2022-RA-947-ESGO BI ALLELIC LOSS OF MSH2 IN ENDOMETRIAL CARCINOMA, A CASE REPORT

¹Aisling E Redmond, ²Rory Kennelly, ³Donal J Brennan. ¹Obstetrics and Gynaecology, National Maternity Hospital, Dublin, Ireland; ²Colorectal Surgery, St. Vincent's University Hospital, Dublin, Ireland; ³UCD Gynaecological Oncology Group, University College Dublin, Dublin, Ireland

10.1136/ijgc-2022-ESGO.263

Introduction/Background Microsatellite instability plays an important role in the development of sporadic endometrial cancer. Mutations in mismatch repair proteins lead to MSI which leads most commonly to somatic hypermethylation and inactivation of MLH1-gene.

Methodology We report a case of endometrioid endometrial adenocarcinoma (EAC) which demonstrated a 'double hit' or bi-allelic somatic inactivation of MSH2-gene.

Results A 56 yo nulliparous lady presented with post-menopausal bleeding. Histology of endometrial curretings confirmed grade one EAC, estrogen receptor positive, p53 wild type and MMR deficient. CT-TAP was negative for metastasis. Patient underwent total laparoscopic hysterectomy and bilateral salpingoophorectomy. Sentinel lymph node mapping was unsuccesshowever intra-operative assessment ful demonstrated myometrial-invasion <50%, and comprehensive pelvic lymph node dissection was deemed unnecessary. Post-operative histology gave a stage of FIGO 1a, pT1aNxMo, Grade 1 EAC. The was no LVSI/cervical stroma/adnexal/parametrial involvement. MMR-immunohistochemistry demonstrated loss of MSH2 and MSH6 suggestive of Lynch syndrome (LS), however germline testing failed to identify any abnormality. Further somatic testing identified two independent presumed somatic pathogenic MSH2 mutations. This reduces likelihood of LS and presented an extremely rare case of double somatic mutation of MSH2-gene.

Conclusion MMR gene alterations (hMLH1/hMSH2) play an important role in the development of MSI in sporadic EAC. Most presumed sporadic, MSI-positive EACs are associated with epigenetic silencing of *MLH1*, via promoter hypermethylation. A smaller fraction have somatic mutations in *MSH6*, or loss of MSH2 protein expression. Hereditary cancers can also display mutations in MSH2-gene. LS is an autosomal dominant hereditary cancer syndrome which increases cancer risk, most notably colorectal and endometrial. It is caused by germline mutations in MMR genes – MSH1/MSH2/MSH6/PMS2 and EPCAM-genes. ~36% of MMR deficient EAC are caused by LS. Here we report a case of EAC demonstrating a 'double hit' or bi-allelic somatic inactivation of MSH2-gene highlighting the importance of complete clinical algorithms in these cases.

2022-RA-955-ESGO ENDOMETRIAL CANCER: LYMPHOVASCULAR SPACE INVASION IS A NEGATIVE PROGNOSTIC FACTOR

¹Alixe Salmon, ²Adriane Dheur, ³Vincent Bours, ⁴Katty Delbecque, ¹Elodie Gonne, ⁵Clemence Pleyers, ²Marjolein de Cuypere, ²Frederic Goffin, ⁶Pierre Lovinfosse, ²Frederic Kridelka, ²Athanasios Kakkos, ¹Christine Gennigens. ¹Oncology, CHU Liège, Liege, Belgium; ²Gynaecology and Obstetrics, CHU Liège, Liege, Belgium; ³Human Genetics, CHU Liège, Liege, Belgium; ⁴Pathology, CHU Liège, Liege, Belgium; ⁵Radiation Oncology, CHU Liège, Liege, Belgium; ⁶Nuclear Medicine and Oncological Imaging, CHU Liège, Liege, Belgium

10.1136/ijgc-2022-ESGO.264

Introduction/Background Endometrial carcinoma (EC) is the most common cancer of the female genital tract in developed countries. Lymphovascular space invasion (LVSI), an histological characteristic, is also included in the molecular classification. We aimed to compare the clinical profile but also overall survival (OS) and progression-free survival (PFS) in patients with and without LVSI.

