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ABSTRACT

When strong gravitational lenses are to be used as an astrophysical or cosmological probe, models of their mass distributions are
often needed. We present a new, time-efficient automation code for the uniform modeling of strongly lensed quasars with GLEE, a
lens-modeling software for multiband data. By using the observed positions of the lensed quasars and the spatially extended surface
brightness distribution of the host galaxy of the lensed quasar, we obtain a model of the mass distribution of the lens galaxy. We
applied this uniform modeling pipeline to a sample of nine strongly lensed quasars for which images were obtained with the Wide
Field Camera 3 of the Hubble Space Telescope. The models show well-reconstructed light components and a good alignment between
mass and light centroids in most cases. We find that the automated modeling code significantly reduces the input time during the
modeling process for the user. The time for preparing the required input files is reduced by a factor of 3 from ∼3 h to about one hour.
The active input time during the modeling process for the user is reduced by a factor of 10 from ∼10 h to about one hour per lens
system. This automated uniform modeling pipeline can efficiently produce uniform models of extensive lens-system samples that can
be used for further cosmological analysis. A blind test that compared our results with those of an independent automated modeling
pipeline based on the modeling software Lenstronomy revealed important lessons. Quantities such as Einstein radius, astrometry,
mass flattening, and position angle are generally robustly determined. Other quantities, such as the radial slope of the mass density
profile and predicted time delays, depend crucially on the quality of the data and on the accuracy with which the point spread function
is reconstructed. Better data and/or a more detailed analysis are necessary to elevate our automated models to cosmography grade.
Nevertheless, our pipeline enables the quick selection of lenses for follow-up and further modeling, which significantly speeds up the
construction of cosmography-grade models. This important step forward will help us to take advantage of the increase in the number
of lenses that is expected in the coming decade, which is an increase of several orders of magnitude.
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1. Introduction

Gravitational lensing describes the effect of the gravitational
potential of a massive object on the light of a background source.
In the case of strong lensing (SL), the light is deflected, such that
multiple images of the source are observed.

Because SL is sensitive to both luminous and dark matter
(DM), it is a powerful tool for probing the distribution of the total
galaxy mass and thus for giving insight into the DM distribu-
tion of galaxies (e.g., Dye & Warren 2004; Barnabè et al. 2012;
Sonnenfeld et al. 2015; Schuldt et al. 2019; Shajib et al. 2021).
Mass clumps in the lensing galaxy affect the image magnifica-
tion, and substructures can be detected by analyzing flux-ratio
anomalies of point-like sources (e.g., Dalal & Kochanek 2001;
Moustakas & Metcalf 2002; Nierenberg et al. 2014, 2017, 2020;

Hsueh et al. 2020; Gilman et al. 2020) or distortions in the arcs
formed by the lensing of spatially extended background galaxies
(e.g., Koopmans 2005; Vegetti et al. 2010, 2012). Clumps with
a mass lower than 108 solar masses can be detected in this way.
We can also analyze the structural parameters of early-type lens
galaxies, such as the average slope of the total mass density pro-
file or the DM fraction, with models (e.g., Gavazzi et al. 2007;
Auger et al. 2010; Lagattuta et al. 2010; Barnabè et al. 2011; Shu
et al. 2015).

In addition, the magnifying effect of SL can be used to
observe the earliest galaxies and quasars in the Universe (e.g.,
Kneib et al. 2004; Bradley et al. 2008; Coe et al. 2013; Salmon
et al. 2020). Modeling these high-redshift objects enables us to
study their rotation curves and masses, for example (e.g., Jones
et al. 2010; Chirivì et al. 2020; Rizzo et al. 2020). This helps us to
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understand galaxy evolution and structure formation in the early
Universe. Despite major progress in the last years, this research
field has many open questions.

Another important application of SL is the measurement
of cosmological parameters such as the Hubble constant H0
(e.g., Suyu et al. 2017; Wong et al. 2019; Shajib et al. 2019a;
Chen et al. 2020; Millon et al. 2020c; Birrer et al. 2020). This
parameter, which gives the current expansion rate of the Uni-
verse, is of great interest because early-universe measurements
from the cosmic microwave background (CMB) give a value
of 67.36 ± 0.54 km s−1 Mpc−1 (Planck Collaboration VI 2018),
whereas local measurements from the SH0ES project (Riess
et al. 2021) based on the cosmic distance ladder using Cepheids
and type Ia supernovae (SNe) obtain a higher value of 73.04 ±
1.04 km s−1 Mpc−1. This 5σ disagreement is commonly known
as the Hubble tension and might be an indication of physics
beyond a flat ΛCDM. The flat ΛCDM currently is the standard
cosmological model. SL can also be used to probe alternative
cosmological models (e.g., Jullo et al. 2010; Oguri et al. 2012;
Cao et al. 2015; Krishnan et al. 2021). To resolve the Hubble ten-
sion, independent methods are necessary, including megamasers
(e.g., Pesce et al. 2020), standard sirens (e.g., Abbott et al. 2017),
surface brightness fluctuations (e.g., Khetan et al. 2020), expand-
ing photospheres of supernovae (e.g., Schmidt et al. 1994), and
gravitational lensing.

To measure H0 with SL, a strongly lensed variable back-
ground source such as a quasar or an SN is required. Because
of the different path length and the gravitational potential dif-
ferences on the way of the photons, the characteristic brightness
fluctuations reach the observer at different times. We can mea-
sure this time delay in the light curves by monitoring the multiple
images and comparing these flux variations with each other (e.g.,
Millon et al. 2020a,b).

In addition to an accurate measurement of the time delays,
the lens potential is required to determine H0, which is obtained
by modeling the observed lensing system. Major progress has
been made in this field in recent decades, in part because of
the development of advanced modeling software such as GLEE
(Suyu & Halkola 2010; Suyu et al. 2012) and Lenstronomy
(Birrer et al. 2015; Birrer & Amara 2018). Modeling software
like these allow us to constrain the model parameters of the lens
and the source, such as their position and radial mass profile. A
downside of this approach is that we need at least several weeks
to model a lens system with spatially extended sources because
it is time consuming to model the parameter space, for instance,
with Markov chain Monte Carlo (MCMC) methods. Moreover,
the modeling process itself is interactive. In addition, the input
files required by GLEE (e.g., point spread function (PSF) and
error map) have to be obtained manually from the available data
in some cases.

With the increasing number of wide-field imaging surveys,
including the Hyper Suprime-Cam (HSC; Aihara et al. 2018), the
Dark Energy Survey (DES; Dark Energy Survey Collaboration
2016), the upcoming Euclid (Laureijs et al. 2011; Scaramella
et al. 2022), and the Rubin Observatory Legacy Survey of Space
and Time (LSST; Ivezić et al. 2019), the number of known
strong-lensing systems is growing rapidly. Even though the num-
ber of detected lenses per square degree lies between 0.5 and 10
(Li et al. 2020) depending on the image depth, the number of lens
candidates will increase strongly as a result of the large survey
areas. For example, the LSST will cover a total of ∼20 000 deg2

in multiple bandpasses over its planned ten-year run time (Tyson
2002; Lochner et al. 2022). We expect new images of billions
of galaxies, about 100 000 of which are strong-lensing systems

(Collett 2015). To be able to keep up with the increasing sample
size, we need techniques that automate the lens-modeling pro-
cess. By automating the creation of the input files, the calculation
of the starting values of lens parameters and image positions, and
the optimization and sampling of the parameter space, we can
save many hours of user interaction during the modeling process.
Several projects in recent years have already successfully demon-
strated the automation of lens modeling, especially when initial
estimates of the lens mass distribution were to be obtained (e.g.,
Shajib et al. 2019b; Nightingale et al. 2021). Techniques are also
being developed based on machine learning (e.g., Hezaveh et al.
2017; Perreault Levasseur et al. 2017; Park et al. 2021; Schuldt
et al. 2021, 2022), although the modeling of strongly lensed
quasars via neural networks has yet to be tested on real instead
of mock data. Another method is the massive parallelization of
graphics processing units (Gu et al. 2022) to speed up the lens
modeling. All these approaches cannot yet replace the detailed
manual lens-by-lens analysis that is necessary to produce mod-
els that are accurate enough for time-delay cosmography (e.g.,
Suyu et al. 2010, 2013; Birrer et al. 2019; Wong et al. 2019;
Shajib et al. 2019a; Rusu et al. 2020), but rather serve as a first
step toward this and provide important information for follow-up
observations.

