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Abstract

An acoustic black hole (ABH) consists of a tapered structure whose thickness follows a power-law profile.
When attached to a host structure, an ABH localizes and traps the vibrational energy, which can then be
dissipated through, e.g., a damping layer. However, effective vibration mitigation is known to occur only
above a cut-on frequency which is inversely proportional to the length of the tapered structure. In this con-
text, the main thrust of this paper is to replace a mechanical ABH by a digital controller so as to create a
so-called virtual acoustic black hole (VABH), thus, freeing the ABH from possible mechanical constraints
(e.g., compactness, manufacturing and fatigue issues). The proposed VABH is first detailed theoretically.
The salient features and performance of the VABH are then demonstrated both numerically and experimen-
tally using a cantilever beam as a host structure. Eventually, it is shown that the VABH significantly enlarges
the applicability of the concept of an ABH.
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1. Introduction

The acoustic black hole (ABH) effect was first proposed by Mironov in [1]. The mechanical device
consists of a tapered wedge beam with a variable thickness following a power-law function. Because the
group velocity of a flexural wave is proportional to the square root of the thickness, an acoustic trap with - in
principle - no reflection can be achieved through a mechanical device whose tip has a zero thickness. In view
of unavoidable manufacturing tolerances, the achievable absorption performance necessarily decreases. To
enhance the ABH effect, different strategies were proposed during the last two decades, namely the addition
of a damping layer [2, 3] or the use of an extended platform at the end of the tapered beam [4]. The different
features of an ABH along with the existing body of literature are explained in detail in the review paper [5].
One of the most important parameters is the cut-on frequency above which the ABH starts to be effective.
Because this frequency is inversely proportional to the length of the tapered wedge beam, a particularly
long and thin ABH is necessary for vibration mitigation at low excitation frequencies (say below 100 Hz).
Several hindrances may arise from this feature, e.g., the manufacturing process can be challenging, and
the mechanical system can become cumbersome and brittle, as shown in Figure 1. Attempts to obtain a
more compact system [6, 7] or to increase the fatigue limits [8] were carried out. Different studies were
also conducted to achieve vibration reduction below the cut-on frequency of the system. For instance,
references [9, 10] exploit nonlinearities to transfer energy from low to high frequencies where the ABH is
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known to be effective. Other studies combine the ABH effect with either piezoelectric transducers connected
to linear/nonlinear shunt circuits [11, 12, 13] or feedforward/feedback control laws [14, 15, 16]. However,
the manufacturing process and the fragility of the ABH still remain important bottlenecks.

(a) Cantilever beam equipped with an ABH.

(b) Close-up at the tip, side view. (c) Close-up at the tip, front view.

Figure 1: Beam with a 35cm-long ABH. Due to the small thickness, the tip was crooked during experimental tests.

The present study finds its roots in the recent development of digital vibration absorbers [17, 18, 19, 20]
or energy harvesters [21]. Because a digital controller can synthesize virtually any impedance function (even
nonlinear ones [22]), it can advantageously replace analog shunt circuits for piezoelectric vibration absorp-
tion [23, 24]. In this paper, we propose the novel concept of a virtual ABH (VABH) where the ABH is
replaced by a digital controller, see Figure 2. This concept leverages a formulation in which the dynamical
influence of the tapered appendage is represented as a feedback action. This allows for the emulation of its
effect with a control apparatus composed of a sensor, an actuator and a digital controller. Employing this
strategy paves the way for the practical realization of very long and thin ABHs without suffering from the
aforementioned mechanical constraints. An interesting, though fundamentally different, study suggesting
the use of programmable piezoelectric shunt circuits for mimicking the dynamical characteristics of a me-
chanical ABH is that of Sugino and co-workers [25]. In their work, the impedance applied to each unit cell
is varied so as to control the local dispersion properties of the structure and reproduce the wavelength com-
pression of an ABH. Hence, a distributed control approach using piezoelectric patches allows for tailoring
wave propagation properties therein, whereas a single-point control approach is used for vibration mitigation
herein.
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Figure 2: Schematics of the virtual acoustic black hole.