Methodology Between January 2019 and December 2021, we conducted a monocentric retrospective study of 166 patients treated for EC (all stages) at the CHU of Liège. Thirty-nine patients were excluded. Data of the 127 remaining patients were analyzed for quantification of LVSI: absence, rare (< 5), substantial (> 5) or lymphangitis. The statistical correlation between the LVSI status and various clinical (FIGO stage, lymph node invasion, histological type and grade) and molecular factors was assessed using chi-square and Fisher's exact tests. Kaplan-Meier methods were used to determine OS and PFS. **Results** 33.6% (n = 37/127) - 40.9% (n = 45/127) - 21.8% (n = 45/127) - 21.8%= 24/127) and 3.6% (n = 4/127) have absence, rare, substantial LVSI and lymphangitis, respectively. There is a significant correlation between the presence of LVSI (LVSI+) and higher grade (p=0.0001) but also with lymph node invasion (12.2% vs 0%, p=0.046). OS at 24 months was 96% and 82% in LVSI - and LVSI + cohorts, respectively (HR = 2.59, p=0.37).

Regarding molecular analyses, more patients with LVSI+ have microsatellite instability (42.7% vs 16.2%, p=0.0045). No significant correlation was found between the LVSI quantification and p53 mutation, POLE status or histological subtype.

Conclusion The presence of LVSI is a negative prognostic factor, with aggressive features, but without statistically reduction in OS. However, concerning absolute values, the presence of LVSI demonstrates worse prognosis. A significant association with microsatellite instability is demonstrated. The LVSI status should systematically be determined to optimally define the patient prognosis.

2022-RA-963-ESGO THE IMPACT OF LOW-VOLUME METASTASIS ON DISEASE-FREE SURVIVAL OF WOMEN WITH APPARENT EARLY-STAGE ENDOMETRIAL CANCERUNDERWENT SENTINEL NODE BIOPSY: A RETROSPECTIVE STUDY

¹Alessandro A Buda, ²Cristiana Paniga, ³Salih Taskin, ⁴Michael Mueller, ⁵Ignacio Zapardiel, ⁶Francesco Fanfani, ⁷Andrea Puppo, ⁸Andrea Papadia, ⁹Elena de Ponti, ¹⁰Hasan Turan, ¹Stefania Perotto, ¹¹Mete Gungor, ³Firat Ortac, ⁴Sara Imboden, ¹²Fabio Ghezzi, ⁶Giovanni Scambia, ¹³Cagatay Taskiran, ²Robert Fruscio. ¹Gynecology Oncology Unit, Ospedale Michele e Pietro Ferrero, Verduno, Italy; ²Obstetrics and Gynecology, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy; ³Obstetrics and Gynecology, Ankara University School of Medicine, Ankara, Italy; ⁴Obstetrics and Gynecology, Inselspital, University Hospital of Bern and University of Bern, Bern, Switzerland; ⁵Gynecologic Oncology Unit., La Paz University Hospital, Madrid, Spain; ⁶Obstetrics and Gynecology, Fondazione Policlinico Universitario A. Gemelli IRCCS Università Cattolica del Sacro Cuore, Roma, Italy; ⁷Obstetrics and Gynecology, Ospedale Santa Croce e Carle, Cuneo, Italy; ⁸Department of Gynecology and Obstetrics, Ente Ospedaliero Cantonale, University of the Italian Switzerland, Lugano, Switzerland; ⁹Department of Physical Medicine, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy; ¹⁰Department of Obstetrics and Gynecology, University of Health Sciences, İstanbul Training and Research Hospital, İstanbul, İstanbul, Turkey; ¹¹Department of Obstetrics and Gynecology, Acibadem University School of Medicine, İstanbul, Istanbul, Turkey; ¹²Department of Obstetrics and Gynecology, 'Filippo Del Ponte' Hospital, University of Insubria, Varese, Italy; ¹³Department of Obstetrics and Gynecology, Koc University School of Medicine, Istanbul, Turkey

10.1136/ijgc-2022-ESGO.265