In this paper, we present a new automated procedure for mod-
eling of strongly lensed quasars that utilizes the lens-modeling
software GLEE and efficiently employs the user time. The mod-
eling is uniform (i.e., has the same assumptions) for all systems.
We developed a pipeline written in Python that works with min-
imum user input. Providing only high-resolution imaging data
and marking important regions in the field, the user can model
in a nearly fully automated way with GLEE. The automated mod-
eling can be performed with single-band and multiband data. We
focus on lensed quasars to model the lens mass distribution with
an isothermal or power-law profile and the source brightness dis-
tribution on a grid of pixels. To test our code, we uniformly
modeled a sample of nine strongly lensed quasars observed with
the Hubble Space Telescope (HST). Furthermore, we predict the
time delays and Fermat potential differences between the multi-
ple images of the quasar. We emphasize that our approach differs
from that of papers aimed at deriving cosmological parameters
from individual lenses, because we prioritize speed over accu-
racy. Owing to the adopted shortcuts (e.g., we do not iteratively
correct the PSF and usually model only the images in filters with
visible arcs from the host galaxy) and the uneven quality of the
data, we do not in general expect our results to reach cosmog-
raphy grade. The output of this pipeline is aimed as a first step
toward cosmography-grade models, and it is meant to assist in
prioritizing follow-up monitoring and further modeling.

Schmidt et al. (2022, hereafter S22) have also developed an
automated modeling pipeline using Lenstronomy and applied
it to a sample of 30 lensed quasars. Our sample of 9 quasars is
a subset of the systems in S22, allowing us a direct comparison
of the results between the two modeling pipelines as a blind test
because the lead modelers of the two teams obtained their lens
models independently and only compared the results after the
models were completed. We note that our approach and that of
S22 are similar, but not identical. Important differences include
the modeling of the PSF, which is known to be crucially impor-
tant (Shajib et al. 2022), and the strategy adopted to cope with
insufficient data quality (S22 imposed informative priors, but we
do not). Therefore, we do not expect the two efforts to agree
within the formal uncertainties, which are only a representation
of the statistical error and not of the systematics, which are noto-
riously dominant. This should therefore be kept in mind when
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interpreting the comparison results. Nevertheless, as we show
below, important lessons can be gleaned from it.

The outline of the paper is as follows: in Sect. 2 we describe
the steps in modeling a strong-lensing system with our automa-
tion code. We briefly describe each system and the observational
data in Sect. 3. The modeling results are presented in Sect. 4. The
performance of the automated modeling compared to manual
modeling is discussed in Sect. 5, together with a compari-
son with the models obtained with Lenstronomy of the same
systems (S22). In Sect. 6 we summarize our results.

Throughout the paper, we adopt a flat ΛCDM cosmology
with H0 = 70 km s−1 Mpc−1 and ΩM = 1 − ΩΛ = 0.3. Param-
eter estimates are given by the median of its one-dimensional
marginalized posterior probability density function, and the
quoted uncertainties show the 16th and 84th percentiles (corre-
sponding to a 68% credible interval).

2. Automated modeling process

In this section, we describe the steps of modeling a strongly
lensed quasar with GLEE in detail and how they are conducted
in our automation code. We adopt different mass and light pro-
files, and use the Bayesian framework of MCMC sampling and
simulated annealing (Kirkpatrick et al. 1983) provided by GLEE.
The goal is to model the lens mass distribution first using the
source and image positions, and then by reconstructing the sur-
face brightness distribution of the lens and background source
galaxies. Figure 1 shows the strongly lensed quasar J2100−4452
as an example. The figure shows the lens galaxy in the image
center, four multiple images of the background quasar, and the
arc, which is the lensed light of the quasar host galaxy. The
code models the mass distribution of the lens galaxy and the
light components of the system (i.e., lens, satellite galaxies of
the lens, lensed quasar, and arc light). The modeled constituents
of the lensing system are labeled in Fig. 1.

Because the modeling is typically first performed in a sin-
gle filter and further bands may be included after the model has
stabilized, we present in Sect. 2.1 an automation code dedicated
for the single-band modeling. We then introduce the automation
code for the multiband modeling in Sect. 2.2 and finally predict
the time delays between the multiple images of strongly lensed
quasars in Sect. 2.3.

2.1. Single-band modeling

In this section, we discuss the automated modeling of a lensing
system with single-band data. We describe the semi-automated
preparation of the required input files and each modeling step
and their substeps in the following subsections. An overview of
the basic modeling procedure is shown as a flowchart in Fig. 2
and summarized in Table 1. In particular, Table 1 shows the
varying and fixed parameters in each modeling step.

2.1.1. Preparation

To model a strong-lensing system with our newly developed
automated modeling codes, the user needs to provide informa-
tion about the position and approximate light structure of the
lens, the quasar images, and the satellites. In addition, several
input files (see Table 2) are needed. Each input file is created in
separate codes that are described in the following.

Science image cutout. We start by creating a cutout of the
lensing system from the preprocessed reduced data such that it
includes the immediate environment (≲10′′) that is to be taken

1"

user region

for lens mask

user region

for arc mask
1"

Fig. 1. Lensing system and regions for mask creation. Top: image cutout
of J2100−4452 to illustrate its different components which are modeled
with our automation code. Bottom: image cutout of J2100−4452 with
regions provided by the user to create the masks. The region required for
creating the arc mask, which covers the light of the lensed quasar and
arcs, is plotted in red. For the lens mask, the user provides the region(s)
of the surrounding luminous objects (green) that contain the pixels that
are ignored by the model.

into account during the modeling. In the automated pipeline, the
user creates a DS9 (Joye & Mandel 2003) region file containing
the cutout area in the field and the positions of the lens, satellite
galaxies, and the quasar images. Optionally, the background flux
is subtracted by calculating the average flux of an empty patch
in the field. The modeling code then creates the cutout, which is
used for the subsequent modeling process, and calculates start-
ing values for the lens mass and the light parameters and image
positions from the region information.
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③ Source position

① Lens light

(see Sec. 2.1.2 / Fig. 2)

Preparation
(see Sec. 2.1.1)

② Quasar light

Lens mass distribution

modeling with

source/image positions
(see Sec. 2.1.4 / Fig. 3)

Lens mass distribution

modeling with

surface brightness

distribution
(see Sec. 2.1.5 / Fig. 4)

⑤ Arc light modeling

+ SSB distribution

reconstruction

④ Image position

modeling

modeling
(see Sec. 2.1.3)

modeling

modeling

Fig. 2. Overview flowchart for single-band modeling of a strongly
lensed quasar system with our new automated code. The modeling con-
sists of two main steps: the lens mass distribution modeling with source
or image positions, and the reconstruction of the source surface bright-
ness (SSB; which is the unlensed light distribution of the quasar host
galaxy). Each step is divided into smaller modeling steps. The details
are described in flowcharts for each step and in the corresponding sub-
section, as referenced in the flowchart.

Error map. The error map accounts for both background
noise and Poisson noise. The background noise σbackground is
approximated as a constant that is set to be the standard deviation
from a small patch in the science image without astrophysi-
cal sources. The Poisson noise σpoisson is computed from the
weighted image (exposure time map) and the science image. For
images in units of counts per second, we calculate

σ2
poisson,i =

∣∣∣∣ di

ti ×G

∣∣∣∣, (1)

with di the observed intensity1, ti the exposure time for pixel
i, and G the gain of the charge-coupled device (CCD) for the
specific filter. In the case of data units of counts, we have

σ2
poisson,i =

∣∣∣∣di

G

∣∣∣∣. (2)

We add σpoisson in quadrature to the background noise level only
if σpoisson > 2 × σbackground to avoid overestimating the noise in
regions without flux from astrophysical objects. We check this

1 Using the observed image instead of the model intensity may induce
biases at low signal-to-noise ratios (Horne 1986).

condition for each pixel i to obtain the final error map:

σ2
tot,i =

σ2
background,i + σ

2
poisson if σpoisson > 2 × σbackground;

σ2
background,i otherwise.

(3)

Point spread function. If the PSF is not directly provided
with the science image, the PSF can be created with our PSF
code. For this, the user marks several nonsaturated stars in the
field. The field spans ∼2.5 × 2.5 arc min in the case of the HST
WFC3 data we used. The PSF code then automatically creates
cutouts of these stars that are centered at the brightest pixel.
Since the star is not necessarily located at exactly the center
of the brightest pixel, the PSF code interpolates and shifts the
cutout within fractions of a pixel to center it in the cutout. In
particular, the profile is shifted such that the brightness of the
pixels to the left and right of the brightest pixel is within a mar-
gin of 10%, and similarly for the pixels above and below the
brightest pixel. This causes the central 3 × 3 region to be roughly
symmetric. To obtain the PSF, the recentered stars are normal-
ized and then stacked by calculating the median per pixel among
the cutouts, and they are renormalized such that the sum of all
pixel values is 1. In addition, the automation code requires two
PSFs, one for modeling the light of the lensed quasar, and one
for the extended source. The first PSF includes the diffraction
spikes as that PSF image is used directly as the spatial profile
for the quasar images. The second PSF is cropped at the first
diffraction minimum of the Airy disk because it is used for the
convolution of the parameterized light distribution and arcs, and
the computation time increases significantly with increasing size
of the PSF. The cropped PSF is also used to model the lens light.
Subsampling of these two PSFs is required when the pixel sizes
are large relative to the full width at half maximum of the PSF
in order to avoid numerical inaccuracies caused by an under-
sampled PSF2. The PSF code subsamples the PSF by a custom
factor n such that its pixel scale is 1

n of the original pixel size.
The two subsampled PSFs are renormalized by the PSF code.

