was made independently for the different datasets in order to 

offer some modularity in the analysis. The R packages used for those operations 

were: data.table v1.12.8 [71] and dplyr v0.8.3 [72] which allowed different 

management of the data frames; sf v0.8-0 [73], sp v1.3-2 [74,75] and raster v3.0-7 

[76] which allowed computation over spatial data and future v1.16.0 [77] and 

future.apply v1.4.0 [78] which were used to make the computation on parallel 

mode. 

2.5.3 Fusion and Data Transformation 
The fusion part consisted of gathering all the information in a single dataset with 

all the variables as columns and records as rows. First the gathering of all the spatial 

datasets was done according to their date of acquisition and pixel on the grid. In 

the case of non-simultaneous acquisition, the nearest acquisition to the CSH 

measurement was chosen within a 10-day time window. The second part consisted 

of attributing the meteorological data. To each record was attributed the value of 

the corresponding date. The non-linear relationship between the explanatory 

variables and the CSH may not be handled by all ML methods. To bypass those 

possible restrictions, some data transformations were computed, with some scaling 

when needed, and also integrated into the workflow: 

➢ meteorological data: square (𝑥2) and exponential (10
𝑥

100) transformations 

were applied on the cumulative data to compute 16 transformed 

variables; 
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➢ S1: the transformations applied on the 2 S1 variables were: square (𝑥2), 

exponential (10
𝑥

10), inverse (
1

𝑥
 ) and hyperbolic tangent (tanh

𝑥

100
). Eight 

transformed variables of the S1 dataset were added to the dataset; 

➢ S2: the transformation applied on the reflectance variables were: square 

((
𝑥

100
)

2
), cube ((

𝑥

100
)

3
), exponential (10

𝑥

1000), inverse (
1

𝑥
 ) and hyperbolic 

tangent (tanh
𝑥

10000
), square root (√𝑥), logarithm of base 10 (log10 𝑥). A 

total of 77 transformed variables of the S2 dataset were included in the 

dataset 

Besides these transformations applied to each variable independently, some 

calculations were made on pairs of variables. Indeed, spectral indices may 

emphasize some particular spectral signatures [79]. This was taken into account in 

this study by integrating the 138 non-redundant vegetation indices, computed on 

the basis of the S2 bands according to the formulas on the website “the Index 

DataBase” [80], IDB [81]. A total of 249 indices were in fact developed in this list, 

but a comparison of each index highlighted redundancies (same expression and 

different names). To avoid the introduction of meaningless collinearity in the 

dataset, only the first index in order of appearance in the list was used. 

2.5.4 Split the Dataset 
The total dataset had 16,577 records and 277 variables. Independence between 

the training and validation datasets was ensured by splitting the dataset at the farm 

level: Farms A and C were used to train the model, whilst Farm B was used to 

validate. The training dataset thus had 11,625 records and the validation dataset 

4,952 records. 

Potential outliers were highlighted by calculating the global H distance (GH) of 

those records from the principal components explaining 99% of the data 

variability. The principal component analysis (PCA) was performed with the 

FactomineR R package v2.1 [82]. Records with a GH value above 3 were 

considered with caution and records with a GH value above 5 were considered 

potential outliers. However, no value was discarded. 

2.5.5 Variable Selection 
As some of the ML methods explored in this study do not handle collinearity 

between features well, like the generalized linear model and the other methods 

presented in Table 2-1, a variable selection process was firstly performed, 

composed of three steps: (1) score determination, (2) definition of breakpoints, and 

(3) variable selection. 
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The working hypothesis was that the probability of selecting a relevant feature 

is higher if this one was considered as important by several ML algorithms. Thus, 

12 models resilient to collinearity were developed based on the parametrisation 

presented in Table 2-2 on the standardized training set with a 19-fold cross-

validation (CV). The final models had the lowest CV root mean square error 

(RMSEcv). Then, a variable importance ranking was established for each model 

through the use of a function of caret R package v6.0-85: VarImp() [83]. For each 

variable, the mean and median of their ranking in all models were computed. In 

order to penalize variables with a high variability of ranking between developed 

models, the statistical descriptors were standardized: the mean of the ranking of 

each variable was divided by its standard deviation (𝑚𝑒𝑎𝑛𝑠𝑡𝑑) and its median by 

its interquartile range (𝑚𝑒𝑑𝑖𝑎𝑛𝑠𝑡𝑑). 

The variables were ordered according to their decreasing ranking score. Then, 

multiple linear regressions were trained iteratively: initially, the most informative 

variable was used, then the first and the second most informative, and so on until 

all variables were included. For each regression, adjusted R-squared (𝑅𝑎𝑑𝑗
2 ) was 

computed, and its first derivative was calculated starting from the second value by 

subtracting the previous value from the actual. A rolling median filter with a 

window width of three records was applied to these first derivative values to 

smooth the signal. The negative values corresponded to the breakpoints. To 

prevent the occurrence of noise, only the first breakpoints were considered in this 

study. For each breakpoint considered, the variables having a higher ranking than 

that breakpoint were used to train models through a 19-fold cross-validation based 

on the acquisition dates of CSH. The variables with a lower ranking were not taken 

into account. 

2.5.6 Model Training 
The training phase consisted of a 19-fold cross-validation based on the 

acquisition dates of CSH on the standardized data. The selection of the best model 

was made according to the lowest RMSEcv value. For each breakpoint considered, 

31 mL methods, including the 12 used in the variable selection process were 

explored, each resulting in one model. Although some models failed to converge 

towards a reasonably performant and finite solution within a decent timestep (one 

week), all models that managed to get a usable expression were kept for further 

validation and analysis. 

The use of the caret R package [83] facilitated the exploration of the “hyper-

parameters” of the ML algorithms explored in this study. Methods used in both 

variable selection and training processes were presented in Table 2-2 and those 

only used during the training process in Table 2-1. 
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2.5.7 Model Validation 
The models that did not fail during the training process were tested on the 

independent validation dataset. The indicators observed were the RMSE of 

validation (RMSEv), the distribution of the validation predictions of CSH 

compared to the original distribution of CSH, the distribution of the residuals 

(computed as the predicted value minus the actual value) and the mean residual 

value per class of CSH with a class width of 5 mm of CSH. The limits of the 

sampling tool were 0 and 250 mm of CSH. Predicted values beyond these 

thresholds were brought back to the nearest class. This might have resulted in 

some flooring and ceiling effects in the representation of the prediction and the 

residuals. A perfect model would have a low RMSEv, show no difference between 

the distribution of the actual and the predicted CSH, have a centered distribution 

of residuals and show no relationship between residuals and actual CSH values. 

The models developed and validated on the grid pixel basis described previously 

were also tested on datasets aggregated at the paddock-level for each acquisition 

date. Two combinations of aggregation and prediction were tested: either the 

prediction was made on the pixel and then averaged at the paddock level, or the 

data were averaged at the paddock level and then the prediction was computed. 

For the sake of completeness, the combination of prediction and aggregation was 

tested on both the training and the independent validation dataset. Only a 

summary of the residual prediction deviation (𝑅𝑃𝐷 =
𝑠𝑑

𝑅𝑀𝑆𝐸
) is presented in this 

paper. 
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Table 2-1: Presentation of the machine learning algorithms explored during the training processes. The column ‘Abbreviation and 
references’ gathers the abbreviations used in the text, corresponding to the name of the method in caret R package, and some articles using 

the methods in related fields. 

Family Specificities HyperParameter 
Abbreviation and 

references 

Linear regression 

with variable selection 

Forward 

Backward 

Stepwise 

 

nvmax=1:30 

leapForward 

leapBackward 

leapSeq 

 

Linear regression with 

penalisation 

Ridge 

Lasso 

ElasticNet 

lambda = c(0.0001,0.001,0.005,0.01,0.05:0.05:1,2:1:10) 

fraction = c(0.0001,0.001,0.005,0.01,0.05:0.05:1) fraction = 

c(0.0001,0.001,0.005,0.01,0.05:0.05:1) 

lambda = c(0.0001,0.001,0.005,0.01,0.05:0.05:1,2:1:10) 

ridge 

lasso 

enet 

Principal Components 

Regression (PCR) 
ncomp=1:15  pcr [67] 

Partial Least Square 

Regression (PLS-R) 
ncomp=1:15  pls [57] [38] [41] [24] 

 

Support Vector Machine (SVM) 

Linear kernel 

 

Polynomial 

kernel 

cost = c(0,0.001,0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2,5, 10,20,30,50,100) 

degree = c(1,2,3) scale = 1 

C = c(0,0.001,0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2,5, 10,20,30,50,100) 

svmLinear2 

 

svmPoly [14] [72] 

Relevance Vector Machine 

(RVM) 

Linear kernel 

Polynomial 

kernel 

/ 

degree = c(1,2,3) 

scale = 1 

rvmLinear [73] 

rvmPoly 
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Table 2-2: Presentation of the machine learning algorithms explored in variable selection and training processes. The column ‘Abbreviation 
and references’ gathers the abbreviations used in the text, corresponding to the name of the method in caret R package, and some articles 

using the methods in related fields. 

Family Specificities HyperParameter Abbreviation and references 

 

Generalised linear model (GLM) 

gaussian 

Gamma poisson 

inverse.gaussian 

link=c(identity,log,inverse) 

link=c(inverse, identity, log) link=c(log, identity, sqrt) 

link=(inverse, identity, log) 

 

glm [17] 

Generalised linear model 

with penalisation (glmnet) 

gaussian 

poisson 

alpha = c(0.0001,0.001,0.005,0.01,0.05,0.1:0.1:1) 

lambda = c(0.0001,0.001,0.005,0.01,0.05,0.1:0.1:10) 
glmnet 

Random forest (RF)  mtry=88 rf [14] [72] [74] [75] 

Cubist  
committees=c(1:10) 

neighbors=c(0:7) 
cubist [76] [77] 

Least Angle Regression 

(LARS) 
 fraction = c(0,0.1,0.25,0.5,0.75,1) lars 

Neural Network (nnet)  
size=c(1:7) 

decay = c(0,0.0001,0.001,0.01,0.1:0.1:1) 
nnet [39] [78] [72] [79] [80] 

Multiple linear regression   lm [14] [78] [72] [9] [75] 
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2.6 Results 

2.6.1 Description of the Datasets 
The distribution of CSH from the pixellated and aggregated points of view is 

summarised for the calibration and validation dataset in Table 2-3, and the 

distribution for each day of acquisition in Figure 2-3. Those results showed that 

the CSH measurements were not normally distributed. 

 

Figure 2-3: Distribution of the CSH acquired during the farm walks on each recorded farming 
area following the day and the year of acquisition, the day of the year equals one being the 
first of January. The error bars (whiskers) extend from the upper/lower hinge of the box to 

the largest/smallest value within 1.5 times the interquartile range. The theoretical frequency 
of acquisition was one acquisition a week. The data were aggregated through all the parcels of 

each farm. 

 

Table 2-3: Summary of the compressed sward height [mm] of both training and validation 
datasets. The aggregated lines correspond to the mean compressed sward height (CSH) per 

parcel per acquisition date. 

Dataset N Min. 1st Qu. Median Mean 3rd Qu. Max. sd 

Whole 16,577 5.00 39.00 52.00 55.56 67.00 247.00 24.88 

Training pixellated 11,625 5.00 39.00 53.00 56.66 69.50 247.00 26.69 

Training aggregated 233 18.17 43.89 54.37 56.09 62.65 148.89 20.13 

Validation pixellated 4,952 13.00 40.00 49.00 52.96 62.00 194.00 19.75 

Validation aggregated 117 38.44 45.22 50.91 52.22 57.67 87.34 9.90 
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To reach 99% of cumulative percentage of variance, 41 principal components 

were considered. The distribution of GH for the training and validation records 

was summarised in Table 2-4. Records having a GH value higher than 

5 represented less than 5% of each dataset: 150 (1 %) and 197 (4 %) in the training 

and validation sets, respectively. The higher number of outliers in the validation 

set is explained by the fact that the GH was calculated from the calibration set. 

Therefore, this means that a certain part of the variability in the data collected 

from Farm B was not totally covered. However, further investigations revealed 

that there was no apparent relationship between GH and CSH. It means that no 

subset of CSH occurs on a specific spot of the multidimensional space of 

components. A representation of the distribution of the GH per sampling date 

(data not shown) showed that there were more outliers for some recording dates. 

This could either reflect sampling issues or artifacts in the satellite data. It was 

chosen to keep these records, given that there is no certainty that these records are 

not linked to special meteorological events. Finally, one of the S2 surface coverage, 

corresponding to the classification “shadow of cloud”, was represented only in the 

training dataset but no relationship between this classification and the GH stood 

out. 

Table 2-4 : Summary of the standardised Mahalanobis distance (GH) of the training and 
validation datasets compared to the training dataset. Values above five are considered as 

potential outliers. 

Dataset Minimum First Quartile Median Mean Third Quartile Maximum 

Training 0.11 0.31 0.48 1.00 0.85 283.13 

Validation 0.12 0.47 0.69 2.35 1.38 1,035.03 

Figure 2-4 shows the two most informative axes of the PCA. These components 

together explained 54.9% of the variability of the explanatory variables. Some faint 

grouping effects of variables could be seen. A group was positively related to the 

first component, mainly made up of raw and transformed S2 indices. Another 

group was related positively to both first and second components, mainly made of 

raw and transformed S2 bands. A third group was related negatively to the first 

and positively to the second component, mainly made of raw and transformed S2 

bands. The large amount of S2 related variables in the datasets hid the position of 

the other variables. They spread well over the two-dimensional space of Figure 

2-4 although they seem to be more correlated with other components given the 

length of their arrows. Based on these results, the integration of multiple data 

sources seemed relevant as they bring different information. Moreover, the 

variables with a transformation spread well on the two-dimensional space of the 

two first components of the PCA although the variables with an inverse 

transformation seemed to be mainly negatively correlated with the second axis 
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(data not shown). The integration of multiple variable transformations also 

appeared relevant. The proximity of some variables on the graph in Figure 2-4 

implied a possibly non-negligible redundancy. Therefore, the selection of variables 

before the training of the models is critical. 

 

Figure 2-4: Variable position on the two first principal components for the calibration 
dataset. Transformed variables were pooled with their corresponding raw ones. 

2.6.2 Variable Selection 
The correlation plot of variable rankings between the 11 models used to select 

features is represented in Figure 2-5. Eleven models were represented, instead of 

12, due to the inability of the rvm with a linear kernel to converge within a decent 
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time frame (one week). There were high correlation values between the ranking 

obtained by the models used, except for PLS. 

The ranking scores for the 100 most-relevant variables were represented in 

Figure 2-6. The vast majority of those variables came from the index database (IDB 

[80]) family. The 10 most relevant were: 

➢ S2T.B06.10exp which corresponds to the exponential transformation of 

band 06 of S2; 

➢ S2T.B07.10exp which corresponds to the exponential transformation of 

band 07 of S2; 

➢ S2T.B08.10exp which corresponds to the exponential transformation of 

band 08f of S2; 

➢ IDB.032 known as Enhanced Vegetation Index; 

➢ IDB.051 known as Hue; 

➢ IDB.062 known as MCARI/MTVI2; 

➢ IDB.071 known as mND680; 

➢ IDB.221 known as Soil and Atmospherically Resistant Vegetation Index 

2; 

➢ CumT.DJ18.Last.10exp which corresponds to the exponential 

transformation of the degree-day with a basis of 18 ∘°C since the last CSH 

acquisition; 

➢ S2T.B01.cube which corresponds to the cubic transformation of band 01 

of S2. 

The number behind the point in the “IDB.XXX” represents the index in Henrich 

et al. [80]. Band 03, 04 and 05 of S2 appeared in most indices. They corresponded 

respectively to green, red and near infra-red domains, which are known to be 

related to actual biomass (e.g., the NDVI ratio uses two of these bands). Another 

frequently appearing band was the first one, related to atmospheric correction and 

aerosol scattering. This suggested that there could be some residual effect of the 

pre-treatment concerning atmospheric condition. 
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Figure 2-5: Correlation plot of the variable rankings between the different machine learning 
methods used. 

 

Figure 2-6: Ranking score of the 100 most relevant variables distinguished according to the 
type of data (shape) and the transformation applied (colour). 

The 𝑅𝑎𝑑𝑗
2  curve related to the multivariate linear models built from an increasing 

number of variables (previously ranked on the basis of their score) is shown in 

Figure 2-7 with the breakpoints highlighted with vertical lines. The dot-dashed 
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breakpoints are the ones used in the analysis whilst the others (the plain lines) 

were left aside. The breakpoints taken into account in this study were related to 

linear models, including 7, 47, 111, 122 and 160 variables. 

 

Figure 2-7 : Adjusted R-Squared curve trained on a cumulative number of variables sorted 
according to their ranking score. The breakpoints are represented with vertical lines. The 
dot-dashed lines correspond to the breakpoints taken into account, while the plain lines 

correspond to the other detected breakpoints. 

 

2.6.3 Prediction of Compressed Sward Height (CSH) 
From all subsets, approximately 50% of the 31 models run provided a RMSEcv 

lower than 100 mm of CSH (Table 2-5). Some models did not converge or provided 

extreme RMSEcv values. The models having RMSEcv values lower than 100 mm 

of CSH showed a tendency to decrease median RMSEcv values with an increase in 

the number of input variables. The minimum RMSEcv values were similar 

between subsets and lower than in the literature [25]. Figure 2-8 highlights the 

most powerful models based on their RMSEcv values. RF, cubist and enet models 

appeared to be highly repeatable between subsets. On the other hand, other 

models like the glm, lm, svmLinear2, leapSeq, ridge and svmPoly families showed 

a poor prediction ability. 
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Figure 2-8: Cross-validation root mean square error (RMSEcv) of the best-predicting models. 

Table 2-5: Cross-validation performances of machine learning models run on the selected 
subsets. 

NbIn NbInf NbFail NbSup100 NbOK min mean median max sd 

7 0 15 5 16 22.84 47.92 40.12 91.42 25.83 

47 3 14 6 14 22.87 36.11 30.85 59.94 13.44 

111 4 13 8 14 23.38 34.35 26.75 65.44 13.87 

122 3 13 8 15 23.45 37.10 26.13 96.82 20.82 

160 4 13 10 14 23.07 32.40 26.00 63.79 13.20 

Note: NbIn: Number of input variables; NbInf: number of models having a non-finite mean 

RMSEcv; NbFail: number of models that failed to produce a usable expression; NbSup100: number 

of models having a mean RMSEcv above 100 mm of CSH; NbOK: number of models having a mean 

RMSEcv finite and below 100 mm of CSH 

 

The prediction performances of the models were also assessed using an external 

validation dataset. As observed for the cross-validation (Table 2-5), some models 

did not provide realistic results (Table 2-6). The models with a validation RMSE 

lower than 100 mm showed a smaller range of variation than the one observed for 

the cross-validation. The minimum values of RMSE were also similar and confirm 

the potential interest of some developed models. Figure 2-9 shows the models 

having the lowest RMSEv. As observed in Figure 2-8, the rf, cubist and enet models 

seemed relevant as they had low RMSEv. Some models gained in terms of 

prediction capability, like rvmPoly that did not appear in Table 2-5 but well in 

Table 2-6. The distribution of RMSEv between subsets was relatively similar, 

except for the first subset. This could be related to a lack of information in the 
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inputs of the model. In other words, some models using seven variables could be 

under-fitted. 

Figure 2-9: Validation root mean square error (RMSEv) of the best models predicting 
compressed sward height (mm). 

The best models should have low RMSEv and RMSEcv values, as well as a low 

difference between them. The lower the difference, the better the model’s 

robustness. Moreover, it is also important to have a distribution of the predicted 

values close to the one observed on the original dataset. Figure 2-10 developed the 

distribution of the actual CSH of the independent validation dataset and the CSH 

predicted by each model that provided realistic solutions on this dataset (i.e., 

NbOK model in Table 2-6). None of the models reproduced exactly the original 

distribution of the CSH. Two trends explained this differentiation: some models 

tended to group the prediction around the median of the distribution, and some 

models showed some saturation effect, resulting in a large amount of recording in 

the extreme classes. The cubist, nnet and rf methods and some linear regressions 

with variable selection were the methods that provided the best-fitting 

distribution curve. Some models provided extreme predictions. 

The residuals were approximately centered on 0. Most models had a non-normal 

distribution of the residuals, given that their negative tail was often much larger 

than the positive one. The distribution of the residuals, according to the original 

CSH revealed that the most extreme residual values corresponded to CSH values 

near 50 mm of CSH for some glm models. Moreover, a higher absolute value of the 

residuals could be observed in the original CSH distribution extremes, meaning 

that all the information might not have been taken into account. 
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Table 2-6 : Validation performances of models which converged during the cross-validation 
for all selected subsets. 

NbIn NbInf NbFail NbSup100 NbOK min mean median max sd 

7 0 11 1 20 19.89 22.40 20.43 52.75 7.27 

47 3 8 0 20 19.09 26.69 21.61 69.31 12.87 

111 0 5 0 26 19.20 27.13 22.09 86.17 14.08 

122 0 9 4 22 19.19 30.96 24.21 89.73 18.16 

160 0 5 2 26 19.04 27.06 22.93 52.75 10.07 

Note: NbIn: number of input variables; NbInf: number of models having a non-finite mean 

RMSEcv; NbFail: number of models that failed to produce a usable expression NbSup100: number of 

models having a RMSEcv above 100 mm of CSH; NbOK: number of models having a mean RMSEcv 

finite and below 100 mm of CSH. 

Figure 2-10: Distribution of the original and predicted CSH values. All models that managed 
to provide a usable expression were used to predict CSH (mm) on the independent validation 

dataset. The y-axis was divided into parts of 5 mm and for each part the number of records 
were counted. To ease the representation, the number of observations was transformed into 

its logarithm of base 10. 
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2.6.4 Effect of the Pixellation/Aggregation of Data 
Beyond the pixel-base performances, the behavior of the models at the paddock 

scale was also assessed as the biomass that accounts for feed budgeting spread all 

over the parcel on which cattle graze. The RMSE of the training aggregated and of 

the validation aggregated dataset are summarised in Table 2-7. The lower 

threshold of around 19 mm of CSH that could be observed previously was 

completely blown up by the aggregation, with RMSE values reaching almost 4 mm 

of CSH in some cases. Unlike in the pixel analysis, the improvement of the quality 

indicators did not stand out for the validation dataset compared to the training 

one, although the RMSE was globally lower for the validation dataset. Two 

approaches were adopted in this table: on the one hand, the prediction was made 

solely on the parcel-scale aggregated data, and on the other hand, the prediction 

was made at the pixel level and then aggregated at the parcel-level. The first 

approach delivered better results for the calibration and the second for the 

independent validation dataset. 

Table 2-7: Summary of the RMSE [mm] of the models on the CSH data aggregated at the 
parcel level. The difference between “Training aggregated” and “Aggregated training” was 
that the first case corresponded to a prediction on the aggregated training dataset and the 

second to an aggregation of the prediction made on the training dataset at a pixel scale. The 
same goes for the validation items. 

Dataset NbOK NbFail NbSup100 min mean median max sd 

Training aggregated 121 3 0 9.16 17.68 16.17 55.79 8.70 

Aggregated training 120 3 1 26.55 31.90 30.68 89.12 8.79 

Validation aggregated 121 3 0 4.02 11.74 9.44 49.22 9.17 

Aggregated validation 117 3 4 19.52 24.30 22.53 68.90 7.82 

 

The RMSE decrease observed in Table 2-7 when the prediction was made on the 

pixel basis and then aggregated could be explained based on two different points 

of view. First, the variance of the reference datasets differed depending on the 

order of the prediction and aggregation. Secondly, a more materialistic explanation 

is the compensation of the sampling errors and the localization of the sampling: 

the GPS integrated to the RPM used did not have high precision, leading to 

positioning errors in the pixels. With the training data being comprised of medians 

of the records in each pixel, some records may have slipped from one pixel to 

another changing the value attributed to the pixel. The gathering of the 

information per parcel seemed to have erased a part of the error created. The effect 

of the difference in variance was taken into account by considering RPD. 

A study of the prediction and the residuals similar to the one described above 

was performed on the validation dataset. The aggregation at the parcel-scale 

occurred after the prediction on the pixel. In general, the aggregation resulted in 
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deleting the most extreme values and a linearisation of the distribution of the 

predictions. However, multiple behaviours could be distinguished. First, some 

models narrowed the scope of the response, others drifted this range, and finally, 

a few broadened the values explored. The distribution of the residuals tended to 

be centered on 0, although some models drifted completely like before. No obvious 

relationship appeared between the residuals and the predicted CSH except for the 

models that already showed a tendency to drift. 

2.6.5 Best Performing Models 
The models that performed the best, i.e., having a low RMSE of independent 

validation are shown in Table 2-8. It summarises the main statistical parameters of 

the 20 models having the lowest RMSE of independent validation on the pixellated 

dataset: the family, the number of input variables, the RMSEcv and RMSEv, and 

residual prediction deviation on the two possible aggregations (pre- and post-

prediction) for both training and validation datasets. A svmLinear reached the 

highest RPD for the training phase, an enet model for the independent validation, 

and a cubist model stood out regarding all the aggregations together. Concerning 

the effect of aggregation, the RPD was globally higher for the models aggregated 

pre-prediction on the training dataset. This, as well as the high number of negative 

differences of RPD for the training dataset, suggested that the aggregation at the 

parcel-scale before prediction was the most relevant method. The RPD difference 

related to the validation dataset implied the opposite, which matches the results 

of Table 2-7. 

The correlation values between the predictions of the models on the validation 

pixellated dataset are represented in Figure 2-11. As Figure 2-10 suggested, the 

predictions of the various models were not similar, as correlation values were low. 

However, some models showed high correlations within the same method like rf, 

nnet and pcr or out of the family, such as rf’s, nnet’s, glmnet, and cubist. 

Conversely, some models of the same family with quite similar RPD values in 

Table 2-8 had correlations close to zero. 
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Table 2-8 : Description of the main features of the best-performing models from the RMSE of 
validation on pixellated independent validation point of view. 

Method NbVar RPDcv RPDiv RPDta RPDat dRPDt RPDva RPDav dRPDv 

rf 160 0.88 0.98 0.78 0.92 0.14 1.00 0.88 -0.12 

nnet 47 0.90 0.98 0.56 0.80 0.24 0.40 0.78 0.38 

rf 47 0.86 0.99 0.99 0.86 -0.13 0.43 0.80 0.37 

rf 122 0.88 0.99 1.21 0.84 -0.37 0.36 0.85 0.49 

rf 111 0.88 0.99 1.04 0.95 -0.09 0.74 0.96 0.22 

lasso 47 2.19 1.00 0.68 0.79 0.11 0.97 0.89 -0.08 

pcr 160 1.20 1.01 1.18 0.00 -1.18 0.54 0.28 -0.26 

ridge 47 2.26 1.01 1.02 1.00 -0.02 0.86 0.98 0.12 

pls 47 1.20 1.01 1.06 0.85 -0.21 0.37 0.00 -0.37 

nnet 111 0.90 1.02 0.45 0.83 0.38 0.41 0.81 0.40 

svmPoly 7 1.94 1.02 1.23 0.95 -0.28 0.54 0.88 0.34 

svmLinear2 7 2.54 1.02 1.32 0.85 -0.47 0.64 0.79 0.15 

pcr 111 0.91 1.02 1.26 0.85 -0.41 0.34 0.86 0.52 

pcr 122 0.97 1.02 1.09 0.86 -0.23 0.43 0.73 0.30 

pcr 47 1.01 1.03 1.14 0.86 -0.28 0.39 0.80 0.41 

nnet 7 0.86 1.03 0.69 0.71 0.02 0.39 0.00 -0.39 

cubist 160 0.93 1.03 1.50 0.86 -0.64 0.74 0.96 0.22 

glmnet 160 0.87 1.03 1.16 0.87 -0.29 0.51 0.83 0.32 

enet 111 0.95 1.03 1.02 1.00 -0.02 0.86 0.98 0.12 

enet 47 0.98 1.03 1.02 1.00 -0.02 0.86 0.98 0.12 

Note: NbVar: total number of variables; RPDcv: RPD of the 19-fold cross-validation; RPDiv: RPD 

of validation on the independent validation dataset; RPDta: RPD of validation on the aggregated 

training dataset; RPDat: RPD of validation on the training dataset aggregated post-prediction; dRPDt: 

difference of RPD on the training dataset when an aggregation occurs; RPDva: RPD of validation on 

the aggregated validation dataset; RPDav: RPD of validation on the validation dataset aggregated 

post-prediction; dRPDv: difference of RPD on the validation dataset when an aggregation occurs 
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Figure 2-11: Correlations of the predictions of the 20 best models on the basis of the RMSE of 
independent validation. 

 

Other quality indicators were also studied for some of these models: for each 

method, only the model with the lowest RMSE was kept. Figure 2-12 represents 

the distribution of the original independent pixellated validation dataset and the 

prediction made on this dataset. It appeared that most models did shrink the range 

of values adopted, although some extreme values appeared. From this graph, the 

cubist and rf models were the models most capable of reproducing the original 

distribution of predicted values, closely followed by a glmnet based on a gaussian 

family and nnet models. 
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Figure 2-12: Distribution of the original and predicted CSH values of the independent 
pixellated validation dataset for the 11 best models, one per method. Each set of predictions 
of the models occupied a spot on the x-axis and the original pixellated validation dataset was 
on the left. The order of the models was the following: cubist, enet, glmnet, lasso, nnet, pcr, 

pls, rf, ridge, svmPoly, svmLinear2. The vertical axis corresponds to the CSH distribution: the 
axis was divided into parts of 5 mm of CSH and for each part the number of records was 

counted. 

The erasure of the tails of the distribution of the predictions could be considered 

either as noise filtering or a loss of information. If this was a loss of information, it 

might complicate future detections of extreme cases. The subject noise filtering 

should be treated with caution. It could be interesting to recall that the parcels 

were divided into pixels of 10 m of resolution and the value associated with each 

pixel was the median of the values recorded in its range. A filtering step had thus 

already been applied. However, the amount of CSH recordings for each pixel was 

not constant. It implies that the filtering was not made equally. Some extreme 

values may have thus come through this filtering. Another factor in the noise 

filtering/erasure of the tails of the distribution of the prediction is the imbalance 

of the class used to train the model: the cross-validation occurred based on the date 

of acquisition, and no restriction had been set on the number of values in each 

sub-class of CSH which resulted in a training of the models that could have 

promoted central values. The application of some down-sampling techniques 

could be relevant to enlarge the scope of predictions. 
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Another point related to the distribution of the residuals was the trend to over- 

or under-estimate the actual value. The distribution of the residuals showed no 

clear trend: the center of gravity seemed to be positive, and the tail made of the 

negative values seemed to be more important than the one made of positive values 

of residuals. Table 2-9summarises the percentage of positive and negative values 

for each model. The models tended to produce positive residuals, which meant 

that the predictions were globally higher than the actual value, except for the 

glmnet and cubist models. This indicated that there was a global over-estimation. 

However, this trend was not that pronounced for cubist and pls models. 

Table 2-9 : Percentage of positive (%>0) and negative (%<0) residuals values for each model 
tested. 

Category cubist enet glmnet lasso nnet pcr pls rf ridge svmPoly svmLinear2 

%>0 52.6 65.5 49.3 60.4 64.6 60.5 55.9 58.1 56.7 57.4 57.4 

%<0 47.4 34.5 50.7 39.6 35.4 39.5 44.1 41.9 43.3 42.6 42.6 

The analysis of the indicators of the quality of prediction and residuals at a pixel-

scale with a 10 m resolution led to the selection of four best models for predicting 

CSH: the cubist model using 160 variables, the glmnet model of the gaussian family 

based on 160 variables, the rf model based on 160 variables and the nnet model 

based on 47 variables. 
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2.7 Discussion 

The main objective of this work was to predict grass biomass in pastures on the 

basis of merged heterogeneous data sources of information, multiple variable 

transformations and a broad scope of ML methods. 