The paper is organized as follows. Section 2 establishes the state space formulation of the ABH effect that
will serve as a basis for the feedback control law. The VABH and its salient dynamical features are studied
numerically in Section 3. Section 4 discusses the experimental setup and the requirements associated with
the VABH. This Section also carries out a correlation with numerical simulations. Section 5 presents the
performance of an experimental VABH. Thanks to its virtual nature, ABH with different properties including
different materials and lengths can easily be compared. Finally, the conclusions of this study are drawn in
Section 6.

2. Formulation of the ABH dynamics as a feedback function

2.1. Finite element modeling
The purpose of this Section is to formulate the ABH effect as a mechanical feedback function. Figure 3

depicts a tapered wedge beam attached to a uniform cantilever beam. The uniform beam is characterized
by its material and geometry; h0, L and b denote the thickness, length and width, respectively. The tapered
wedge beam has a length LABH−x0, where x0 corresponds to the tapered wedge beam’s truncation. Its width
is equal to b; its thickness follows the law

h(x) = h0

(
L+LABH − x

LABH

)m

, x ∈ [L,L+LABH − x0] , (1)

where m is an integer greater than 1. Due to the truncation x0, the tip of the tapered wedge beam has a
residual thickness equal to h0

(
x0

LABH

)m
.

x

0 L+ LABH − x0L

h (x)

b

h0

Figure 3: Schematics of the cantilever beam with a tapered wedge profile.

The finite element method is employed to model the coupled system. In what follows, the tapered wedge
and cantilever beams are identified with superscripts tb and b, respectively. For both systems, the internal
and boundary nodes are denoted by the subscripts I and B, respectively. The equations of motion read
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ẍB

]
+

[
Cb

II Cb
IB

Cb
BI Cb

BB

][
ẋb
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where M, C, and K represent the mass, damping and stiffness matrices, respectively. The vector fext repre-
sents the external forces applied to the cantilever beam. The tapered wedge beam applies forces and torques,
ftb→b, to the cantilever beam. Based on Newton’s third law, opposite forces and torques are applied to the
tapered wedge beam. If we were to consider the equations of motion of the assembled system, these terms
would cancel out. However, our objective is to write the ABH effect generated by the tapered wedge beam
as a feedback transfer function. The vector ftb→b describes this effect; it thus plays a key role in our analysis.

2.2. State-space formulation

According to control theory, the cantilever beam and ABH are referred to as ”plant” and ”controller”,
respectively, as in Figure 4. The equations of motion of the cantilever beam are recast into state-space
formulation as described in the chapter 9 of [26]:

{
ẋ = Ebx+Fbu
y = Gbx+Hbu, (3)

The vectors u =
[
f⊺ext,I, f

⊺
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 (4b)

where Nb denotes the number of degrees of freedom of the cantilever beam.
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Controller/ABHftb→b
+

Figure 4: Representation of beam/ABH system with a feedback diagram.

To use the tapered wedge beam as a feedback function, its input vector should contain the displacement
xB, velocity ẋB and acceleration ẍB at the boundary of the beam, and its output should correspond to the
forces and torques at the boundary, ftb→b. The equations of motion of the tapered wedge beam are
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ẍB




−ftb→b = Gtb
[

xtb
I
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with
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In practice, only one type of output is measured from the plant (either displacement, velocity or accelera-
tion). If the output acceleration is measured (as is the case in this study), the plant velocity and displacement
can be obtained through single and double integration, respectively. The state-space model can thus be built
as 
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Now that both state-space models are created, the state-space model of the full system can be defined by
using the ABH formulation as a feedback transfer function.