Masks. GLEE requires two masks for the modeling. The
so-called arc mask contains the region of the lensed quasar and
its host (red regions in Fig. 1). It is used during the modeling of
the lens light to exclude quasar and host light from the model-
ing, and it later gives the pixel region that is used to reconstruct
the distribution of the source surface brightness (SSB). The lens
mask specifies the pixels of the light of surrounding luminous
objects such as neighboring stars (green areas in Fig. 1). GLEE
sequentially fits the pixels of the lens light, excluding regions of
the arc mask and neighboring objects specified by the lens mask,
as we describe in the following subsections. The masks are cre-
ated by the user, who marks the corresponding regions, saves the
DS9 region file of the marked areas, and runs a mask-generation
code on these DS9 region files.

2.1.2. Modeling the lens light

The first modeling step is to reconstruct the light of the lens
galaxy and the multiple quasar images in order to subtract their
contribution and reveal the underlying arc light more promi-
nently. We model the lens light with the Sérsic profile (Sérsic
1963), which is parameterized as

IS(x, y) = AS exp
[
− k

{( √
(x − xS)2 +

(
y−yS

qS

)2

reff

) 1
ns

− 1
}]
. (4)

2 This is the case for the HST-IR F160W filter that is used. In practice,
we subsample the PSF when the pixel size is greater than 0.05′′.
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Table 1. Modeling steps in the single-band modeling code.

Step Description Sections Criteria Lens mass parameters Lens light Source light

Profiles Ext. shear Quasar Host

1 Modeling of the lens light 2.1.2 ⟲2 (χ2
red ≤ 1) × × ✓ × ×

2 Modeling of the quasar light 2.1.3 ⟲2 (∆logP ≤ 5) × × ⃝ ✓ ×
3 Source position modeling 2.1.4 ⟲1 (χ2 < 5) ✓ × ⃝ ⃝ ×
4 Image position modeling with external shear 2.1.4 ⟲2 (χ2 < 5, ✓ ✓ ⃝ ⃝ ×

∆ logP ≤ 5)

5 a Modeling of the arc light + SSB distribution
reconstruction

2.1.5 ⟲2 (∆logP ≤ 2) ✓ ✓ ⃝ ✓A ✓

5 b Modeling of the arc light + SSB distribution
reconstruction

2.1.5 ⟲2 (∆logP ≤ 2) ✓ ✓ ✓ ⃝ ✓

Symbols:
⟲1: optimizing cycle with simulated annealing ✓: parameters vary
⟲2: optimizing and sampling cycle with simulated annealing and MCMC ⃝: parameters fixed
✓A: only the amplitude varies ×: parameters not included

Notes. Each step is described briefly in the second column with the corresponding subsection in the third column. The modeling technique and
stopping criteria are given in the fourth column. The cycle runs until the stopping criteria in the parentheses are met. The remaining columns show
the parameters that vary, are fixed, or are not included.

Table 2. Overview and description of required input files.

Input file Description

Image cutout Cutout of the lensing system
Error map 1σ uncertainty of pixel intensity in the cutout,

accounting for background and Poisson noise
PSF Image of point-spread function
Arc mask Region of arc light (red area in Fig. 1)
Lens mask Region for masking neighboring objects

(green area in Fig. 1)

An overview of the parameters in the Sérsic profile and their
priors that were used in the automated modeling is provided in
Table 3. The constant k normalizes reff such that reff is the half-
light radius in the direction of the semi-major axis.

The Gaussian prior on the centroid coordinates is used to
stabilize the optimization during lens light modeling, and it is
later changed to a flat prior when the code models the light
of the arc (Sect. 2.1.5). The prior range on the axis ratio qS
and Sérsic index nS are relaxed during multi-band modeling as
more constraints are available when additional filters are added.
As described in Sect. 2.1.1, we do not subsample the PSF for
images with pixels smaller than 0.05′′ and use the cropped and
subsampled PSF for images with a pixel scale greater than 0.05′′.

The parameters are fit to the observed intensity value Iobs
i of

pixel i by minimizing the χ2
SB of the surface brightness (SB)

χ2
SB =

Np∑
i=1

|Iobs
i − PSF ⊗ IS,i|2

σ2
tot,i

, (5)

where Np is the number of pixels in the cutout that are not
masked, σ2

tot,i is the total noise of pixel i from Eq. (3), and the

crossed circle represents the convolution of the PSF with the
predicted Sérsic intensity IS,i of pixel i. The modeling code runs
cycles that consist of one simulated annealing in the beginning
and then one MCMC chain using a sampling covariance matrix
obtained from the previous chain, which is updated after every
cycle. To obtain the uncertainties and optimized parameter val-
ues, we sample the parameter space with an MCMC method.
Each chain samples 100 000 points, and the code removes the
burn-in phase, which we conservatively set to be the first 50% of
the points in the chain. The modeling runs until two criteria are
met. The first criterion is

χ2
red =

χ2
SB

DOF
≤ 1, (6)

with the degrees of freedom (DOF), which is the number of
pixels in the cutout minus the number of masked pixels minus
the number of free parameters. The number of masked pixels is
the sum of all pixels inside the arc mask and of nearby objects
masked with the lens mask. The second criterion is approximate
convergence of the chain, that is,

∆logP ≤ 5. (7)

This is the difference in the log-likelihood between the median
of the first 2000 points in the chain after burn-in is removed and
the median of the last 2000 points. We visualize the lens light
modeling steps with a flowchart in Fig. 3.

If the chain of the lens light model with one Sérsic profile
(approximately) converges (i.e., fulfills Eq. (7)) without reach-
ing the χ2

red threshold in Eq. (6), the code checks whether a point
source at the center of the lens improves the model given the
possibility of an active galactic nucleus (AGN) within the lens
galaxy. The light distribution of a point source is represented by
the PSF. For this, the code checks how different point sources in
an amplitude range between 0.01 and 100 change the χ2

SB of the
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Table 3. Prior ranges of the Sérsic parameters for the lens galaxy light.

Component Parameter Description Prior Prior range/value

xS [′′] x-centroid Gaussian, Flat prior in SSB reconstruc-
tion

Centered on starting value, Gaussian
σ = 0.3

yS [′′] y-centroid Gaussian, Flat prior in SSB reconstruc-
tion

Centered on starting value, Gaussian
σ = 0.3

qS Axis ratio Flat Single-band: [0.3, 1], multi-band: [0.1, 1]
Sérsic ϕS [◦] Position angle Flat [0, 360]

AS Amplitude Flat [0.01, 10]
reff [′′] Effective radius Flat [0.01, 10]
nS Sérsic index Flat Single-band: [0.5, 6], multi-band: [0.4,9]

Notes. The Sérsic parameters are varied during lens light modeling and the modeling of the arc light with SSB reconstruction. The position angle
is measured counterclockwise from the positive x-axis (east of north).

model. If χ2
SB is lowered by more than 10, a point-source com-

ponent with the corresponding amplitude is added to the model.
This is motivated by the Bayesian information criterion (BIC;
following Rusu et al. 2019): the point source adds one additional
parameter (the amplitude). A χ2

SB decrease by 10 ensures that the
BIC does not increase. The model is subsequently optimized and
sampled until the criterion in Eq. (7) is fulfilled.

When the criterion defined with Eq. (7) is met, the code
checks the criterion of Eq. (6). If the latter is fulfilled, the code
stops the lens light modeling. When satellites are present in the
cutout field, the code continues to model the light of the satel-
lites. If the criterion of Eq. (6) is not fulfilled, one additional
Sérsic profile with the same centroid is added to the model for
the primary lens light. The code runs optimizing and sampling
cycles until the criterion defined by Eq. (7) is met. We model
the light of the satellites with Sérsic profiles when the chain of
the model for the primary lens light has converged according
to Eq. (7). The user is queried to replace the masks such that
the satellites are no longer masked. The model is then optimized
and sampled until the criterion in Eq. (7) is fulfilled. If this con-
verged model of the primary lens light and of the satellite galaxy
light still does not fulfill Eq. (6), the user is asked to either add
a third Sérsic profile, refine the masks, or directly continue with
the next modeling step. In the first two cases, the code again runs
an optimizing/sampling cycle until the ∆logP criterion (Eq. (7))
is met.

2.1.3. Modeling the quasar light

After the lens light modeling procedure (see Sect. 2.1.2 and
Fig. 3), that is, when we have obtained a good fit for the lens
and the satellite light, the code continues by modeling the light
of the lensed quasar. Now we mask only the luminous objects
surrounding the lens system, that is, we remove the arc mask
such that the model now includes the lensed quasars and arcs.
For each quasar image, we add a point-like light component
that is represented by the PSF and is initially centered on the
positions given by the user. The PSF used here was subsam-
pled for images with pixels >0.05′′ and extended ∼4′′×4′′ to
include the diffraction spikes. We only allowed the quasar posi-
tions and amplitudes to vary; the Sérsic lens light parameters
were fixed. To infer the best-fit parameters for the quasar images,
we again used simulated annealing and an MCMC method with
a sampling covariance matrix obtained from an earlier MCMC

chain. We stopped the quasar light modeling when approximate
convergence of the chain (Eq. (7)) was achieved.