The first adaptation was the use of CSH measurements instead of real grass 

biomass. The acceptance of this proxy (CSH) in the scientific community 

[24,68,92,93] and the ease of acquiring these data were two of the reasons that led 

to this choice. Although it could have been possible to convert the CSH records to 

biomass with an equation provided for similar sward species and meteorological 

conditions by the manufacturer of the rising platemeter, the conversion was not 

made in order to prevent any interference with cut height. The experimental farm 

had records of biomass and linked differences of CSH before and after cutting since 

2015. Linear regressions were trained on this basis with multiple combinations of 

scenarios: the fixation or not of the intercept, the determination of the model for 

each parcel sampled or all of them, the use of dry or raw biomass (data not shown). 

Some seasonal trends stood out but no consistency in the coefficient could be 

observed within this dataset (the values of the regression coefficient ranged from 

50 to 1500 for CSH expressed in millimeters), nor with the equations provided by 

the seller (the pool of linear regression coefficient for the dry biomass was 

distributed around 150). Cudlin et al. [10] also faced a high variability in regression 

coefficient and intercept values. However, they had more observations of biomass 

and CSH combined—at least 24 for each regression compared to at best 10 records 

for each parcel for each period of the year in the case of the experimental farm. 

This means they could rely on their few significant relationships whilst the 

regression computed for the experimental farm was not resilient. Hakl et al. [17] 

also had results showing varying reliability and significance. The combination of 

these studies showed the sensitivity of the conversion from CSH to biomass, 

probably due to the floristic composition and, together with Ferraro et al. [94], 

their results underlined this sensibility to a seasonal effect whose expression might 

be more or less mitigated depending on the year and the location. Another aspect 

that could have been considered was the direct use of the biomass records 

mentioned before. However, they were acquired at a low frequency 

(approximately 49 days) and the bands mown to get this data were too small to 

occupy a full pixel scale. This means that the signal would have been noisy and 

blurred and the total amount of records would have been 239 since 2015, with 

some records acquired before the launch of S2 satellites. The use of CSH 

measurements as the observed variable was also motivated by the ease of 
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visualizing this data for farmers. Crémer [18] uses another meaningful example in 

his advice to farmers: the height of the grass compared to the ankle position on a 

boot. 

Nakagami (2016) and Cimbelli and Vitale (2017) had similar trends in the 

distribution of the heights: namely, a non-normal distribution with a lower 

threshold and a peak near the small values, although this was less pronounced in 

their data. This might be related to pasture management practices in Wallonia. To 

allow for optimal quality in the consumed herbage grazing management should 

aim to maintain a tight sward where perennial species dominate and have no time 

to flower and reproduce in a vegetative manner. Applying such management 

obviously has an impact on the lower representation of flower and seed heads of 

higher height in the database. 

Multiple sources of information were integrated into this work. The faint 

grouping effect of variables seen in the representation of the variables on the two 

first principal components (Figure 2-4) confirmed the non-redundancy of the 

information brought by the different groups of variables studied and their 

transformations. Another aspect that proved the relevance of integrating all these 

variables is the appearance of each group of variables, with or without 

transformation, at the beginning of the ranking of variables (Figure 2-6). S2 ranked 

first then meteorological data followed by S1 from the 50th onwards. Although a 

seasonal effect was observed in the attempts at conversion from CSH to actual 

biomass, the time markers inserted within the dataset did not seem to bring that 

much information given that the first appearance is in the 131st place. The use of 

one unique dataset of meteorological data could have led to the under-training of 

the models concerning these variables. The implementation of a spatialized 

meteorological dataset is considered. The use of the first band of S2 data and its 

rather higher position in the variable ranking indicate that there could be some 

kind of artifact/residual effect due to the pre-processing chain. 

The sources of information mentioned above were integrated into their raw and 

transformed forms. The relevance of this integration was confirmed in the 

representation of the variables according to their decreasing ranking score (Figure 

2-6). The “amplifying” transformations, i.e., cubic, exponential and square and the 

combinations of bands of S2 data were the most represented at the beginning of 

the ranking, although the other transformations also appeared, albeit less often. 

This means that the data transformations highlighted parts of the information. 

Multiple ML methods were trained on the dataset based on the hypothesis that 

some features used in the modelling could handle collinearity differently and 

detect different parts of information. The methods that could handle collinearity 
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were used in the variable selection. It appeared that all of them, apart from the 

PLS, detected the same order of importance of the variables which was translated 

by the high Spearman correlation of the rankings. Although this high level of 

similarity could ensure the validity of the models, the dependence of the residuals 

on the original CSH slightly detected on the validation dataset indicated that all 

the information explaining CSH was not completely taken into account. The most 

promising models were a cubist, a glmnet of the gaussian family, a rf and a nnet 

models based on S1, S2 and meteorological data. While we could not find any 

article using glmnet in the literature, random forest, cubist and neural networks 

were related to spectral enhancement and prediction of other target variables, like 

leaf area index (LAI) [48,84,85,86,87,88,89,90,95]. However, they were never used 

to predict biomass or CSH on pastures with S1 and S2 datasets. 

The hypothesis of pixellation of CSH data made at the beginning of this work 

was possible thanks to the geolocation linked to the measurements on the pastures. 

The objective of this fractionation of the study area was to increase the number of 

records that could be used during the training of the ML models, while limiting 

noise due to the allocation of different CSH for the same set of combinations of 

satellite variables. To enable posterior comparisons, the metrics of quality were 

computed both at the pixel scale and the parcel scale for the models developed at 

the pixel scale. This revealed that with and without aggregation, and whatever the 

aggregation method, the best-fitted models achieved better performances than the 

29 mm RMSE shown by Cimbelli and Vitale [25]. They were the only ones to 

provide similar metrics in a similar context, although their height corresponded to 

the mean height computed on a picture instead of a CSH. The pixellation and 

aggregation processes acted as a partial filter concerning extreme values: the 

pixellation led to the erasure of the most extreme values for some pixels with the 

median filter, and the aggregation did the same with a mean filter. 

One way to increase the size of the dataset could have been to create a 

continuum of CSH values within the parcels by using a kriging-like technique. 

However, this would mean that each record of CSH used would not have been 

completely independent from the others, given that a huge part of them would 

have been created as a combination of other measurements. Other types of gap-

filling techniques were omitted due to their inherent complexity: sets of records 

on cloudy days were discarded because they made the use of S2 data meaningless. 

A way to avoid this decrease in the dataset size would have been to use tiles 

acquired on the nearest dates and interpolate the values for each pixel. However, 

this would have required that the pastures would have witnessed no change in 

their management or condition: no removal nor addition of cows, nor any other 
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operation like fertilization or mowing. Another obstacle to this process is the long-

term archiving policy of ESA which complexified the acquisition of all relevant 

tiles, especially for the oldest ones. A similar problem of continuity in practices 

was dealt with using an approximation: the CSH data were not acquired exactly at 

the same time as S1 and S2 data. In this case, the closest tile in time was used, 

assuming that the frequency of satellite data acquisition is high enough to avoid 

major changes in pasture condition. 

The future application of the models will be their integration within a DSS for 

the use of Walloon farmers. The objective will be to provide the farmers with 

information regarding the quantity of feed available on pastures. This means that 

the aggregated value of the predictions at the pixel-scale will probably be used. 

Filtering of extreme values would reveal useful for this assessment but the 

information about the refusals will be lost. The global over- and underestimation 

trend shown in Table 2-9 should be inserted in the DSS and treated with caution: 

an imprecision inherent to the sampling method using the rising platemeter has to 

be kept in mind. That is, it measures heights with a count of clicks on a ratchet 

and then converts this to CSH. The conversion is a source of error, and McSweeney 

et al. [34] warn that this type of platemeter often under-estimates actual CSH 

height. Another source of the unreliability of the developed models is the lack of 

diversity in the farms that were used and more importantly in the diversity of 

pasture botanical composition, soil types, fertility and management practices. The 

use of a completely independent validation dataset offsets this bias and imitated 

the future behaviour of the models on other farms. 
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2.8 Conclusions 

The main objective of this work was to test the following hypothesis: the use of 

various sources of information and multiple transformations of these data as inputs 

for a broad range of machine learning methods may improve predictions of CSH 

in pastures. The combination of sources of information, data transformations, and 

multiple machine learning methods allowed the development of more precise 

models than previously described in the literature. Four models stood out: a cubist, 

a glmnet, a neural network and a random forest-based model. They were all based 

on Sentinel-1 sigma nought, Sentinel-2 reflectance and meteorological data. Their 

RMSE of independent validation was around 19 mm of CSH at the pixel-level. To 

better train the models, more records will be gathered in the years to come, in 

Wallonia and possibly internationally. The models trained through this 

framework will be used to establish a tool to help farmers in their daily decision 

making. It is also planned to enable prediction at a larger scale, include an extreme 

case detection in the predictions and sampling the places where the extreme cases 

did occur to increase the resilience of the models. Moreover, for both the DSS and 

large scale prediction, a combination of the outputs is considered, given that the 

similarity of distribution does not reflect the different repartitions of the 

predictions. 
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3 Chapter 3 Platform development 

3.1 Outline 

The main topic of this chapter is the creation of a platform predicting the 

compressed sward height at the scale of Wallonia with a sub-parcel resolution, i.e. 

based on a pixel division. The creation of the platform and the verification of the 

behaviour of the locally trained models once applied at a regional scale were 

detailed in the following article. 

 

3.2 Abstract 

The use of remote sensing data and the implementation of machine learning 

(ML) algorithms is growing in pasture management. In this study, ML models 

predicting the available compressed sward height (CSH) in Walloon pastures based 

on Sentinel-1, Sentinel-2, and meteorological data were developed to be integrated 

into a decision support system (DSS). Given the area covered (>4000 km2 of 

pastures of 100 m2 pixels), the consequent challenge of computation time and 

power requirements was overcome by the development of a platform predicting 

CSH throughout Wallonia. Four grazing seasons were covered in the current study 

(between April and October from 2018 to 2021, the mean predicted CSH per parcel 

per date ranged from 48.6 to 67.2 mm, and the coefficient of variation from 0 to 

312%, suggesting a strong heterogeneity of variability of CSH between parcels. 

Further exploration included the number of predictions expected per grazing 

season and the search for temporal and spatial patterns and consistency. The 

second challenge tackled is the poor data availability for concurrent acquisition, 

which was overcome through the inclusion of up to 4-day-old data to fill data gaps 

up to the present time point. For this gap filling methodology, relevancy decreased 

as the time window width increased, although data with 4-day time lag values 

represented less than 4% of the total data. Overall, two models stood out, and 

further studies should either be based on the random forest model if they need 

prediction quality or on the cubist model if they need continuity. Further studies 

should focus on developing the DSS and on the conversion of CSH to actual forage 

allowance. 
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3.3 Keywords 

pasture; decision support system; machine learning; remote sensing; Sentinel 

satellite; meteorological data 

3.4 Introduction 

The first working group of experts of the Intergovernmental Panel on Climate 

Change recently highlighted the importance of a greater understanding of 

greenhouse gas emissions in pastures [1]. Some experts have claimed that pastures 

are an unmissable opportunity to mitigate carbon dioxide (CO_2), methane 

(CH_4), and nitrous oxide (N_2 O) emissions [2]. Others have underlined the 

importance of grasslands in the assessment of biomass stocks and subsequent 

carbon storage [3] and asserted that carbon sequestration could be improved 

through better grazing management [4]. Besides these climatic considerations, [5] 

underlined a political interest as the European Union has deployed greening 

policies, including significant usage of pastures ([6–9]). These authors have also 

pointed out other key motivations, such as farmers’ awareness of the preservation 

of landscapes and consumer perceptions ([5,10]). Moreover, grasslands represent a 

significant part of the global landmass (assessed as representing between 26% [11] 

and 40% [12]). In southern Belgium, 42.1% of the total cultivated area is dedicated 

to grassland, and more than 85% of these pastures are grazed [13]. All these reasons 

lead us to conclude that there is a strong positive economic advantage in grazing 

in appropriate climates (e.g., [14,15]), although some studies tend to be less 

affirmative, especially concerning grazing in the Netherlands [16] or Greece [17]. 

Unfortunately, as mentioned by [18,19], grass-based livestock ruminant 

production has not completely leveraged the advances in precision technologies to 

better understand and manage pasture, probably due to the constraints inherent 

in outdoor applications. [20] included remote sensing, global positioning systems 

(GPS), geographic information systems (GIS), and the Internet of Things (IoT), 

among the underlying technologies. A short, up-to-date review of the literature 

on the most relevant models to help the understanding and management of 

pastures highlighted some trends (Annex/SM 5.1). There is an increased use of 

remote sensing, as established in [21]. A progressive transition from mechanistic 

models to statistical/machine learning models is also observed with a 

diversification of their structure. Most papers using remotely sensed datasets stress 

the advantage of detecting the spatial heterogeneity of pastures, which, as 

underlined by [22], is a key component of grazing dynamics. 
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Given the multiple scientific, political, and economic interests of pastures and 

the technological opportunities available, there is an interest in developing a 

decision support system (DSS) from a prediction model. However, this has rarely 

been attempted. Only 11% of models mentioned in Annex/SM 5.1 are 

implemented into a DSS. This shortfall might either be located at the production 

level due to the poor performances of the prediction models, as suggested in [23], 

or at the user level. Sometimes the DSS design and the choice of information 

delivered by this application did not seem to match the needs of farmers fully [24]. 

Furthermore, there is a time lag induced by the information overload inherent in 

the integration of new data sources and data treatments, and that hinders the 

actual decision making [25]. Therefore, proper attention should be paid to data 

integration and transfer, as underlined in [24]. For the models that reach the DSS 

step, the underlying structure and resulting user application should be cheap, 

rapid, and provide relevant information to increase the interest and adoption rate 

by farmers. 

Recently, to address the under-exploitation of the recent advances in sensor and 

machine learning algorithms, we have developed machine learning models to 

predict the compressed sward height (CSH) using cheap data available at a large 

scale, including Sentinel-1 (S1) and Sentinel-2 (S2) satellite images and 

meteorological data. Models with a prediction quality around 20 mm [26] present 

the advantage of producing pixel-based predictions, which enables the 

consideration of spatial heterogeneity as proposed by [22]. We intend to build a 

DSS based on these models. The use of CSH in the context of decision making was 

already included in decision making as an input feature in DSS, such as GrassQ and 

PastureBase Ireland. To meet the speed criterion and to decrease the 

computational power requirement, in this study, we focused on implementing and 

analyzing the usefulness of a platform that handles the prediction of CSH at the 

scale of Wallonia. Furthermore, the platform was designed to handle data acquired 

at different times. We assumed that predicting the available CSH at such a large 

scale with a fine temporal and spatial resolution would require greater time and 

computational power than would be acceptable for the application’s end users. 

Therefore, this platform is intended to be the data provider for a future DSS that 

would handle the translation of the transmitted information into relevant metrics. 

Another major innovation is that, to our knowledge, other DSS primarily rely on 

mechanistic and empirical models and then try to integrate the remotely sensed 

data, while our goal is to implement integration at the core of the DSS. Moreover, 

we did not find any DSS or DSS data provider that could be easily and rapidly 
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adapted to changes either in the model structure or needs of the user, whereas this 

platform can offer this modularity as recommended by [27]. 

A last prospect highlighted by the process of implementing the prediction 

platform was the ability to study the behavior of the models that are trained and 

validated with relatively limited datasets once they are applied to huge databases. 

This led to a refinement of the selection process for the most relevant model to be 

used as the data provider for future DSS and other applications, depending on the 

most critical aspect: accuracy or temporal continuity. 
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3.5 Material and methods 

3.5.1 Study area 
The models predicting CSH were primarily developed with datasets covering 

areas located in the southern part of Belgium [26]. So, the same geographical region 

was used to test the prediction platform. To tackle different meteorological 

scenarios, the considered grazing periods (from April to October) ranged from 

2018 to 2021. 

3.5.2 Global design 
The global architecture of the prediction platform, developed with both R v4.1 

[28] and Python 3.6 [29], is summarized in Figure 1. For the sake of completeness, 

it should be noted that this platform was designed with a batch processing 

approach. This choice is in opposition to a streaming approach that is not suited 

for the combination of data with different acquisition frequencies. The R and 

python packages, as well as the other programs used, are referenced in Table 3-1. 

The Python scripts were used to configure and launch the R scripts in independent 

environments to avoid memory leaks that had happened when developing only in 

R. 

Table 3-1 : List of software and package used 

R Python Other 

Software/Package Version Reference Software/Package Reference Software/Package Version Reference 

R 4.1 [28] Python v3.6 [37] 

SNAP 

geoprocessing 

toolbox 

8.0.0 [46] 

sf 1.0–2 [29] subprocess [38] 7zip  [47] 

data.table 1.14.0 [30] os [39]    

raster 3.4–13 [31] time [40]    

future 1.21.0 [32] glob [41]    

future.apply 1.7.0 [33] datetime [42]    

caret 6.0–88 [34] re [43]    

dplyr 1.0.7 [35] sentinelsat [44]    

e1071 1.7–8 [36] pandas [45]    
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Figure 3-1: Design of the prediction platform 

3.5.3 Data acquisition 
The acquisition of remote data is illustrated in blue in Figure 3-1. 

The S1 constellation is a set of two satellites, S1A and S1B, collecting space-borne 

synthetic-aperture radar data in the C-Band. Data was accessed from the European 

Space Agency’s (ESA) API [48] for S1 with the help of the Sentinelsat Python 

package; the S1 data were retrieved in the form of GRD products. Both VV and 

VH polarization were used. The 37, 88, 110, and 161 relative orbits were used as 

they offer good coverage of the studied Walloon area. There are discussions in the 

scientific and remote sensing community about the speckle effect and the need to 

include the coherence product to get better and more consistent outputs. The 

drawback of this type of data handling is the need to consider the whole parcel, 

and the changing nature of these parcels makes this task challenging. In order to 

include improvements, the platform presented in this study was made to be 

modular regarding the models and the data treatment workflow. Regarding the 

consideration of the neighboring pixel values, [49] suggested that stacking 

convolution could help algorithms detect multi-scale effects. This would translate 

into a future evolution of the pretreatments, for the model training process and 

the platform, into a spatial convolution and the addition of features in the models. 
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The S2 constellation is a set of 2 satellites, S2A and S2B, collecting 

reflectance/optical data over 12 spectral bands. Theia’s API [50] was accessed with 

the help of the theia_download.py script [51] and provided bottom-of-

atmosphere/top-of-canopy reflectance products, also known as level-2A (L2A) 

products. The tiles covering the extent of Wallonia were: T31UDS, T31UER, 

T31UES, T31UFQ, T31UFR, T31UFS, T31UGR, and T31UGS. The main reason for 

the change in data provider was that the MAJA algorithm implemented behind 

Theia’s API allows L2A products based on the exact computation of correction 

formulae, instead of using the lookup-table methodology underlying the L2A 

products acquired from the ESA API. Moreover, downloading past data was much 

easier using Theia’s API compared to the difficulty generated by the long-term 

archiving policy of the ESA. 

In our previous article, we used meteorological data from a meteorological 

station located on an experimental farm [26]. To be able to predict grass growth 

over the entirety of the Walloon Region, it was more relevant to consider 

meteorological data covering all of this geographical area. So, the Agromet 

platform [52] was used and provided data, related to the air, soil, and under leaf 

temperatures (°C), the wind speed at 2 meters above soil level (m/s), and its 

direction, solar radiation (J/cm2), precipitation (mm), relative air humidity (%), 

and the potential evapotranspiration (mm/day), computed according to the 

FAO/Penmann-Monteith formula [53]. The data with the corresponding station 

identifier geographically localized were retrieved under .csv files from the day 

before the launch of the acquisition to ensure a complete recording of data within 

a day. The change in the data provider compared to the one used in [26] was 

motivated by a finer representation of Wallonia than was possible with one 

meteorological station, the standardization of the acquisition conditions, the near 

real-time availability of the information, and the convenience of retrieving the 

data through an API. Compared to [26], another change was made concerning the 

meteorological data. The choice between the previous computation of the degree-

days, also used by [54], and the method currently proposed, also used by [55,56], 

was based on questioning the meaning of this variable. The 0 °C base temperature 

referred to the ability to grow in winter, and the 35 °C peak approximated the 

temperature of the diminishing activity of RuBisCO activase [57,58]. The lower 

threshold could be queried because some plants do not tolerate 0 °C, but this 

temperature was kept as it represents the water freezing point and, therefore, the 

limit of water availability. 
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3.5.4 Data pre-processing 
The data pre-processing is illustrated in green in Figure 3-1. Before being usable 

by the models, the S1 GRD images need to be geocoded (i.e., properly projected 

from SAR geometry to “classical”/GiS usable geometry). The framework presented 

by [59] and based on the use of the Sentinel-1 Toolbox as a part of the SNAP 

software v8.0 [46] was applied to each tile. The S1 data was then converted using 

the backscatter coefficient (𝜎0) and stored in .img raster files. 

To ensure the quality of S2 data, some filters were applied: S2 tiles having more 

than 95% “NoData” values in the pixels, 95% saturated pixels, or 95% cloud-

covered pixels were discarded to avoid biased information entering the data 

treatment chain. Furthermore, these “NoData”, “Saturation”, and “Cloud mask” 

filters were applied to the remaining tiles. Another filtering step was to remove 

the values inferior or equal to zero and superior to 1, given that the reflectance is 

supposed to be within the [0;1] range. The S2 data were then transformed into .tif 

raster files. 

The meteorological data initially recorded on a minute basis were aggregated at 

the day level and recomputed to obtain the minimum, mean, and maximal 

temperature, the cumulative sum of the solar radiation, the cumulative sum of 

rain, wind speed, relative air humidity, and evapotranspiration. The degree days 

were computed on a 0 °C basis with an upper limit of 35 °C. This is translated in 

the following pseudo-code: 

If(((Tmax+Tmin)/2)>Tbase): 

 If (((Tmax+Tmin)/2)<Tup): 

   DJ_00=((Tmax+Tmin)/2)-Tbase 

 Else: 

  DJ_00=Tup 

Else: 

 DJ_00=Tbase 

where Tbase is the base temperature (here 0°C), Tmax corresponds to the 

maximum temperature of the day, Tmin is the minimum temperature of the day, 

and Tup is the upper limit temperature (here 35 °C). Moreover, the rolling sum of 

precipitation and degree-days over the previous 3, 7, and 15 days was also 

computed for each acquisition date. The meteorological data were incrementally 

added to a .csv file that acts as a database. 

3.5.5 Spatial standardization 
The manipulation of spatial data requires that special attention be paid to the 

format and referencing of data. To ease reference processing, the S1 and S2 datasets 
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were spatially standardized according to the same reference as illustrated in yellow 

in Figure 3-1. The spatial reference was obtained as follows. First, Walloon farmers 

have an obligation to report the parcels they use to the authority and their 

allocations. These data are then anonymized and available on the WalOnMap 

platform [60]. For this study, the parcel assignment declared for 2018 was used and 

was composed of 194,657 pasture parcels stored in a shapefile polygon file. A raster 

extending over the whole Walloon area with a resolution of 10 m was created 

using QGis v3.20.2 [61]. Parcels were identified and a unique identification 

number was attributed to each pixel and both were encoded as integers. Finally, 

this gridded version of the parcels was projected into EPSG 32631 and saved in a 

.tif file using integer encoding to avoid uncertainties on the high pixel values. 

For this study, the spatial standardization was based on the Walloon parcel 

assignment realized in 2018. In theory, it would be optimal to use the parcels 

reported for the year of prediction. However, some constraints prevented this: 

parcel repartition is uploaded one year after the actual report, and some parcel IDs 

change. Thus, it might be relevant to discuss the use of the last repartition 

available. The substantial amount of permanently grazed swards, i.e., 89% of all 

the Walloon pastures were permanent [62] (for more details, see Annex/SM 3), 

reinforced the choice of ignoring this source of complexity. This implied that some 

land patches might either be predicted, although they are not supposed to be, or 

the opposite. The future DSS should therefore include a step to determine the 

parcels that farmers want to monitor. The inclusion of the pixel ID should ease 

this process. 

The standardization step consisted in projecting and resampling each S1 and S2 

tile independently into a copy of the reference spatial dataset. The resulting raster 

datasets were forced into a tabular dataset where each row represented a pixel, and 

the columns corresponded to the pixel ID, the parcel ID, and the S1 or S2 data. 

Each converted tile was saved in a .csv file 

To cover the area of Wallonia, it was necessary to define how the meteorological 

stations impact each pixel. A simple assumption was chosen: the meteorological 

data for a pixel corresponds to the data acquired at the nearest station. Therefore, 

Voronoï polygons were drawn between the meteorological stations. To cover the 

entirety of the Walloon Region with these polygons, artificial stations were placed 

far away from the Walloon borders. After making sure that these stations did not 

appear inside the area of Wallonia, the polygon layer was cropped according to the 

actual limits of Wallonia with a 2 km buffer to include the pasture parcels that 

were shared between the 2 countries. The resulting spatial file was a polygon 

shapefile with the station ID. Then, an intersection with the parcel shapefile was 
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performed to generate a correspondence table that links the parcel IDs to the 

meteorological stations. In cases of multiple correspondences, only the first 

appearance was kept. 

3.5.6 Merging datasets 
The merging of datasets is illustrated in grey in Figure 3-1 and the precise 

workflow is shown in Figure 3-2. The first steps concern the joining of S1 and S2 

data from the pixel identifier. First, the dates when the S2 tiles were acquired were 

identified. These dates were compared to those present in the joined database. 

Each date not yet treated was then processed one at a time. For the first date, all 

the S1 and S2 tiles acquired on the same day were fetched and joined based on the 

pixel identifier. The joining did not require an identifier match between the two 

datasets; therefore, parts of the joined dataset were filled with only S1 or S2 data. 

Then, the data acquired one day before were also retrieved and used to fill the 

remaining empty pixels. To mark the time lag between the datasets, a flag 

containing this time lag (dt) was included in the file. This filling continued until 

four days before the date of interest had been obtained. This methodology implies 

that there could be different dts for S1 and S2 records for one pixel. The joined 

dataset was then saved in the joined database, and the process was repeated for 

each date not yet gathered. 
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Figure 3-2: Workflow of the joining process 

Once S1 and S2 datasets were joined, the addition of the meteorological data was 

realized from the original S2 date. 

3.5.7 Model 
Although we have already developed models predicting CSH [26] at the pixel 

level, new models were retrained due to the availability of more reference CSH 

values and some changes in the data treatment like the computation of degree days 

on a 0–35 °C basis, and the removal of the feature transformation related to band 

01 of the S2 dataset due to the absence of this band in the dataset coming from 

Theia. Moreover, a new type of model was tested: an extreme gradient boosting 

variant (xgbTree). The feature selection process did not change from [26]. The 

hyperparameters used for every tested model are summarized in Table 3-2; the 

detail of the hyperparameters explored is presented with other prospects related 

to the model creation in Annex/SM 2. They were selected from the range of values 

published in [26] through the application of k-fold cross-validation based on the k 

dates of acquisition to avoid operator and meteorological data leakage. An 

alternative could be to perform a 10-fold stratified validation based on the dates to 
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increase the range of data on which the model was trained, but with the drawback 

of data leakage and the induced risk of over fitting. The accuracy of the models 

was assessed through computation of the root mean squared error (RMSE) for the 

hyperparameter tuning cross-validation, for the actual calibration with the best set 

of hyperparameters, and for the validation applied on an independent dataset, here 

consisting of data collected on a different farm. The validation ratio to 

performance deviation (RPD) was also computed. Moreover, the mean, standard 

deviation of the prediction, and percentage of underestimated values from the 

validation set were also used to assess the quality of the models. This percentage 

corresponds to the ratio of the number of underestimated values to the total 

amount of values. The calibration dataset was composed of 9376 records collected 

on 2 farms between 2018 and 2020. The validation dataset contained 871 records 

collected on another farm in 2019. 

Table 3-2: Hyper-parameters tested and final values for the models used. 

Model Parameter 
Final Hyper-Parameter 

Value 

xgbTree 
Nrounds; max_depth; eta; gamma; colsample_bytree; 

min_child_weight; subsample 
200; 6; 0.1; 1; 0.5; 1; 1 

Cubist committees; neighbors 10; 0 

Random Forest 

(RF) 
mtry 88 

glmnet Alpha Lambda 1; 0.1 

nnet Size; decay 3; 0.01 

 

3.5.8 Prediction 
Once the whole dataset was gathered in the form of a table whose rows are the 

records representing one pixel and the columns are the features needed by the 

built model, the dataset was split into subsections of 100,000 rows to bypass the 

internal memory limitations of R. The following process was applied in parallel to 

these chunks: (1) check that all values are actual numbers (i.e., not logic); (2) apply 

all the required feature transformations; (3) perform the prediction. Due to the 

different handling of the missing values between the models, special attention had 

to be paid to the way those values were transferred or not. The resulting 

predictions were then gathered in a .csv file containing the parcel identification, 

pixel identifier, S1 and S2 data, as well as the meteorological data and the 

predictions. Each .csv file corresponds to one date. 

3.5.9 Analysis of the predictions 
The analysis of the prediction consisted of a visual check and statistical analysis. 
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The visual check required that the tabular data be transformed into raster data. 

This was achieved through a five-step process: (1) create a vector of “not a number” 

(NA) values with the number of cells in the Walloon pastures raster; (2) fill the 

places where there were predictions using the pixel ID; (3) convert the vector into 

a matrix respecting the fill order used in the raster; (4) stack this matrix with the 

original Walloon pastures raster; and (5) write the raster. The visual checks were 

performed with QGis and aimed to observe the global predicted CSH evolution 

and the occurrence of abrupt predicted CSH changes in parcels. 

The quantitative approach consisted of (1) the study of the performances of the 

model in calibration, cross-validation, and validation; (2) the number of 

predictions at the parcel or pixel scale depending on the year and the restriction(s) 

applied in the joining process; (3) the variability of the CSH predictions performed 

at a large scale; and (4) a temporal analysis. 

The analysis revealed criteria not used in [26] that could be relevant to assess the 

quality of the models and their appropriateness to the platform’s ends. All the 

criteria were: the RMSE of validation, RPD of validation, the trend to over-/under-

estimate, sensitivity to the time-lag inclusion, production of out-of-range values, 

temporal stability (changes in the values of the mean/standard deviation over the 

time and appearance of transient spikes), and the spatial heterogeneity of the 

predictions. Each model was given a ranking for each criterion, and the sum of the 

ranking gave the total ranking of the model. The exact relationship between the 

criterion and the ranking is that lower validation RMSE implies a lower ranking; 

idem for validation RPD; an over- or underestimation ratio closer to 50% implies 

a lower ranking; the less sensitivity to the time lag inclusion, the lower the 

ranking; the less production of out of plausible range values, the lower the ranking; 

the better the temporal stability, the lower the ranking; and the lower the spatial 

heterogeneity on known homogeneous parcels, the lower the ranking. 
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3.6 Results and Discussion 

First, we will present the constraints related to the prediction process and the 

interest in the proposed solution to increase the frequency of data acquisition. 

Then, we will discuss the data choices and changes, the practical implications of 

the data fusion, the newly trained models’ accuracy, and their prediction 

relevancy. 