3. Numerical demonstration of the proposed VABH

3.1. Mechanical model
Euler-Bernoulli assumptions were used for beam modeling. One node comprises three degrees of free-

dom, namely the horizontal u and vertical v displacements and the rotation φ . 400 elements were employed
for the uniform beam and 800 for the tapered wedge beam. A uniform damping layer on both sides of either
the cantilever beam or the tapered wedge beam was added to the model to dissipate the vibrational energy.
The material and geometrical properties for each system are listed in Table 1. The damping matrix of each
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structure is built such that the considered resonance frequencies have all the same modal damping ratio ξ .
Note that the residual thickness at the tip of the tapered wedge beam is very small, i.e., 0.6µm. Such a sys-
tem would be very challenging to manufacture and would be very brittle. As mentioned in the Introduction,
one of the main features of an ABH is its cut-on frequency, fcut. For the ABH in Table 1, we have [27, 28]

fcut =
h0

2πL2
LABH

√
40EABH

12ρABH
= 9Hz. (9)

Parameter Beam ABH Damping layer

Length L = 1m LABH = 1m Ld = 1m
Width b = 20mm b = 20mm b = 20mm

Thickness h0 = 6mm m = 2, x0 = 10mm hd = 0.8mm
Young modulus Eb = 210GPa EABH = 210GPa Ed = 5GPa

Density ρb = 7800kgm−3 ρABH = 7800kgm−3 ρd = 920kgm−3

Modal damping ξb = 0.05% ξABH = 0.05% ξd = 3%

Table 1: Parameters of the coupled system.

3.2. VABH definition

The goal of this paper is to create a VABH according to Figure 4. However, it is difficult to measure
experimentally the two accelerations and rotation at the interface and to apply the appropriate forces and
torque. As a consequence, we consider here a truncated ABH effect, meaning that only the vertical acceler-
ation v̈B is measured and only the vertical force ftb→b,v is applied. Such a system is referred to as VABH in
the remainder of this paper. Its feedback formulation is schematized in Figure 5.

[
f⊺ext,I, f ⊺ext,B,v

]⊺
Plant/Beam v̈B

u y

Controller/ABH
ftb→b,v

+

Figure 5: Representation of the VABH as a feedback diagram.

3.3. Numerical results

Three different simulations are considered for the purpose of comparison, namely one with no ABH,
one with the full ABH (either mechanical or as a feedback transfer function), and one with the VABH. The
features expected from a full mechanical ABH are described in different papers, see, e.g., [5, 29]. The
system is excited at the tip of the beam. A damping layer is attached to the ABH system. For the case of the
uniform beam with no ABH effect, the damping layer is attached to the beam itself.

Figure 6 presents the frequency response functions (FRFs) measured at beam tip. Figure 6(a) confirms
the complete equivalence between the mechanical ABH and the ABH defined through the feedback formula-
tion in Figure 4. As expected, the vibration of the beam equipped with the mechanical ABH is significantly
reduced for frequencies beyond fcut compared to the case without ABH. Interestingly, the FRF of the VABH
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beam in Figure 6(b) exhibits performance comparable to that of the mechanical ABH. We stress that this
result was obtained for different measurement locations and for different mechanical systems, but this is not
further discussed herein for conciseness.

To better highlight the possible differences between the VABH and the standard ABH, several indicators
were calculated. Figure 7 displays the reflection coefficient |R| defined based on the experimental tech-
nique introduced in [30]. It is equal to one for the uniform beam, because the propagating wave is totally
reflected at the boundary. For the full ABH, the reflective coefficient fluctuates along the frequency range
as discussed in [30]. Moreover, as the frequency increases, its value tends to decrease as predicted by the
geometrical acoustics method [2]. The same trends are observed for the VABH. However, the fluctuation is
more pronounced in the case of the VABH.

Figure 8 exhibits the modal damping ratio ξ for the different modes of the considered systems. For
the uniform beam upon which a damping layer is attached, the overall damping is around 0.06%. The first
mode of both the full ABH and VABH has a frequency around 3Hz, i.e., below the cut-on frequency. This
explains why it exhibits a lower damping ratio around 0.03%. For the higher modes, the damping ratio
increases substantially and fluctuates around a value of 0.6%. This increase is also visible for the second
mode which is located below the cut-on frequency, but this is consistent with previous observations in the
technical literature [5].
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Figure 6: Frequency response functions measured at beam tip. (a) No ABH and full ABH; (b) no ABH and VABH. The cut-on
frequency is represented with the dashed line.
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Figure 9 compares the energy ratio defined as