2.1.4. Modeling the lens mass distribution with source or
image positions

With the quasar image positions obtained from the quasar light
modeling (see Sect. 2.1.3), we can model the mass distribution
of the lens galaxy using the mapped source positions and sub-
sequently the image positions. The modeling code queries the
user for the choice of the lens mass profile. Our automated mod-
eling code supports both a pseudo-isothermal elliptical mass
distribution (PIEMD; Kassiola & Kovner 1993) and a singu-
lar power-law elliptical mass distribution (SPEMD; Barkana
1998). The steps conducted in the modeling of the lens mass
distribution with source and image positions are visualized
in Fig. 4.

The dimensionless surface mass density (or convergence) of
the SPEMD profile is given by

κSPEMD(x, y) = (1 − γ̃PL)

 θE√
qm(x − xm)2 +

(y−ym)2

qm


2γ̃PL

, (8)

where (xm, ym) is the lens mass centroid, qm is the axis ratio of
the elliptical mass distribution, rc is the core radius, which we
set to 1 × 10−4, and γ̃PL = (γPL − 1)/2 is the radial profile slope
(where γPL is the power-law slope of the three-dimensional mass
density ρ(r) ∝ r−γPL ).

The convergence κ is related to the lens potential ψ(θ) via
∇2ψ(θ) = 2κ. The scaled deflection angle for computing the
deflection of light rays is the gradient of the lens potential:
α(θ) = ∇ψ(θ).

An overview of the mass parameters and their priors is shown
in Table 4. The isothermal PIEMD profile is a special case of the
SPEMD profile, where γ̃PL = 0.5 holds (although with slightly
different parameterizations for the κ) in Eq. (8). In case of the
SPEMD profile, our uniform modeling pipeline first keeps the
power-law index fixed to the isothermal case γ̃PL = 0.5. Only
later, when the code models the light of the arc (Sect. 2.1.5), do
we allow γ̃PL to vary between 0.3 and 0.7.

The lens mass parameters are first constrained by modeling a
source position that reproduces the observed image positions of
the quasars. First, the position of the source is obtained by using
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Fig. 3. Flowchart showing the decision tree for the lens light modeling. The modeling code obtains the best configuration of Sérsic and point-source
profiles to fit the primary lens light. The quality check is made with a χ2

red approach and a criterion for stability in the posterior values. In addition,
the code also has the option of modeling the light of satellite lens galaxies.
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Fig. 4. Flowchart showing the decision tree for modeling the lens mass
distribution with source or image positions. After the user specifies a
lens mass profile (PIEMD or SPEMD), the code models the lens mass
distribution first by using the modeled source position, and then by using
the positions of the multiple quasar images with the option to include
an external shear component to the model. Both steps use simulated
annealing until the respective χ2 is below 5. The image position mod-
eling is completed after an approximately converged MCMC chain is
achieved. After this, the code continues the lens mass modeling with
the arc light modeling and reconstruction of the SSB distribution.

the lens equation

βi = θi − αi(θi), i = 1, ...,Nim, (9)

where the image positions θi = (xQSO,i, yQSO,i) are mapped back
to the source plane with the scaled deflection angle αi(θi). Nim is
the image multiplicity of the system. The lens mass parameters
η are then varied to minimize the quantity

χ2
sr =

Nim∑
i=1

|βi(η, θi) − βmod(η, θi)|2
( σi√

µi
)2 , (10)

with βi the mapped source position for image i, βmod the modeled
source position (i.e., the mean of the mapped source positions,
weighted by the magnification), σi the positional uncertainty
on the image plane, and µi the magnification of image i. We
adopted 0.004′′as the positional uncertainty, which accounts for
both the astrometric uncertainties from PSF fitting in Sect. 2.1.3
and for astrometric perturbations of typically several milliarc-
seconds (mas) due to mass substructures in the lens galaxy (e.g.,
Chen et al. 2006). For HST images where the PSF is well sam-
pled, the centroid position of the PSF can be measured with
2–4 mas for galaxy-scale lenses (e.g., Lehar et al. 1999; Sluse
et al. 2012), which is substantially more precise than the pixel
size; in Sect. 5.3 we show that our astrometric uncertainties from
PSF fitting reach an accuracy of 2 mas. In order to minimize χ2

sr,
we used simulated annealing to optimize the parameters until
χ2

sr < 5.
Based on the model obtained by minimizing the χ2

sr, which is
based on the mapped source positions, the parameter values are
further optimized by using the image positions as constraints.
When a satellite galaxy is located close to the lensing system,
we can model its mass distribution with a singular isothermal
sphere (SIS) profile. The satellite mass centroid is fixed to the
satellite light centroid obtained in Sect. 2.1.2. In addition, the
user can choose to add an external shear profile to the model
after the code has constrained the lens mass parameters with
the modeled source position. This accounts for the tidal gravita-
tional field of objects surrounding the lensing system. The shear

magnitude is calculated by γext =
√
γ2

ext,1 + γ
2
ext,2, with γext,1 and

γext,2 the components of the shear matrix. The parameters η are
varied to minimize

χ2
im =

Nim∑
i=1

|θobs
i − θpred

i (η,βmod)|2
σ2

i

, (11)

with θobs
i and θpred

i the observed and the predicted position for
image i, respectively. Again, the code optimizes with simulated
annealing until χ2

im < 5. It then samples with MCMC chains until
approximate convergence (∆log P ≤ 5).

2.1.5. Modeling the lens mass distribution with surface
brightness distribution

When the lens mass distribution is modeled by using the mul-
tiple quasar image positions, we proceed to constrain the lens
mass parameters by modeling the SB distribution of the unlensed
source and the light of the arc, which is the lensed light of the
quasar host galaxy. We illustrate the following modeling steps
with a flowchart in Fig. 5.

Our automated modeling pipeline uses GLEE to reconstruct
the most probable SSB distribution on a pixelated grid through
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Table 4. Lens mass parameters and their priors.

Component Parameter Description Prior Prior range/value

xm [′′] x-centroid Gaussian; Flat prior in SSB reconstruction Centered on starting value, Gaussian
σ = 0.3

Primary ym [′′] y-centroid Gaussian; Flat prior in SSB reconstruction Centered on starting value, Gaussian
σ = 0.3

Deflector qm Axis ratio Flat [0.3, 1]
(PIEMD/ ϕm [◦] Position angle Flat [0, 360]
SPEMD) θE [′′] Einstein radius Flat [0.5, 3]

rc [′′] Core radius Exact 10−4

γ̃PL Power-law index (SPEMD) Exact; flat in SSB modeling 0.5; [0.3, 0.7]

xm,sat [′′] x-centroid Exact Fixed to satellite light centroid
Satellite ym,sat [′′] y-centroid Exact Fixed to satellite light centroid
Deflector(s) qm,sat Axis ratio Exact 1
(SIS) ϕm,sat [◦] Position angle Exact 0

θE,sat [′′] Einstein radius Flat [0.01, 3]
rc,sat [′′] Core radius Exact 10−4

γ̃sat Power-law index Exact 0.5

External γext Magnitude Flat [0, 0.6]
Shear ϕext [◦] Position angle Flat [0, 360]

Notes. The position angles ϕm, ϕm,sat, and ϕext are measured counterclockwise from the positive x-axis (east of north). In case of the centroid
coordinates, the modeling code starts with a Gaussian prior centered on the starting value obtained from the user input, which is removed after lens
light modeling. The power-law index γ̃PL was fixed to 0.5 (isothermal) in the beginning and was changed to a flat prior during arc light modeling
and SSB reconstruction.

a linear inversion of the pixel intensities in the arc mask (Suyu
et al. 2006). The optimizing or sampling of the posterior prob-
ability distribution includes both the χ2

SB term in Eq. (5) and a
prior term that acts on the source pixels with a quadratic regular-
izing function. The SSB distribution is then mapped back to the
image plane to reconstruct the arc light. We use the properties
of the arc light to further constrain the lens mass parameters.
The inferred quasar light intensity in the image cutout (see
Sect. 2.1.3) is a superposition of the real quasar amplitude and
a roughly constant contribution from the lensed host light. To
reconstruct the light of the host galaxy, we lower the param-
eter value of the quasar amplitude. The new amplitudes are
determined such that the condition

Icirc,avrg = 3 × Iarc,avrg (12)

is fulfilled, where Icirc,avrg is the average intensity in a circle with
a radius of 4 pixels around the center of the quasar after the
quasar and lens light is removed, and Iarc,avrg is the average inten-
sity of a region provided by the user that contains a small patch of
arc light. The factor of 3 is chosen empirically such that the flux
is continuous across the arc. Our automation code then adjusts
each quasar amplitude such that the criterion in Eq. (12) is met.
For the optimizing or sampling process, we first allow the lens
mass parameters, now also including the power-law index γ̃PL of
the SPEMD profile, and the quasar amplitudes to vary while fix-
ing all the parameters of the lens or satellite light profiles and
the quasar centroids. From this point on, we remove the Gaus-
sian prior of the lens galaxy centroids in the lens mass and Sérsic
profiles.