3.6.1 Practical constraints 

3.6.1.1 Data availability 
The interest in the developed prediction platform is strongly related to its ability 

to provide the farmer with reliable information on a routine basis. The prediction 

models proposed in this paper used three kinds of raw information: S1 and S2 

satellite images and meteorological data. The data availability was critical as it 

directly impacts the potential prediction frequency. As the prediction model used 

daily aggregated meteorological data, the prediction of CSH can only be made after 

the test day. As the Agromet API provides meteorological records in real-time, if 

the day is not yet over, the aggregated value cannot reflect the entirety of the day. 

For this reason, we had to restrict the data download to the day before the launch. 

So, the platform should be launched after midnight to provide close to real-time 

CSH predictions. However, this is the easiest constraint to solve in terms of data 

availability. 

3.6.1.2 Frequency of acquisition 
The biggest problem is the acquisition of S1 and S2 data. The first part of this 

problem is the S2 revisit frequency. Theoretically, at the equator, each satellite has 

a revisit frequency of 10 days, leading to a total revisit frequency of 5 days when 

accounting for both satellites. Given the latitude of the Walloon Region, the 

satellite orbits partly cover each other. This leads to a part of Wallonia (the centre 

in this case) witnessing acquisitions more often than the rest. This asynchronous 

acquisition of S2 produced a requirement to account for spatially partial and 

asynchronous acquisitions. Furthermore, another complex factor was the 

acquisition frequency of S1 and the coverage of those tiles that were not 

synchronized with the S2 tiles. The last main constraint on the acquisition 

frequency was the presence of clouds that decreased the availability of S2 data. 

This led to an unbalanced dataset representation of S1 and S2 datasets, although 

the difference in the number of dates of acquisition is not in favour of one or the 

other dataset (Table 3-4). The huge increase in the number of S1 tiles used in 2021 
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is, in fact, a lack of tiles for the previous years; the long-term archiving policy of 

the ESA made the acquisition of old tiles difficult. 

3.6.1.3 Hardware and time 
Besides data availability, another constraint is the time needed for the prediction 

computation. Despite using up to 16 CPU cores and 250 Gb of RAM, the platform 

requires up to 5 hours to deliver predictions at the Walloon scale for one day if the 

data acquisition is particularly complex. This reinforces the need for launching the 

platform in the middle of the night. Moreover, consequent storage is needed: if no 

cleaning of the temporary files is performed, the storage required rapidly adds up. 

In the case of this study, for monitoring four years with missing dates, we used 

around 8 TB of disk space without accounting for the temporary files. 

3.6.2 Model accuracy 
The feature selection process led to a different number of features selected in this 

study compared to [26], where the nnet model was based on 47 variables, and the 

other most promising model on 160, while the newly trained model included 

either the 143 or 158 most promising features (Table 3-3). The order of importance 

of the features slightly changed and more details are provided in Annex 9.3. The 

main takeaway is that this variable importance ranking indicates a majority of 

meteorological and S2 variables in the most informative features, therefore, the 

choice of the S2 acquisition date as the key point for the gap filling seems relevant 

as a small shift in these variables might induce a higher change in the final values. 

The RMSE performances observed during the hyper-parameter tuning cross-

validation, calibration, and validation processes (Table 3-3) were similar to the 

values reported in [26]. Furthermore, the smaller calibration RMSE values 

observed for RF and xgbTree were due to their high capability to fit to the dataset, 

and the difference in the validation RMSE for these models indicates a potential 

overfit. Although the RMSE of calibration and validation seem high in this 

configuration, the high value of the RMSE of cross-validation and the inherent 

variability (standard deviation) show that we should expect a higher error than 

the error of validation when confronting the models to different conditions, and 

that a fine tuning of the hyper-parameters was required, especially for the Cubist 

model. 

The validation RPD were similar between the models, although it seems to imply 

that the glmnet model could better reflect the variability of the validation dataset. 

The mean and standard deviation of the predicted values calculated on the 

validation set suggest a global under-estimation of the actual CSH compared to the 

original mean and standard deviation validation CSH values that were 57.1 ± 

5.23 mm. This trend is also highlighted by the percentage of under-estimated 
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values that ranged from 57.52 to 78.07 %. It seems that the cubist model shows a 

better respect of the original distribution of the data whilst nnet under-predicts a 

lot. This trend to under-estimate is to compare to the impact of the rising 

platemeter used. As shown in [63], the ratchet-counter RPM used to calibrate our 

models tends to under-estimate the actual height on hard supports. Therefore, it 

should be expected the actual height is higher than the predicted one. 

Table 3-3: Performances of the newly trained models with the new data and feature 
definition. (RMSEcv = cross-validation root mean squared error (RMSE); RMSEcal = 
calibration RMSE; RMSEval = validation RMSE; RPD = validation standard deviation 

(SD)/validation RMSE) 

Model 
N 

features 

RMSEcv (mean 

+- SD) [mm 

CSH] 

RMSE cal 

[mm 

CSH] 

RMSE val 

[mm 

CSH] 

RPD 

val 

Mean+-SD 

prediction 

(validation set) 

[mm CSH] 

Percentage of under-

estimated values 

(validation set) 

Cubist 158 23.77±16.20 17.61 17.91 0.85 53.69±9.95 57.52% 

Glmnet 

(Gaussian) 
158 22.48±7.00 21.59 15.15 1.01 53.24±6.85 63.15% 

Nnet 158 24.08±7.26 23.11 18.67 0.82 46.71±6.36 78.07% 

RF 143 22.39±5.55 7.08 17.68 0.86 50.56±8.67 66.70% 

xgbTree 143 21.90±6.10 10.68 17.93 0.85 50.16±9.38 66.70% 

 

The RMSE performances observed during the hyperparameter tuning cross-

validation, calibration, and validation processes (Table 3-3) were similar to the 

values reported in [26]. Furthermore, the smaller calibration RMSE values 

observed for RF and xgbTree were due to their high capability to fit the dataset, 

and the difference in the validation RMSE for these models indicates a potential 

overfit. Although the RMSE of calibration and validation seems high in this 

configuration, the high value of the RMSE of cross-validation and the inherent 

variability (standard deviation) shows that we should expect a higher error than 

the error of validation when confronting the models to different conditions and 

that a fine tuning of the hyperparameters was required, especially for the Cubist 

model. 

The validation RPD was similar between the models, although it seems to imply 

that the glmnet model could better reflect the variability of the validation dataset. 

The mean and standard deviation of the predicted values calculated on the 

validation set suggest a global underestimation of the actual CSH compared to the 

original mean and standard deviation validation CSH values that were 57.1 ± 5.23 

mm. This trend is also highlighted by the percentage of underestimated values that 

ranged from 57.52 to 78.07 %. It seems that the cubist model shows better respect 

for the original distribution of the data, whilst nnet underpredicts a lot. This trend 

to underestimate is compared to the impact of the rising plate meter used. As 
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shown in [63], the ratchet-counter RPM used to calibrate our models tends to 

underestimate the actual height on hard supports. Therefore, it should be expected 

that the actual height will be higher than the predicted one. 

3.6.3 Data fusion 

3.6.3.1 dt tolerance 
To improve the prediction frequency and the area covered, a time tolerance was 

applied when merging S1 and S2 data, consisting of considering data acquired 

within the previous four days. The reference data for this merging was the S2 

acquisition date, hence the similarity between the number of dates covered and 

the number of dates of S2 acquisition in Table 3-4. To assess the improvement in 

terms of data acquisition (i.e., an increase in the quantity of data and dates 

covered), we compared the number of available dates with a delay of 0 days (dt0) 

and up to 4 days (all dts) (Table 3-4). This tolerance allowed the number of 

available dates to increase more than 2.5 times (from 104 without data 

augmentation to 276 with the gap filling) during the grazing period (214 days) if 

we consider the whole 4 years studied. The global frequency acquisition reached 

a mean value of 4 days. This improved temporal coverage can be explained not 

only by the merging tolerance used but also by the considered constraint for cloud 

presence. If we strengthened the condition of the cloud presence, described in the 

metadata description, to 25% to exclude a tile, 138 dates could be available for the 

whole studied period instead of 276 obtained when permitting up to 95% of 

cloudy/shadow area before excluding the tiles. This was possible because the 

prediction was made on a pixel basis and a strict application of the cloud mask to 

remove any biased (flagged as cloudy/shadowed) pixel. However, assuming a 

constant acquisition of 4 days is not true, as marked differences were observed 

between years (Table 3-4). Thanks to the merging tolerance, the number of 

available dates per year ranged from 49 to 86, and this acquisition was also not 

constant within a year (Figure 3-3). This is mainly explained by the meteorological 

conditions. Gaps in the prediction frequency correspond to drops in the mean daily 

solar radiation received on all the Agromet meteorological stations (Figure 3-4). 

The difference between the years matches reports from the Royal Meteorological 

Institute of Belgium [64], where some seasons were more humid than the average 

of the last 30 years, while others were significantly drier than the 4 years observed. 

The same is true for global temperatures. 

  



Development of machine learning algorithms fed by meteorological and remote sensing data to 

assess the available grass on pastures. 
 

 110 

Table 3-4: Descriptive statistics of the available dataset. (*) the number of available dates = 
number of dates for S2 data acquisition 

Category 2018 2019 2020 2021 

N dates without time delay 29 30 19 26 

N dates* 86 71 70 49 

N records/pixel 40.43 26.27 37.17 19.16 

N records 1,611,879,463 1,047,054,399 1,481,945,618 764,039,165 

Total amount of S1 tiles used 87 95 94 219 

N dates acquisition S1 75 79 57 68 

Total amount of S2 tiles used 352 276 298 164 

N dates acquisition S2 86 71 70 49 

Figure 3-3: Repartition of the predicted dates throughout the years 

In the raw prediction files, there was NA in the columns related to the time lag 

and the predictions. The number of records affected by at least one NA was 

significantly higher than the number of not affected records (e.g., in 2018, there 

were 3,118,009,467 records in total, compared to 1,611,879,463 full records). This 

mismatch was due to a non-exhaustive combination of the edgy pixel position 

(relative to the satellite orbits), poor weather, out-of-range/missing input values, 

or even absence of data acquisition, and part of the pixels filled with data from one 

dataset and not from the other. This led to partly incomplete databases. The 

amount of NA was smaller in the S1-related data, mainly due to the lower 

sensitivity to weather perturbations. Given the models currently implemented, the 

incomplete pixels could not be considered as inputs of the models to produce 

reliable predictions; hence they were excluded. 
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3.6.3.1 N Parcels and N Pixels 
Even if the number of dates changed between the years studied, the numbers of 

parcels and pixels represented were equal (N = 194,364 and 39,866,540, 

respectively). This is expected as the covered area is the same, although the small 

number of not predicted parcels might indicate minor flaws in the coverage of the 

area of interest. However, the changes in the number of records per year implied 

different coverage within the year. The number of records per pixel ranged from 

19.16 to 40.43. Although the number of tiles used for the last year was greater than 

for the other years, the number of records did not increase proportionally. This is 

due to the filling methodology applied that implied the discarding of past records 

if there was a temporally close record available. 

Figure 3-4: Data acquisition dates (points) and their link to the mean daily solar radiation 
(line and shown y values, in J/cm²) received on all the Agromet stations. 

3.6.3.2 Impact of the merging tolerance 
The goal of the gap filling is to produce maps that are as complete as possible. 

We decided to only work with past data to ensure that the platform could be 
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deployed on a real-time basis. The main idea was that the most reliable 

information about a parcel should be the last time data were acquired and with a 

revisit frequency between 3 and 5 days. A time window of 4 days was found to be 

the best option. The impact of the merging tolerance on the predicted CSH was 

dependent on the satellite platform and the year considered (as illustrated in 

Annex/SM 5), especially for higher time lag windows; the increase or decrease 

(depending on the model) of the range of predictions was more pronounced. This 

underlines the need for caution about the application of this gap filling 

methodology. 

However, this does not mean that the predictions were completely biased. Using 

this gap filling method increased the available data between 2 and 3 times for the 

S1 data and between 2 and 1.5 times for S2. The breakdown of the percentage of 

data added by the increment of the time lag tolerance is shown in Table 3-5. It 

appears that most of the filled data were acquired between 0 and 2 days before the 

date of the merging (which corresponds to the most stable predictions), and the 

fourth-day consideration brings only a limited amount of information (maximum 

4%) which corresponds to the most unreliable data. Therefore, there are two 

possible interpretations of the changed scope of prediction values observed at the 

four-day time lag repartition of prediction: either there are so few values that the 

entire scope of the values possible could not be represented, or the inclusion of the 

fourth day diminishes the reliability of the predictions—although this second 

hypothesis should be mitigated by the difference in impact between the models. 

The increase in the use of older information seen in 2020 and 2021 might be due 

to the poorer meteorological conditions of these 2 years. 

Table 3-5: Percentage of data acquired within a given time lag (dt) from the computed date. 

Time delay (days) 
S1 S2 

2018 2019 2020 2021 2018 2019 2020 2021 

0 31.61% 38.35% 33.06% 43.72% 47.44% 50.17% 52.46% 59.84% 

-1 36.17% 40.05% 26.17% 32.01% 23.31% 19.39% 20.86% 12.92% 

-2 20.66% 14.83% 18.74% 20.87% 7.12% 6.48% 9.56% 5.26% 

-3 7.71% 3.84% 18.01% 0.06% 21.98% 23.87% 17.05% 21.82% 

-4 3.85% 2.93% 4.02% 3.34% 0.15% 0.09% 0.07% 0.16% 

 

The number of predictions that can be made over each grazing season was 

increased by better temporal and spatial coverage. Indeed, using data in the past 

for S1 and S2 completion led to the retrieval of data on areas that were not covered 

at the specific date of acquisition. This type of partial recompletion is partly due to 

the satellite coverage of the Walloon extent. Indeed, in the case of S2, there are 

two acquisition orbits. Therefore, if the acquisition through these orbits were close 
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enough temporally speaking, the past data re-usage implies an increase in the level 

of spatial completion. However, it does not always happen, and another related 

phenomenon induces data augmentation; these two acquisition orbits partly 

overlap, leading to better coverage of these areas and, thus, of some parcels. The 

effect of this data augmentation can be seen in Figure 3-5, which illustrates the 

distribution of the number of times a parcel is represented based on the actual 

number of occurrences of each parcel per year.  

Figure 3-5: Number of parcels per number of dates with data available for prediction. This 
may be interpreted as the probability of getting x prediction a year. The vertical lines denote 

the median number of occurrences. 

Multiple modes can be guessed in Figure 3-5. As the distribution is quite spread 

out, summarizing the information is complex. Nevertheless, the median seems to 

reflect well the majority of the information. The median number of occurrences 

per parcel was: 45, 29, 41, and 20 for the years 2018, 2019, 2020, and 2021, 

respectively. This means a median parcel coverage rate, with the proposed gap 
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filling methodology, between 41% (=20 days of the potentially 49 covered for the 

year 2021) and 59% (=45 days of the potentially 86 covered for the year 2018). As 

these percentage of odds to have a parcel covered during irregularly spaced time 

periods with varying numbers of recording dates across the said periods might 

seem hard to use for future users, a simpler yet more valuable approach could be 

the assessment of the probability of getting X prediction a year that is illustrated 

in Annex/SM 6. 

 

3.6.4 Prediction relevancy 
By studying the predictions made in the Walloon Region of Belgium during four 

annual grazing periods, the aim of this paper was mainly to check if the outputs of 

the prediction platform were believable and consistent. The amount of different 

topological and geopedological conditions studied was limited in our training and 

validation datasets compared to the variety of possibilities present in Wallonia 

(two agricultural areas were represented out of eleven). To increase the 

representativeness of the calibration and validation sets, the best method would 

be to increase the dataset size. This requires a consequent greater sampling effort. 

Even if this complex approach is needed, it might also be relevant to study the 

behaviour of the prediction at a large scale to see whether parts of the predictions 

were inconsistent. 

Although CSH predicted values were mainly positive using all tested models, less 

than 1% of the CSH values predicted from the glmnet model were negative. This 

model also had a tendency for less than 1% of the obtained predictions to give 

values much greater than 250 mm, which is the maximum CSH measured by the 

rising plate meter [26]. For the other models, we observed positive values lower 

than 250 mm, even if the cubist model can sometimes present a maximum value 

greater than this threshold. It also appeared, following a model-by-model removal 

of the extreme values and iterative check of all the model predictions, that the 

records with an out-of-range prediction from the glmnet model did not 

correspond to the extreme values predicted with other models. Table 3-6 presents 

the annual descriptive statistics of the values predicted per pixel using the five 

studied models after removing the records with extreme values out of the 0–250 

mm of CSH range (less than 2%), i.e., 346,465; 256,870; 447,156; and 528,830 

records were removed in 2018, 2019, 2020, and 2021, respectively. The five models 

predicted 75% of the values below 75 mm. A direct interpretation of these values 

would be that all farmers are using their swards efficiently by maintaining the 

grass in a constant state of maximum growth. This interpretation should be 

counter-balanced with the accuracy of the models (most had an RMSE of 
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independent validation around 20 mm of CSH) and the trend to over-

/underestimate the actual CSH, assessed through the percentage of over- or under-

predicted values. In [26], the models developed tended to overestimate; whilst, in 

this new study, they tend to underestimate. More statistics are gathered in 

Annex/SM 7. 

Table 3-6: Descriptive statistics of the cleaned dataset using the five studied models 
predicting the compressed sward height (mm). CV=coefficient of variation, the ratio of the 

standard deviation (SD) by the mean multiplied by 100 

 
2018 

(N=1,137,991,583) 

2019 

(N=1,046,797,529) 

2020 

(N=1,481,945,618) 

2021 

(N=763,510,335) 

Between year 

CV (%) 

Model Mean ± SD Mean ± SD Mean ± SD Mean ± SD  

Cubist 56.01 ± 19.94 63.77 ± 20.11 60.07 ± 20.10 59.16 ± 18.48 5.34 

Glmnet 48.62 ± 20.35 58.22 ± 21.24 54.97 ± 21.23 54.22 ± 17.95 7.39 

Nnet 61.09 ± 21.85 66.48 ± 25.46 67.21 ± 25.44 61.26 ± 19.45 5.14 

Rf 54.99 ± 20.63 65.51 ± 20.11 62.14 ± 20.11 61.27 ± 17.33 7.20 

xgbTree 53.58 ± 21.16 64.11 ± 20.92 60.51 ± 20.92 60.61 ± 17.85 7.39 

CV (%) 8.19 5.04 7.21 5.01  

Concerning the variability of the prediction, the first approach compares the 

mean and standard deviation values shown in Table 3-6. The small variability 

reflected by the coefficient of variation, computed as the ratio of the standard 

deviation by the mean multiplied by 100 (CV), values (below 10%) computed on 

the means indicate global consistency in the predictions—one year did not seem to 

be completely offset, nor groups appear to form, and no significant difference can 

be found for the model relevancy. 

The CSH values observed during the model calibration and validation and for 

the predicted values on a larger scale were lower than the corresponding values 

observed in Norway [65], Germany [66], or England [67]. This difference is mainly 

seen because the goals of the pastures were not the same: those parcels were used 

to grow forage for harvest, while the parcels on which we trained our models and 

most pasture parcels in Wallonia are grazed. Therefore, the fact of obtaining a 

mean grass height per parcel ranging from ±30 cm to ±60 cm (Norway) or with 

more than 50% of values above 10.5 cm (England) would be considered a loss in 

our study, whereas it would be relevant for good forage yields. This difference is 

less pronounced when compared to the data from Germany (CSH ranged from 5.82 

cm to 19.1 cm with a mean ranging from 7.27 to 14.87 cm). 

The shape of the distribution of the prediction matches the “commonly used” 

descriptive distribution of pasture herbage mass as defined in [68], which is a log-

normal/gamma distribution. [67] also reported a similar distribution of the sward 

height. Furthermore, a similar distribution pattern can be deduced from the 

comparison between the unmanned aerial vehicle (UAV)-derived sward height 
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and CSH in [69] or in the comparison between the light detection and ranging 

(LiDAR) sward height and the UAV-based sward height in [70]. The distribution 

of the predictions in this study included 75% of the predicted values in the [30–70 

mm] range and a tail extended to the higher values. 

To go further into the temporal analysis of the predictions, it might be relevant 

to study the within-year temporal variability of the predictions. In theory, there 

should be an increase during spring until the moment the cows return to pasture, 

and then, depending on the cattle load, the CSH should remain stable or even 

decrease. This kind of pattern is observed in Figure 3-6, where the mean CSH per 

date of each parcel is represented for each model. The glmnet model seems to react 

in the same way as modeled in [26]: the values seem to be globally lower for this 

model than for the others. The annual behavior of grass growth matches the results 

of [71]: an increase of the CSH (which is directly linked to the actual biomass) 

during the first part of the year and then a decrease throughout the grazing season. 

The variability during the year 2021 was more important than within the other 

years, and the relative decrease of the summer period trend was less pronounced 

than in the other years. Both those trends could be explained by the high amount 

of precipitation that occurred during that summer: fewer acquisitions were valid 

due to cloud cover, which decreased the acquisition frequency and the reliability 

quality, and the drought of the previous years was considered as a feed loss for 

breeders using pasture. The relative decrease of the summer compared to spring in 

2018 and 2019 was more pronounced than during the 2 following years, and it 

correlates well with the drought periods. 
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Figure 3-6: Mean per date of acquisition of the mean per parcel of the CSH predicted at the 
pixel level. 

3.6.5 Spatial heterogeneity analysis 

3.6.5.1 Per parcel per date variability distribution 
Besides the study of temporal behavior, it is necessary to consider spatial 

heterogeneity as proposed by [22]. Thus, the variability of the predictions inside a 

parcel was studied. For each parcel and date, the coefficient of variation was 

computed. These statistics are shown in Table 3-7. Globally, the median values 

were always lower than 15%, which means there was high stability in the 

predicted values. The few extreme values are either due to extremely low standard 

deviation or extremely low means together with high standard deviation 



Development of machine learning algorithms fed by meteorological and remote sensing data to 

assess the available grass on pastures. 
 

 118 

coefficients. The presence of trees, bushes, or hedges inside or at the border of the 

parcels could induce a higher prediction variability. One way to discard this part 

of the problem is to erode the parcel file with a negative buffer that should 

decrease the impact of trees and bushes near the parcel edge. However, there are 

parcels with edge and solitary trees inside their boundaries. Thus, to further 

decrease the impact of woody vegetation, an additional step to detect and remove 

the woody vegetation area from the parcels could be considered in future 

developments of the platform. The globally lower CV values observed for the 

prediction compared to the observations of [72] are probably due to climatic 

differences (both climates are temperate, yet Uruguay has a drier period in winter 

that Wallonia does not). Moreover, the methodology of [72] to assess the grass 

height was based on a visual discrete-scale analysis that was then transformed into 

actual height measurements. This meant that close to extreme heights could have 

been poorly identified, meaning a higher dispersion of the results and, thus, a 

higher CV. Lastly, concerning the study by [72], a factor linked to the grass species 

might also explain the difference, although the composition of the pastures was 

not disclosed. The observed CV values in the present study fit more of the values 

than observed in [73]: with uncompressed sward height deduced from image 

analysis, they got coefficients of variation from 4.5% to 39.0%, which corresponds 

to 99% of the values observed in the current study. 

Table 3-7: Descriptive statistics of the coefficient of variation of the CSH computed for each 
date for each parcel. 

 Cubist Glmnet Nnet RF xgbTree 

Minimum 0.00 0.00 0.00 0.00 0.00 

1% 2.34 3.46 0.00 2.27 5.14 

1st quartile 6.87 8.02 3.81 6.32 9.82 

Median 10.18 10.69 11.24 9.18 12.59 

Mean 11.55 11.85 13.43 10.30 13.56 

Standard deviation 6.60 6.18 11.41 5.49 5.29 

3rd quartile 14.72 14.19 21.06 13.12 16.26 

99% 32.97 33.01 40.78 28.13 30.45 

Maximum 128.85 330.39 68.65 73.39 79.85 

 

The variability within a parcel can be easily visualized. Figure 3-7 represents 

predictions at the scale of the parcels of a known farm for the 21st April 2019 for a 

specific parcel. This date was chosen for the exact co-occurrence of S1 and S2 and 

for the absence of cloud cover. Checking for the presence of clusters of high/low 

values revealed a good repartition of the prediction, meaning that spatial over-

fitting seemed to have been avoided. The specific zoom on this known farm 

revealed the ability to see patterns due to the topography and management. 
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Figure 3-7: Geographical representation of the predictions for parcels known by our team. 

Although a 10 m resolution might seem too fine given the area of the Walloon 

Region (16,901 km²), it is quite coarse when considering precision grazing, as 

underlined in [72] concerning the ability to reflect the internal variability of 

pastures. There could be improvement using the already available datasets: S1 tiles 

have a 5-m resolution. However, the gain in resolution would not be enormous for 

a huge increase in computation power needed, given that the current raster 

already had 15,413 rows, 26,006 columns, and 400,830,478 cells. If both datasets 

were to have a finer resolution, the increased computation cost could be more 

relevant. There are ways to create super-sampled datasets using algorithms, like 

the one created by [74], which generate space-borne optical data using the spectral 

resolution of the S2 satellites and the spatial resolution of the Planet satellites 

(around 2.5 m). This was not included in the first development of the platform, 

mainly to reduce complexity. It might be an improvement for future development. 

Another spatial data improvement could be the inclusion of meteorological data 

spatialized at a finer level than the station. Although the Agromet platform [51] 

provides higher resolution data for air temperature and relative air humidity, a 

standard spatialization was chosen to avoid adding more complexity, but the 
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modularity of the platform offers this possibility as an evolution. Furthermore, 

using kriging techniques might lead to a better representation of the link between 

the meteorological data and the parcel. However, the inherent complexity and the 

need to account for local and geopedological/topographical variations made this 

choice irrelevant in this study. The modular conception of the platform allows for 

later integration of this type of spatial standardization. 

3.6.6 Model selection 
The use of this platform as a DSS data provider is currently hindered by the study 

of five models simultaneously, although the final user needs clear indications and 

thus should not have to choose between the models without knowing what lies 

behind them. Therefore, we suggest a complement to the analysis made in [26] to 

get the “best” model. Until now, the RMSE, RPD, and percentage of over-

/underestimation were the major drivers to determine the models as “most 

promising” [26]. Here, criteria based on the application of the models at a large 

scale were added: sensitivity to the time lag inclusion, the trend to produce 

completely out-of-range possible values, temporal stability of the predictions 

(mean and standard deviation values of the prediction per year and the trend to 

witness abrupt changes during one year), and finally spatial heterogeneity. 

Furthermore, the capability to ignore missing data and substitute them could also 

be added as a criterion, although it might also be a problem given that the 

substitution is not controlled. The resulting ranking for the currently developed 

models is shown in Table 3-8 and suggests that the RF model is the best model for 

raw prediction performance, and Cubist is best for applications that require better 

temporal continuity. 
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Table 3-8: Ranking of the most promising models according to multiple criteria 

Criterion Cubist Glmnet Nnet RF xgbTree 

RMSE (val) 3 1 5 2 4 

RPD (val) 3 1 5 2 3 

Over-/under-estimation (1) 1 2 5 3 3 

Sensitivity to the time lag inclusion 1 4 5 1 1 

Production of out-of-range values 4 5 1 1 1 

Temporal stability (mean & SD) 2 5 1 3 4 

Temporal stability (spikes) 3 5 4 1 1 

Spatial heterogeneity 2 5 1 2 4 

Cumulated ranking 19 28 27 15 21 

 

3.6.7 On the choice of working with Compressed Sward Height 
In this study, we worked with compressed sward height. It might be argued that 

it is more relevant to model actual biomass. The first point to highlight is that the 

spatial resolution of the pixels (10 m) is larger than traditional sampling quadrats: 

[71] used bands of 1 × 3.5 m for assessing biomass, [66] used bands of 1.5 × 3 m, 

and [75] used bands of 7 × 1.5 m. All those dimensions are below the actual 

resolution, which means that using the S1 and S2 data for the assessment of 

biomass is likely to introduce a lot of “not-exactly related” information and, thus, 

imprecision. Although we had datasets of biomass, the bands mown to get the 

biomass information were also smaller than the pixel resolution and were laid next 

to each other, which meant that the previous cut would influence the pixel value 

and therefore give inaccurate results. Besides this issue of coherence in the 

sampling, another problem was the small size of the dataset and the temporal 

variability of the relationship between the compressed sward height and the actual 

biomass, as illustrated in [76]. Furthermore, this variability was emphasized by the 

variability of the composition of pastures. 

However, this platform was made to be modular. This means that if models were 

created using the same input variables names as we did, they could be 

implemented and used to perform predictions at a large scale. Therefore, this 

platform could be used to predict the biomass or the quality of the grass (e.g., 

protein/fiber content) from remote sensing data. Another approach that is 

currently being developed adds a conversion layer over the predicted CSH that 

would translate this value into the other aforementioned features, such as, in our 

case, the available dry biomass. 
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3.7 Conclusion 

We assumed that predicting the CSH at the whole Walloon scale would require 

an intermediary platform to perform the prediction in order to decrease the 

computing load on the backend server of our future DSS. Given the time and 

resources required for the computation, this proved to be relevant. Despite issues 

underlined in the study, the platform is now up and running and is ready to serve 

as the data source for the future DSS. The main advantage of the models and data 

sources considered is their low cost. They are free to obtain, but a non-null cost is 

still considered as some processing is needed, and this requires hardware that has 

a certain cost. Another key advantage of the platform for the future DSS is that 

most of the computation will be performed beforehand, which means that the end-

user application would not be computationally heavy and instead could be as 

reactive as the end-user hardware allows. 

Although the platform is now operational, improvements are still underway. 

Concerning the prediction models, more CSH data are currently being sampled in 

order to increase the calibration and validation sets, and therefore, the robustness 

of the models that currently have a 20 mm of CSH RMSE at a pixel scale. Regarding 

the translation of CSH into available biomass, models are being tested to be used 

as a post-prediction layer. Some further developments might also be needed to 

implement the possibility of the user more precisely specifying their parcels with 

minimal additional computational cost on the user side, allowed by the use of a 

standardized sub-parcel/pixel reference spatialization. Furthermore, another 

important change will be the restriction of access to the data; if not enough 

restrictions are set in the DSS, there might be problems related to the European 

General Data Protection Regulation. Concerning the availability of the prediction, 

the current gap filling methodology restricts the prediction frequency to the 

acquisition of S2 information as this was the most informative data source 

(deduced from the relative variable importance in the models). Further research 

into the gap filling methodology and some paradigm changes would enable us to 

predict the CSH for every day of the year. Concerning the features considered, 

until now, we have focused on traditional feature resampling regarding the S1 and 

S2 datasets. Encompassing more pre-treatments is considered for the future. 

Concerning the analysis of the models and the determination of the best model 

to use, the application of the models at a large scale revealed strengths and 

weaknesses for all models, resulting in the designation of the random forest model 

as the best model to predict CSH at our scale with our data. To expand the analysis 

of the spatial quality of CSH predictions, it might be relevant to account for the 
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relationship between the spatial and temporal behaviour and the 

topographical/geopedological properties. 
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3.9 Supplementary material 

3.9.1 Overview of recent scientific papers related to the 

understanding of pastures 

3.9.1.1 Method 
A non-exhaustive review of the scientific literature was done and led to the 

retrieval of papers related to 93 models that aimed at providing a better 

understanding of the dynamic and parameter of grassland. The search was 

conducted on both Google Scholar and Scopus and the most used keywords were: 

“grass,” “grassland,” “sward,” “model,” “machine learning,” “remote sensing,” 

“management,” “decision support system.” Once the papers were downloaded and 

sorted per model they were related to, the first step of the analysis consisted in 

defining the research area(s), the input feature(s), the model(s) used, the objective 

variable(s)/output(s) and the integration of the model into a decision support 

system. To ease the analysis, the criteria were split in sub-categories with only a 

yes/no (1/0) answer possible. The detail of the sub-categories is represented in 

Table 3-9 and the references are classified per model in Table S2. The 

determination of the detailed criteria was made in three steps: first all the criteria 

that were thought to be possible were written, then criteria shown in previous 

reviews were integrated and finally, most new criteria encountered in the papers 

reviewed were implemented. 
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Table 3-9: Classification criteria and details for the models reviewed. 