Γ = 10log




√√√√√√√√√
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v2
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Ntb

Nb

∑
i=1
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i



. (10)

It is equal to the ratio of the mean quadratic velocity of the tapered wedge part with respect to that of the
uniform beam; it indicates where the energy density is located. For the uniform beam with no ABH, a longer
uniform beam is considered with a length equal to L+LABH. For this system, the energy ratio is defined
as the quadratic mean velocity of the nodes contained between [L,L+LABH] with the nodes contained in
[0,L]. For structures equipped with an ABH, a positive energy ratio is systematically observed. It means
that, over the entire frequency range, the energy in the ABH is greater than in the uniform beam. Between
5Hz and 1000Hz, the energy ratio of mechanical systems with an ABH is always greater than that of the
uniform beam. These results are similar to those in [29]. As for Figures 7 and 8, the VABH presents the
same features as the standard ABH but with higher amplitude fluctuations. These larger oscillations come
from the truncation of the virtual acoustic black hole effect.

In summary, despite the fact that it only considers the vertical acceleration and the vertical interface
force, the VABH exhibits performance similar to that of the full ABH system.

4. Experimental considerations

4.1. Experimental setup

The experimental setup, previously employed in [31], is depicted in Figure 10. It is composed of a
cantilever beam, a shaker, an accelerometer, a stinger and an impedance head. These components are detailed
next. The uniform rectangular steel cantilever beam has the same parameters as those in Table 1. To avoid
friction and contact nonlinearities, the base and the beam were manufactured from one steel block, and the
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base was bolted to the ground. The system was excited and controlled using the same electrodynamic shaker
(TIRA TV51075), which is itself current-driven by a dedicated amplifier. A metallic cap with an impedance
head of 60g was attached to the beam. It is connected to the shaker with a nylon stinger.

The excitation signal and the VABH control law were generated with a real-time controller (RTC)
DSpace MicroLabBox with a sampling frequency of 100kHz. The excitation was a multi-sine function in
the [0.1Hz,500Hz] frequency interval with an amplitude of 0.01V. The gain between the command in volt
and the applied force is 160NV−1. The controller, initially written as a state-space system, was transformed
into a single input single output (SISO) state-space model. The system was subsequently transformed into
a zero-pole-gain function and finally discretized with Tustin’s method for implementation into the RTC.
Ideally, the controller must be proper and stable to be implemented. To ensure stability, a collocated plant
transfer function [32] is almost mandatory, i.e., the sensor and actuator of the feedback function must be
located at the same position. The electrodynamic shaker was placed as close as possible from the beam
edge (i.e., at 20mm of the free tip) with an accelerometer glued to it. Overall, the effective moving mass
(magnetic coil+accelerometer) is equal to 150g. To reject undesirable high-frequency shaker dynamics and
to have a proper transfer function, a low pass filter

hLP =
ω2

LP

s2 +ωLPs+ω2
LP

, (11)

was applied to the controller where ωLP is the low-pass cut-on frequency and s is Laplace’s variable. The
low-pass frequency was set to 800Hz.

Beam
Shaker connected

to the dSpace

Accelerometer

Clamping

Impedance head
Stinger

Figure 10: Experimental setup.

4.2. Transfer function of the plant

The Bode plot of the experimental setup is provided in Figure 11. The transfer function presents collo-
cated features, i.e., a pole-zero alternation and a phase bounded between −180◦ and 0◦ (except at very low
frequencies where the accelerometer is no longer measuring accurately). We note that both modes 3 and
10 are in the vicinity of high amplitude modes, which is most likely due to a coupling between the uniform
beam and the stinger’s dynamics. Modes 6 and 8 present a low amplitude vibration because they correspond
to torsional modes. The identified resonance frequencies fres and modal damping coefficients ξ are given
in Table 2. The values are different than those in [31] because the measured FRF includes the dynamics of
both the stinger and the shaker.