To sample the parameter space efficiently, we use EMCEE,
an ensemble sampler based on MCMC chains that is highly
parallelizable (Foreman-Mackey et al. 2013). With EMCEE, we
obtain a sampling covariance matrix for the parameter space,
which makes the subsequent sampling with Metropolis-Hastings

MCMC more efficient. We consider this modeling part suc-
cessful when the Metropolis-Hastings chain has approximately
converged, now with a stricter requirement:

∆logP ≤ 2. (13)

The quasar images are much brighter than the light of the
arc, and residuals of quasar light fitting with imperfect PSF can
often overwhelm the signal in the arcs. Therefore, we allow for
larger uncertainties in the quasar image areas by boosting the
error map in these regions. The user marks the areas dominated
by quasar light, and the code will boost all the pixels of the error
map within this region such that their normalized residuals are
within ±1σ. The error map can also be boosted in the satellite
galaxy region if the user chooses to do so. This can be necessary
if the satellite galaxy is very close to the arc of the lensing sys-
tem. In the next modeling step, now including the boosted error
map, we fix all quasar light parameters and allow the lens mass
and the lens light parameters to vary. If the uncertainties in the
satellite region are not boosted, the satellite light parameters are
varied as well. We again use EMCEE to obtain a sampling covari-
ance matrix and optimize or sample with simulated annealing or
an MCMC until approximate convergence of the chain (Eq. (13))
is achieved. In a last step, the code checks the model for full con-
vergence by analyzing the discrete power spectrum of the chain
(following Dunkley et al. 2005). If full convergence is not yet
achieved, the code runs optimizing and sampling cycles with an
increased chain length by now sampling 200 000 points. When
full convergence is achieved, the code stops and the modeling is
completed.

2.2. Multiband modeling

In addition to the single-band automation code described in
Sect. 2.1, we developed a code to simultaneously model systems
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Fig. 5. Flowchart for arc light modeling and SSB reconstruction. In the
first stage, the quasar amplitudes are lowered, and in the second stage,
the error map is boosted in the bright quasar regions in order to model
the light of the arc. The lens mass parameters are allowed to vary in this
modeling step. In a final step, the code runs optimizing and sampling
cycles until full convergence of the chain is achieved.

with strongly lensed quasars using multiband data. The model-
ing procedure in most parts is analogous to the single-band case
and is described in Table 5. We present an overview flowchart in
Fig. 6.

When we obtain a single-band lens mass model in one band
(the reference band) and a lens and quasar light model in the
other bands with the pipeline described in Sect. 2.1, we proceed
to jointly model the lens and quasar light in all the considered
bands. We chose the F160W band as our reference band unless
otherwise specified because the arc light is most prominent in
this wavelength. We use the modeled quasar positions of the
individual bands to align the multiple filters. The lens mass dis-
tribution model in the reference filter serves as a starting model
for the multiband modeling.

In the first step, we pair the reference filter with one of the
additional filters and model the lens and quasar light together
with MCMC chains. We fix the amplitudes of the lens light

components in the reference filter, and force the lens light
amplitudes in the other filter to follow the same ratio of light
amplitudes as in the reference filter. In addition, we link the
remaining lens light parameters (centroid, axis ratio, position
angle, effective radius, and Sérsic index) between the filters. The
quasar light centroids are linked as well, while the quasar ampli-
tudes vary independently. After a MCMC chain is approximately
converged with ∆logP ≤ 5, we fix the lens light amplitudes of
this filter, and add the next filter, which is modeled together with
the reference filter in the same way as the filter before. We also
allow variation in the quasar light parameters of the previous
filters. When approximate convergence (∆logP ≤ 5) is achieved
for all pairs, we model the lens and quasar light parameters of
all filters simultaneously and now allow all lens light amplitudes
to vary independently while keeping the remaining lens light
parameters and quasar light centroids linked.

Like in the single-band modeling, the modeled quasar posi-
tions are then used for image position modeling (see Sect. 2.1.4)
to constrain the lens mass parameters. In the last step, the light of
the arc and the SSB distribution are reconstructed analogously to
the single-band modeling case described in Sect. 2.1.5. Finally,
we run additional MCMC chains to achieve full convergence of
our lens model parameters.

2.3. Time-delay estimates

Strong-lensing time-delay cosmography requires time-delay
measurements and thus observational programs that monitor the
lensed quasars. To facilitate the scheduling of the monitoring,
estimations of the time delays of new quasar systems are useful.
Furthermore, a comparison of the (blind) prediction of the time
delays to the subsequently measured time delays provides a crash
test of mass modeling procedures (Treu et al. 2016).

When we obtain a good model for the lens potential ψ(θ)
of the system from the previous subsections, we can use it to
compute the relative time delays between the different images.
Measured redshifts of the lens (zd) and of the source (zs) allow us
to convert the dimensionless surface mass density into a physical
quantity. We can then calculate the time-delay distance

D∆t = (1 + zd)
DdDs

Dds
(14)

by assuming a cosmological model. The distances on the right-
hand side Dd, Ds and Dds are the angular diameter distance to
the deflector or lens galaxy, to the source galaxy, and between
the deflector and source galaxy, respectively. With the time-delay
distance, GLEE can calculate the time delays between the quasar
images i and j,

∆ti j =
1
c

D∆t∆τi j, (15)

where

∆τi j =

[
1
2

(θi − β)2 − ψ(θi)
]
−

[
1
2

(θ j − β)2 − ψ(θ j)
]

(16)

is the Fermat potential difference between quasar images i and j,
which is obtained from the final lens mass model. We have a sep-
arate code that calculates the time-delay distance from Eq. (14)
and the relative time delays from Eq. (15), including 1σ uncer-
tainties by using the final MCMC chain of the model parameters
from the modeling code and the cosmological parameters and
redshifts provided by the user.
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Table 5. Modeling steps in the multiband modeling code.

Step Description Sections Criteria Lens mass parameters Lens light Source light

Profiles Ext. shear Quasar Host

1 Pair each band with reference filter and model lens +
quasar light together

2.1.2/
2.1.3,
2.2

⟲2 (χ2
red ≤ 1) ⃝ ⃝ ✓ ✓ ×

2 Modeling of lens + quasar light with all bands at
once

2.1.2/
2.1.3,
2.2

⟲2 (∆logP ≤ 5) ⃝ ⃝ ✓ ✓ ×

3 Image position modeling with external shear 2.1.4,
2.2

⟲1 (χ2 < 5,
∆logP ≤ 5)

✓ ✓ ⃝ ⃝ ×

4 a Modeling of arc light + SSB distribution reconstruc-
tion

2.1.5,
2.2

⟲2 (∆logP ≤ 2) ✓ ✓ ⃝ ✓A ✓

4 b Modeling of arc light + SSB distribution reconstruc-
tion

2.1.5,
2.2

⟲2 (∆logP ≤ 2) ✓ ✓ ✓ ⃝ ✓

Symbols:
⟲1: optimizing cycle with simulated annealing ✓: parameters vary
⟲2: optimizing and sampling cycle with simulated annealing and MCMC ⃝: parameters fixed
✓A: only the amplitude varies ×: parameters not included

Notes. Each step is described briefly in the second column. The modeling technique and stopping criteria are given in the third column with
the symbols described below the table. The cycle runs until the stopping criteria in the parentheses are met. The remaining columns show the
parameters that vary, are fixed, or are not included. the true value.

3. Observations

Our sample consisted of the nine strongly lensed quasars
DES J0029−3814 (Schechter et al., in prep.), DES J0214−2105
(Agnello & Spiniello 2019; Lee et al. 2019), DES J0420−4037
(Ostrovski et al., in prep.), PS J0659+1629 (Delchambre et al.
2019), 2M1134−2103 (Lucey et al. 2018; Rusu et al. 2019),
J1537−3010 (Lemon et al. 2019; Delchambre et al. 2019; Stern
et al. 2021), PS J1606−2333 (Lemon et al. 2018), PS J1721+8842
(Lemon et al. 2018), and DES J2100−4452 (Agnello & Spiniello
2019). A detailed description of the observations and the pecu-
liarities of each lensing system are presented by S22. In Fig. 7 we
show a color image that was created with the three HST bands
F160W, F475X, and F814W, which were used as the red, blue,
and green channels, respectively.

4. Modeling results

In this section, we describe the modeling results of our sam-
ple of lensing systems obtained with the autonomous modeling
pipeline that we presented in Sect. 2. The input files for each
lensing system, that is, the PSF, error map, and masks, were
obtained by following Sect. 2.1.1. Each system was modeled
with a SPEMD profile and external shear. The lens light was
modeled with two Sérsic profiles unless specified otherwise in
the following subsections. For two systems (J0659+1629 and
J1606−2333), we additionally modeled the light and mass dis-
tribution of a close-by satellite galaxy. We decided which bands
to include by visual inspection of the residuals after modeling
lens and quasar light, that is, the remaining light from the arcs,
which are the lensed host galaxy of the quasar. If there was sig-
nificant arc light in one wavelength band, then we included that
band in the final multiband model.