Classification 

criteria 
Details   

Research area 

empirical model   

statistical model/ machine learning   

cross-validation of methods   

fusion/comparison of multiple data 

sources 
  

mapping (sfm, upscaling, 

classification…) 
  

Feature inputs 

Meteorological data (MD) 

MD: Temperature  

MD: Precipitations  

MD: Solar radiation/ Sunshine 

hours 
 

MD: atmospheric presure  

MD: evapotranspiration  

MD: wind (speed and 

orientation) 
 

MD: Relative humidity  

Time data (TD) TD: Day of the year  

Soil data (SD) 

SD:Soil drainage  

SD: geopedological conditions  

SD: topography  

SD: soil water content (actual 

and potential) 
 

Pasture management (PM) 

PM: NPK-input  

PM: initial DM (kg/ha)  

PM: initial LAI  

PM: Grazing  

PM: Mowing/ Cutting event  

Grass height   

Geographic location (lattitude,…)   

Land cover/use classification   

Grass properties   

Remote Sensing (RS) 

RS: Radar Satellite RS: Rad: Sentinel-1 

 RS: Rad: TerraSAR-X 

RS: Reflectance satelitte RS: Refl: Spot (4) 

 RS: Refl: MODIS 

 RS: Refl: Landsat 

 RS: Refl: Formosat 

 RS: Refl: WorldView 

 RS: Refl: Sentinel-2 

 
RS: Refl: Planet 

(formerly RapidEye) 

RS: UAV based RS: UAV: Reflectance 

 

RS: UAV: 

multispectral/ 

hyperspectral 



Development of machine learning algorithms fed by meteorological and remote sensing data to 

assess the available grass on pastures. 
 

 130 

 RS: UAV: thermal 

RS: LiDAR  

Proximal sensing (PS) 

PS: laser  

PS: TOF camera  

PS: reflectance camera  

PS: hyperspectral  

Type of model 

used 

Inversion of the PROSAIL model and 

use of look up tables 
  

Mechanistic model   

Feature selection   

Monte carlo simulation   

Discriminant analysis (DA)   

k nearest neighbour (k-NN)   

Analysis of variance   

Simple linear regression   

Exponential linear regression   

Multiple linear regression (MLR)   

Logistic regression   

Generalized linear model   

Generalized additive model (GAM)   

Principal component 

analysis/regression (PCR) 
  

Partial least square regression (PLS-

R) 
  

Sparse Partial least square (S-PLSR)   

Suppor vector machine/regression 

(SVM/SVR) 
  

random forest (RF)   

cubist   

xgboost   

Adaptative neuro fuzzy inference 

system (ANFIS) 
  

Perceptron   

Recurrent neural network (RNN)   

U neural network (U-NET)   

Convolutionnal neural network 

(CNN) 
  

Long-short term memory neural 

network (LSTM) 
  

Outputs 

Biomass/dry matter production 

[kg/area) 
  

Grassland height (CSH/USH/…)   

comparison/classification of data 

sources/ land cover 
  

Leaf area index (LAI)   

Quality of the grass (QG) 

QG: Crude protein content  

QG: Neutral detergent fiber 

content/digestibility 
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QG: Acid detergent fiber 

content/digestibility 
 

QG: Ashes  

QG: Structural composition of 

the grass 
 

QG: Metabolizalbe energy  

Soil/environmental conditions   

Simulation of the effect of 

management 
  

Mowing event detection   

Spatial representation   

Integration into 

a DSS 

DSS: Yes/NO   

DSS: Name   

 

3.9.1.2 Use 
Two main types of analysis could be made out of the table: the temporal 

evolution of the apparition of the criteria and the co-occurrence of criteria. 

Concerning the concomitance of criteria, Figure 3-8 and Figure 3-9 illustrate the 

following trends: - The models focused on statistical/machine learning algorithms 

are mostly related to the fusion/comparison of multiple data sources, remote 

sensed data and the prediction of the biomass/dry matter production; - The models 

focusing on the fusion/comparison of multiple data sources mainly integrate 

remote sensed data; - The data acquired with UAV are related to the creation of 

spatial representation of the models through the use of structure from motion 

algorithms. 
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Figure 3-8: Concomitance of research areas and methods, with the raw values. 
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Figure 3-9: Concomitance of research areas and methods, with values relative to the amount of research paper concerning that field. 
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3.9.1.3 Associated references 
The references on which the review is based are presented in Table 3-10. It 

includes the period of first publication and mention of the model, the geographic 

area covered by the said model, the model name, given by the authors or as the 

model was called in other papers. The last column is made of the references. 

 

Table 3-10: References on which the short review is based 

Period of 

first 

publication 

Geographic 

Area Name 

  

1983 England "J&T" 

Johnson, I.R.; Thornley, J.H.M. Vegetative crop growth model 

incorporating leaf area expansion and senescence, and applied to grass. Plant 
Cell Environ. 1983, 6, 721–729. 

Hurtado-Uria, C.; Hennessy, D.; Shalloo, L.; Schulte, R.P.; Delaby, L.; 

O’Connor, D. Evaluation of Three Grass Growth Models to Predict Grass 

Growth in Ireland. J. Agric. Sci. 2013, 151, 91–104. 

1996 Ireland "Br" 

Brereton, A. J., Danielov,S. A.& Scott, D.  Agrometeorology of Grass and 

Grasslands for Middle Latitudes. Technical Note No. 197. Geneva: World 

Meteorological Organisation 1996 Available 

online: https://agris.fao.org/agris-search/search.do?recordID=XF9766146 

Hurtado-Uria, C.; Hennessy, D.; Shalloo, L.; Schulte, R.P.; Delaby, L.; 

O’Connor, D. Evaluation of Three Grass Growth Models to Predict Grass 

Growth in Ireland. J. Agric. Sci. 2013, 151, 91–104. 

1998 France STICS 

Brisson, N.; Mary, B.; Ripoche, D.; Jeuffroy, M.H.; Ruget, F.; Nicoullaud, B.; 

Gate, P.; Devienne-Barret, F.; Antonioletti, R.; Durr, C.; et al. STICS: A 

generic model for the simulation of crops and their water and nitrogen 

balances. I. Theory and parameterization applied to wheat and 

corn. Agronomie 1998, 18, 311–346.  

Brisson, N.; Ruget, F.; Gate, P.; Lorgeou, J.; Nicoullaud, B.; Tayot, X.; Plenet, 

D.; Jeuffroy, M.H.; Bouthier, A.; Ripoche, D.; et al. STICS: A generic model 

for simulating crops and their water and nitrogen balances. II. Model 

validation for wheat and maize. Agronomie 2002, 22, 69–92. 

Di Bella, C., Faivre, R., Ruget, F., Seguin, B., Guérif, M., Combal, B., Weiss, 

M. and Rebella, C., Use of SPOT4-VEGETATION satellite data to improve 

pasture production simulated by STICS included in the ISOP French 

system. Agronomie 2004, 24(6-7), pp.437-444. 

Courault, D.; Hadria, R.; Ruget, F.; Olioso, A.; Duchemin, B.; Hagolle, O.; 

Dedieu, G. Combined use of FORMOSAT-2 images with a crop model for 

biomass and water monitoring of permanent grassland in Mediterranean 

region. Hydrol. Earth Syst. Sci. Discuss. 2010, 14, 1731–1744. 

1999 France SEPATOU 

Cros, M.J.; Garcia, F.; Martin-Clouaire, R. SEPATOU: A Decision Support 

System for the Management of Rotational Grazing in a Dairy Production. In 

Proceedings of the 2nd European Conference on Information Technology in 

Agriculture, Bonn, Germany, 27–30 September 1999; pp. 549–557 

Amalero, E.G.; Ingua, G.L.; Erta, G.B.; Emanceau, P.L. A biophysical dairy 

farm model to evaluate rotational grazing management strategies. 

Agronomie 2003, 23, 407–418 

2003 

New-

Zealand   

McCall, D.G.; Bishop-Hurley, G.J. A pasture growth model for use in a 

whole-farm dairy production model. Agric. Syst. 2003, 76, 1183–1205. 

https://agris.fao.org/agris-search/search.do?recordID=XF9766146
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2004 Australia RIM model 

Pannell, D.J.; Stewart, V.; Bennett, A.; Monjardino, M.; Schmidt, C.; Powles, 

S.B. RIM: A Bioeconomic Model for Integrated Weed Management of 

Lolium Rigidum in Western Australia. Agric. Syst. 2004, 79, 305–325. 

Torra, J.; Monjardino, M. Ryegrass Integrated Management (RIM)–Based 

Decision Support System. In Decision Support Systems for Weed 
Management; Chantre, G., González-Andújar, J.L., Eds.; Springer: Cham, 

Switzerland, 2020; pp. 249–278. 

2005 Ireland GrazeGro 

Barrett, P.; Laidlaw, A.; Mayne, C. GrazeGro: A European Herbage Growth 

Model to Predict Pasture Production in Perennial Ryegrass Swards for 

Decision Support. Eur. J. Agron. 2005, 23, 37–56.  

2006 France   

Jouven, M.; Carrere, P.; Baumont, R. Model Predicting Dynamics of 

Biomass, Structure and Digestibility of Herbage in Managed Permanent 

Pastures. 1. Model Description. Grass Forage Sci. 2006, 61, 112–124. 

Hurtado-Uria, C.; Hennessy, D.; Shalloo, L.; Schulte, R.P.; Delaby, L.; 

O’Connor, D. Evaluation of Three Grass Growth Models to Predict Grass 

Growth in Ireland. J. Agric. Sci. 2013, 151, 91–104. 

2007 USA   

Rayburn, E.B.; Lozier, J.D.; Sanderson, M.A.; Smith, B.D.; Shockey, W.L.; 

Seymore, D.A.; Fultz, S.W. Alternative Methods of Estimating Forage Height 

and Sward Capacitance in Pastures Can Be Cross Calibrated. Forage 
Grazinglands 2007, 5, 1–6 

2009 Australia   

Bashari, H.; Smith, C.; Bosch, O.J.H. Developing decision support tools for 

rangeland management by combining state and transition models and 

Bayesian belief networks. Agric. Syst. 2008, 99, 23–34. 

2010 

New-

Zealand PGSUS 

Romera, A.J.; Beukes, P.; Clark, C.; Clark, D.; Levy, H.; Tait, A. Use of a 

pasture growth model to estimate herbage mass at a paddock scale and assist 

management on dairy farms. Comput. Electron. Agric. 2010, 74, 66–72. 

Romera, A.; Beukes, P.; Clark, D.; Clark, C.; Tait, A. Pasture growth model 

to assist management on dairy farms: Testing the concept with 

farmers. Grassl. Sci. 2013, 59, 20–29. 

2012 

Czech 

Republic   

Hakl, J.; Hrevušová, Z.; Hejcman, M.; Fuksa, P. The use of a rising plate 

meter to evaluate lucerne (Medicago sativa L.) height as an important 

agronomic trait enabling yield estimation. Grass Forage Sci. 2012, 67, 589–

596. 

2012 

USA 

Ohio   

Ferraro, F.P.; Nave, R.L.; Sulc, R.M.; Barker, D.J. Seasonal variation in the 

rising plate meter calibration for forage mass. Agron. J.2012, 104, 1–6. 

2013 Germany   

Fricke, T.; Wachendorf, M. Combining ultrasonic sward height and spectral 

signatures to assess the biomass of legume-grass swards. Comput. Electron. 
Agric. 2013, 99, 236–247. 

2013 Italy C-Fix 

Maselli, F.; Argenti, G.; Chiesi, M.; Angeli, L.; Papale, D. Simulation of 

grassland productivity by the combination of ground and satellite 

data. Agric. Ecosyst. Environ. 2013, 165, 163–172. 

2013 Italy 

BIOME-

BGC 

Maselli, F.; Argenti, G.; Chiesi, M.; Angeli, L.; Papale, D. Simulation of 

grassland productivity by the combination of ground and satellite 

data. Agric. Ecosyst. Environ. 2013, 165, 163–172. 

2014 Ireland   

Ali, I.; Cawkwell, F.; Green, S.; Dwyer, N. Application of statistical and 

machine learning models for grassland yield estimation based on a 

hypertemporal satellite remote sensing time series. In Proceedings of the 

IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, 

Canada, 13–18 July 2014; pp. 5060–5063. 
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2014 

Ireland 

France 

MGGM 

(old 

version) 

MostGG 

Paillette CA, Delaby L, Shalloo L, O'Connor D, Hennessy D. Developing a 

predictive model for grass growth in grass-based milk production systems. 

In18. Symposium of the european grassland federation 2015 Jun 15 (Vol. 20, 

p. np). Wageningen Academic Publishers. 

Ruelle, E.; Delaby, L. Pertinence du modèle Moorepark-St Gilles Grass 

Growth dans les conditions climatiques de l Ouest de la France; Description 

du modèle Moorepark-St Gilles Grass Growth a) b). 2017; pp. 158–159. 

Ruelle, E.; Hennessy, D.; Delaby, L. Development of the Moorepark St Gilles 

grass growth model (MoSt GG model): A predictive model for grass growth 

for pasture based systems. Eur. J. Agron. 2018, 99, 80–91 

McDonnell J, Lambkin K, Fealy R, Hennessy D, Shalloo L, Brophy C. 

Verification and bias correction of ECMWF forecasts for Irish weather 

stations to evaluate their potential usefulness in grass growth modelling. 

Meteorological Applications. 2018 Apr;25(2):292-301. 

McDonnell, J.; Brophy, C.; Ruelle, E.; Shalloo, L.; Lambkin, K.; Hennessy, 

D. Weather forecasts to enhance an Irish grass growth model. Eur. J. Agron. 
2019, 105, 168–175. 

2016 China   

Li, F.; Zeng, Y.; Luo, J.; Ma, R.; Wu, B. Modeling grassland aboveground 

biomass using a pure vegetation index. Ecol. Indic. 2016, 62, 279–288. 

2016 Estonia   

Tamm, T.; Zalite, K.; Voormansik, K.; Talgre, L. Relating Sentinel-1 

interferometric coherence to mowing events on grasslands. Remote Sens. 
2016, 8, 802. 

2016 Ireland   

Ali, I.; Cawkwell, F.; Dwyer, E.; Green, S. Modeling Managed Grassland 

Biomass Estimation by Using Multitemporal Remote Sensing Data-A 

Machine Learning Approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 
2017, 10, 3254–3264. 

2016 Japan   

Nakagami, K. A method for approximate on-farm estimation of herbage 

mass by using two assessments per pasture. Grass Forage Sci. 2016, 71, 490–

496. 

2016 

Saudi 

Arabia   

Houborg, R.; McCabe, M.F. High-Resolution NDVI from planet’s 

constellation of earth observing nano-satellites: A new data source for 

precision agriculture. Remote Sens. 2016, 8, 768. 

2016 

South 

Africa   

Sibanda, M.; Mutanga, O.; Rouget, M. Comparing the Spectral Settings of 

the New Generation Broad and Narrow Band Sensors in Estimating Biomass 

of Native Grasses Grown under Different Management Practices. GISci. 
Remote Sens. 2016, 53, 614–633. 

2017 Germany   

Moeckel, T.; Safari, H.; Reddersen, B.; Fricke, T.; Wachendorf, M. Fusion of 

ultrasonic and spectral sensor data for improving the estimation of biomass 

in grasslands with heterogeneous sward structure. Remote Sens. 2017, 9, 98. 

2017 Ireland   

Hanrahan, L.; Geoghegan, A.; O’Donovan, M.; Griffith, V.; Ruelle, E.; 

Wallace, M.; Shalloo, L. PastureBase Ireland: A grassland decision support 

system and national database. Comput. Electron. Agric. 2017, 136, 193–201. 

2017 Ireland   

Ali, I.; Cawkwell, F.; Dwyer, E.; Green, S. Modeling Managed Grassland 

Biomass Estimation by Using Multitemporal Remote Sensing Data-A 

Machine Learning Approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 
2017, 10, 3254–3264. 

2017 Ireland   

Ali, I.; Barrett, B.; Cawkwell, F.; Green, S.; Dwyer, E.; Neumann, M. 

Application of Repeat-Pass TerraSAR-X Staring Spotlight Interferometric 

Coherence to Monitor Pasture Biophysical Parameters: Limitations and 

Sensitivity Analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote 
Sens. 2017, 10, 3225–3231. 
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2017 Italy   

Cimbelli, A.; Vitale, V. Grassland height assessment by satellite images. Adv. 
Remote Sens. 2017, 6, 40–53. 

2017 

Saudi 

Arabia   

Houborg, R.; McCabe, M.F. A hybrid training approach for leaf area index 

estimation via Cubist and random forests machine-learning. ISPRS J. 
Photogramm. Remote Sens. 2018, 135, 173–188. 

2018 Croatia   

Gašparović, M.; Medak, D.; Pilaš, I.; Jurjević, L.; Balenović, I. Fusion of 

Sentinel-2 and PlanetScope Imagery for Vegetation Detection and 

Monitoring. In Proceedings of the Volumes ISPRS TC I Mid-term 

Symposium Innovative Sensing-From Sensors to Methods and Applications, 

Karlsruhe, Germany, 10–12 October 2018. 

2018 

Czech 

Republic   

Cudlín, O.; Hakl, J.; Hejcman, M.; Cudlín, P. The use of compressed height 

to estimate the yield of a differently fertilized meadow. Plant Soil Environ. 
2018. 64, 76–81. 

2018 Germany   

röhnert, M.; Anderson, R.; Bumberger, J.; Dietrich, P.; Harpole, W.S.; Maas, 

H.-G. Watching grass grow - a pilot study on the suitability of 

photogrammetric techniques for quantifying change in aboveground 

biomass in grassland experiments. ISPRS Int. Arch. Photogramm. Remote 
Sens. Spat. Inf. Sci. 2018, XLII-2, 539–542.  

2018 Germany   

Lussem, U.; Bolten, A.; Gnyp, M.; Jasper, J.; Bareth, G. Evaluation of RGB-

based vegetation indices from UAV imagery to estimate forage yield in 

Grassland. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 

1215–1219.  

2018 Germany   

Bareth, G.; Schellberg, J. Replacing Manual Rising Plate Meter 

Measurements with Low-cost UAV-Derived Sward Height Data in 

Grasslands for Spatial Monitoring. PFG J. Photogramm. Remote. Sens. 
Geoinf. Sci. 2018, 86, 157–168. 

2018 Italy   

D‘Urso, M.G.; Rotondi, A.; Gagliardini, M. UAV low-cost system for 

evaluating and monitoring the growth parameters of crops. In ISPRS Annals 
of the Photogrammetry, Remote Sensing and Spatial Information Sciences 
2018, IV-5, Proceedings of ISPRS TC V Mid-term Symposium “Geospatial 
Technology—Pixel to People”, Dehradun, India, 20–23 November 2018; 

Kumar, A.S., Saran, S., Padalia, H., Eds.; ISPRS: Hannover, Germany, 2018; 

pp. 405–413. 

2018 

New-

Zealand   

Pullanagari, R.R.; Kereszturi, G.; Yule, I. Integrating Airborne 

Hyperspectral, Topographic, and Soil Data for Estimating Pasture Quality 

Using Recursive Feature Elimination with Random Forest 

Regression. Remote Sens. 2018, 10, 1117. 

2018 

Saudi 

Arabia   

Houborg, R.; McCabe, M.F. Daily Retrieval of NDVI and LAI at 3 m 

Resolution via the Fusion of CubeSat, Landsat, and MODIS Data. Remote 
Sens. 2018, 10, 890. 

2018 

South 

Africa   

Mutanga, O.; Shoko, C. Monitoring the spatio-temporal variations of C3/C4 

grass species using multispectral satellite data. IGARSS 2018, 2018, 8988–

8991. 

2018 

South 

Africa   

Shoko, C.; Mutanga, O.; Dube, T. Determining optimal new generation 

satellite derived metrics for accurate C3 and C4 grass species aboveground 

biomass estimation in South Africa. Remote Sens. 2018, 10, 564. 

2018 Switzerland ModVege 

KLOECKER D, CONTER G, DIRKSE A, FELTEN C. Méi Weed, 

Weideoptimierung durch die Anpassung der Weideführung an Witterung 

und Bodenverhältnisse. Internationale Weidetagung.:78. 

2018 UK   

Forsmoo, J.; Anderson, K.; Macleod, C.J.A.; Wilkinson, M.E.; Brazier, R. 

Drone-Based Structure-from-Motion Photogrammetry Captures Grassland 

Sward Height Variability. J. Appl. Ecol. 2018, 55, 2587–2599.  
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2018 UK   

Punalekar, S.M.; Verhoef, A.; Quaife, T.L.; Humphries, D.; Bermingham, L.; 

Reynolds, C.K. Application of Sentinel-2A data for pasture biomass 

monitoring using a physically based radiative transfer model. Remote Sens. 
Environ. 2018, 218, 207–220. 

2018 

USA 

Montana   

Zeng, L.; Chen, C. Using remote sensing to estimate forage biomass and 

nutrient contents at different growth stages. Biomass Bioenergy 2018, 115, 

74–81. 

2019 Belgium   

Michez, A.; Lejeune, P.; Bauwens, S.; Lalaina Herinaina, A.A.; Blaise, Y.; 

Muñoz, E.C.; Lebeau, F.; Bindelle, J. Mapping and monitoring of biomass and 

grazing in pasture with an unmanned aerial system. Remote Sens. 2019, 11, 

473. 

2019 Belgium   

Borra-Serrano, I.; De Swaef, T.; Muylle, H.; Nuyttens, D.; Vangeyte, J.; 

Mertens, K.; Saeys, W.; Somers, B.; Roldán-Ruiz, I.; Lootens, P. Canopy 

height measurements and non-destructive biomass estimation of Lolium 

perenne swards using UAV imagery. Grass Forage Sci. 2019, 74, 356–369. 

2019 Brasil   

Schulte LG, Perez NB, de Pinho LB, Trentin G. Decision support system for 

precision livestock: Machine learning-based prediction module for stocking 

rate adjustment. InProceedings of the XV Brazilian Symposium on 

Information Systems 2019 May 20 (pp. 1-8). 

2019 Brasil   

Parente, L.; Taquary, E.; Silva, A.P.; Souza, C.; Ferreira, L. Next Generation 

Mapping: Combining Deep Learning, Cloud Computing, and Big Remote 

Sensing Data. Remote Sens. 2019, 11, 2881. 

2019 

British 

Columbia 

Canada   

Leach, N.; Coops, N.C.; Obrknezev, N. Normalization method for multi-

sensor high spatial and temporal resolution satellite imagery with 

radiometric inconsistencies. Comput. Electron. Agric. 2019, 164, 104893. 

2019 China   

He, L.; Li, A.N.; Yin, G.F.; Nan, X.; Bian, J.H. Retrieval of Grassland 

Aboveground Biomass through Inversion of the PROSAIL Model with 

MODIS Imagery. Remote Sens. 2019, 11, 1597. 

2019 France   

Garioud, A.; Giordano, S.; Valero, S.; Mallet, C. Challenges in Grassland 

Mowing Event Detection with Multimodal Sentinel Images. MultiTemp 
2019, 1–4. 

2019 France   

Hubert-Moy, L.; Thibault, J.; Fabre, E.; Rozo, C.; Arvor, D.; Corpetti, T.; 

Rapinel, S. Mapping Grassland Frequency Using Decadal MODIS 250 m 

Time-Series: Towards a National Inventory of Semi-Natural 

Grasslands. Remote Sens. 2019, 11, 3041. 

2019 Germany   

Taravat, A.; Wagner, M.; Oppelt, N. Automatic Grassland Cutting Status 

Detection in the Context of Spatiotemporal Sentinel-1 Imagery Analysis and 

Artificial Neural Networks. Remote Sens. 2019, 11, 711. 

2019 Germany   

Lussem, U.; Bolten, A.; Menne, J.; Gnyp, M.L.; Schellberg, J.; Bareth, G. 

Estimating biomass in temperate grassland with high resolution canopy 

surface models from UAV-based RGB images and vegetation indices. J. Appl. 
Remote Sens. 2019, 13, 034525. 

2019 Germany   

Lussem, U.; Bolten, A.; Menne, J.; Gnyp, M.; Bareth, G. Ultra-high spatial 

resolution UAV-based imagery to predict biomass in temperate 

grasslands. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 4213, 

443–447. 

2019 Ireland "GrassQ" 

Murphy, D.J.; O’ Brien, B.; Askari, M.S.; McCarthy, T.; Magee, A.; Burke, 

R.; Murphy, M.D. GrassQ—A holistic precision grass measurement and 

analysis system to optimize pasture based livestock production. In 

Proceedings of the 2019 ASABE Annual International Meeting, Boston, MA, 

USA, 7–10 July 2019. 
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2019 Ireland   

McSweeney, D.; Coughlan, N.E.; Cuthbert, R.N.; Halton, P.; Ivanov, S. 

Micro-sonic sensor technology enables enhanced grass 

height measurement by a Rising Plate Meter. Inf. Process. Agric. 2019, 6, 

279–284. 

2019 Ireland   

Askari, M.S.; McCarthy, T.; Magee, A.; Murphy, D.J. Evaluation of Grass 

Quality under Different Soil Management Scenarios Using Remote Sensing 

Techniques. Remote Sens. 2019, 11, 1835.  

2019 Israel   

Lugassi, R.; Zaady, E.; Goldshleger, N.; Shoshany, M.; Chudnovsky, A. 

Spatial and temporal monitoring of pasture ecological quality: Sentinel-2-

based estimation of crude protein and neutral detergent fiber contents. 

Remote Sens. 2019, 11, 799. 

2019 Italy   

Stendardi, L.; Karlsen, S.R.; Niedrist, G.; Gerdol, R.; Zebisch, M.; Rossi, M.; 

Notarnicola, C. Exploiting time series of Sentinel-1 and Sentinel-2 imagery 

to detect meadow phenology in mountain regions. Remote Sens. 2019, 11, 

542. 

2019 

New-

Zealand   

Legg, M.; Bradley, S. remote sensing Ultrasonic Proximal Sensing of Pasture 

Biomass. Remote Sens. 2019, 11, 2459 

Legg, M.; Bradley, S. Ultrasonic Arrays for Remote Sensing of Pasture 

Biomass. Remote Sens. 2019, 12, 111. 

2019 Norway   

Ancin-Murguzur, F.J.; Taff, G.; Davids, C.; Tømmervik, H.; Mølmann, J.; 

Jørgensen, M. Yield estimates by a two-step approach using hyperspectral 

methods in grasslands at high latitudes. Remote Sens. 2019, 11, 400. 

2019 Norway   

Rueda-Ayala, V.P.; Peña, J.M.; Höglind, M.; Bengochea-Guevara, J.M.; 

Andújar, D. Comparing UAV-based technologies and RGB-D reconstruction 

methods for plant height and biomass monitoring on grass 

ley. Sensors 2019, 19, 535. 

2019 

The 

Netherlands   

Darvishzadeh, R.; Wang, T.; Skidmore, A.; Vrieling, A.; O’Connor, B.; Gara, 

T.W.; Ens, B.J.; Paganini, M. Analysis of Sentinel-2 and rapidEye for retrieval 

of leaf area index in a saltmarsh using a radiative transfer model. Remote 
Sens. 2019, 11, 671. 

2019 Uruguay   

Tiscornia, G.; Baethgen, W.; Ruggia, A.; Do Carmo, M.; Ceccato, P. Can we 

Monitor Height of Native Grasslands in Uruguay with Earth 

Observation? Remote Sens. 2019, 11, 1801. 

2019 

USA 

Arizona   

Gillan, J.K.; McClaran, M.P.; Swetnam, T.L.; Heilman, P. Estimating Forage 

Utilization with Drone-Based Photogrammetric Point Clouds. Rangel. Ecol. 
Manag. 2019, 72, 575–585. 

2019 

USA 

California   

Liu, H.; Dahlgren, R.A.; Larsen, R.E.; Devine, S.M.; Roche, L.M.; O’ Geen, 

A.T.; Wong, A.J.Y.; Covello, S.; Jin, Y. Estimating Rangeland Forage 

Production Using Remote Sensing Data from a Small Unmanned Aerial 

System (sUAS) and PlanetScope Satellite. Remote Sens. 2019, 11, 595. 

2019 

USA 

Michigan 

SALUS 

MDP 

Insua, J.R.; Utsumi, S.A.; Basso, B. Estimation of Spatial and Temporal 

Variability of Pasture Growth and Digestibility in Grazing Rotations 

Coupling Unmanned Aerial Vehicle (UAV) with Crop Simulation 

Models. PLoS ONE 2019, 14, e0212773. 

2019 

USA 

Oklahoma   

Wang, J.; Xiao, X.; Bajgain, R.; Starks, P.; Steiner, J.; Doughty, R.B.; Chang, 

Q. Estimating leaf area index and aboveground biomass of grazing pastures 

using Sentinel-1, Sentinel-2 and Landsat images. ISPRS J. Photogramm. 
Remote Sens. 2019, 154, 189–201. 

2020 Australia   

Ara, I.; Harrison, M.T.; Whitehead, J.; Waldner, F.; Bridle, K.; Gilfedder, L.; 

Da Silva, J.M.; Marques, F.; Rawnsley, R. Modelling seasonal pasture growth 

and botanical composition at the paddock scale with satellite imagery. Silico 
Plants 2021, 3, 1–15. 
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2020 Australia   

Gargiulo, J.; Clark, C.; Lyons, N.; de Veyrac, G.; Beale, P.; Garcia, S. Spatial 

and temporal pasture biomass estimation integrating electronic plate meter, 

planet cubesats and sentinel-2 satellite data. Remote Sens. 2020, 12, 3222. 
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3.9.2 Details on the model creation 
The model creation process to produce the models implemented in the platform 

is similar to the one developed in our previous study [26]. To ease the 

understanding, the key points are summarized in this supplementary material 

section. 
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3.9.2.1 Reference data acquisition 
As explained in the main body, the models aimed at predicting the compressed 

sward height. Recordings were acquired over 3 farms: the parcels of one of them 

were sampled regularly every year while the two others were regularly followed 

during a year, i.e. 2018 and 2019 respectively. The farm followed in 2019 was 

considered as the validation set to continue on the track of [26] and allow for cross-

paper model comparison. Regarding the sampling strategy, CSH was recorded 

using a Jenquip EC20G rising platemeter (NZ Agriworks Ltd t/a Jenquip, New 

Zealand), and following a zigzag pattern across each parcel sampled. 

3.9.2.2 Predictor variables 
As explained in the main body, 3 “types” of predictor variables were considered: 

Sentinel-1 backscatter coefficient with the VV and VH polarization, Sentinel-2 

multi-spectral information and meteorological data. The data went through 

feature transformations to compensate the possibly non-linear relationship 

between the CSH and the predictors. These feature transformations included: 

square, exponential, inverse, hyperbolic tangent, square root, logarithm of base 10 

and composite features and indices. 

3.9.2.3 Data association 
The association of predictor features to the reference data required an 

intermediary step: defining a common reference. The strategy was: 1) define a grid 

(of 10m resolution) over each parcel then filling each pixel with the median value 

of the CSH records that fell within that pixel; 2) fill the pixels with the predictors 

variables, using an iterative approach to ensure a higher level of completion, with 

the iteration going from a time window equal to the exact date of acquisition to 4 

days in the past and 4 in the future. This resulted in a training dataset made of 

9,376 full records of 196 features and a validation dataset of 871 records of 196 

features. 