The finite element model was upgraded to account for the presence of the exciting and measurements
devices, as illustrated in Figure 12. The transversal mass located at 20mm of the beam tip was updated
to account for the impedance head. Besides, a transversal degree of freedom was added to account for the

11



accelerometer and the shaker. It is linked to ground with a stiffness kv,g representing the shaker membrane’s
stiffness and to the beam by kv,s representing the stinger’s stiffness. Measuring the transfer function of the
shaker detached from the stinger enabled us to determine that kv,g = 6.5× 103 Nm−1. The value of the
stiffness kv,s, 4×105 Nm−1, was obtained by minimizing the differences between the resonance frequencies
of the experimental setup and of the numerical model. In the optimization process, modes 3, 6, 8 and 11
were not retained because they could not be obtained with the finite element model. Overall, an excellent
agreement between the experimental and numerical transfer functions can be observed in Figure 11.

Modes 1 2 3 4 5 6 7 8 9 10 11

fres in (Hz) 16.5 31 42.5 81 161.5 249.5 268 311.5 367 408.5 458
ξ (%) 2.65 1.79 NA 0.28 0.41 2.2 0.41 NA 1.91 NA 7.41

Table 2: Resonance frequencies and modal damping coefficients of the experimental setup. NA means that the value could not be
identified.
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Figure 11: Bode plots of the uniform beam with no VABH.
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Figure 12: Upgraded finite element model of the beam.

4.3. Open loop system and stability margins

The response of the system with the feedback is called closed-loop transfer function. For a SISO system,
it reads

T (s) =
P(s)

1+P(s)Q(s)
, (12)

where P and Q are the transfer functions of the plant and of the controller, respectively. To ensure sta-
bility, the roots of the denominator must all have a negative real part. If there exists a frequency ω such
that 1+P( jω)Q( jω) = 0 (with j the unit imaginary number), the closed-loop system possesses a pair of
complex conjugate poles on the imaginary axis, i.e., the system is marginally stable. Any perturbation to
the nominal system may change their position to either side of the imaginary axis and is thus susceptible
to make the controlled system unstable. This happens when the product (also called open-loop transfer
function) P( jω)Q( jω) =−1, or equivalently

|PQ|= 1, and arg(PQ) =±180◦, (13)

where arg is the argument of a complex number.
Stability margins are commonly used to quantify how far the open-loop transfer function is from the

conditions of Equation 13. The gain margins correspond to the value of 0−|PQ| when arg(PQ) = ±180◦

and indicate the factor by which the gain in the loop can be increased to make the system marginally stable.
Similarly, the phase margins correspond to the value of ±180− arg(PQ) when |PQ| = 1 and indicate how
robust the system is to delays in the loop. In practice, 40−50◦ of stability margins is acceptable [33]. Gain
margins should be positive and greater than a few dB.

Figure 13 presents the stability margins for the controller given in Section 3. We note that, instead of
inserting a damping layer in the VABH, its modal damping ξABH was rather increased up to 5%. This choice
was made to simplify the design of the controller but also to highlight the virtual nature of the concept.
To underline the importance of the low pass filter, two open-loop transfer functions are compared that is
one with the filter and one without. Beyond the shaker bandwidth around 6kHz, the modes of the shaker
are visible. Without the low pass filter, a negative gain margin is obtained and thus the closed-loop system
would be unstable. However, with the filter, the effect of the shaker is lessened, and stability is ensured.
A close-up is shown in Figure 14. We note that phase margins close to −180◦ do not present a risk to the
stability of the system. Indeed, time delays induced by the processor tend to lower the phase of the system
and thus increase these phase margins. Similarly, the gain margin of 7.2dB at 10Hz is expected to be higher
during the experiment.
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Figure 13: Stability margins of the open-loop system. Only one gain margin is given as an example.
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Figure 14: Close-up of Figure 13 in the frequency range of interest.