In Table A.1 we present figures of the modeled light and
reconstructed source for each of the nine lensing system in our

Alignment

of filters

①/�

Lens+quasar

light modeling
(see Sec. 2.1.2 / 2.1.3)

③ Image position

(see Sec. 2.1.4)

④ Arc light modeling

+ SSB distribution

reconstruction
(see Sec. 2.1.5)

 

 

Single-band

models

modeling

Fig. 6. Overview flowchart for multiband modeling of a lensed quasar
system with the multiband automated code. Details are described in
flowcharts for each step and in the corresponding subsections, as ref-
erenced in the flowchart.

sample. We show the observed image (third column), the mod-
eled light and critical curves (fourth column), and the normalized
residuals in a range between −5σ and 5σ (fifth column). For
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Fig. 7. Color images for each of the nine lenses in our sample created with the three HST bands F160W (red), F475X (blue), and F814W (green).

each pixel, the normalized residuals show the difference between
data and model, normalized by the estimated standard deviation.
We show cropped images instead of the full cutout that we used
for modeling for better visibility and indicate 1′′ with a white
line. The panels are oriented such that north is up and east is
left. The sixth column shows the reconstructed SSB distribution
of the quasar host galaxy on the image plane. The seventh col-
umn shows the SSB distribution on the source plane with plotted
caustic curves in red, and the mean weighted source position of
the quasar as a blue star. We show rulers with length of 0.5′′ in
x- and y-direction because the pixel size can be different in these
directions.

In Table B.1 we present the median parameter values of the
lens mass distribution together with their 1σ uncertainties from
the final chain of each multiband model. We also show the best-
fit lens and satellite light parameters in the F160W band (the
reference filter). The centroid coordinates are given with respect
to the bottom left corner of the image cutout. The light parame-
ters in the F475X and F814W bands are presented in Tables B.2
and B.3, respectively.

In Table 6 we summarize the single-band χ2
red of each mod-

eled band and a total χ2
red,tot, which is the sum of the independent

single-band χ2 divided by the DOF of the multiband model.
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Table 6. χ2
red for each individual band with total χ2

red,tot.

System χ2
red,160 χ2

red,475 χ2
red,814 χ2

red,tot

J0029−3814 0.80 − − 0.80
J0214−2105 0.74 − − 0.74
J0420−4037 0.56 − − 0.56
J0659+1629 1.08 − − 1.08
2M1134−2103 2.76 − 1.62 1.84
J1537−3010 1.62 1.08 1.18 1.18
J1606−2333 1.36 − − 1.36
J1721+8842 0.51 1.16 0.96 0.94
J2100−4452 0.94 − − 0.94

We excluded pixels masked in the lens mask and the boosted
quasar light regions in computing the DOF (see Sect. 2.1.2).
For two systems (2M1134−2103 and J1606−2333) the χ2

red is
>1 (χ2

red of 1.84 and 1.36, respectively). For these systems, the
uncertainties could be underestimated. In Table C.1 we present
the convergence κ, total shear strength γtot, and magnification
µ = 1/((1 − κ)2 − γ2

tot) at the (modeled) image positions.
In addition, we calculated the Fermat potential differences

at the multiple modeled image positions and predict the relative
time delays for each system. We used the redshifts mentioned in
Sect. 3. If the lens redshift was not yet available, we assumed
zd ≡ 0.5, which is an approximate median value based on
the sample of currently known lensed quasars with redshift
measurements. The results are shown in Tables C.2 and C.3.

Because the lens light is described by multiple Sérsic com-
ponents, we calculated the second brightness moments of the
primary lens light model to compare the median centroid, axis
ratio, and position angle to that of the mass distribution. The
result is shown in Fig. 8. The mass and light centroid align well
within one pixel (0.08′′) in most cases, with the exception of PS
J0659+1629, which shows a large offset in the x-centroid. The
position angle of mass and light agree mostly well within ∼10°
for five of the nine systems. The largest offset is also reached
for J0659+1629 with ∼50◦. For the axis ratio, the models do not
follow the 1:1 relation so closely. Five models tend to be more
elliptical in mass compared to the light, where four of them either
have a satellite or are highly sheared. This may explain the low
mass-axis ratio.

Individual modeling details for each lensing system are
discussed further in the following subsections.

4.1. DES J0029-3814

This lensing system was modeled solely in the IR F160W band.
In the remaining bands, sufficient arc light from the host galaxy
could not be identified by eye. We used two Sérsic profiles and
a central point-source component for the light from the primary
lens. The PSF was estimated by selecting two stars in the field.
The best-fit parameters in Table B.1 show that the centers of the
mass and light distribution are offset by ∼0.04′′ in the x-direction
and by ∼0.02′′ in the y-direction. We obtain a high shear magni-
tude of ∼0.2 with a low position angle (14◦), which may be due
to the overdense environment north of the lensing system.

4.2. DES J0214-2105

We modeled this system in all three considered bands (F160W,
F475X, and F814W) and note that the quasar amplitudes in the

F475X band are strongly underfit after step 5(a) (see Table 5).
The reason might be that the faint arc light and an imperfect
PSF model result in higher residuals in regions of multiple
quasar images. The underfitting is not directly obvious from
the residuals because the missing quasar amplitude is compen-
sated for by high source intensity values in a single pixel. To
avoid negative impact of this band on the lens mass model, we
present the F160W single-band model. The PSF was approxi-
mated with one star from the field in the F160W band and two
stars in each of the F475X and F814 bands. The centers of the
mass and light distribution are very well aligned, with an offset
within ∼0.01′′.

4.3. DES J0420-4037

This lensing system was modeled in all three bands. As in the
case of J0214−2105, the quasar amplitudes in the F475X band
are strongly underfit. We present the F160W single-band model
results. We approximated the PSF in the F160W band by choos-
ing two stars in the field; for the F475X and F814 bands, we used
one star. Mass and light show a small offset of <0.01′′ in the
x-direction and ∼0.01′′ in the y-directions. The modeling residu-
als indicate several light clumps near or in the arc. We confirmed
two of them to be counter images, which indicates a second
lensed background source.

4.4. PS J0659+1629

This lensing system was modeled in the IR F160W band because
the arc light in the other bands was insufficient. We also included
an SIS profile for the satellite mass and a Sérsic profile for the
satellite light. The satellite is very close to the northern-most
quasar image. We therefore boosted the error map in the satellite
region in the same way as the quasar images in the last model-
ing step. The PSF was estimated with four stars from the field.
We found two very faint light clumps in the residuals, which are
at positions that suggest them to be counter images of a second,
lensed background source at a similar redshift as the first source.
The dark region in the source light reconstruction at the satellite
position does not have an effect on the mass model because its
counter image lies outside the reconstruction region (arc mask).
For this system, the quasar amplitudes are also underfit after
step 5(a) (see Table 1), which might have an effect on the lens
mass model. This is difficult to overcome with automated mod-
eling procedures and require individual tweaks that are deferred
to future work for cosmographic analysis. This system shows the
largest difference between mass and light in our sample, with
an offset of ∼0.1′′ in the x-direction and ∼0.05′′ in y-direction.
Furthermore, the modeled lens mass distribution is much more
elliptical, with ∆q = qS − qm ∼ −0.4, and the position angle is
offset by −45°. The reason might be the satellite galaxy close to
image D.

4.5. 2M1134-2103

This system has a faint lens and very bright quasar images,
which makes an exact modeling of the lens light and spectro-
scopic redshift of the lens difficult. We performed the modeling
in the F160W and F814W bands. The PSF for the F160W band
was estimated by using five stars. We chose three stars to build
the PSF in the F814W band. The median mass and light cen-
troid align very well with an offset smaller than ∼0.01′′ in the
x-direction and ∼0.01′′ in the y-direction. This system has the
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Fig. 8. Comparison between the position and structural parameters of the lens mass and light for eacht lensing system. Top: difference between the
median mass and light centroid of our models, with ∆x = xS − xm and ∆y = yS − ym. Bottom left: comparison between the median mass and light
position angle. Bottom right: comparison between the median mass and light-axis ratio. The dashed lines show lines without a centroid offset (top)
and the lines of equal position angle and axis ratio (bottom left and bottom right).

highest external shear magnitude γext of the sample. This is con-
sistent with the elongated shape and the overdense environment
in the field of view of this system (Rusu et al. 2019).

4.6. J1537-3010

This system was modeled in all three bands. In each band, we
chose five stars from the field to approximate the PSF. The cen-
ters of the mass and light distribution align very well within
∼0.01′′. In the model residuals shown in Table A.1, we find a
small offset between the quasar images and the arc in bands
F475X and F814W. A possible explanation for this offset is
that these two bands are in the rest-frame UV of the quasar
host galaxy, and thus are likely dominated by light from spe-
cific star-forming regions in the host galaxy. The power-law slope
γ̃PL ∼ 0.3 hits the lower bound of the prior, which might be due
to our imperfect PSF models in the F475X and F814W mod-
els. As we show in Sect. 5.2, the PSF has a significant effect on
γ̃PL. This system has one of the most prominent arcs in all three
HST filters in our sample, which is ideal for future cosmographic
analysis.