3.9.2.4 Feature selection 
Given the increase in the number of features considered due to the feature 

transformation, there was a risk of too high dimensionality in the dataset 

compared to the number of records available. Therefore, a first cross-validation 

(CV) was performed with the algorithms considered as promising in [26] and one 

more that was not included: XGBTree, Cubist, Random forest, glmnet and nnet. 

This cross-validation was fold independent, with the 68 folds being the date of 

CSH sampling. It was performed on the whole training dataset across the set of 

hyper-parameters detailed in Table S3. Afterwards, the variable importance score 

were computed and summarized (mean divided by the standard deviation and 
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median divided by the interquartile range) across models. The summarized metrics 

were used to create a new variable importance ranking (illustrated in Annex 4). 

By integrating iteratively the most informative features into linear regressions, and 

recording the associated adjusted coefficient of correlation, it was possible to 

detect the inclusion of non-informative features and thus “critical” numbers of 

features the models should consider. The 5 first “breakpoints” in the number of 

features to consider were: 60, 97, 137, 143 and 158. 

3.9.2.5 Hyper-parameter tuning 
The hyper-parameters explored to tune the models are detailed in Table S3, 

altogether with the final value adopted. The hyper-parameter tuning was 

performed using a cross-validation with the 68 independent folds based on the 

date of CSH acquisition. For each algorithm tested, it was performed five times, 

the training dataset containing the 60, 97, 137, 143 and 158 most informative 

features. For each algorithm, the best performing models (lowest mean RMSE 

across the folds) were kept and the optimal parameters are shown, altogether with 

the number of features entering the best performing models, in Table 3-11. 

Table 3-11: Hyper-parameter explored during the hyper-parameter tuning 

Model Parameter Hyper-parameter values tested Final 

number 

of 

features 

in the 

model 

Final 

hyper-

parameter 

value 

xgbTree Nrounds; 

max_depth; eta; 

gamma; 

colsample_bytree; 

min_child_weight; 

subsample 

(200, 1000); (4, 6); (0.1, 0.25, 0.5); (0.1, 0.5, 

1.0);( 0.5, 1.0); ( 1, 3); (0.5, 1,0) 

143 200; 6; 0.1; 

1; 0.5; 1; 1 

Cubist committees; 

neighbors 

(1:10); (0:7) 158 10; 0 

Random 

Forest 

(RF) 

mtry 88 143 88 

Glmnet Alpha 

Lambda 

(0.0001,0.001,0.005,0.01,0.05,0.1:0.1:1); 

(0.0001,0.001,0.005,0.01,0.05,0.1:0.1:10) 

158 1; 0.1 

nnet Size; decay (1:7); (0,0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 

0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1) 

158 3; 0.01 

3.9.2.6 Model training and performances 
Once the optimal number of features to consider and the optimal hyper-

parameters have been determined for each modelling algorithm, it is time to create 

the production model. The performances in the fold-independent cross-validation 
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(that could be seen as the expected range of performances) and independent 

validation are summarized in Table 3-12. 

Table 3-12: Performances of the models used for the platform creation 

Model 

Fold-independent cross-validation Independent validation 

Mean RMSE 

(mm of CSH) 

Standard 

deviation of the 

RMSE (mm of 

CSH) 

RMSE 

Cubist 23.8 6.2 17.9 

Glmnet 22.5 7.0 15.1 

Nnet 24.1 7.3 18.7 

rf 22.4 5.6 17.7 

xgbTree 21.9 6.1 17.9 

3.9.3 Evolution of the Walloon grasslands 
Using the parcel repartition available on WalOnMap (wallonne 2022) available 

for the years 2015 to 2020 at the time of writing, it is possible to draw the trends 

concerning the area and the number of Walloon parcels used as pastures. It is 

important to note that this term here encompasses the grazed pastures but also the 

mown ones and they could be either temporary or permanent. The number of 

pastures (totalPastureNumber) and the global area dedicated 

(totalPastureArea_m2) grew over these 6 years although it seems that the parcels 

are globally smaller given that the increase in the number of pastures was higher 

than the increase in area (Table 3-13). There were small differences between the 

sum of the computed areas and the sum of the declared areas, mainly due to 

rounding and delimitation of parcels not exactly fitting the border of the parcels. 

The rise in the percentage of pastures within the agricultural area attribution is 

due to both the increase in the area dedicated and the decrease of the total 

agricultural areas. 

Table 3-13: Number of pastures and area covered between 2015 and 2020. The SAU 
corresponds to the global area dedicated to agricultural activities. 

year totalSAU_m2 totalPastureNumber totalPastureArea_m2 percentPastureArea 

2015 8,149,209,335 158,921 3,722,260,800 45.68 

2016 8,145,473,197 161,959 3,738,523,652 45.90 

2017 8,155,550,248 165,122 3,762,399,703 46.13 

2018 8,153,854,595 194,657 3,988,696,285 48.92 

2019 8,114,728,925 204,463 4,034,431,641 49.72 

2020 8,094,418,326 209,907 4,037,578,677 49.88 

The definition of permanent pastures is: area dedicated to pastures for at least 

five years. A way to check the number of permanent pastures in Wallonia is thus 

to check the occupation change, whether it concerns added or removed areas 

(Table 3-14). The maximum cumulative change over five years (addition and 
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removal of different pasture areas) was between 2016 and 2020 and was equal to 

94,167.91 ha or 11.6% of the total agricultural area of 2020. This means that at least 

88.4% of the Walloon pastures are permanent. 

Table 3-14: Added and removed pasture areas between 2015 and 2020. Values were rounded 
to ha units 

Reference year 
Added areas     Removed areas     

2016 2017 2018 2019 2020 2016 2017 2018 2019 2020 

2015 15,879 25,924 64,927 61,766 65,818 14,249 21,895 38,228 30,464 34,193 

2016 / 15,833 58,765 56,945 62,081 / 13,435 33,696 27,274 32,086 

2017 / / 50,453 50,482 57,607 / / 27,782 23,209 30,010 

2018 / / / 36,727 46,112 / / / 32,125 41,185 

2019 / / / / 17,269 / / / / 16,945 

 

3.9.4 Variable importance of the newly trained models. 
The ranking of the 160 most important variable is shown in Table 3-15.The 

naming scheme is the following except for the time features: 

➢ The variable origin: S1 for Sentinel-1, S2 for Sentinel-2, Met for 

meteorological data, IDB for Sentinel-2 based indices. A T is added when 

a transformation is applied 

➢ The variable in itself: for S1 it is either the VV or VH or timelag; for S2 

it is either the band of the timelag; for the meteorological data P 

represents the precipitations, ens for the solar radiation, ETP for the 

potential evapotranspiration, DJ00 for the degree-day on the 0 basis, HR 

for the relative humidity, WS for the wind speed; for IDB the indice in 

the online database 

➢ The transformed nature: exp for exponential, inv for inverse, sqrt for the 

square root, log10 for the logarithm in base 10, tanh for the hyperbolic 

tangent, sq for the square, cube for the cube 
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Table 3-15: Variable ranking according to their importance, from the highest to the lowest. 

VarName Order VarName Order VarName Order VarName Order VarName Order 

MetT.ens.exp 1 MetT.DJ00.3.sq 41 S2.B12 81 IDB.023 121 S2T.B08a.sq 161 

Met.P.3 2 S2T.B04.sq 42 IDB.070 82 IDB.140 122 IDB.003 162 

MetT.P.3.exp 3 S2.WVC 43 S2T.B12.sqrt 83 IDB.223 123 S2T.B06.inv 163 

Met.P.7 4 S1T.VV.inv 44 S2T.B12.exp 84 IDB.001 124 IDB.110 164 

MetT.P.7.exp 5 S1T.VV.exp 45 S2T.B12.log10 85 IDB.075 125 IDB.113 165 

MetT.P.7.sq 6 Met.DJ00.7 46 IDB.040 86 IDB.135 126 S2T.B07.sq 166 

MetT.P.3.sq 7 Met.WS 47 IDB.050 87 IDB.136 127 IDB.042 167 

S2T.B02.cube 8 MetT.WS.exp 48 IDB.085 88 IDB.137 128 S2T.B08.sq 168 

Met.ens 9 MetT.DJ00.3.exp 49 IDB.118 89 IDB.222 129 S2T.B08a.cube 169 

S2.dTS2 10 MetT.WS.sq 50 IDB.095 90 IDB.130 130 IDB.182 170 

MetT.ens.sq 11 MetT.DJ00.7.exp 51 S2T.B11.cube 91 IDB.036 131 S2T.B06.cube 171 

S2T.B03.cube 12 MetT.DJ00.7.sq 52 IDB.046 92 IDB.084 132 IDB.002 172 

MetT.ETP.sq 13 S2T.B05.sq 53 IDB.014 93 IDB.080 133 IDB.232 173 

S2T.B04.cube 14 S2T.B03.exp 54 IDB.004 94 IDB.033 134 IDB.224 174 

Met.P.15 15 S2T.B02.exp 55 IDB.091 95 IDB.234 135 IDB.101 175 

MetT.P.15.exp 16 S2.B03 56 S2T.B11.sq 96 IDB.041 136 IDB.038 176 

S2T.B02.sq 17 S2T.B03.tanh 57 IDB.152 97 IDB.074 137 S2T.B07.cube 177 

MetT.ETP.exp 18 S2T.B03.sqrt 58 IDB.097 98 S2T.B11.sqrt 138 IDB.235 178 

Met.ETP 19 S2T.B12.cube 59 IDB.229 99 S2T.B08a.sqrt 139 IDB.166 179 

MetT.P.15.sq 20 S2.B02 60 IDB.061 100 S2T.B08a.log10 140 IDB.186 180 

MetT.DJ00.sq 21 S2T.B02.tanh 61 S2T.B11.exp 101 S2T.B08a.tanh 141 IDB.068 181 

MetT.HR.sq 22 S2T.B05.exp 62 IDB.086 102 S2T.B08.log10 142 S2T.B08.cube 182 

MetT.HR.exp 23 MetT.DJ00.15.exp 63 IDB.090 103 S2.B08a 143 S2T.B11.log10 183 

Met.HR 24 Met.DJ00.15 64 IDB.058 104 IDB.034 144 IDB.066 184 

S2T.B03.sq 25 MetT.DJ00.15.sq 65 IDB.098 105 S2T.B07.sqrt 145 IDB.177 185 

MetT.DJ00.exp 26 S2.B05 66 IDB.008 106 S2T.B08.sqrt 146 S2T.B06.sq 186 

S2.AOT 27 S2T.B02.sqrt 67 IDB.115 107 S2T.B07.log10 147 S2T.B06.sqrt 187 
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S1T.VH.sq 28 S2T.B05.tanh 68 IDB.239 108 S2T.B07.tanh 148 S2T.B06.log10 188 

Met.DJ00.3 29 S2T.B05.sqrt 69 IDB.191 109 S2T.B08.tanh 149 S2T.B06.tanh 189 

S1.VH 30 S2T.B11.inv 70 S2.B11 110 S2T.B08.inv 150 IDGrid / 

S1T.VH.tanh 31 IDB.011 71 IDB.087 111 S2T.B08a.inv 151 Height_mm / 

S2T.B05.cube 32 S2T.B12.sq 72 IDB.233 112 S2.B07 152 Parcelle0 / 

S1T.VH.inv 33 S2T.B12.inv 73 IDB.249 113 IDB.006 153 Site / 

S1T.VH.exp 34 S2T.B04.exp 74 IDB.017 114 S2T.B08a.exp 154 Date / 

Met.DJ00 35 DOY 75 S2T.B11.tanh 115 S2.B08 155 ModelFile / 

S1.dTS1 36 Month 76 IDB.069 116 IDB.031 156 Applicable / 

IDB.236 37 S2T.B04.tanh 77 IDB.081 117 IDB.226 157 method / 

S1T.VV.sq 38 S2.B04 78 IDB.121 118 S2T.B07.inv 158 S2T.B06.exp / 

S1.VV 39 S2T.B04.sqrt 79 IDB.231 119 S2T.B07.exp 159 S2.B06 / 

S1T.VV.tanh 40 S2T.B12.tanh 80 IDB.067 120 S2T.B08.exp 160   

 

 



 

 

3.9.5 Distribution of the predicted CSH depending on the time 

lag tolerance considered 
Impact of the merging tolerance, applied on the S2 dataset in Figure 3-11 and on 

the S1 dataset in Figure 3-10, on the prediction value. On each subplot, the 

boxplots groups are ordered from 0 day to 4 days time lag tolerance from left to 

right. The five models used are numerated from 1 to five for space convenience 

and correspond respectively to: the cubist model, the glmnet, the nnet, the rf and 

the xgbTree. The year and the dataset concerned by the splitting are represented 

in the upper right corner of each sub-plot. 

 

Figure 3-10: Impact of the merging tolerance (time lag), applied on the S1 dataset, on the 
prediction compressed sward height value. 
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Figure 3-11: Impact of the merging tolerance (time lag), applied on the S2 dataset, on the 
prediction compressed sward height value. 

 

3.9.6 Proposition of representation of the probability to get x 

predictions a year 
For future users of the DSS, it might be relevant to assess the number of 

predictions they can expect per grazing period. An illustration of the probability 

curve is proposed in Figure 3-12. This representation was made on the basis of the 

whole dataset. Given that some areas were more covered by the chosen S1 and S2 

tiles, it might be relevant in the future DSS to offer a finer spatial granularity. The 

proposed use of this representation is to start form a certain number of predictions 

the user wants per year and then check the range of probability to get this number 

of predictions. 



Creation of a DSS for feed availability assessment on pastures using machine 

learning, remote sensing and meteorological 
 

 150 

Figure 3-12: Probability of getting x number of prediction per year for each year studied. 

3.9.7 Summary of the predicted CSH values at the pixel level 
Summary of the predicted CSH values at the pixel level is represented in Table 

3-16. 
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Table 3-16: Summary of the predicted CSH values at the pixel level. The left part relates to 
raw finite predictions (N= 1,426,156,171; 1,047,054,399; 1,482,392,774; 764,039,165 in 2018, 
2019, 2020 and 2021) and the right one to data filtered to the ]0:250]mm of CSH range (N= 
1,425,852,569; 1,046,797,529; 1,481,945,618; 763,510,335 in 2018, 2019, 2020 and 2021). All 

values are in mm of CSH. 

 
Filtered on the finite values Filtered on the range 

Cubist Glmnet Nnet Rf xgbTree Cubist Glmnet Nnet Rf xgbTree 

2018 

Minimum 5.9 -17,670,617.0 45.3 18.4 4.6 6.2 0.0 45.3 18.4 4.7 

1% 29.2 16.5 45.3 28.9 26.6 29.2 16.6 45.3 28.9 26.6 

1 quart. 42.7 35.0 45.3 41.6 40.0 42.7 35.0 45.3 41.6 40.0 

Median 51.7 43.0 56.2 49.3 47.8 51.7 43.3 56.2 49.3 47.8 

Mean 56.0 48.6 61.1 55.0 53.6 56.0 48.6 61.1 55.0 53.6 

SD 20.0 526.4 21.9 20.6 21.2 19.9 20.3 21.9 20.6 21.2 

3 quart. 63.4 58.0 56.2 62.2 60.4 63.3 57.6 56.2 62.2 60.4 

99% 132.9 114.0 130.6 130.4 134.4 132.8 114.0 130.6 130.4 134.4 

Maximum 348.6 4,272,111.0 130.7 208.0 230.0 250.0 250.0 130.7 208.0 230.0 

2019 

Minimum 0.8 -3.559.411.0 45.3 25.1 5.9 5.6 0.0 45.3 25.1 5.9 

1% 35.9 24.7 45.3 35.2 34.2 35.9 24.7 45.3 35.2 34.2 

1 quart. 49.0 43.0 56.2 50.4 48.9 49.0 42.6 56.2 50.4 48.9 

Median 58.6 54.0 56.2 60.6 58.3 58.6 53.9 56.2 60.6 58.3 

Mean 63.8 58.0 66.5 65.5 64.1 63.8 58.2 66.5 65.5 64.1 

SD 21.7 678.5 24.5 22.3 22.7 21.6 21.2 24.5 22.3 22.7 

3 quart. 71.9 70.0 73.1 73.7 72.2 71.9 69.6 73.1 73.7 72.2 

99% 144.8 120.1 130.6 146.1 148.8 144.7 120.0 130.6 146.1 148.8 

Maximum 353.1 11,662,154.0 130.6 217.3 239.0 250.0 249.9 130.6 217.3 239.0 

2020 

Minimum 0.4 -7,167,708.0 45.3 24.1 7.7 5.5 0.0 45.3 24.1 7.7 

1% 33.9 19.7 45.3 32.9 32.4 33.9 19.9 45.3 32.9 32.4 

1 quart. 46.5 39.0 56.2 48.4 46.5 46.5 39.0 56.2 48.4 46.5 

Median 55.1 51.3 56.2 58.3 55.5 55.1 51.3 56.2 58.3 55.4 

Mean 60.1 55.0 67.2 62.1 60.5 60.1 54.9 67.2 62.1 60.5 

SD 20.2 613.5 25.5 20.1 20.9 20.1 21.2 25.4 20.1 20.9 

3 quart. 67.5 67.2 73.1 70.8 68.6 67.5 67.2 73.1 70.8 68.6 

99% 134.3 116.0 130.6 135.1 137.9 134.1 116.0 130.6 135.1 137.9 

Maximum 352.2 13,335,017.0 130.6 204.8 226.5 249.9 249.9 130.6 204.8 226.5 

2021 

Minimum 3.1 -12,994,638.0 45.3 26.0 11.4 3.1 0.0 45.3 26.0 11.4 

1% 30.8 17.0 45.3 36.7 34.3 30.8 17.5 45.3 36.7 34.3 

1 quart. 46.6 42.0 56.2 49.2 48.7 46.6 42.3 56.2 49.2 48.7 

Median 55.4 52.0 56.2 57.8 56.9 55.4 51.9 56.2 57.8 56.9 

Mean 59.2 54.3 61.3 61.3 60.6 59.2 54.2 61.3 61.3 60.6 

SD 18.6 2265.8 19.4 17.3 17.9 18.5 17.9 19.4 17.3 17.9 

3 quart. 67.6 64.0 62.1 68.9 67.9 67.6 63.6 62.1 68.9 67.9 

99% 124.3 108.0 130.6 121.4 123.8 124.0 107.9 130.6 121.4 123.8 

Maximum 332.4 59,077,753.0 130.6 204.2 224.8 249.9 249.9 130.6 204.2 224.8 
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4 Chapter 4 Would I pack the same way? 

4.1 Story 

Dear reader, until now, you have been told what has been done. Now that we 

arrived at a tavern, it is time to check on our luggage and consider them regarding 

the partial conclusions of each chapter of this part of the journey. Indeed, taking a 

step-back will help us alleviate our bags load, adapt the tools we chose and bring 

complementary reflexions on the path choice we made along the way. Not all 

options could nor should be considered right away. In fact, there is enough points 

of discussion to drive another thesis. 

4.2 Outline 

This chapter is dedicated to a discussion about the choices made and the 

alternatives. Some options could be implemented right away, and some were 

actually used along the way. On the other hand, other changes would require 

consequent time, effort and/or computation resources to be implemented. This last 

part of the changes is to be considered as perspectives. Other potential evolution 

paths are also developed until they appear to be dead-end. This chapter is separated 

into 6 parts, with the 5 first corresponding to the different parts of the formula 

way of defining models in R as illustrated in Figure 4-1, related to: 

➢ The objective and modelled feature; 

➢ The data origin; 

➢ The machine learning algorithms, on which the models are based, recall 

and detail; 

➢ The data treatment to feed the models; 

➢ The data augmentation through gap-filling; 

➢ The use of the sub-products of this thesis beyond its scope. 
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Figure 4-1: Illustration of the organisation of the discussion chapter in regard to the formula 
definition of the models in R. 
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4.3 Objective and modelled feature 

As explained in the introduction, the feed available on pastures, and in particular 

the grass, can be represented under different proxies: surface height model, global 

height, CSH, LAI, (dry) biomass, crude protein content, acid and neutral detergent 

fibre, ashes, metabolizable energy. Choosing between these descriptors requires to 

make concessions between: 

➢ The spatial representativity of the data. Apart from the surface height 

model, the afore mentioned metrics are not intrinsically spatially 

distributed. A positioning system like a GPS is needed for the discrete 

spatialisation of these data. This positioning could even be improved using 

corrections like Real Time kinematic (RTK) technologies, as in Michez et 
al. (2019) [ch-062]. More continuous spatial coverage requires spatial 

interpolation techniques like kriging; 

➢ The ease of acquisition. Underlying this concept, one should consider the 

human time and the resources/material needed. E.g. the surface height 

model is often produced through an UAV acquisition and then surface 

model reconstruction through sfm on the images, as in Michez et al. (2020) 

[ch-018]. This means that, beside the human time, there is a need to 

consider the cost spreading of the acquisition platform and the computing 

power to perform the sfm and then handling these data. Other proxies like 

biomass require to dry the grass in the oven, protein and fibre content 

require chemical compounds. 

➢ The understandability and meaningfulness of the metric for the 

application. From farmers’ point of view, depending on the level of 

individual training, speaking of CSH, LAI, biomass, protein content and so 

on might or might not be as relevant as a visual assessment of the cover 

level on the sward. It is often opposed to a scientific’ prospective based on 

using as much and as fine descriptors as possible to seize the whole reality 

and describe the most precisely the environment and therefore, in our case 

the feed available and the actual needs of the cattle. 

In this thesis, it was chosen to work with CSH mainly for its ease of acquisition. 

It also opened up a rapid expansion possibility of the database exploited to develop 

the models as it is widely used in the scientific community. The spatial 

representativity of this data is connected to its ease of acquisition. Indeed, a RPM 

allows for a rapid acquisition and using a calibrated GPS enables a rapid 

spatialisation. Therefore, although this data is not intrinsically spatialised, the 

spatialisation can be done without work overload, especially given that recent 
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RPM are connected to a smartphone application relying on the integrated GPS 

data acquisition. As mentioned before, the acquisition of this metric of the 

available feed requires small investments for the material. On the other hand, it 

still requires time for wandering across the parcels although it is limited as, if the 

GPS and the RPM were calibrated properly, the data are available as soon as the 

field acquisition is done. 

Concerning the representativity of this metric, it is more prone to discussions. 

CSH reflects a combination of both the actual height and the density of the forage. 

Therefore, this metric is hard to validate from a Walloon farmer’s prospective as it 

might not be as meaningful as a casual sward height or an actual biomass value. 

From a more warned user/scientific prospective, the lack of information about the 

nutritional quality of the grass might also cripple this choice. There exist 

translation models that perform the conversion from the CSH to the actual 

biomass. However, these models have to be cherry picked as the reference 

acquisitions for the model training have to be very similar, notably regarding the 

structural organisation of the studied vegetation that have a significant impact 

according to Laca et al. (1989) [ch-042]. The main points of attention are the 

meaning of the CSH, and thus the RPM characteristics, and the biomass entering 

the conversion model. Comparing this choice between countries and study cases 

underlines the variability of the reference measurements: a Japanese study 

Nakagami and Itano (2014) [ch-020] relates whole CSH values to the above 5 cm 

aboveground dry biomass; another study by Hakl et al. (2012) [ch-021] focused on 

the lucerne, that is more often related to mowing management, and computed the 

relationship between the whole CSH to the above 4 cm aboveground dry biomass. 

In a context more related to the Walloon area, a popularisation paper Lefèvre et 
al. (2022) [ch-022] summed up the Walloon situation: the lower clipping threshold 

for biomass estimation varies between 3 cm to 5 cm and the CSH considered is 

often the whole CSH. The problem due to this change in reference does not only 

relate to the biomass identification but also to general properties of the grass: along 

the stem, there is a lignification gradient altogether with a biomass and chemical 

one. This translates for example in higher density for low CSH, hence the limits in 

Lefèvre et al. (2022) [ch-022] of 5 cm and 15 cm for the applicability range of their 

conversion equation. This change in composition along the stem height might 

seem trifling, yet in the case of mowing for silage, changing the minimum 

reference height might be one of the causes for a higher concentration in nitrate 

or the presence of soil residue that might lead to contamination of the silage and 

therefore of toxic gases as illustrated in Delforge and Sevrin (2022) [ch-023]. In 
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this thesis, we modelled the whole CSH, without a lower threshold. Future 

conversion layers should be adapted to fit this property. 

As an alternative to the afore mentioned conversion models that should be 

handled with caution, especially regarding the input training data, it was also 

thought to use actual biomass values in the context of this thesis. This approach 

lost its relevancy when we fully seized the constraints of fiddling with datasets of 

various spatial resolution. As shown in Table 1-7, only a few satellites offer the 

possibility to get resolution finer than traditional sampling quadrats size. As a 

reminder, Ali  et al. (2017) [ch-016] used bands of 1 m*3.5 m for assessing the 

biomass, Lussem et al. (2019) [ch-017] used bands of 1.5 m*3 m and Michez et al. 
(2020) [ch-018] bands of 7 m*1.5 m. Additionally, the “Centre des technologies 

agronomiques” (aka “centre for agronomical technologies”, CTA) [ch-044] had 

spatial records of biomass on bands of ± 7 m*1 m with a different mowing timing 

for the 5 contiguous bands. As a result, no constellation with no cost presented a 

fine enough resolution to make sure that pixels fell only on the mown sub-parcels, 

without too much noise coming from the surrounding area of the quadrat. The 

option of going with costly satellite acquisition was discarded as we wanted to 

create a DSS available for all farmers in Wallonia and this would have meant huge 

costs for gains in spatial resolution with a possible loss of spectral resolution. 

Nowadays, models exist to compensate this loss in spectral resolution [ch-015] and 

[ch-024]. However, transferring the whole processing pipe on these data with a 

super-resolution (also called pansharpened) was assessed to fall out of the scope of 

this thesis, as it involved dealing with much larger datasets and thus increase the 

load on the hardware. This integration of pansharpened data is part of the 

prospective for a future development alike the integration of actual biomass direct 

prediction, although this integration would first need a re-definition of quadrats 

size and number.  

As the alternatives for CSH have been discarded, the DSS drafts development 

still required a way to assess the fulfilment of the cattle needs. We included a 

conversion layer from per pixel CSH to per pixel biomass by 10,000 m² (ha) 

equivalent. The initial version of this conversion layer was the one defined by the 

RPM designer 𝑑𝑟𝑦_𝑏𝑖𝑜𝑚𝑎𝑠𝑠 = 𝐶𝑆𝐻𝑚𝑚 ∗ 15 +  500. As it appeared during the 

discussions that followed, this conversion is currently a hot topic as 

FourragesMieux and the CRA-W recently published an equation better suited for 

the Walloon pastures: 𝑑𝑟𝑦_𝑏𝑖𝑜𝑚𝑎𝑠𝑠 = 𝐶𝑆𝐻𝑚𝑚 𝑎𝑏𝑜𝑣𝑒 5𝑐𝑚 ∗
215

10
 [ch-022]. Given 

that other teams are still working on this, like McSweeney et al. (2022) [ch-019] 

that also included the effect of the season and of the floristic composition, we 

thought during the creation of the second draft of the DSS to include it as a package 
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that could be updated/changed from within the GUI so the end-user could select 

which equation he wants to use. 

A complementary approach, based on a multi-scale modelling paradigm was 

considered. It consisted in the re-training of the equations if the end-user provides 

local data. In the case the end-user wants a translation into an actual height, this 

should also be possible. As explained in the section dedicated to the future of the 

DSS, all these implementations are perspectives of this thesis. 
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4.4 Data origin 

As expressed in the second article, some data providers had to be changed 

compared to what was described in the published paper in Chapter 2. For the sake 

of completeness, existing alternatives are also cited. 

4.4.1 CSH data 
The first models were developed using CSH data acquired with a EC-20 G from 

Jenquip RPM. Although there exists alternatives like the grasshopper used in 

Murphy et al. (2019) [ch-029], it was chosen to keep on using and acquiring data 

with the EC-20 G rpm to make sure the data used are the same across the whole 

dataset. Indeed, the change in measuring technology (ratchet count on the EC-

20 G side versus the micro-sonic sensor on the grasshopper side) could induce a 

bias in values acquired as illustrated in McSweeney et al. (2019) [ch-030]. Another 

reason was practical, the GUI of the Grasshopper related smartphone application 

requires to define beforehand the parcels and the number of records intended. 

Once this number is reached, it stops recording and induces a need to setup the 

application again. 

For the current discussion and step-back chapter, a new dataset was created. It 

consisted of data acquired at the CTA by the CTA team between 2018 and 2021, 

at various farms by FourragesMieux and at various farms by Killian Dichou from 

ULiège-GxABT in 2022. Due to errors partly located at the level of the smartphone 

application linking to the EC20-G and performing the GPS tracking, there were 

faulty recordings that had to be treated. First off, we had to discard a whole batch 

of data whose position was 0°N;0°E. This happened principally in the CTA dataset 

across all years and might be due to a loss of signal. The next filter was the removal 

of a batch of recording between the 23rd of July 2021 and beginning of May 2022, 

as the recordings were concentrated at specific points in and out of the parcels, 

denoting a poor implementation of the GPS use feature of the new version of the 

smartphone application, more precisely a too low sampling frequency. This 

hypothesis was proven true by the solution found by Killian Dichou which 

consisted in using another application with the GPS signal retrieval properly 

implemented to get a correct positioning. Other data treatments were also needed 

regarding the encoding of data: removal of special characters like accentuation 

marks; standardisation of the date encoding; and the rescue of longitude and 

latitude numbers that lost their decimal separator. The descriptive statistics of this 

dataset are shown in the supplementary material (Table 4-6) and illustrated per 

year without and with a distinction per parcel in Figure 4-2. The annual 

distributions seem to fit the gamma-distribution described in Nakagami (2016) 
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[ch-033] although some acquisitions campaigns seem to have gathered a very 

narrow range of data, hence the spike on the right part of Figure 4-2. 

 

Figure 4-2: Density of the distribution of the CSH per year on the left. On the right each plot 
represents a different parcel-time of acquisition combination 

4.4.2 Meteorological data 
Instead of using data collected in one farm as in Nickmilder et al. (2021) [ch-

000], the collection of meteorological data now relies on a distributed and 

standardised network of meteorological stations, called Agromet and operated by 

the CRA-W (2022) [ch-001]. It presented multiple advantages: a finer 

representation of Wallonia than with a single meteorological station, a 

standardisation of the condition of acquisition, a near-real time availability of the 

information and a handful and automatic way of retrieving data through an API. 

Recent advances in the Agromet project involved a finer representation of some 

features than the raw values located at the level of the stations. However, only 

some features received this kriging-like treatment. Implementing this dual-
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resolution dataset would have complexified the handling of spatial data, especially 

regarding the choice of spatialisation. In fact, it would require retrieving the 

reference raster used for their kriging-like spatialisation, and associate to each 

pixel, that have, as far as I understood, a 1 km resolution, the Voronoï polygon, 

used until now, that covers it the most. This would mean that instead of one line 

per date per station, there would be one line per date per pixel. Therefore, the 

number of lines for each day of acquisition would largely increase. Hence, the 

computational cost of the integration of meteorological data would increase 

compared to the use of the station identifier until the last moment. As it might still 

be relevant in a near future, this option is a mid-term evolution perspective. 

4.4.3 Sentinel-1 
No changes were made regarding the data provider of S1 data. The way to 

acquire it has just been automated through the use of the sentinelsat python 

package Wille et al. (2016) [ch-028]. A technical precision is still needed: it had to 

be built locally on the server due to constraints on the permission rights. To fasten 

the acquisition and bypass the limitations on the number of tiles that can be asked 

to be retrieved from the long-term archiving, five accounts were created using all 

the old evolutions of the mail addresses of the university of Liège. 