4.4. Closed-loop system
The fundamental difference between the VABH in Section 3.1 and the experimental VABH comes from

the size of the ABH’s dynamical model which needs to be reduced substantially. Indeed, the very fine dis-
cretization used for the tapered wedge beam model would result in a controller of very high order (number
of poles and zeros), which could, in turn, not be handled by the RTC’s processor. To preserve the ABH’s
dynamics and make it digital through the RTC, a Craig-Bampton reduction method [34] was used on the
tapered wedge beam. This substructuring approach partitions the degrees of freedom into master and slave
degrees of freedom. The former are kept as physical nodes whereas the latter are reduced into NCB gen-
eralized control coordinates. In our case, the boundary nodes were kept as master nodes to perform the
assembly and NCB = 20 was the maximum value allowed by the RTC. In the following, fCB denotes the
highest eigenfrequency of the fixed interface modes kept in the reduction basis. For an excitation frequency
above fCB, the Craig-Bampton reduction mitigates the dynamic properties of the VABH.

The impact of this model reduction together with the influence of the position of the VABH and of the
low-pass filter was studied numerically where the controller corresponds to the one used in Section 4.3.
Figure 15 compares a VABH applied directly at the tip (in red) with one located at the shaker’s position
(in blue). For the first four modes, the VABH at the tip presents slightly better vibration reduction. For
frequencies greater than 280Hz, the VABH placed at the shaker exhibits better performance. Surprinsingly,
the VABH at the tip shows greater vibration amplitudes than those of the plant in the range [300Hz,370Hz].
This result comes from the stiffness of the stinger kv,s, which, combined with the ABH placed at the tip,
creates a number of resonant frequencies in [300Hz,370Hz]. We note that the modification of the position
of an ABH was studied in detail in [7].
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Figure 16 plots the influence of the low pass-filter on the FRF (blue vs. green). For low-frequency
modes, ωLP is high enough so that the filter has no influence. For the modes at 268Hz and 367Hz, vibration
reduction is slightly enhanced with the filter.

Finally, Figure 16 presents the influence of the reduction strategy (green vs. yellow). For the proposed
VABH with NCB = 20, fCB is equal to 262Hz. As expected discrepancies are observed for the modes at high
frequencies. However these differences are rather small. Therefore, keeping 20 modes in the basis does not
modify the FRF to a great extent.
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Figure 15: Influence of ABH location on the FRF (numerical result).
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Figure 16: Influence of the filtering and model reduction on the FRF (numerical result).

5. Experimental performances of the VABH

5.1. Nominal VABH

The plant+VABH system is now considered experimentally. The nominal VABH is described by the
parameters in Table 1 with ξABH = 5%. Figure 17 presents, for the first time, the implementation of a VABH
on an experimental setup. The attenuation provided by the VABH is given in Table 3 for different resonance
frequencies of the plant. With the exception of the first mode, all modes are significantly damped with the
greatest attenuation amounting to 23.9dB. Thus, excellent attenuation performance is offered by the VABH.
These results are also well-predicted by the numerical model, as exemplified in Figure 18.

17



0 50 100 150 200 250 300 350 400 450 500
20

30

40

50

60

70

80

90

Frequency (Hz)

A
m

pl
itu

de
( dB

,r
ef

.m
/s

2)

Experimental plant
Experimental plant+VABH

Figure 17: Experimental FRF of the plant and of the plant+VABH system.

Experimental plant modes 1 2 4 5 7 9 11

Experimental attenuation 3 17.4 23.9 15.9 10.3 10.3 6.2
Numerical attenuation 8 17.1 15.4 11.8 12.1 9.7 5.8

Table 3: Attenuation (in dB) of the plant’s resonance peaks using the VABH (20 modes). Modes 3, 6, 8, and 10 are excluded, because
they correspond to low-amplitude vibration modes.
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Figure 18: Comparison between experimental and numerical FRFs of the plant+VABH system.

5.2. Parametric studies

Because the VABH relies entirely on a microcontroller, changing parameters such as the length or the
material of the ABH can easily be carried out. As it will be shown, better performance compared to that of
the nominal ABH can be obtained.