4.7. PS J1606-2333

This lensing system was modeled in the F160W band with
two Sérsic profiles and a central point source component for

the primary lens light. Although we initially included the
other bands because they show significant arc light, the source
reconstruction shows no visible source (above the noise level)
in these bands. We excluded these bands and optimized only the
single-band model. For this lensing system, the PSF was stacked
from five neighboring stars. The bright light clump in the south
below image B that is embedded in a faint extended structure.
We assumed this clump to be a satellite at the same redshift as
the lens galaxy, and include an SIS profile for the satellite mass
and a Sérsic profile for the satellite light. The error map was
boosted at the satellite position in the last modeling step because
of its proximity to the arc. Mass and light align very well within
∼0.01′′. The power-law slope of this system is close to the lower
bound of the prior with γ̃PL ∼ 0.31. Again, this might be due to
an imperfect PSF model.

4.8. PS J1721+8842

This is an unusual and interesting lens system with six quasar
images. It is composed of two quasar sources at the same red-
shift, with one quasar lensed into a quad (images A, B, C, and
D) and the other one lensed into a double (images E and F;
Lemon et al. 2022). Most of the arc light in this system comes
from the double system, therefore we only included these regions
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Table 7. User input time for each task in manual and automated modeling.

Task User time for manual modeling User time for automated modeling

Creation of image cutout ∼15 min ∼5 min
Creation of error map ∼10 min ∼10 min
Creation of masks ∼1 h ∼30 min
Creation of PSF ∼2 h ∼15 min
Modeling process ∼10 h ∼1 h

Notes. This does not include computation time, which is summarized in Table 8.

for the arc light modeling and SSB reconstruction. We modeled
this system in all three considered bands with two Sérsic pro-
files and a central point-source component for the primary lens
light. We picked three stars from the field to approximate the
PSF in the F160W band, and one star in each of the F475X and
F814W bands. The second source component was added manu-
ally because the current version of the automation code does not
support an automated detection of multiple source components.
It is represented as a green star in the source reconstruction plot
in Table A.1. Quasar image F is offset relative to the arc peak
SB, which may be due to the quasar being kicked out of its host
galaxy (Mangat et al. 2021). We used F475X as the reference
band because image F is not clearly distinct from the arc in the
F160W band where the arc is the brightest. The offset introduces
a challenge to the quasar and arc light modeling. At the position
of the second source component, the source intensity is nega-
tive. The mass and light centroids are offset by ∼0.04′′ in the
x-direction, and align very well within ∼0.01′′ in the y-direction.

4.9. DES J2100-4452

The final model of this system includes only the F160W band.
The F475X and F814W bands show small indications of arc
light, but including these bands in the model led to no visible
source reconstruction. The PSF was created by using five stars. A
dust lane appears to cross the lens galaxy from north to south. Its
influence on the model needs to be investigated in future work.
The dust lane can be seen best in the bluest band (in our case, the
F475X band), and given its rest frame wavelength of 1.3 microns
in the F160W band, the effect on the model is probably very
weak. The mass is offset relative to the light by ∼0.04′′ in the
x-direction and by ∼0.06′′ in the y-direction.

5. Discussion

5.1. Comparison of automated modeling to manual modeling
with GLEE

In this section, we compare the automated modeling with our
automation code and the manual modeling of a lensing system
with GLEE based on the total time actively spent by the user on
modeling a lensing system. We report a significant reduction of
preparation time for the input files, which are created in sepa-
rate automated codes. The creation of the image cutout is sped
up from ∼15 to ∼5 min in the automated modeling. The time for
creating the error map stays roughly the same because this was
already automated prior to this work. The mask regions in both
cases were obtained by eye and were marked manually, but the
masks are now created fully automatically from the region files.
This automation halves the user input time from roughly one
hour in the manual case to ∼30 min when the automation code

is used. The time for creating the PSF is significantly reduced
from ∼2 h to ∼15 min in the case of the automated model-
ing. When the PSF code is used, the only step the user has to
conduct in order to obtain the PSF is to find suitable stars in
the field and save their positions. The time-consuming technical
steps such as saving the region file, stacking the files, subsam-
pling if requested, and normalizing to create the PSF, are fully
automated.

For the actual lens modeling process, we can also report a
significant time reduction. The initial setup of the GLEE configu-
ration file, which also includes estimations for the starting values
of the parameters, is about one hour for manual modeling. In the
automated case, the user only has to provide a region file, which
can be created within 10 min. The setup of the configuration file
and the estimations for the starting values are fully automated,
so that it is not necessary for the user to learn how to use GLEE
(e.g., how to set up the GLEE configuration file). Quality con-
trol and modifications to the configuration file between different
modeling steps are also fully automated, which again saves sev-
eral hours over the full modeling process. Moreover, there is no
waiting time between the multiple MCMC chains, and the code
obtains the optimal sampling parameters automatically. Together
with short interaction between the user and the code and the
inspection of the output, we estimate an average of one hour of
total user time per lensing system for the automated modeling
process. Table 7 gives a comparison between user input time in
the automated and in the manual modeling case.

The computational time for the arc light modeling and
SSB distribution reconstruction mainly depends on the arc
mask and PSF size. The optimizing and sampling cycles with
simulated annealing and MCMC chains use one core at a time.
We used EMCEE, which can be highly parallelized, to obtain an
initial sampling covariance matrix at the beginning of the last
modeling steps (5(a) and 5(b) in single-band, and 4(a) and 4(b)
in multi-band modeling) with a chain length of 400 000 on a
cluster with Intel Xeon E5-2640 v4 CPU using 30 cores. The
average computation time on the cluster for each EMCEE chain
is ∼5 h. Because of typical overhead in parallel computing,
we estimate that the single core computation time for each
EMCEE chain is ∼100 h. EMCEE sampling is used twice in the
automated modeling procedure, and thus we have a total EMCEE
computation time of ∼200 h per core. With this setup and
modeling specifications, we estimated the average computation
time per core per lens system for each modeling step described
in Sect. 2, and summarize them in Table 8. The computationally
expensive step of arc light modeling and SSB distribution
reconstruction takes 15–20 days with a single core. Because of
the parallelization of EMCEE, the effective computation time
ranges between 7 and 14 days. When only approximate (and not
full) convergence of a chain is sufficient, models can already
be expected after 5–7 days. These models do not differ much
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Table 8. Average computation time per core per lensing system for each modeling step.

Modeling step Sections Average computation time

Lens light modeling 2.1.2 ∼1 day
Quasar light modeling 2.1.3 ∼1 day
Lens mass modeling with source/image positions 2.1.4 ∼1 min
Arc light modeling and SSB distribution reconstruction 2.1.5 ∼15−20 days

Notes. The last and most time expensive step is partly parallelized, and is thus effectively and notably shorter (∼7−14 days).

from the final model that is fully converged and can be used for
tentative analysis. We expect the computation time to be roughly
the same in both the manual and the automated modeling.

5.2. Comparison of lens modeling results between GLEE
and Lenstronomy

5.2.1. Blind comparison

All nine systems of our sample are part of a more extensive sam-
ple of 30 quads that were modeled independently by S22 with
a similar, automated pipeline based on the lens modeling soft-
ware Lenstronomy. Both modeling frameworks are dedicated
to high-resolution images of lensed quasars, and thus use similar
modeling assumptions for the lenses: the lens mass distribution
is modeled with a power-law profile with external shear, and the
lens light distribution is modeled with Sérsic profiles.

There are important differences between the two procedures
that need to be taken into account. First, the two softwares
have different implementations for the SSB reconstruction:
GLEE uses a pixelated grid of the source intensity distribu-
tion, whereas Lenstronomy uses circular Sérsic profiles with
additional optional shapelet components. Second, S22 always
modeled the three available bands of HST images, while in this
work, we focused only on those in which the arcs are clearly
visible by eye, typically F160W. Even though these are the most
informative bands in our nine-system sample, they do not capture
the full information, especially because the resolution is better
in the UV/visible (UVIS) data. Third, different priors have been
chosen for some of the key parameters. S22 adopted informative
priors from the SLACS sample (Bolton et al. 2006, 2008; Auger
et al. 2010) on the radial slope of the mass density profile and
the ellipticity of the mass distribution in order to avoid unphysi-
cal solutions when the parameters are poorly constrained by the
data. In this study, we opted to adopt uniform priors within some
bounds to constrain the parameters solely by the data at hand.
In the best cases, the priors should not matter because the likeli-
hood should dominate the posterior, but in practice, as we show
below, many of the systems are poorly constrained by the data,
and therefore the priors do matter. Fourth, S22 adopted an iter-
ative scheme to improve the PSF estimate based on the multiple
images of the quasar, sampled at the scale of the reduced data.
In contrast, in this work, we used an subsampled PSF estimated
from images of stars in the field, without additional corrections.
As shown by Shajib et al. (2022), the PSF is a crucial ingredient
for cosmography-grade inference.