4.4.4 Sentinel-2 
At first, the model created relied on data coming from the scihub-copernicus 

hub API [ch-006] from the ESA. When scaling up the data acquisition to the whole 

Walloon Region, the data provider for S2 tiles was changed to Theia [ch-007]. The 

main reason for this change of data provider was the conversion algorithm from 

top of atmosphere (S2-L1C) to bottom of atmosphere/top of canopy (S2-L2A) 

reflectance. It was made through look-up table in the sen2cor algorithm used for 

the ESA conversion [ch-008] whilst the MAJA algorithm, implemented in the 

Theia-CNES platform, relied on the exact computation of correction formula [ch-

009]. The main implication of this difference is a significant change in the cloud 

detection as illustrated by Baetens et al. (2019) [ch-025] and Sanchez et al. (2020) 

[ch-026]. 

Another motivation for the change of data provider was the ease of access. 

Indeed, for retrospective studies, the ESA’s long-term archiving policy slowed 

down a lot the data acquisition as the number of tiles that could be downloaded at 

once was limited. Furthermore, the acquisition process requires multiple 

identifications spaced of at least 1 hour. 
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4.4.5 Complementary data 
The inclusion of other data was considered, especially regarding the topography 

and geo-pedological characteristics. 

Theoretically, topography (altitude, slope and orientation) impact on S1 and S2 

are already accounted for during the pre-treatments. However, it could somehow 

help the models to mitigate the meteorological data. Yet, this is not included in 

the data sources. The main reason was to minimize the introduction of bias 

through over-represented classes. Indeed, data were mainly collected in the 

eastern half of Wallonia and, given the topography of Wallonia, this would have 

induced a biased representation of the topology in the models and cripple the 

possibility to apply them at a larger scale. 

Regarding the other considered data source, soil data were not included partly 

to also reduce bias as only a part of the Wallonia was covered. The other main 

reason was related to the encryption of the soil characteristics in the “Carte 

numérique des sols de Wallonie” (aka “Walloon numerical soil map”, CNSW) that 

can be downloaded from the Service public de Wallonie (2023) [ch-045]. As stated 

in the layer description, there are more than 6,000 entries in the legend. These 

entries are the result of the combination of the substrate, texture, drainage, soil 

profile development, coarse elements load and other indicators. However, these 

values are not numbered, these are categorical letters. As a result, training the 

models on only a part of the range of the levels does not allow for extrapolation. 

There are ways to go back from level to actual number range and sub-products of 

this data source exist. However, the small range of training farm implies a small 

coverage of the total variability. Therefore, this data source was discarded, and its 

inclusion is a perspective to reconsider once the area, on which data are collected, 

will be enlarged. An alternative to the CNSW could be the coarser SoilGrid 

database (the finest resolution being 250 m) [ch-054]. This database includes pH, 

soil organic carbon content, bulk density, coarse fragments content, sand content, 

silt content, clay content, cation exchange capacity (CEC), total nitrogen as well 

as soil organic carbon density and soil organic carbon stock. This database 

integration is another perspective of this thesis. 

Another data sources that could prove useful is the soil water content, as it is 

used in mechanistic modelling such as the Moorepark Saint-Gilles (MostGG) 

model [ch-056]. However, it is dependent on the soil and the meteorological 

history. As the soil description has been discarded, this data source is also discarded 

for now. Beside the soil related indicators, pasture management related indicators 

such as manure fertilizing as their importance is illustrate by their use in the afore 

mentioned study.  
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4.5 Machine learning modelling 

ML models can be used to link the CSH to the other data sources. Five models 

were assessed to be the most promising in Chapter 2. In Chapter 3, it was assessed 

that two of them were even more relevant: a Cubist and a random forest. As the 

dataset size had substantially increased, it might be relevant to train the five most 

promising models anew. The modelling process will be globally similar to the one 

used in Chapter 2 and 3 (illustrated in Figure 4-3) but some points could be 

modified to be more efficient. This section aims to recall the algorithms used and 

to shed light on the strategical management of the dataset partitions for 1) 

guaranteeing the existence of a fully independent/ external validation dataset; 2) 

the assessment of the relevancy of the feature transformation; 3) the research of 

the optimal hyper-parameter; 4) the assessment of the range of possible 

performances of the models; 5) the assessment of the actual performances on the 

held-out external validation dataset. Furthermore, it also aims to demystify the 

larger validation prospect called “unsupervised validation”. 

 

 

 

Figure 4-3: Modelling process workflow.  

4.5.1 Technical foreword 
To increase the computation speed and decrease the memory requirements of 

the cross-validation (CV) related sub-section, computation would be performed in 

python using float32 precision instead of the float64 format used in R. The 

decrease in precision could be considered as a potential advantage as it could lead 
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to a slight decrease in the over-fitting. The final/ “production” models should be 

trained in R using the best set of hyper-parameters as the platform was made to 

handle such models and spatial data handling is much easier and more reliable 

using R than python. Given that some hyper-parameters could or could not be 

accessed in each implementation, it required a particular attention regarding the 

package correspondence between the languages (as illustrated in Supplementary 

Material in Table 4-7). 

4.5.2 Algorithm description 
The first step of this analysis is the definition of the modelling algorithms that 

would be used. To ease the modelling and standardise the outputs, scikit-learn [ch-

055] should be used as the main python library and the caret R package should be 

used. Regarding caret, there is a computational overhead due to the 

standardisation of the formats. It was assessed to be worth the time investment to 

avoid the hassle of debugging code. The correspondence of the hyper-parameters 

between the python and R implementation is detailed in Supplementary material 

in Table 4-7. 

The models that would be explored again are: 

➢ Cubist: regression algorithm generating rule-based predictive models. The 

python package that should be used, Cubist [ch-037], is a wrapper around 

the C-coded Cubist tool [ch-039] inspired from the work of Quinlan (1992) 

[ch-038]. It was designed to be compatible with the scikit-learn 

framework. Similarly, in R, the Cubist wrapper package is used [ch-040] 

and [ch-041]. 

➢ Random forest (RF): meta-estimator fitting decision trees on various sub-

samples of the dataset. The python version that should be used is the 

“RandomForestRegressor” from scikit-learn [ch-046]. On the other hand, 

the R “RandomForest” package should be used [ch-047]  

➢ Glmnet: penalised regression based on the generalised linear model. In R, 

the glmnet package is used [ch-048]. In python, no package is as 

completely developed as in R. Therefore, a trick should be defined: a 

pipeline injecting a generalised linear model into a penalised regression. 

Scikit-learn pipeline [ch-049] should be used to inject the 

TweedieRegressor [ch-050] into the ElasticNet regression [ch-051]. The 

detail of the python functions arguments and default values is given with 

their original names. It should be noted that these names change when a 

pipeline is used. Given that it is part of the perspective of this thesis, all 

the prospects are not guaranteed to work, especially the warm-start ability 

(important for section 4.8.1) after getting through a pipe. 
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➢ Xgboost: Extreme gradient boosting is a library [ch-058] and [ch-059] 

based on the gradient boosting technique that consists in combining 

multiple “smaller” models. In this thesis, the boosted trees approach was 

adopted. It relies on a tree sub-model as the random forest, although it 

works in an association approach instead of an independent one. There is 

a R binding package [ch-060] and a python Scikit-Learn Wrapper interface 

for XGBoost [ch-061]. Given the high number of hyper-parameters, only 

the parameters easily accessible from the caret package are mentioned in 

Table 4-7. 

Until now, only a basic approach of neural network (NNet) was adopted: 

multilayer perceptron with one hidden layer. However, more complex NNet such 

as the wide and deep convolutional NNet (a possible architecture is illustrated in 

Figure 4-4) would also be relevant to explore better the more complex 

relationships existing between the used features and to take profit of its ability for 

transfer learning. This is especially interesting to limit the computation cost during 

the modelling process and to speed the convergence. 

 

Figure 4-4: Example of wide & deep & convolutional NNet thought as a perspective model to 
explore. MOD means a transition layer with a transfer function, conv designates a 

convolution layers and CSH is the final layer that translates the values into actual CSH 
values. 
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4.5.1 Validation set holding-out 
In Chapter 2, the independent validation set used for the external validation 

consisted in a farm whose data were acquired in 2019. To be consistent with this 

article the held-out external validation dataset (hoevd) for quality assessment of 

the production model will also consist in the recording related to this farm (and 

thus that single year of acquisition). Unless called the hoevd, all mention to a 

dataset will refer to the whole dataset without the hoevd. 

4.5.2 Feature transformation 
The inclusion of feature transformation was subject of many discussions, 

especially regarding potential dilution of the information. Therefore, a pre-

analysis step is proposed. On the dataset covering the years 2018 and 2019 (to limit 

the number of records and thus the computational requirements), a tuning of the 

five most promising models recalled above will be performed using a 10-fold 

stratified CV based on the farm and on the date of acquisition. It should be 

performed twice, once on a dataset with and once without the feature 

transformation. Ideally, the performances of the different folds will form two-

population showing a high skewness towards a low RMSE or a high R². Keeping 

the RMSE and applying a logarithmic transformation on these values should 

decrease their skewness. Therefore, a Student t-test could be applied to check 

whether the populations are different. If they are not, then there is no-need to 

transform the features. If they are and the transformed features show lower quality 

through its metrics, then there is also no point of keeping the feature 

transformation step. If they are and the transformed features show higher quality 

of the modelling through the associated metrics, it is worth the challenge and 

compute cost. 

4.5.3 Tuning 
To ease the automation of the search of optimal model hyper-parameters, the 

GridSearchCV tool from sklearn [ch-053] should be used to ease the automation 

of the search. To ensure the adequation of the hyper parameters to every type of 

conditions, the partitioning strategy for the fold definition of the 10-fold CV 

should be a stratified sampling. Compared to a fully random 10-fold CV, this 

stratification strategy allows to widen the number of cases on which the model is 

trained and tested. Therefore, it should increase the resiliency of the choice of the 

values of the hyper-parameters The performance metric to optimise should be the 

root mean square error (RMSE). Regarding the stratification feature, it should be 

a composite. Its composition and the inherent number of strata to sample requires 

a definition of the acceptance of missing values (NA) by the models. Considering 
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models that accept such NA and thus partial records (more details in section 

4.7.2.1), combining the farms and the date of acquisition would lead to 110 strata, 

adding up the individual parcels would lead to 847 strata and including the S1 and 

S2 time-lag (dtS1 and dtS2), more details on these time-lag definition in 

section 4.7.1.1, would lead to 5811 strata to sample. To increase the resiliency of 

the models, they should be confronted to a maximum of conditions during 

training. Therefore, and given the drift with increasing time-lags seen for some 

models in Chapter 3, the combination of date, individual parcel (and thus farm), 

dtS1 and dtS2 should be considered. If the models don’t handle well partial records, 

the meta-modelling approach developed in section 4.7.2.3 should be applied. It 

would lead to the three partitioning and strata consideration represented in Table 

4-1. The conclusion is the same, the more strata considered and sampled, the more 

robust the choice of the hyper-parameters and thus this highest number of strata 

should be considered. 

Table 4-1: Characterization of the stratification feature depending on the features considered. 

 Stratification feature definition 

Farm + acquisition 

date 

Farm+ parcel + acquisition 

date 

Farm + parcel + acquisition date + 

dtS1/dtS2 

Full 66 487 1,919 

Full without 

S1 

66 487 706 

Full without 

S2 

110 847 2,339 

The output of this tuning step would be a file with the optimal value for each 

hyper-parameter for each model. 

4.5.4 Validation 

4.5.4.1 Expected performances 
Using the file with all the optimal hyper-parameters, these could be used to train 

and test the models using a fold independent CV to help assess the range of 

performances the final model should show once applied on an unmet-before set of 

conditions. Therefore, a fold-separation strategy needs to be defined. In this 

context, it is suggested to use one of the strata definition as a fold definition. To 

minimize run-time, the number of fold should be kept within reasonable values 

while offering an overview of the variability of the performances. The first 

solution would be to base the folds to be farm independent. This would imply to 

consider 7-folds. For a resiliency study, it might not be enough and instead 

considering the 70 parcels available in the dataset could lead to better information 

on the dispersion of the performances (e.g. standard deviation of the RMSE). 
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The output of this part of the modelling should be statistical descriptors 

(minimum, maximum, mean, standard deviation) and a histogram of the metric 

used to fit the models, i.e. the RMSE. There should also be a representation of the 

bias, the mean absolute error (MAE) and the coefficient of correlation (R²). 

Regarding the use of the histograms, they should be checked to ensure the 

distribution is skewed towards better performance indication. Indeed, it would 

mean that most fits tend to be very similar with some deviation. These deviations 

would mean the inaptitude of the model to predict in certain conditions and could 

be due, in the particular context of this thesis, to poor conditions of acquisition. 

4.5.4.2 Training and validation performances 
Using the file with all the optimal hyper-parameters, these could be used to train 

the production model in python and in R. The reason for training the “production 

model” in both language is to ensure the translation of the hyper-parameter tuning 

was made properly by checking the similarity of the performances. Remaining in 

python would necessitate to re-code the Walloon prediction platform. Regarding 

the training modality, the dataset without the hoevd should be used for tuning and 

the hoevd serves as a basis to compute the actual metrics (RMSE, bias, MAE and 

R²; the detail of these metrics is given in Table 4-2). 

4.5.4.3 Unsupervised validation 
During the realisation of this thesis, quality indicators of the models 

complementary to standard metrics were used to select the best trained models. 

The goal of this section is to go back through these indicators and their use, while 

completing the list. The first step is thus to re-define the indicators and provide 

associated measurements protocols (Table 4-2). To guide the model selection, a 

ranking can be associated per criterion, a lower value meaning a better ranking. 

Rankings for different criterion can be added up and the lower total sum indicates 

the best model. 

Regarding the “unsupervised validation” mentioned in the section title, some 

criterion detailed in Table 4-2 are not directly related to a supervision of the 

training and validation process. Indeed, the sensitivity to the time-lag feature 

inclusion, the production of out-of-range values on the validation set, the temporal 

stability and the spatial heterogeneity are indicators not intended to be used 

directly on the training or the validation dataset. Instead, these indicators are 

intended to be evaluated on a larger database, ignoring reference measurement. 

Indeed, the point of these indicators is not to compare to actual values but instead 

to observe the behaviours of the prediction on a database. Therefore, as there is no 

comparison to an actual reference measurement, the “unsupervised” calling of the 

validation was chosen in this thesis, although it might trigger people given that it 
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relies on the prediction of a “Y-feature” and that it can be measured on the training 

and validation dataset altogether on larger databases (for which there is no 

reference measurement). This unsupervised approach of the model validation and 

selection is in fact relevant in other areas of research. For instance, applying such 

methodology on a milk-related mid-infrared spectra database allows to assess the 

relevancy of an equation to predict certain traits without having to perform loads 

of analysis as it might highlight points of failure. Therefore, focusing on these 

failure points might lead to hints to increase the robustness of the models. 
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Table 4-2: Summary of the criterion regarding the model selection, sd designates the standard deviation of the actual values, N the number of 
values, y the actual value, 𝑦̂ the predicted value, and 𝑦̅ the mean of the actual values. 

Criterion Explanation Computation Corresponding ranking 

Root mean square error 

(RMSE) of validation 
Metric indicating an expected error on a prediction 𝑅𝑀𝑆𝐸 = √

∑(𝑦̂ − 𝑦)2

𝑁
 

The lower the RMSE, the lower the 

ranking 

Mean absolute error 

(MAE) of validation 
Metric indicating an expected error on a prediction 𝑀𝐴𝐸 =

∑|𝑦̂ − 𝑦|

𝑁
 

The lower the MAE, the lower the 

ranking 

R² of validation Metric indicating the quality of fit of a prediction 𝑅2 =
∑(𝑦̂ − 𝑦̅)2

∑(𝑦 − 𝑦̅)2
 

The higher the R², the lower the 

ranking 

Ratio of percent 

deviation (RPD) of 

validation 

Ratio expressing the expected error compared to the actual variability of 

the dataset 
𝑅𝑃𝐷 =

𝑠𝑑

𝑅𝑀𝑆𝐸
 

The higher the RPD, the lower the 

ranking 

Over-/under-

estimation ratio 

Ratio of the number of cases the prediction was over-/under-estimated, 

indicator not biased with extreme value prediction 

𝑜𝑣𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 =
𝑁(𝑦̂ > 𝑦)

𝑁 𝑡𝑜𝑡𝑎𝑙
 

𝑢𝑛𝑑𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 =
𝑁(𝑦̂ <  𝑦)

𝑁 𝑡𝑜𝑡𝑎𝑙
 

The lower the over- and under-

estimation ratio, the lower the 

ranking 

Bias Total deviation of the prediction 𝐵𝑖𝑎𝑠 = ∑(𝑦̂ − 𝑦) 
The lower the absolute value of the 

bias, the lower the ranking 

Sensitivity to the time-

lag inclusion 

Ability of the model to run smoothly with the “backfill gap-filling 

methodology”. A change in the distribution of the predictions with higher 

time lag values implies that the models are probably not reliable with the 

current gap-filling methodology. 

Visual assessment of the boxplot 

of the prediction per category of 

time-lag 

The more similar the boxplots, the 

lower the ranking 

Extrapolation and 

prediction outside the 

training range 

Ability to provide information in case the training range was a bit short 

compared to the amplitude that a feature could adopt 

Sum of the number of values 

within a plausible range, out of 

the training range 

The higher the sum, the lower the 

ranking 
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Production of out-of-

range values 

Occurrence of completely out-of-range prediction values (e.g. negative 

heights or sward heights >1 m) 

Sum of the number of values out 

of logical bounds 

The higher the number of out of 

range prediction, the higher the 

ranking 

Temporal stability 

(regarding the metrics) 

Aggregate the predictions per date (mean or standard deviation) and per 

land-use unit and see if the day-to-day variation is logical, e.g. the grass 

mown a certain day (and thus a global drop is seen) should take more than 

a week to be back at the pre-mowing level 

Visual assessment 
Appearance of artifacts imply a 

higher ranking 

Temporal stability 

(regarding the spikes) 

Aggregate the predictions per date (mean or standard deviation) and per 

land-use unit and see if there are spikes often appearing, that could hint a 

noise in the modelling 

Visual assessment or 

computation of the number of 

inflexion points on a season 

The less noisy the signal, the lower 

the ranking 

Spatial heterogeneity 

check if the representation of the predictions on known parcels makes 

sense and if the heterogeneity matches the known topographical 

properties, e.g. humid areas should appear different than drier ones. 

Visual assessment 

The better the spatial representation 

matches the known topographical 

properties, the lower the ranking 
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4.6 Data treatment 

Linking the data presented in section 4.4 to the modelled feature detailed in 

section 4.3 through the machine learning models detailed in section 4.5 requires 

an adequation of the data format to the requirements of the models and thus some 

kind of treatments. The treatments of data throughout the model creation, the 

platform implementation and the DSS drafting were chosen at the time of 

realisation as they were assessed as the best solution at that moment. Taking a step 

back led to a reflexion on the choices that are detailed in this section. 

4.6.1 CSH data 
During the model creation, instead of the median per pixel used in Chapter 2, I 

would now rather use all the CSH values and the corresponding spatial data. First 

off, it is easier to work with points. The second main reason is that some models 

work in a decision-tree fashion. Therefore, more information could be found by 

keeping this variability. However, this assertion has to be mitigated by the fact 

that models tend to go for the mean value of the observed data when there are 

facing a similar dataset in prediction. Thus, it would expose the predictive 

capability to higher bias due the sensitivity of the mean to extreme values. The 

negativity of this impact of extreme values is alleviated by the overview of the 

performances of the most promising models once applied at a large scale: more 

than 75% of the predictions of CSH across all years were grouped below 75 mm 

(Chapter 3). This either reflects a very similar management across the whole 

region or a possible bias in the training datasets. Furthermore, increasing the 

variability and the number of configurations to which the models are confronted 

during training could help them improve their performances when confronted to 

extreme cases, hence section 4.7 that focuses on data augmentation through gap-

filling. 

4.6.2 Parcel definition 
During the first iteration of the handling of spatial data, grids were drawn over 

each parcel and parcels were treated independently for the data extraction [ch-

000]. It was rather inefficient concerning the access time to the files. Then, the 

second iteration (Chapter 3) included a way to handle the spatial data at the whole 

regional scale: the anonymous repartition of grassland parcels (PAA) was used for 

the year 2018 and transformed into a raster with 10 m resolution that became the 

reference for spatial data projection. All the area not marked as pastures were 

removed. 
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In the meantime, in the annex of the Chapter 3, 89% of the parcels could be 

called permanent pastures as these areas remained in the grassland definition for 

at least five years in a row during the period studied. This means that we probably 

miss 10% of the actual pastures by ignoring the non-grassland area of this 

anonymous grassland parcel repartition. Whether it is a problem or not is hard to 

tell: to provide data to the end user’ application is the primarily goal of this 

platform. Therefore, not predicting over these area means a failure of the objective. 

However, given the high amount of storage needed per day of prediction, the 

addition of these areas should be taken with caution as any applied research in 

computer science should always keep in mind the need for sobriety. 

To provide more insights on the storage requirements, for the most complete 

days, the file including the parcel and pixel identifiers, the corrected S1 and S2 and 

meteorological data and the predictions for the 5 most promising types of models 

of [ch-000] and trained again with more complete datasets weighs 14.6 GB. For 

future use, one might wonder why keep all the raw values and all the predictions. 

During discussions with a farmer that got out of bioengineering studies, it appeared 

that some want to mess themselves with the data. Therefore, the goal is to provide 

the end-user with a DSS that offers a high level of access to the data in order to 

match this wish of making their own equations/models. 

Another prospect related to the parcel definition over the whole PAA is the 

futureproofing and inter-usability of the platform. Indeed, mapping the whole 

PAA with a rasterization and filling with data in the past could help scientist: it 

would provide an easily usable platform to retrieve the spatial data and use it as a 

base for future modelling prospects. This prospect remains open to discussion as 

there already exist platforms developed by tech giant like the Google earth engine, 

or by universities like Belcam [ch-057]. The problem I have with these two 

alternatives is that we do not have access to the source code, so we do not know 

what they are using to perform the computation and whether they are being done 

the right way for our application. Furthermore, especially regarding Google’s tool, 

what would happen if they decided to have users pay for their download to pay 

off their servers. This would cripple the net benefit of going with freely available 

data. Another problem with this approach of using intermediary data providers is 

the definition of gap filling strategies. It is either hard or we have to download 

more data and post-process the data to have a chosen gap-filling like the one 

implemented in this thesis. Therefore, it loses its potential interest as compute 

resources consumption mitigator. 

As mentioned in the chapter related to the platform creation, the resolution of 

10 m might seem coarse especially regarding precision grazing, as underlined in 
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Tiscornia et al. (2019) [ch-014] and compared to the 2 m² used for the simulations 

in Ruelle et al. (2018) [ch-056]. To go with a finer resolution would require: 1) 

more computation power and storage, the current reference grid on which all the 

data are resampled has 15,413 rows, 26,006 columns and 400,830,478 cells and 

divide the resolution by 4 to have a resolution of 2.5 m would multiply the number 

of pixels by 16. 2) Go with a finer resolution offers a better spatialisation as we see 

finer combinations of S1 and S2 data. However, what would be the point of going 

that way with data that have a coarser resolution, for example the finer resolution 

of S2 being 10 m? Refining the global resolution would also require refining the 

input data resolution as Latte and Lejeune (2020) [ch-015] did by super-sampling 

of S2 tiles using data coming from another constellations of satellites. 

Another prospect related to the complexity of the subject of the refinement of 

the resolution is inherent to coordinate reference systems (CRS). Three were used: 

EPSG 4326, EPSG 31370 and EPSG 32631. There exist translation equations from 

one to another CRS. However, it is based on statistical models and there is an error 

related to these models. This uncertainty is around 2 m for the translation between 

EPSG 31370 and EPSG 4326, as illustrated with the warning provided by QGis 

when manipulating layers in both CRS. This was confirmed in a personal 

communication with Philippe Lejeune in September 2021. 

This error forms a complementary layer of uncertainty to data that have inherent 

uncertainty, especially regarding the positioning through GPS signals. Therefore, 

resolution refinement does not seem to be a priority and is a long-term perspective. 

4.6.3 S1 data 

4.6.3.1 Geocoding 
The pre-processing of S1 products has witnessed only one change in the 

standardised workflow coming from Filipponi (2019) [ch-012] and Filipponi 

(2020) [ch-013] in the origin of the digital elevation model (DEM): we switched 

from the 3 seconds Shuttle Radar Topography mission data -SRTM 3sec- to a one 

second one -SRTM 1Sec HGT. The main reasons were that it should be more 

accurate given the better spatial resolution and it was not possible to access those 

data during the platform elaboration. To go further in the amelioration of the 

spatial resolution of the DEM, there is the possibility to use the LiDAR Walloon 

DEM [ch-031] that has a 1 m resolution. This path was explored to a certain point 

and the challenges encountered mainly relate to size and relevancy of the 

information.  

The first challenge was to join all the DEM as they were heavy (the Walloon 

Brabant tile was around 3 GB whilst the 4 others weighed more than 12 GB). Once 

they were all joined and compared to the PAA, a problem appeared: some parcels 
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were out of the Walloon borders to which the DEM is limited. Therefore, there 

was a need for extending the extent of the merged raster. Furthermore, insufficient 

spatial coverage of the DEM compared to the S1 tile extent induced crashes in the 

SNAP software. 

Hence, we faced a second challenge: upgrade the spatial extent of this fine DEM. 

At first, the SRTM 1Sec HGT was envisaged. Then Aster-GDEM was assessed as 

more fitted as it has a better resolution and is more recent. This DEM was 

downloaded from [ch-032], using a bounding box larger than Belgium to make 

sure that the area covered by the S1 tiles is in fact encompassed inside that DEM. 

Then this “basic” DEM is projected into another CRS (EPSG 31370) using QGis to 

have a resolution of 3 m (Figure 4-5). We did not go all the way to a 1 m resolution 

as we know we will have to project back to EPSG 4326 for the processing by the 

gpt command line of the SNAP software and as explained earlier there is an 

uncertainty about the spatial translation that makes irrelevant the will to use too 

fine resolutions. Projection to EPSG 31370 was performed to ease the replacement 

of the ASTER-GDEM values by the LiDAR ones. 

The third challenge was related to the size of the data. The resampled and 

projected ASTER-GDEM weighted almost 64 GB and the raster merging operation 

largely outgrew the 32 GB of RAM of my workstation. Luckily, the on-disk work 

allowed to bypass this bottleneck. This, altogether with discussion with Cozmin 

Lucau (2022) led to the dismissal of the projected work (the remaining steps being 

detailed later). Indeed, the difference in type of signals emitted and received means 

that there could be inconsistencies between the layers. This was proven true as 

these layers are not similar and there are altitude differences between the two 

datasets, in the centre of the map and also on the edges. Given that we simply 

replace the centre, it could be only a minor problem as the reference would always 

be the same for all the operations and the relative changes are the focus of the 

modelling. However, the problem on the edge could cause extreme jumps in 

altitude values. Therefore, bias could be induced in the S1 correction and make 

irrelevant that merged product for the parcels located at the border of Wallonia 

although they were one of the primary concerns that led to the fusion of ASTER-

GDEM and the Walloon LiDAR DEM. There exist ways to smooth out the 

transition that require more time to be implemented than what is left in this thesis. 

Indeed, we could imagine a convolution along the border and smooth the values 

with a simple mean or more complicated convolution windows. For this reason 

and the huge requirements on the system, this evolution path was discarded. 
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Figure 4-5: Parameters for the projection and resampling of the ASTER-GDEM to a 3 m 
resolution into the CRS EPSG 31370. 
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The rest of the theoretical path, notwithstanding the huge RAM and disk space 

consumption, should have been: 

1) Merge all the Walloon DEM; 

2) Resample this merged Walloon DEM according to the ASTER-GDEM, the 

aggregation function being the mean; 

3) Create a 0/1 equivalent of the resampled layer where there is or isn’t data 

in the resampled layer; 

4) Multiply the ASTER-GDEM by this 0/1 layer; 

5) Add the resampled Walloon raster layer to the multiplied ASTER-GDEM 

layer; 

6) Project back to EPSG 4326 CRS; 

7) Run the adapted SNAP gpt command line on any S1 Tile and monitor the 

memory (RAM) usage and the time taken. 

4.6.3.2 Meteorological conditions 
Beside the geocoding evolution, the precipitation effect inclusion might also be 

needed to further improve the performances of the models and reliability of the 

platform. As Tamm et al. (2016) [ch-010] and Zhao et al. (2021) [ch-011] suggest, 

there is an impact of precipitations on the wave retrieval. The fact that both in 

temperate grasslands [ch-010] and tropical conditions [ch-011] the impact is 

noticeable tends to mitigate the hypothesis formulated by a fellow scientist from 

Germany, met at the 29th European Grassland Federation general meeting of 2022: 

the impact of precipitations on remote sensing of grasslands might be due to the 

weight of the water laying down the grass. 

4.6.3.3 Additional values 
Beyond the conversion of the values already implemented in the pipeline, 

complementary information was assessed relevant in other studies and could be 

considered as perspectives of the databases enrichment. For instance, Garioud et 
al. (2021) [ch-005] integrated the “Ascending/Descending” characteristics of the 

orbit and the coherence products.  

4.6.4 S2 data 
The data provider for S2 was changed along the way, from the ESA Copernicus 

open access hub to the Theia hub (https://theia.cnes.fr). This translated in the 

change of some features transmitted as the tiles pre-treatment from L1C to L2A 

led to different bands in the final product. Hence, the bands entering the models 

were changed, all of them were included in the newly trained models. 

During the elaboration of the platform, setting the restrictions on the proportion 

of clouds present in the tile to 25 % as in Nickmilder et al. (2021) [ch-000] was 
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rough and excluded too much data. Therefore, we changed the filter to exclude 

tiles that had more than 95% of their area covered with clouds or shadows and 

then used a stronger filter on the actual pixel extraction. It might be argued that 

this led to a higher permissiveness regarding the cloud cover. However, before 

arguing that way, one should keep in mind that Baetens et al. (2019) [ch-025] and 

Sanchez et al. (2020) [ch-026] showed that the cloud masking algorithm actually 

worked 7% better with the MAJA algorithm compared to the Sen2Cor one, used 

in backend for providing L2A products respectively on the Theia hub and the 

Copernicus one. 

Synthetic indices were computed to highlight combinations of bands that could 

be related to plant characteristics (e.g. the NDVI is related to the greenness of the 

plant). All the formulas were retrieved from Henrich et al. (2023) [ch-043]. 

Related to the evolution of the models, instead of using these indices, convolutions 

across bands could be an alternative to take into account the interaction between 

the features. This evolution would fit perfectly in the context of the new NNet 

considered as perspectives. 

4.6.5 Degree-day (DD) computation 
Changes were made in the computation of the DD as expressed in the paper of 

the third chapter. Each way of computing deserves consideration as the first takes 

into account “standard temperature” and comes mainly from the construction 

conception and energy balance area and is used in vegetal physiology area by 

Calvache et al. (2020) [ch-002] while the second is mostly based on the 

physiological response of the plant to its environment. Indeed, the 0°C base 

temperature refers to the water freezing point and thus the water availability to 

the plant and thus the possible plant growth in winter and the 35°C approximated 

the temperature of the diminishing activity of the rubisco activase as expressed in 

Miller et al. (2001) [ch-003] and Anandhi (2016) [ch-004]. 