The influence of the number of modes kept during the Craig-Bampton reduction is first studied in Fig-
ure 19. Three values are investigated: NCB = {5,10,20}. fCB is equal to 20Hz, 68Hz, and 262Hz, respec-
tively. When the reduction is performed with a smaller number of modes, the VABH performance decreases
at low frequencies and increases for higher-frequency modes. This latter observation does not come from the
VABH properties but rather from the combined effect of the Craig-Bampton reduction and the fact that the
controller is implemented at the same location as the excitation. When the excitation frequency is greater
than fCB, the VABH acts as an additional moving mass and a shift of the frequency response function is
observed in amplitude. The lower NCB the greater the mass and hence the greater the shift. Notice that this
reduction was also observed in Figure 16 but at higher frequencies (around 480Hz). In the next experiments,
the controller is always implemented with 20 modes.
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Figure 19: Influence of the number of Craig-Bampton modes kept during model reduction on ABH performance.

Three values of the damping ratio ξABH, namely 0.5%, 5%, and 50% are considered in Figure 20. When
ξABH = 0.5%, the VABH is not very effective as all resonance peaks present fairly high amplitudes. Setting
ξABH to = 50% reduces substantially the amplitudes of all resonance peaks. A 10dB attenuation is now
obtained for the first resonance peak of the plant.
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Figure 20: Influence of the modal damping on ABH performance.

Next, the length LABH is set to either 10mm, 1000mm, or 2000mm in Figure 21. Modifying the length
changes the cut-on frequency fcut above which the ABH becomes effective. It is equal to 86kHz, 8.6Hz and
2.15Hz, respectively. However it also changes fCB to 1.3MHz, 261Hz, and 50Hz, respectively. For 10mm,
the response amplitude is somewhat greater than the plant amplitude at low frequencies. This feature was
already observed in Figure 8; the ABH system had a lower modal damping than the cantilever beam for the
first mode. Beyond 350Hz, vibration reduction is achieved but should rather be attributed to the low-pass
filter. For the longest ABH beam, the resonance amplitude of all modes is further reduced compared to the
nominal case. This is especially true for the first mode whose attenuation amounts to 9dB. A 3000mm-long
VABH was also tested successfully but did not exhibit better performance than the 2000mm-long ABH.
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Figure 21: Influence of the ABH length on ABH performance.

Finally, three values of Young’s modulus of the tapered wedge beam EABH are considered in Figure 22,
namely 2.1GPa, 210GPa, and 21TPa. These controllers are associated to fCB equal to 26Hz, 261Hz, and
2.6kHz, respectively. For the greatest value of Young’s modulus, extremely good vibration attenuation is
observed for all modes and are only attributed to the VABH. In this case, the first mode is attenuated by
11dB.
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Figure 22: Influence of Young’s modulus on ABH performance.

This experimental parametric study, far from complete, was mainly focused on the possibilities of the
VABH effect. The impact of the truncation or the order of the thickness law could also have been investi-
gated [28, 35]. Finding an optimal VABH constitutes another interesting prospect.

6. Conclusion

This paper proposes the new concept of a VABH which replaces a physical tapered wedge beam (i.e.,
an ABH) with a digital controller. The controller is designed so as to reproduce the ABH’s dynamics at the
interface with the host structure. Due to practical limitations, the VABH proposed herein only synthesizes
the ABH’s transversal dynamics. However, we demonstrated both numerically and experimentally that the
resulting VABH exhibits performance and features which are very similar to those of a mechanical ABH.
Specifically, our experiments highlighted that all the considered resonance peaks of the cantilever beam
including the one below 20Hz were attenuated by at least 11dB.

Virtualizing the ABH solves important practical issues related to size, fatigue and manufacturing. More-
over, ABHs which could not even be imagined in practice, e.g., ABHs with very high Young’s modulus or
damping ratios, could be tested during the experimental campaign. The VABH has also its own limitations.
First, stability margins must be verified to ensure the stability and robustness of the system. Second, the
real-time controller limits the number of poles and zeros of the VABH, forcing us to adopt a Craig-Bampton
reduction approach.

Future research could investigate VABHs applied to more complex host structures, implemented through
piezoelectric transducers or VABHs synthesizing the rotational dynamics.
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