4.6.6 Joining the data 
The join process starts at the level of the CSH recordings. As a quick reminder of 

an earlier statement, instead of using the median per grid pixel, now we spatially 

join the data using the position of the record point. To fasten the execution and to 

make sure that the datasets have the same characteristics between training, 

validation and production, the data were not directly sampled on the S1 Geocoded 

tiles nor on the S2 tiles. Instead, I took advantage of a temporary file created during 

the platform validation with the retrospective analysis. Indeed, all the S1 and 

S2 data were resampled according to the common grid. Therefore, the points were 

located on the grid to retrieve the specific pixel identifier that is used as a search 
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key in the S1 and S2 extracted file. Although it might be argued that it could 

decrease the accuracy of the data used as inputs of the models, it was assessed as 

the most relevant way, especially regarding the production context of this data 

extraction: 

1) To deal with the amount of data to scrape. Indeed, for the years 2018 to 

2021, it represents 540 S1 Tiles, each requiring half an hour, 80 GB of RAM 

and 16 CPU cores to be geocoded using the “SRTM 1Sec HGT” DEM, 

without accounting for the overhead of unzipping the files and the 

important number of read and write operations. The last point of time 

consumption is the loading and unloading of these datasets in RAM for a 

spatial search. Therefore, going with the already extracted files represent 

a huge time gain given that each extracted and geocoded file requires 

around 15 seconds to be read and 15 more seconds to retrieve the data of 

interest. From the S2 point of view, it translates into 1250 files to scrape 

with a lighter overhead as only the unzipping is needed before loading 

these datasets, applying the filters on shadows and clouds and extracting 

the data. Despite this lighter compute load, it does not match the speed of 

simply reading the already extracted files. 

2) To deal intelligently with our hardware. The read and write time on the 

disk are a first limiting factor. The next one is the will to avoid performing 

redundant computation. Furthermore, the space available is finite and 

storing data in the extracted/resampled according to the grid form reduces 

the footprint. Indeed, before geocoding the S1 tiles weigh around 1 GB and 

after around 7.5 GB, while the resampled files weigh around 2 GB each. 

For S2, the compressed files are around 2 GB each and the resampled files 

could be heavier, up to 5 GB. This size increase is largely compensated by 

the speed of the data access and retrieval and the decreased strain on the 

storage support as it is only a read operation instead of a read/write/read 

sequence with zip files. 

3) To standardise the data format between the training and validation to the 

one to which the models will be confronted in production. 

Using exactly simultaneous acquisition leads to a dataset of 5,840 rows, 

representing less than 4% of the initial 155,099 CSH records. Beside the poor 

utilisation rate of the ground sampling, this exact co-occurrence of CSH sampling, 

S1 acquisition and S2 acquisition happened only at 3 dates on the whole period 

covered. As the DSS will rely only on S1 and S2 data (meteorological are ignored 

in the current demonstration, as they are always available), searching for exact co-

occurrence of S1 and S2 and ignoring CSH sampling dates on the sampled area 
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leads to a dataset of 83,312 rows with 39 dates covered on the five years monitored. 

For a DSS, this temporal resolution is too low. Therefore, there is a need to perform 

data augmentation, for example using gap-filling. 
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4.7 Gap filling 

The notion of gap-filling designates loads of different techniques and approaches. 

This section aims to provide insights into most prospects related to the object of 

this thesis: develop a DSS that would provide on a regular basis information to the 

farmers. The first notion to point out is the “gap”. This designates values that are 

missing. This could be due to asynchronous acquisitions as illustrated in the section 

4.6.6. Gaps are either a complete absence of values for a certain period of time or 

only partial information. If the information is partial, there are methods to 

complete it before or even during the modelling. If the values are completely 

missing, it requires to take a step back regarding the modelling paradigm chosen. 

The organisation of the methodologies is summarised in Figure 4-6. 

 

 

Figure 4-6: Summary of the gap-filling methodologies depending on their intervention 
location during the modelling process. 

4.7.1 Prior the modelling 

4.7.1.1 Backfill gap-filling 
To moderate the temporal gaps, the closest values for each variable for each pixel 

in a time-window ranging from 5 days before to 5 days after the actual recording 

was used during the first iteration of the modelling of CSH growth (Chapter 2). 

The second iteration of the modelling process aimed at creating models that would 

be suitable for use in near real time. Therefore, there was an update in the joining 

algorithm, only closest data up to 4 days in the past were considered (“backfill gap-
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filling”). During the evaluation of the performances of the platform (Chapter 3), 

this inclusion of past data implied a multiplication of almost 3 times of the number 

of dates covered compared to a join performed on exactly co-occurring data 

acquisition. 

As illustrated in Chapter 3, there were serious instabilities in the prediction 

performances when predicting with some combinations of data far off in the past. 

To improve the reliability of the models when using data far off in the past, the 

algorithm to join data temporally should be improved following this methodology: 

➢ For each record, the meteorological data corresponding to the closest 

meteorological station are added; 

➢ For each record, a repetition of the record is performed for each S1 data 

available up to 7 days in the past (the 7th being excluded), including a NA 

in the range of data to add. This means that, if the S1 satellite were to fly 

over the area everyday of that period, that one record would be 

represented 8 times (7+1); 

➢ For each of these new records, the same operation is performed with S2. 

In the same scenario, this means that for each of these new records there 

would be 8 new records and therefore, one original CSH acquisition could 

be matched with up to 64 combinations of S1 and S2 data, transforming 

one CSH acquisition into up to 64 records with different satellite 

combination. 

To illustrate concretely the effects of this temporal gap filling, the 155,099 rows 

dataset described earlier went through the workflow and the resulting dataset was 

made of 2,481,158 rows. The descriptive statistics of this filled dataset are summed 

up in the Supplementary material (Table 4-8). Please note that due to the joining 

process, there has been duplication of some rows. The correct number of non-

duplicated rows is 1,138,161. The descriptive statistics afore mentioned did not 

change much when removing the duplicated rows. 

4.7.1.2 Alternatives 
Another way to consider historical data and gap fill currently missing data could 

have been to use predictive models based on other features like Garioud et al. 
(2021) [ch-005] did with the prediction of NDVI using predictive models trained 

on S1 data. This reliance on another dataset did not seem that relevant during the 

algorithm update: the error propagation needs to consider both the error in the 

other dataset and its sensitivity towards changes in the grassland management. 
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4.7.2 During the modelling 
Including partially NA in the prior-modelling gap-filling implies the need for a 

specific attention regarding the handling of the said NA by the algorithms. Some 

models will handle them gracefully whilst other will fail pitifully. 

4.7.2.1 Inference inherent to the models 
Extreme gradient boosting based algorithms and Cubist based models handle 

properly partial records. The Cubist case is very specific as it uses a nearest-

neighbours algorithm to fill the NA. This option can be activated or not. If it is, it 

enables the inference of NA using the original dataset. However, this implies a 

storage of the training dataset and thus a consequent model size. The XGBoost ones 

learn the nature of NA by including them in the decision trees or by setting them 

to 0 depending on the type of algorithm. As we used trees, the NA are just learnt 

and not transformed. This translates in a lower storage cost for inference of NA. 

4.7.2.2 Value transformation 
A way to bypass the model NA understanding constraint is to use a 

“transformer”/ “sanitizer” model. This implies transforming the NA into an odd 

one that would be flagged as too extreme or that would not impact the modelling. 

The 0 attribution in the XGBoost algorithm detailed above corresponds to that 

kind of operation. Other values depend on the normal range: putting negative 

values as -9999 in only positive range could be a flag, especially for models working 

a decision tree fashion, or overflow the highest values could also constitute a flag. 

This kind of negative sanitizer could be useful to improve the adequation of the 

data towards the algorithms requirements and is especially fit for models that take 

time to train, such as NNet. 

4.7.2.3 Meta-modelling 
The RF, the glmnet and the NNet do not handle well partial records. Beside 

sanitizing the data, there is another option to use data that are only partial: using 

multi-step modelling or meta-models (Figure 4-7). This implies training multiple 

sub-models that differ on the dataset on which they were trained. More precisely, 

in the context of this thesis, this would imply the creation of 3 sub-models per 

algorithm. The datasets would be: the full dataset (A) (including meteorological, 

S1 and S2 data, 487,999 rows) without any NA; a partial dataset (B) (including 

meteorological and S1 data, 628,076 rows) without any NA; a partial dataset (C) 

(including meteorological and S2 data, 657,555 rows) without any NA. Once each 

algorithm has been through the hyper-parameter tuning, range of performances 

assessment and the external validation for each dataset, this would result in three 

production models. Afterwards the meta-model is created using e.g. a decision-
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tree fashion: are S1 data available? Are S2 data available? If the answer is yes-yes, 

then the model trained on the A subset is used, else if only S1 is available, the 

model trained on B is used and else if S2 is available, the model trained on the C 

subset is used. If neither S1 or S2 are available, then no prediction would be made, 

and post-modelling gap-filling is needed. 

 

 

Figure 4-7: illustration of the meta-model concept 

 

4.7.3 After the modelling 
In some cases, despite all the efforts put into increasing the dataset size, 

sanitizing the data and meta-models usage, there could be pitfalls in the continuity 

of the predictions, with e.g. periods without S1 nor S2 acquisitions. 

In this specific case where S1 and S2 data are both missing, the input features 

show little to no differences in adjacent farms, provided they are under the area of 

influence of the same meteorological station. Hence the prediction should not vary 

between nor within the parcels and thus diverge from the actual ground-truth. 

Therefore, to keep the possibility to deliver a correct information to the DSS and 

to enable the analysis of the feed cover variability, there is a need for a 

complementary method to come back at finely spatialised predictions. The first 

approach possible is to add the spatialised topographical and geopedological data 

mentioned in the complementary data sub-section (number 4.4.5) during the 

model training with the hope that the variability coverage is sufficient to enable 

specifically trained models to perform well once applied at the Walloon region 
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scale. In the meantime, in that same scenario of missing S1 and S2 data, the input 

features are in fact very similar to the “other side” of pasture modelling covering 

both areas of mechanistic and deterministic models. Consequently, it should be 

possible to go further than a make-do solution and reconcile both side of the feed 

availability estimation. 

The first challenge is to find a model: suitable for the Walloon specific 

conditions, still under active development for a collaborative implementation and 

backed up by serious scientific resources. Based on the model paradigms and 

processes developed in Jouven et al. (2006) [ch-027], Prof Jérôme Bindelle and 

Essomandan Urbain Kokah are working on a deterministic model focusing on the 

assessment of the available feed based on meteorological, floristic, geopedological, 

pasture management data (detailed in Table 4-3) [ch-063]. 

Table 4-3: Input features of the considered mechanistic model for gap-filling, courtesy of J. 
Bindelle and E. U. Kokah , [ch-063] 

Feature family Examples of specific features 

Meteorological 

data 

Precipitations, potential evapotranspiration, Temperature, solar radiation 

(photosynthetically active radiation, PAR) 

Floristic 

composition 

Matrix of proportion of plants, including legume, grass, and other types of plants. Although 

in practice, only grass at the moment, with the 4 Groups of [i-105] 

Geopedological 

data 
Soil type: textural information (being developed at the time of writing) 

Pasture 

management 
Fertilisation, mowing events 

 

This choice causes a second challenge to emerge: the need for corresponding 

outputs. As mentioned in the part 4.3 of this discussion section, a translation layer 

is needed to match the CSH output by the models developed in this thesis and the 

biomass output by this deterministic model. 

As this model includes an historical prospective to account for the biomass 

evolution, a third challenge is the interfacing of the two models. Indeed, modelling 

in real time is not feasible given that it requires an overview of the past. Therefore, 

there are in fact two sub-challenges: run the deterministic model and use the 

results. As a result, multiple scenarios are considered and encompass both the 

hybridisation process and the DSS: 

➢ A first scenario consists in running the models on the server for all the 

parameters combination encountered in Wallonia and then spatialise 

them. When the DSS asks for these data, they are sent over and the DSS 

fills the NA with these simulated biomass data. This presents the drawback 

of mixing data-sources and thus sources of error. Therefore, it could lead 
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breeders far astray of their actual forage allowance as the possible bias is 

not as systematic as it could be related to only one model. 

➢ The second scenario also requires running the model on all the 

combination of parameters on the backend server. However, this is not the 

resulting biomass, output of the model, that presents an interest, it is the 

biomass growth/decrease rate once all the management and site-specific 

conditions are met. This rate could be applied on the last predicted data to 

get an idea of the current forage allowance status. The complexity of this 

method lies at the definition of the previous status. 

These complementary modelling are not implemented in the platform nor in the 

DSS blueprints. These scenarios are written as perspectives and as a memo for the 

future roadmap.  
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4.8 Use beyond the scope of the thesis 

All the work done to assess the available grass on Walloon pastures to feed a DSS 

to help farmers better manage their feed wedge could be redirected to other 

applications. Amidst the transfers, there are the change of the modelled feature, 

the change of the area the training dataset represents, the transfer of the prediction 

platform on another use-case, and the enlargement of the targeted market. 

4.8.1 Models transfer 

4.8.1.1 Transfer learning  
As discussed earlier (section 4.3), the choice of the modelled feature is subject to 

discussions. If another choice was to be made, it would be interesting to decrease 

the dataset size needed to train the new models in order to decrease the inherent 

acquisition cost. A way to do this is transfer learning. It consists in using other 

data, that should be related to the one chosen, to prepare the models. The ways to 

do it depend on the type of model: 

➢ For RF, the principle can be the addition of new trees, although it 

requires the same type of distribution and range of predicted values. This 

type of transfer learning relies on the warm-start ability of the model; 

➢ For equations, the initial values of the coefficient can be set to the 

optimal values of the previously tuned production model and then apply 

the optimisation algorithm. This type of transfer learning relies on the 

warm-start ability of the model; 

➢ For NNet, beyond using the warm-start ability, there is a complementary 

trick. Beheading the final conversion layer of a tuned network to replace 

it by a blank layer and then train the network with the new dataset 

should increase the convergence (represented in Figure 4-8, an evolution 

of the wide and deep and convolutional NNet proposed in Figure 4-4). 

However, all models don’t benefit from the warm-start ability, as it is 

incompatible with their structure, e.g. Cubist models. For these specific cases, 

meta-modelling could be a solution. 
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Figure 4-8: Example of wide & deep & convolutional neural networks thought as a 
perspective model to explore. MOD means a transition layer with a transfer function, conv 

designates a convolution layers, the pre-out layer could be a classical MOD and the output of 
the model is the CSH layer. The orange Evolution part represents the beheading process at 

the heart of transfer learning in NNet. 

4.8.1.2 Multi-scale modelling 
Another prospect related to using models in different context is the use of pre-

trained models at a global scale to train and refine models on more specific local 

conditions. For instance, the models trained here account for different areas. If a 

farmer was to want models more specific to its own parcels, he could use the 

warm-start ability to re-train the models on data he would acquire on his own 

pastures.  

4.8.1.3 Meta-modelling 
Beside the use of the warm-start abilities and NNet beheading, meta-modelling 

is another way to transfer models to predict another feature that should behave 

the same way. In this context, meta-modelling still consists in training multiple 

models (or even meta-models) and then add a combination layer/model that would 

operate the translation of the previously modelled feature into the desired output. 

This is the case for the translation equation from CSH to biomass detailed in 

section 4.3. 

4.8.2 Platform: SIMBA 
The prediction platform was made to be modular and transposable to other 

server and use-cases. During the collaboration with the PDR SIMBA project, 
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funded by the national research fund (Brussels, Belgium) and the Luxembourg 

National Research Fund (Esch-sur-Alzette, Grand Duchy of Luxembourg), to 

detect grazing on pastures from Luxembourg, the transposability was assessed to 

be successful as it managed to deliver predictions, although it required to: 

➢ Create a new reference raster for the area of interest; 

➢ Redefine the S1 and S2 tiles of interest; 

➢ Download and process those tiles. 

The possible improvements description starts with the modularity of the 

platform, the use of “main” python scripts, to call R scripts in separated 

environments, reduces the number of times memory leaks were constated. 

However, to be more memory efficient and avoid having to retrain the model in 

R after all the selection, hyper-parameter tuning and estimation of performances 

process in python, it might be a good idea to translate the prediction script into 

python. This would not interfere with the rest of the pipe as the modularity 

enables to just swap the script called into the main python script to launch the 

computation. A prospect that might hinder this translation is the handling of big 

integers to keep the correct parcel identifiers. Regarding the automation, a crontab 

could be implemented to have the platform run every night at 01:00 am to update 

the database. Regarding the transposability of the platform, the scripts are on a 

Gitlab to be able to pull them at once. However, a perspective for transposability 

would be to package the scripts inside a Docker container. It would also guarantee 

that no general update of the server would break the scripts, as it happened once 

when the R version on the server was updated from R v3.6 to R v4.0. 

4.8.3 Decision support system (DSS) 
As cited in the introduction (Chapter 1) and in Chapter 2 and 3, a long-term 

objective of this thesis was to develop a decision support system (DSS) to help 

farmer manage their feed wedge. The development of the models in Chapter 2 and 

their implementation in the platform developed in Chapter 3 lead to an 

opportunity to focus on the DSS development. This opportunity became more 

concrete with the opportunity to present more precisely what we worked on 

during a popularisation event that occurred at GxABT at the end of May 2022 

(Terra Innovation Day) and a second opportunity at “La Foire Agricole de 

Libramont” at the end of July 2022. As such DSS cannot be brought to the public 

without a proper comparison with the competing alternatives, a market definition 

was performed based on the work made by 3 master students (2nd year of master) 

studying in the agronomic section of bioengineering within the faculty ULiège-

GxABT (Bughin Astrid, Lefèvre Théo and Pénasse Loïs). 
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4.8.3.1 Market definition 
As stated earlier, this section is partly inspired from the work of Bughin Astrid, 

Lefèvre Théo and Pénasse Loïs. Their objective was to perform market research 

about a DSS related to the feed on pasture availability assessment. In this context, 

they created a survey. They sent it to every member of an association named 

“Fédération des jeunes agriculteurs” (FJA). This association aims to provide 

technical, logistical, and accounting support to its members. A total of 157 persons 

answered to the survey with various levels of completion. The respondent 

population had the following characteristics: 

➢ ~50% of 155 respondent were actual decision makers in the farms; 

➢ ~60% of 156 respondent were less than 25 years old, ~20% were between 

25 and 30 years old, whilst the rest was more than 30 years old; 

➢ All the respondents came from Wallonia; 

➢ The main activities in the farms were dairy production, bovine meat 

production and cropping. It was mainly associated with secondary 

activities such as cropping and bovine meat production although some 

respondent did not have a secondary activity; 

➢ Most respondents considered their farm to be small or medium sized; 

➢ ~64% of 156 respondents were interested in a DSS, although only 

7 respondents already used any form of DSS; 

➢ 69 of 100 respondents emitted the will to be escorted by a specialist, and 

74 of 101 respondents emitted the will to train on tools. 

First and foremost, the term “decision support system” should be defined. [ch-

064] suggest a fairly simple definition: “information system that provide decision 

relevant information and results”. This definition is loose and, in the context of 

this thesis, implies the encompassment of products and techniques as basic as 

wandering across the pastures for a gross estimation altogether with highly 

technological solutions combining multiple data sources such as the DSS intended 

in this thesis. 

The most basic solution - the tour inside the parcels - presents the disadvantage 

of being time-consuming and provide a gross estimation of the available feed. To 

refine the feed availability assessment without increasing the time spent on 

pastures, an alternative is to use a tool such as a RPM. Although it does not increase 

the time spent on pastures, one should account for one hour per 10 ha (depending 

on the topological conditions) and another major constraint: the need to repeat the 

measurement across the grazing season [ch-065]. The survey revealed that this 

time consumption was critical to respondents. Indeed, out of 101 responses, 53 

were willing to allow less than 5 minutes a day to such DSS and 35 were willing 
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to give between 5 and 10 minutes a day to the use of a DSS. This means that there 

is a need for a rapid access to the relevant information. 

This need for speed and limited time-dedication is also reflected by the high ratio 

of respondents (59/101) that wanted the DSS to use notifications to get warned 

when needed. However, the definition of “when needed” is subjective and the 

frequency that stood out in the survey –once a week (68/101 respondents)- 

illustrates the need to avoid overwhelming end-users with cumbersome loads of 

information. 

To reduce the time the end-user should invest in the use of the DSS, a high level 

of automation is needed and as little computation as possible should be performed 

on the flight. This enforces our will to rationalise computation for CSH assessment 

by setting up a prediction platform that would act as a data provider for an end-

user application, as requested by 58 out of 101 respondents. 

This master students work also included an analysis of existing DSS, mostly based 

on Seuret al. (2014) [ch-066]. Additional DSS were analysed to highlight the 

strength and weaknesses of current DSS, with the principal highlights presented 

in Table 4-4 and meaning of the abbreviations in Table 4-5. Diving deeper in this 

analysis, one can highlight the important need to enter data manually. This means 

that the choice between the input data chosen for these DSS did not take into 

account the high level of automation mentioned earlier, although the use of 

remote sensing or meteorological data for some of these DSS could have led to such 

thought. 

The second main highlight of this review of existing DSS is the handling of the 

temporality of the DSS. For simulation tools, it might seem trivial to consider if 

the output is continuous, but some DSS rely on models that do not provide 

continuously an output. Therefore, some DSS seem to have introduced ways to 

circumvent this inability to provide the end-user with an answer whenever he 

wants. However, this is far from the majority. In the case envisaged in this thesis, 

a “backfill” gap-filling methodology was included to increase the prediction 

frequency. Nonetheless, some periods witnessed meteorological conditions not fit 

for a prediction, hence the reflection about model hybridisation exposed in section 

4.7.3. The other side of the temporality handling is the ability to provide indicators 

(and advices) for the future. Beside the interpretation of simulation DSS outputs, 

only a few DSS included future predictions. In their current state, the models 

underlying the targeted DSS are not able to provide future predictions. It would 

either require hybridising the models or include other types of algorithms such as 

the hidden Markov chains. 
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The third main highlight of this review of existing DSS is the modelling: most 

were based on dynamic models. Regarding the output on which it focused, it was 

mostly a simulation of the pasture management and the most used feed availability 

indicator was the biomass (mostly dried). 

This review of existing DSS, altogether with the survey led to highlight points 

of attention regarding the conception of the DSS. Although, at the time of 

developing the first mock-ups, objectives were not expressed as clearly as of now, 

the need for speed and automation was already integrated.  

Table 4-4: Highlights of the analysed DSS regarding the input data, the methodology, the 
output features, the level of user involvement, the fine spatial and temporal resolution, the 

intended public and the cost found. A”1” means that the DSS presents at least a partial 
response to the column. Other values in the cells are explained altogether with the 

abbreviations meaning in Table 4-5. 

DSS 
Input Data Methodology Outputs features 

EM SP 

Temporal 

continuity DE 
Cost 

MD SD HH PM GP RS McD ML DY BM HH QG SD SM TD TP TF PV PF 

[ch-067]     1   1      1 N  1  1 E,C,S NA NA 

[ch-068] 1   1    1  1     N  0 1  T NA NA 

DIALOG    1 1         1 N     E,C NA NA 

GMOT   1   1  1  1  1   N 1    T   

GRASSQ   1     1  1     N     T   

GRAZEIN       1             T   

GRAZEMORE 1 1  1 1  1   1     N  1   T   

Herb’Evol    1 1    1 1    1 N  1   C,E NA NA 

Herb’ITCF, Herbo-

LIS 
  1 1 1    1  1   1 N  1   C,E NA NA 

Herb’Opti 1   1 1  1  1     1 N  1   C,E NA NA 

Herb’sim 1 1  1 1    1 1    1 N  1   C,S NA NA 

Herb'âge 1   1 1    1     1 N  1   C,E NA NA 

Herb'Avenir   1 1 1    1      N  1   C,E NA NA 

Herb'type    1 1    1   1  1 N  1   C,E NA NA 

Pasture Base Ireland 1   1   1  1 1    1 A 1  1 1 T   

Pâtur’IN   1 1 1     1    1 N  1   S,C,E NA NA 

Patur’Plan   1 1 1    1 1    1 N  1   C,E NA NA 

PGSUS 1 1  1   1   1    1 N  1   T   

RIM     1  1  1     1 N   1  T   

SEPATOU    1 1  1     1   N 1   1 E,C,S NA NA 
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Table 4-5: Meaning of the abbreviations used in Table 4-4. 

Abbreviation Signification 

DSS Decision support system 

MD 
Meteorological data including temperature, precipitations, incident solar radiation, 

evapotranspiration, … 

SD Soil related data including topography, soil drainage, soil water content, … 

HH 
Any form of grass height, including the individual height of each plant, the CSH, the height 

averaged over a 3D reconstruction of the sward cover, … 

PM 
Any form of action linked to pasture management including fertilisation (NPK), grazing, 

mowing, … 

GP Grass properties like floristic composition, … 

RS Any remote sensing related data 

McD Dynamic mechanistic modelling 

ML Modelling based on probabilistic/Machine learning algorithms 

DY Dynamic modelling (and thus in near-real time) 

BM Biomass (often dry biomass) brought back to a certain reference area. 

QG Quality of the grass indicators such the protein content, ashes, fibres, available energy 

SM Modelling through simulation of the effects of pasture management 

EM Manual encoding: needed (N), lacking (A), or optional (O) 

SP Integration of the spatial prospect 

TD 
Sensitivity to external factors that could utterly block the outputting and thus provoke a 

temporal discontinuity in the prediction series 

TP 
Ability to provide an output temporal continuity, through the nature of the output or a 

combination of approaches 

TF Ability to predict the future or attempts were made to provide a prediction in the future 

DE 
Targeted audience: breeder (E), agricultural adviser (C), researcher/scientific personalities (S), 

public administrations (A), private company (such as an insurance) (A), all audience (T) 

PV Cost to use the DSS, often not found (NA) 

PF Payment frequency: annual (A), monthly (m), with use (U), free (G), other (O), not found (NA) 

 

4.8.3.2 Hands-on approach 
The development of a DSS aiming at providing Walloon farmers with 

assessments of the available feed is an ambitious project that requires to consider 

loads of perspectives. As the total workload might be overwhelming to face all the 

constraints and wishes of the stakeholders, an iterative approach was adopted: a 

mock-up was drafted then it was coded to be actually usable. Afterward it is used 

as a discussion starter to develop new mock-ups that will enter the loop again. The 

main iterations performed are described in supplementary material (1st draft in 

Supplementary material 4.10.4.1, 1st implementation in Supplementary material 

4.10.4.2, 2nd draft in Supplementary material 4.10.4.3). The intermediary 

discussions occurred in July 2022 and involved actors from the scientific 

community and field advisors: Jérome Bindelle, Noémie Glesner, David Knoden, 

Essomandan Urbain Kokah, Charles Nickmilder, and Hélène Soyeurt. Out of these 
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round-table discussions, key points were highlighted that did not only relate to 

the DSS but also to the models and the platform developed in this thesis: 

➢ The spatialisation of the parcels from the platform helps for parcels re-

definition and management simulation. However, the 10-meter resolution 

could be too coarse for the fine representation of the spatial variability and 

repartition of the biomass for precision grazing; 

➢ Depending on how deep users want do dive into the finer representation 

of the available feed, the final form under which the feed is expressed 

should either be the biomass for feed wedge management or sward height 

for variability management. This is illustrated through the expression “a 

cow eats biomass but sees a sward height”. As work had been done 

concerning the conversion between the 2 metrics of feed, a conversion 

layer should be implemented. For the time being, it is a simple 

multiplicator. According to recent discussions with Françoise Lessire and 

Isabelle Dufrasne, research are being made in old databases in order to get 

better conversion equations or even switch the model type that converts 

CSH into biomass. 

➢ Concerning the gaps due to poor satellite data acquisition conditions, a 

multi-model approach was suggested as it could retaliate against the gaps. 

The model that was thought of is the mechanistic models developed by the 

Urbain Kokah and Jérome Bindelle. This implementation would require a 

lot of collaboration and work on parameters definition (more details in 

section 4.7.3). 

➢ An overview of the parcel history is a challenge in terms of storage 

management but could prove useful for long-term planning and land sell. 

These hints pave the way towards the creation of the actual decision support 

system. 

 

4.8.3.3 Complementary thoughts and perspectives 
Regarding the actual development of the DSS, the drafts were coded in pyQt6 

[ch-070]. However, this is not fit for a commercial use (due to licensing problems) 

and the implementation on the WalleSmart platform requires to split the 

application into a backend that would send .json packaged files to the graphical 

user interface (GUI) part. The GUI is made out of Javascript derivatives. A person 

was recruited on the WalleSmart project (Killian Dichou) to take over the 

development while being compliant with the platform constraints. 

Regarding the potential users of the DSS, it was chosen to work with farmers as 

the main audience. However, the Walloon agricultural panorama is larger. 
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Farmers’ advisers might also be interested in a DSS, hence the inclusion of a two-

level of involvement GUI. Beside people directly concerned by the individual 

farms, insurances and public authorities have also to be accounted for. Indeed, in 

case of damages to the pastures, the current assessment of the compensation 

needed is either costly due to the need of experts or very generic due to regional 

generalisation. Our work could be beneficial for farmers as it would automate the 

attribution of subsidies and lead to a work alleviation. Insurers would also benefit 

from this paradigm shift as they would be guaranteed to pay the fair price in cases 

of damages. As public authorities also act as insurers in case of damages to the 

crops, our tool could therefore be of public interest as it would guarantee a fair 

constraint on the public finances. This public administration interest was 

confirmed in a personal communication with Véronique Dewasmes. 

Regarding the nature of the output, the first part of this thesis focused on 

assessing if it was possible to assess the available feed on Walloon pastures using 

remotely sensed and meteorological data. We chose the CSH proxy as it offered 

the possibility to rapidly increase the database size and take advantage of recent 

advances in ML modelling. However, this is not a direct indicator a farmer could 

use. Converting to biomass would already prove more useful to assess the 

relevancy of the feed wedge. Yet, there are complementary information that could 

prove useful for decision making: 

➢ Integrating the quantity of hay that could be harvested through mowing 

and how it would affect the feed availability in the near future, although 

our equations focus on the prediction of grass height on grazed pastures 

and may thus not be fit for use on mown pastures; 

➢ Including the value of the hay that could be harvested and comparing it to 

the value of the fuel burnt to move the tractors and to the time of the 

farmer; 

➢ Including a suggestion for complementary diet input; 

➢ Including a comparison between the risk for the production value and the 

actual cost. For instance, some dairy cows farmer tend to supplement all 

the time to make sure they don’t lose too much productivity when putting 

their cows on pastures.  

These perspectives pave the way for the DSS elaboration and gives hint on how 

large this research area is and how much work there is still to do, even at the level 

of the available feed modelling.   
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4.10 Supplementary material 

4.10.1 Detailed year per year descriptive statistics of the CSH 

dataset 
Year per year descriptive statistics of the updated CSH dataset with the 

additional acquisitions. 

Table 4-6: Year per year descriptive statistics of the CSH dataset used 

Year N Min. Mean Max. Sd. Sk. Kurt. 
Quantiles 

0.01 0.05 0.25 0.5 0.75 0.95 0.99 

2018 22,502 5.00 52.18 248.00 27.73 1.89 7.55 9.00 17.00 34.00 49.00 64.00 98.00 155.00 

2019 47,422 5.00 61.90 248.00 29.55 1.47 3.15 19.21 27.00 41.00 55.00 75.00 120.95 162.00 

2020 58,476 5.00 62.71 249.00 30.71 1.90 5.77 20.00 28.00 42.00 56.00 75.00 120.00 180.00 

2021 23,035 5.00 68.92 249.00 34.18 1.73 4.42 21.00 30.00 46.00 62.00 82.00 136.00 196.00 

2022 3,664 20.00 94.66 246.00 36.83 0.63 0.09 31.63 44.00 66.00 90.00 118.00 163.00 191.00 

Min. stands for minimum, Max. for maximum, Sd. for standard deviation, Sk. for skewness, Kurt. 

for kurtosis. 
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4.10.2 Correspondence table between the hyper-parameters of the models in R and python 
In order to train models in both R and python the hyper-parameters should be tuned the same way. Therefore, the 

correspondence between different implementation was done in Table 4-7. 

Table 4-7: Correspondence table between the hyper-parameters of the models in R and python (at the time of writing, i.e. beginning of 
2023).  

Algorithm 
Hyper-parameter name in 

python 

Hyper-parameter 

default python 

value 

Hyper-parameter 

python range 

Hyper-parameter name 

in R 

Hyper-parameter 

default R value 

Hyper-parameter 

R range 
Hyper-parameter meaning 

Cubist 

n_rules 500 integer  100 integer 
Limit of the number of 

rules Cubist will build 

n_committees 0 Integer  1 Integer 

Number of rule-based 

model, beyond 1 means a 

try to correct the prediction 

errors of the prior 

constructed model 

(recommended = 5) 

neighbors None Integer within [1,9]  0 
Integer within 

[1,9] 

Number of instances used 

to correct the rule-based 

prediction through nearest 

neighbours consideration 

unbiased False Boolean  False Boolean 

Inclusion of a correction for 

classes of values over-

represented in the total 

dataset 

composite False True/False/ “auto”  True True/False 

Combine the rule-based 

model and the nearest-

neighbour corrections 

extrapolation 0.05 Float  100 
Float within 

[0,100] 

Level of adjustment of the 

rule predictions to be 

consistent with the training 

dataset 
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sample None Float  0 
Float within 

[0,99.9] 

Percentage of the data set to 

be randomly selected for 

model building 

cv None Integer / / / 
Number of fold for the 

cross-validation 

random_state Random integer 
Integer within 

[0,4095] 
 Random integer 

Integer within 

[0,4095] 

Set the random seed for the 

C code 

RF 

n-estimators 100 integer ntree 500 integer 
Number of trees in the 

forest 

Criterion ”squared_error” 

“squared_error”, 

“absolute_error”, 

“friedman_mse”, 

“poisson” 

/ 
mse/mean-

squared error 
/ 

function to measure the 

quality of a split 

Max depth None Integer / / / maximum depth of the tree 

Min_samples_split 2 Integer or float / / / 

minimum number of 

samples required to split an 

internal node 

Min_samples_leaf 1 Integer or float nodesize 
5 (regression) 

1 (classification) 
integer 

minimum number of 

samples required to be at a 

leaf node 

Min_weight_fraction_leaf 0.0 Float / / / 

minimum weighted fraction 

of the total of input weights 

required to be at a leaf node 

Max_features 1.0 (=all) 
Sqrt(p), log2(p), float 

]0;1.0] 
mtry 

p/3 (regression) 

sqrt(p) 

(classification) 

integer 

Number of features to 

consider when looking for 

the best split 

Max_leaf_nodes None Integer maxnodes NULL Integer 
Maximum number of 

terminal nodes 

Min_impurity_decrease 0.0 float / / / 

Criterion to allow a split 

based on the impurity 

decrease 

Bootstrap True Boolean Replace True boolean 
Bootstrap samples used 

when building trees 
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Oob_score False Boolean / / / 

Use out-of-bag samples to 

estimate the generalization 

score 

ccp_alpha 0.0 Float >=0 / / / 

Complexity parameter used 

for Minimal Cost-

Complexity Pruning 

max_samples None Integer or float sampsize 
Nrow or 

632*nrow 
integer 

If bootstrap is True, the 

number of samples to draw 

from X to train each base 

estimator 

Warm_start False Boolean 
“grow()” function + 

keep.forest 
/ / 

reuse the solution of the 

previous call to fit and add 

more estimators to the 

ensemble 

GLMnet 

Tw: Power 

Tw: link 

0 

‘auto’ 

Float [0;1:3] 

‘identity’ or ‘log’ 
Family / 

Built-in or 

stats::glm() 

created 

Family defining the 

relationship of the link 

between x and y 

/ / / Weights 1 Float Observations weight 

Tw: alpha 1.0 float / / / 

Inner L2 regression, should 

be set to 0.0 to handle 

penalisation only with 

elasticnet 

Enet: alpha 1.0 Float ]0;inf[ lambda   Regularisation parameter 

Enet: l1_ratio 0.5 

Float ]0.01;1] 

(<0.01 requires to 

provide the whole 

sequence) 

alpha 1  

Mixing parameter 

alpha=1 is the lasso penalty, 

and alpha=0 the ridge 

penalty 

Enet: positive False Boolean Lower.limits -Inf Float <=0 

Forces the coefficients to be 

positive (Enet) 

R: lower limit of the 

coefficients 

   upper.limits   
R: upper limits for each 

coefficient 
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Tw: solver ‘lbfgs’ 
‘lbfgs’ or ‘newton-

cholesky’ 
/ / / 

Algorithm to solve the 

optimisation problem 

R: type.log implies a change 

Tw: max_iter 

Enet: max_iter 

100 

1000 

Positive float 

Positive float 
maxit 10^5 Integer 

Maximum number of 

iteration to fit the 

algorithm 

Tw: tol 

Enet: tol 

10^-4 

10^-4 
Float Thresh 10^-7  

Stopping criterion for the 

gradient descent 

Warm start (Enet & Tw) False  “update()”   

Reuse the solution of the 

previous call to fit and add 

more estimators 

Enet: fit_intercept True Boolean    

Whether the intercept 

should be regularized. ! 

solvers might cause 

problems [ch-052] 

XGBoost 

n_estimatos  int nrounds   
Number of boosting 

iterations 

max_depth  int max_depth  6 Max tree depth 

Objective   Objective reg:squarederror  

Specify the learning task 

and the corresponding 

learning objective 

learning_rate   eta  0<eta<1 Learning rate 

booster gbtree  booster gbtree  
Type of “sub-model” to 

boost 

gamma   gamma   

Minimum loss reduction to 

create new split/shrinkage 

parameter 

min_child_weight   min_child_weight   
minimum sum of instance 

weight needed in a child. 

subsample   subsample 1 0<subsample<=1 
subsample ratio of the 

training instance 
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colsample_bytree   colsample_bytree 1  

subsample ratio of columns 

when constructing each 

tree 

lambda   lambda 1  
L2 regularization term on 

weights 

alpha   alpha 0  
L1 regularization term on 

weights 

monotone_constraints   monotone_constraints  Vector of -1/0/1 
Constraint of variable 

monotonicity 

interaction_constraints   interaction_constraints   

Constraints for interaction 

representing permitted 

interactions. 

Note: Tw means tweedie regressor related parameter 

 



Development of machine learning algorithms fed by meteorological and remote sensing data to assess the available grass on pastures. 
 

 

 208 

4.10.3 Descriptive statistics of the completed dataset. 
Descriptive statistics of the completed dataset with the backfill gap-filling (Table 4-8). CSH is described again to show the 

preservation of the distribution. Please note that the two significant digits in the table are not always meaningful as some 

devices don’t have such a precision 

Table 4-8: Descriptive statistics of the CSH dataset with the meteorological, S1 and S2 data added. 

Feature NaN Min. Mean Max. Sd. Sk. Kurt. 
Quantiles 

0.01 0.05 0.25 0.5 0.75 0.95 0.99 

CSH / 5.00 64.16 249.00 34.51 1.68 4.02 15.00 25.00 41.00 56.00 77.00 134.00 189.00 

tsa_min / -0.90 10.93 21.30 4.64 0.04 -0.32 1.40 2.30 7.90 10.90 14.40 18.50 21.30 

tsa / 1.60 16.54 25.90 4.87 0.07 -0.70 6.60 8.80 12.80 16.30 20.00 24.70 25.90 

tsa_max / 5.20 22.05 32.60 5.61 -0.13 -0.56 10.00 12.50 18.60 21.70 25.80 30.60 32.60 

ens 785,202 254.20 1860.50 3110.00 698.71 -0.55 -0.63 254.20 559.10 1358.00 2053.10 2499.50 2751.00 2942.60 

plu / 0.00 0.67 18.70 2.03 5.23 35.05 0.00 0.00 0.00 0.00 0.10 3.90 8.50 

vvt / 0.40 1.92 5.70 0.93 0.92 0.89 0.50 0.92 1.20 1.80 2.60 3.80 4.80 

hra / 16.10 51.97 96.00 22.74 -0.05 -1.24 16.30 18.20 29.40 56.60 69.50 87.40 93.70 

etp 785,202 0.60 3.40 6.10 1.38 -0.32 -1.05 0.80 0.90 2.40 3.60 4.70 5.20 5.50 

DJ00 / 2.15 16.49 26.95 4.85 0.13 -0.59 7.05 9.00 12.60 16.25 20.00 25.30 26.95 

Cum.P.3 / 0.00 3.73 41.70 6.06 3.13 10.89 0.00 0.00 0.00 0.20 1.70 18.50 22.60 

Cum.P.7 / 0.00 6.07 93.10 10.55 3.54 19.68 0.00 0.00 0.00 1.20 10.50 22.10 50.20 

Cum.P.15 / 0.00 14.03 104.50 18.45 2.58 8.32 0.00 0.00 1.30 7.40 21.30 50.00 94.30 

Cum.DJ00.3 / 7.30 49.00 80.40 14.62 -0.24 -0.57 20.10 21.40 39.10 51.20 60.60 71.20 80.40 

Cum.DJ00.7 / 25.10 114.00 185.00 30.48 -0.27 -0.19 45.80 55.80 90.80 116.20 136.60 164.70 185.00 

Cum.DJ00.15 / 79.70 235.80 355.60 60.89 -0.48 -0.47 84.10 115.90 190.30 249.9 278.60 318.60 343.70 

Sigma0_VH_db 1,240,579 -26.70 -19.00 -6.90 1.85 -0.03 0.28 -23.48 -22.08 -20.20 -19.00 -17.80 -16.01 -14.64 

Sigma0_VV_db 1,240,579 -20.30 -13.00 5.50 1.79 0.13 0.60 -17.25 -15.89 -14.20 -13.00 -11.80 -10.06 -8.55 

dtS1 1,240,579 -6.00 -3.00 0.00 2.01 0.03 -1.30 -6.00 -6.00 -5.00 -3.00 -1.00 0.00 0.00 

S2.WVC 1,405,818 0.40 1.70 3.50 0.70 0.21 -0.47 0.45 0.55 1.20 1.60 2.20 2.90 3.36 

S2.AOT 1,405,818 0.00 0.20 0.50 0.12 0.60 -0.21 0.01 0.03 0.10 0.20 0.30 0.45 0.49 
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S2.B02 1,405,818 0.00 0.00 0.10 0.01 0.58 1.72 0.00 0.00 0.01 0.01 0.01 0.05 0.06 

S2.B03 1,405,818 0.00 0.10 0.20 0.02 0.31 2.00 0.02 0.03 0.04 0.05 0.06 0.08 0.10 

S2.B04 1,405,818 0.00 0.00 0.20 0.03 0.94 2.14 0.00 0.00 0.00 0.00 0.07 0.08 0.11 

S2.B05 1,405,818 0.00 0.10 0.30 0.02 0.33 1.57 0.05 0.06 0.1 0.1 0.1 0.14 0.16 

S2.B06 1,405,818 0.10 0.30 0.60 0.05 0.08 0.04 0.18 0.22 0.30 0.30 0.30 0.39 0.43 

S2.B07 1,405,818 0.10 0.40 0.80 0.08 0.37 -0.25 0.22 0.26 0.30 0.40 0.75 0.53 0.58 

S2.B08 1,405,818 0.10 0.40 0.90 0.09 0.29 -0.20 0.22 0.28 0.30 0.40 0.50 0.55 0.60 

S2.B08a 1,405,818 0.10 0.40 0.90 0.08 0.30 -0.15 0.26 0.31 0.40 0.40 0.50 0.57 0.62 

S2.B11 1,405,818 0.00 0.20 0.50 0.05 0.42 0.29 0.14 0.16 0.20 0.20 0.30 0.31 0.35 

S2.B12 1,405,818 0.00 0.10 0.30 0.03 0.66 0.32 0.06 0.07 0.10 0.10 0.10 0.17 0.20 

dtS2 1,405,818 -6 -3 0 2.00 -0.12 -1.23 -6 -6 -5 -3 -1 0 0 

Descriptive statistics abbreviation meaning: NaN stands for the number of no value records, Min. for minimum, Max. for maximum, Sd. for standard 

deviation, Sk. for skewness, Kurt. for kurtosis. The feature abbreviation meaning is explained in Table 4-9 

 

The meaning of the feature abbreviations of Table 4-8 are presented in Table 4-9. For data related to the S2 satellites, the 

sensor calibration got them as close as feasible yet there are variations, so an approximate value is given for the central 

wavelength, detail available at [ch-035]. The correction multipliers are due to the storage process [ch-036] into integers to 

decrease the size of the data. 
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Table 4-9: Meaning of the feature abbreviation of Table 4-8. 

Feature Meaning 

tsa_min Daily minimum air temperature (°C) 

tsa Daily mean air temperature (°C) 

tsa_max Daily maximum air temperature (°C) 

ens Daily total solar radiation (J/cm²) 

plu Daily total precipitation (mm) 

vvt Daily mean wind speed at 2 meters above soil-level (m/s) 

hra Daily mean air relative humidity (%) 

etp 
Daily total potential evapotranspiration calculated through the FAO’s Penmann-Monteith 

equation (mm/day) [ch-034] 

DJ00 Daily degree-days computed on a 0°C-35°C basis (°C) 

Cum.P.3 Cumulated precipitations over the past 3 days (mm) 

Cum.P.7 Cumulated precipitations over the past 7 days (mm) 

Cum.P.15 Cumulated precipitations over the past 15 days (mm) 

Cum.DJ00.3 Cumulated degree-days over the past 3 days (°C) 

Cum.DJ00.7 Cumulated degree-days over the past 7 days (°C) 

Cum.DJ00.15 Cumulated degree-days over the past 15 days (°C) 

Sigma0_VH_db Backscatter coefficient for “vertical transmit-horizontal receive polarisation” (VH) (dB) 

Sigma0_VV_db Backscatter coefficient for “vertical transmit-vertical receive polarisation” (VV) (dB) 

dtS1 Elapsed time / time lag between the CSH recording and the S1 acquisition (days) 

S2.WVC 
Value of the atmospheric water vapour content (g/cm²), with the correction multiplier applied 

Based on the “9th  Sentinel-2 band” centred on 945nm wavelength with a 20nm bandwidth 

S2.AOT 
Value of the atmospheric aerosol optical thickness (), with the correction multiplier applied 

Based on the “1st Sentinel-2 band” centred on a 442.5nm wavelength with a 20nm bandwidth 

S2.B02 
Optical reflectance centred on the 492.5nm wavelength with a 65nm bandwidth (), with the 

correction multiplier applied 

S2.B03 
Optical reflectance centred on the 559.5nm wavelength with a 35nm bandwidth (), with the 

correction multiplier applied 

S2.B04 
Optical reflectance centred on the 664.7nm wavelength with a 30nm bandwidth (), with the 

correction multiplier applied 

S2.B05 
Optical reflectance centred on the 704nm wavelength with a 15nm bandwidth (), with the 

correction multiplier applied 

S2.B06 
Optical reflectance centred on the 740.3nm wavelength with a 14nm bandwidth (), with the 

correction multiplier applied 

S2.B07 
Optical reflectance centred on the 781.5nm wavelength with a 19nm bandwidth (), with the 

correction multiplier applied 

S2.B08 
Optical reflectance centred on the 832.9nm wavelength with a 105nm bandwidth (), with the 

correction multiplier applied 

S2.B08a 
Optical reflectance centred on the 864.3nm wavelength with a 21nm bandwidth (), with the 

correction multiplier applied 

S2.B11 
Optical reflectance centred on the 1612nm wavelength with a 92nm bandwidth (), with the 

correction multiplier applied 

S2.B12 
Optical reflectance centred on the 2195nm wavelength with a 180nm bandwidth (), with the 

correction multiplier applied 

dtS2 Elapsed time / time lag between the CSH recording and the S2 acquisition (days) 
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4.10.4  Iterations of the DSS development 

4.10.4.1 Schematic representation of the first draft 
The first draft of the DSS was conceived the simplest way possible to favour the 

adoption rate. The mock-up is represented in Figure 4-9. It was thought to provide 

two interfaces: one showing a spatial repartition of the biomass on the parcels and 

one detailed the feed wedge. The parcel representation aimed at offering a way to 

the farmer for checking easily the validity of prediction by comparing the 

prediction repartition to their knowledge of their parcels. The feed wedge part 

would have been the “heart” of the DSS as it implements the advice to the farmer 

about the need for bringing complementary feed to the cattle on pastures. 

Figure 4-9: Mock-up of the first version of the decision support system 

4.10.4.2 Actual implementation of the first iteration 
The first draft of the application was developed in python v3.9.5 using PyQt6 

[ch-070], a python binding to the Qt framework. Given that the sixth version was 

not implemented for long at the time of developing, there were bugs that required 

to also use the fifth version in a separate python environment for the parcel 

definition (the problem was located at the level of displaying the map on which 

the user input rely, that part had not been implemented yet). Another complexity 

faced during the development was the use of Spyder IDE that was also developed 

with PyQt. It led to some weird behaviours and crashes. Concerning the libraries, 

we used: os, matplotlib, sys, glob, re, numpy, pandas, json, rasterio, rasterio.mask, 

Fiona. Given the complexity of getting all the packages working properly and the 

need for understanding loads of thing to make it work, this application was 

packaged through pyinstaller to become a standalone “.exe” program able to work 

on any Windows machine without the need for handling the installation of any 
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python related environment/pieces of software. Relying in this packaging tool had 

one drawback: the geopandas package on which we rely had to be modified. 

Indeed, we had to suppress a style error: by default, it always charges the example 

data when loading and therefore relies on a side package that could not be hooked 

by pyinstaller. Therefore, we had to modify the main code to delete this automated 

import. 

The mock-up was made mainly for show off and discussion triggering purpose. 

Therefore, it was assessed easier to create an app that could stand on its own. 

However, this also means that during the development, there will be a need to 

transit to a “web-app” compatible with the intended hosting platform (here 

WalleSmart, https://www.digitalwallonia.be/fr/publications/wallesmart/). 

As suggested in the previous section, there was a will to create a GUI as 

minimalist as possible. This resulted in the creation of a 2 windows GUI (Figure 

4-10), one for the sward height spatial repartition and the other for checking the 

actual numbers about the feed available and the corresponding available feed for 

the cattle. The key features were the date of interest definition (rolling menu), the 

set of parcels definition and, in the case of the feed wedge dedicated window, there 

was a rolling menu to refine the selection of the parcels based on the parcel 

identifiers from the PAA. Given the complexity of fitting everything in the 

restrained space of the windows without overwhelming the user with tons of 

parameters to encode, popup windows were implemented for the period of data 

retrieval on the server definition (Figure 4-11); the parcel drawing/definition 

(Figure 4-12); and the cattle need definition (Figure 4-13). 

 
 

Figure 4-10: Overview of the mock-up of the two windows composing the first version of the 
GUI of the DSS. The left part relates to the spatial representation of the predictions and the 
right one to the definition of the constraints (cattle load) on the parcel to finally get a feed 

wedge. 
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Figure 4-11: Pop-up window for the definition of the parameters on which the server data 
retrieval requests are based 

Figure 4-12: Pop-up window for parcel drawing/definition. 

Figure 4-13: Pop-up window for the cattle need definition 
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Concerning these cattle needs, the algorithms implemented were based on the 

definition of the number of beasts per species per status and specific conditions 

(Figure 4-13). Despite the large dominancy of cows mentioned in the introduction 

chapter, cattle was enlarged to account for ovine. This scope widening was 

implemented to prepare the DSS concept to be exploited in non-planned scenarios. 

The equations and parameters (Table 4-10, inspired from [ch-069]) rely on an 

approximate animal approach and assume that properties of the grass like 

neutral/acid detergent fiber, protein content, ashes, etc. are quite similar across 

floristic composition. In case of multi-status grazing, the needs for each category 

are simply added, without any consideration for possible interactions between 

beasts of different species/status. Therefore, the shortcomings regarding the need 

computation and the grass composition were taken care of by implementing a 

modular approach using functions and datastores.  

Table 4-10: Equations and parameters used to define the cattle need in the first mock-up of 
the GUI of the DSS 

Species Status Equation Default parameters 

Cow 

“A l’entretien” 𝑁𝑒𝑒𝑑 = 𝑁 ∗ 1.4 ∗ (
𝑊𝑒𝑖𝑔ℎ𝑡

100
+ 2) Weight = 650 kg 

Lactating 𝑁𝑒𝑒𝑑 = 𝑁 ∗ (1.4 ∗ (
𝑊𝑒𝑖𝑔ℎ𝑡

100
+ 2) + 0.3 ∗ 𝑚𝑖𝑙𝑘) 

Weight = 650 kg 

Milk = 25 

“Tarie en fin de gestation” 𝑁𝑒𝑒𝑑 = 𝑁 ∗ (1.4 ∗ (
𝑊𝑒𝑖𝑔ℎ𝑡

100
+ 2) − 1.5) Weight = 650 kg 

Sheep 

“Brebis tarie/Adulte” 

𝑁𝑒𝑒𝑑 = 𝑁 ∗ 𝑊𝑒𝑖𝑔ℎ𝑡 ∗ 𝐴𝑙𝑙𝑜𝑐𝑎𝑡/100 

Weight = 62 kg 

Allocat = 1.5 

“Brebis 1/2 Gestation” 
Weight = 65 kg 

Allocat =1.5 

“Brebis fin gestation” 
Weight = 67 kg 

Allocat = 2.0 

“Brebis debut lactation” 
Weight = 63 kg 

Allocat = 3.0 

“Brebis 1/2 lactation” 
Weight = 62 kg 

Allocat = 2.5 

“Brebis fin lactation” 
Weight = 62 kg 

Allocat = 2.0 

“Agneau allaitement” 
Weight = 12 kg 

Allocat = 2.0 

“Agneau sevre” 
Weight = 33 kg 

Allocat = 4.0 

 

4.10.4.3 Schematic representation of the second draft 
The second mock-up of the DSS relied on a two-fold approach: a minimalistic 

GUI dedicated to users needing only meaningful and summarised information e.g. 

casual farmers; a developed GUI including loads of parameters that could be tuned, 

and targeting users more prone to willing to tune their tool for their specific needs 
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e.g. agricultural technicians/advisers. The schematics for both side of the GUI 

running on the same “motor”, i.e. ensemble of functions and ways of computations 

are represented in Figure 4-14. 

It was chosen to display more information on the “simple interface” than before 

to give all the information a farmer would need in one go. A vertical structure was 

chosen so filling the constraints would be more intuitive. At the moment of re-

designing the GUI, representing the spatial distribution of the CSH did not seem 

as relevant as giving a feed wedge for the simplest interface. The GUI includes the 

following key-features: 

➢ a download button that would launch a pop-up window for the parcel 

definition and the period on which data should be downloaded. By default, 

it should use the last parcel valid definition and the last week of 

acquisition. Of course, this default behaviour is made modifiable by the 

user. This was implemented to reduce the time spent on defining the 

parameters. 

➢ This version of the GUI relies on a two-level spatial definition: first the 

farm is to be defined and then the parcels of interest. This was to enable 

the use of this GUI by an agricultural technician that knows that all his 

parameters were correctly implemented and that would want a simple 

overview for one of the farms he is following. 

➢ The choice of the parcel load/objective: number of animals and status. It 

also includes a mowing threshold definition. 

➢ The big part of this GUI is the use of a feed wedge including a lower 

threshold limiting a no-go area in terms of forage allowance. 

The “technician” GUI has an internal complexity represented by upper and inner 

tabulation/indexing. The upper one serves the purpose of better separating the 

prospective of feed and cattle management whilst inner ones might appear when 

one the said prospective is complex to summarize in a small window. The 

prospective judged relevant were: 

➢ the spatial handling; 

➢ the definition of the data wanted (only the prediction or also the pre-

treated S1, S2 and meteorological data); 

➢ the cattle load definition; the conversion from CSH to biomass with a 

function creation possibility; 

➢ a management event recording and handling section (with a part related 

to mowing event impact on the available feed); 

➢ a temporal representation of the feed on each pasture;  



Development of machine learning algorithms fed by meteorological and remote sensing data to 

assess the available grass on pastures. 
 
 

 216 

➢ the available feed and the resulting forage allowance, with subtleties as 

shown in the draft: the possibility to define the height to consider as not-

usable for feed computation, variability analysis and concurrent/adjacent 

parcels behaviours. 

 

 

 

Figure 4-14 : Blueprints of the second version of the GUI of the DSS 
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5 Chapter 5 Conclusion and perspectives 

5.1 Story 

Dear reader, 

As I said in the preamble this thesis was a demanding journey that revealed rich 

in emotions, encounters, and learnings. I enjoyed wandering it twice, once 

discovering pebbles and gravels on my own and a second time while relating you 

this tale. As you might want the answer to the question entitling this thesis, I will 

write it down in the next section. Afterwards, the main perspectives will be stated 

again. Then, I will give you my personal takeaways about this thesis. The redaction 

took some time but it was worth the effort as it helped me put words on feelings I 

developed during the thesis. 

5.2 Answer to the question 

After discussing the perspectives and points of amelioration of this thesis, it is 

time to give a conclusion to this work and summarize the answer to the research 

question stated in the introduction: “Is it possible to develop machine learning 

algorithms fed by meteorological and remotely sensed data to assess the available 

feed on pastures at the scale of Wallonia?” The short answer is yes. However, it is 

relevant to stress the beforehand steps that led to this answer: 

➢ the choice of a metric of the available feed: the compressed sward height 

was chosen in this thesis as a proxy of the available feed, for its ease of 

acquisition, widespread scientific acceptance and ease of spatialisation; 

➢ the choice of data sources. For cost, data quality and availability reasons, 

it was chosen to work with meteorological data coming from the 

Agromet project, C-band radar data acquired through the Sentinel-1 

satellite constellation, and multispectral data acquired through the 

Sentinel-2 satellite constellation; 

➢ the creation and selection of models. Multiple algorithms were tested to 

create models. Most converged towards the same type of error. 

Diverging algorithms were discarded, altogether with models requiring 

too much time and computation power to be trained. At this moment, 

the selected models are a cubist and a random forest with an error around 

20 mm of CSH.  

➢ the application of the models at the scale of interest. It required to shift 

the paradigm to obtain the prediction. Instead of predicting when we 
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need, it was more efficient, especially with a spatial approach, to predict 

every part of Wallonia and store the predictions. Therefore, the 

processing work of the DSS gets down to data scrapping and illustration 

construction. This larger scale application induced the introduction of 

the “unsupervised validation” designation. 

➢ the creation of mock-ups of the DSS. At first, the mock-ups were made 

in python to ease their transferability. These drafts helped a lot with the 

discussions and the incremental construction of the bill of specifications 

the final DSS should fulfil; 

Although the path is now better paved towards the creation of the DSS targeted 

in this thesis, there is still work to do. Indeed, the ML models developed until now 

have succeeded in providing feed assessments with a fine spatial resolution, an 

acceptable accuracy (especially considering the results averaged at the parcel 

level), and a rapid delivery of the information (also called inference). Yet, the 

synchronism with the S2 acquisition implies a sensibility towards the inherent S2 

acquisition flaw: the meteorological conditions. Therefore, the ML models cannot 

be applied to in a way that would have pass the criterion of temporal regularity 

and availability of the information. To pass these criterions complementary 

modelling needs to be developed, using either hybridisation of models with the 

example of using a mechanistic model to fill the gaps, or using the “meta-models” 

that would involve building sub-models for specific conditions. 
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5.3 Perspectives summary 

This perspective overview is related to the recall of the perspectives swept along 

Chapter 4: 

➢ Regarding the relevancy of the modelled feature, multiple levels of 

perspectives were highlighted: 1) the choice of CSH was guided by 

practicality, in the short term, to increase the relevancy of this feature, 

a conversion to biomass can be implemented; 2) in the longer run, if 

models were to be created to predict other features using the same input 

data, the platform was conceived to be modular to ease the 

implementation of these models; 

➢ Regarding the relevancy of the spatial representation, with the cost and 

computational constraints and the current options for data delivery, 

working at a 10 m resolution with S1 and S2 data was assessed to be the 

best compromise to provide a modular data source for the future DSS. 

Concerning the meteorological data, recent advances in the Agromet 

project involved a finer representation but the associated increase in 

computation cost relegated this for a mid-term evolution. Most remote 

sensing related evolutions could be implemented through an adaptation 

of the raster on which the platform relies to perform the spatial 

standardisation; 

➢ Regarding complementary features implementation, in the mid-term it 

could be considered to implement a representation of the soils, whether 

using the CNSW or the SoilGrid database; 

➢ Regarding the data treatments, in the short-term, the CSH value entering 

the models would not be the median per pixel anymore and rather each 

point would be associated to the combination of values; 

➢ Regarding the backfilling, an evolution of the methodology for the 

training dataset elaboration is on its way to ensure a high enough 

representativity of each date in the past. 

➢ Regarding the machine learning models, a whole part should be moved 

to python as 1) the transformation of spatial data to tabular data made in 

the platform avoids messing with the poorly implemented spatial 

manipulation tools of python, 2) it would avoid R’s memory leaks and 

lack of efficiency; 

➢ The training and validation strategy were stated in a clearer way for the 

short-term re-train of the models. Furthermore, the quality indicators 
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were stated more clearly to ensure their proper use for the next re-train 

of the models; 

➢ To provide a better temporal continuity of the predictions, paradigm 

hybridisation and meta-modelling are considered as short-term 

evolutions to improve the databases and thus the data availability for the 

DSS. 

Other perspectives of this work relate to the application of some parts in other 

context. Indeed, the prediction platform provides a data source that could be used 

for monitoring the general status of grasslands and thus serve for: an assessment of 

the evolution of the photosynthesis and the Carbon fluxes; the constitution of 

databases to improve the insurance to damages made on pastures; the detection of 

general management behaviours and categorisation of practices performances. 
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5.4 My takeaway 

The main takeaway I get from this wandering throughout the arduous path that 

led from theoretical and field-remote science and knowledge to the tangible 

application can be resumed as follow: “As the definition of a model implies2, 

whatever you do, it is never perfect. Therefore, instead of focusing again and again 

on improving your models, platforms, protocols and so on, what matters is to make 

things just good enough to have it working and articulate the different components 

of your work so that it might always evolve and improve itself latter.” 

The summary written above must be nuanced. Indeed, the work has to be made 

to include modularity. For instance, in the case of the platform, the models are not 

addressed by their names when they are called. Instead, all the models were 

located in a dedicated directory and all the models inside this directory are being 

called. The same way, multiple ways of joining data exist. Hence multiple scripts 

were written, and it is just a change in the call to the scripts that has to be done. 

The sub-script launched have been made to respect the same input and output 

dataflow. This modularity approach highlights two key-points I want to remember 

after this thesis: 1) any code related architecture cannot be done without a pencil 

and a sheet of paper. Drawing or even only writing the ideas before hands is vital 

to avoid messing up the codes. 2) code conception requires patience and brick by 

brick conception in order to get projects working. 

As you might have guessed, this is only the first tome of this story. Hints were 

hidden throughout the paper about the second tome. You might have guessed that 

we intend to write it about the realisation of the decision support system and the 

integration of the collaborative/crowd-based science, the integration of multiple 

prospects like the near-real time pasture CSH assessment, the future production of 

the pastures, the translation from CSH to biomass… 

 
2 A model is an abstract representation of the reality 