Keeping the caveats in mind, we compared the lens mass
parameters, external shear parameters, convergence and total
shear at the quasar image positions, image magnifications, Fer-
mat potential differences, and predicted time delays. The adopted
cosmology is the same as in S22. We plot in Fig. 9 the results of
the two modeling codes together with a line showing the identity.

In addition, we present the difference of the median values of
both modeling codes against the GLEE parameter values to better
illustrate the absolute differences between the final results.

We find excellent agreement in the Einstein radius of the pri-
mary lens galaxy, where the median values agree within 4% for
eight of the nine systems. This is expected, and it is reassur-
ing that SL provides robust masses enclosed within the Einstein
radius. An apparent outlier is J0659+1629 with a difference of
∼0.2′′, which is due to the presence of a satellite galaxy whose
mass is degenerate with that of the primary lens. We calculated a
value for the “effective” Einstein radius (the radius of the circle
for which the enclosed mean κ is 1) that included the satellite
mass and compared it to the radius that was obtained by S22 for
this purpose. Our value of θE,eff,GLEE = 2.368+0.02

−0.02
′′ matches very

well θE,eff,Lenstronomy = 2.368+0.01
−0

′′ for J0659+1629 (the distribu-
tion for θE,eff,Lenstronomy is heavily skewed such that the median
coincides with the 16th percentile). We thus conclude that for all
systems, we recover the same Einstein radius to within a root-
mean-square (rms) scatter of 1.6% when the proper accounting
for satellites is considered.

Flattening, position angle of the mass distribution, and exter-
nal shear magnitude and direction are strongly degenerate with
each other (and to some extent with the slope), and should there-
fore be looked at holistically. To illustrate this, we show the
posterior distributions of the mass parameters and external shear
of J0659+1629 in Fig. D.1, where we highlight the strong degen-
eracy between the Einstein radius of the main deflector and the
satellite.

For six out of the nine systems, the position angles of the lens
mass distribution match within the errors (1 or 2 σ at most). The
outliers are J0659+1629, for which GLEE converges to a mass
distribution that is highly flattened, more than the light distribu-
tion, and therefore likely not fully correct, while S22 – driven
by the prior – converges to a much rounder distribution, and
J0214−2105 and J0420−4037, for which the discrepancy is due
to a combination of differences in flattening, PA, and external
shear. We note that for this system, the slope of the mass density
profile is poorly constrained without a prior, suggesting that the
information content of the data is not sufficient.

The mass-flattening parameter agrees within ∼0.1 (larger
than the formal uncertainty, which is therefore underestimated)
except for two cases: (i) J0659+1629 discussed above, and (ii)
J0029+3814, for which S22 reported a stronger flattening than
GLEE, perhaps driven by the prior on the axis ratio of the light
distribution. The inferred external shear magnitudes agree within
0.05 (again larger than the formal uncertainty); the two most dis-
crepant systems are J1537−3010 and J2100−4452, for which the
slope of the mass density profile is relatively poorly constrained
without a prior, and which are therefore likely to have a poor
information content of the data. Reassuringly, we find a good
match of the shear position angle for the two systems with the
highest shear magnitude.
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Fig. 9. Direct comparison of lens mass parameter and external shear values between our models and Lenstronomy models from S22.

As mentioned above, a main source of difference is the prior
of the power-law slope γ̃PL, which reverberates through the other
parameters. Not surprisingly, the inferred power-law slope γ̃PL of
the Lenstronomymodels obtained by S22 follows their imposed
Gaussian prior, which is centered on a close-to-isothermal value
of γ̃PL = 0.54. In contrast, the slope values of the GLEE models
span the uniform prior range of [0.3,0.7], with values closer to
the bounds than to an isothermal value. As we discussed before,
the difference arises from a combination of two factors: differ-
ences in the PSF, and information in the data that is insufficient
to constrain the slope.

Not surprisingly, given the differences highlighted above, the
inferred quantities κ, γtot, and µ at the image positions show

significant deviations (see Fig. E.1). We calculated the aver-
age relative scatter of these quantities for each lensing system,
and find that it ranges from ∼3 to >100%, and the statistical
uncertainties are underestimated in nearly all cases.

The relative Fermat potential differences and predicted time
delays (also shown in Fig. E.1) follow the 1:1 line overall,
although they often disagree within the statistical uncertainties.
For these two quantities, we removed the outlier image C of
J0659+1629 for better visibility in the plot, because its time
delay is one order of magnitude longer than all other images.
Table 9 lists the relative deviation in Fermat potential differ-
ences δ(∆τ)/|∆τGLEE| with δ(∆τ) = ∆τGLEE − ∆τLenstronomy. We
estimated the statistical uncertainties on these relative deviations
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Table 9. Relative deviation of Fermat potential differences.

System Image pair δ(∆τ)/|∆τGLEE| δ(∆τiso)/|∆τGLEE,iso|
DES J0029−3814 DA 0.69±0.16 0.20±0.20

DB 0.74±0.18 0.23±0.21
DC 0.70±0.18 0.20±0.21

DES J0214−2105 BA 0.38±0.21 0.31±0.27
CA 0.34±0.20 0.27±0.26
DA 0.36±0.23 0.29±0.28

DES J0420−4037 CA 0.22±0.12 0.56±0.16
CB 0.34±0.12 0.71±0.17
DC −0.33±0.12 −0.69±0.17

PS J0659+1629 CA 0.06±0.06 −0.46±0.10
CB 0.42±0.03 0.1±0.05
DC 0.45±0.17 −1.24±0.26

2M1134−2103 BA −0.19±0.02 −0.07±0.03
CB −0.17±0.02 −0.04±0.03
DB 0.12±0.02 −0.02±0.02

J1537−3010 BA −0.58±0.03 0.07±0.02
CA 1.02±0.04 0.19±0.03
DA −0.54±0.03 0.09±0.02

PS J1606−2333 BA −0.45±0.08 0.03±0.08
CA −0.46±0.05 0.03±0.05
DA −0.46±0.05 0.03±0.06

PS J1721+8842 DA −0.09±0.02 0.07±0.03
DB −0.1±0.02 0.06±0.03
DC −0.09±0.02 0.07±0.03

DES J2100−4452 DA −0.62±0.11 0.05±0.16
DB −0.66±0.12 0.03±0.17
DC −0.54±0.14 0.1±0.18

Notes. The third column shows the relative deviation of Fermat poten-
tial differences for each image pair. The fourth column shows the
same comparison, but with the rescaled values retrieved when assum-
ing an isothermal mass profile. The relative statistical uncertainty is
underpredicted in most cases.

by symmetrizing the uncertainties on the GLEE and Lenstron-
omy parameter values (e.g., on ∆τGLEE and ∆τLenstronomy) and
assuming that they follow Gaussian distributions.

This comparison shows us that for only one system
(J1721+8842) are the relative Fermat potential differences and
predicted time delays within 10%. For seven of the nine systems,
the deviation of the relative Fermat potential differences of the
multiple images is 30% or more on average. Therefore, for most
systems, a more detailed modeling and/or better data are needed
to bring all these models to cosmography-grade level. In some
cases, the UVIS exposures may provide further constraints on the
mass and light profile parameters, even though the source contri-
bution is fainter than in the IR, especially because the resolution
is twice as high in the UVIS.

5.2.2. Post-blind analysis

After completing the blind comparison between the results, we
consider the efforts that have been made after unblinding to
understand the origin of the discrepancies. To test the influ-
ence of the power-law slope γ̃PL on the physical quantities κ
and ∆τ, we rescaled the GLEE and Lenstronomy values of ∆τ
with ∆τiso ≃ ∆τ/2γ̃PL (e.g., Suyu 2012), and calculated new κiso

values with Eq. (8) and γ̃PL = 0.5, thus assuming isothermal
mass profiles. In this case, we obtained a much better agreement
between the two modeling results overall, as shown in Fig. E.1.
With these assumptions, all κ values now agree within 20%, and
five of the nine systems have a scatter ≤10%. The trend is similar
for the relative Fermat potential differences at the multiple image
positions, where six of the nine systems agree within ∼20% (see
the last column δ(∆τiso)/|∆τGLEE,iso| in Table 9). Two systems,
J0420−4037 and J0659+1629, now have a higher relative devia-
tion in the multiple images, but their absolute values of Fermat
potential differences are small. Therefore, most of the discrep-
ancy in κ and ∆τ between the two independent models are due to
the different power-law slope values. The two modeling pipelines
yield different slope values, as discussed above and as expected,
because the priors and PSFs differ.

To distinguish the two effects (priors and PSF), we used the
final PSF of the Lenstronomy modeling by S22 in our auto-
mated modeling procedure. The creation of the PSF of S22 is
different than in our pipeline because it includes iterative PSF
correction, while our PSF is simply constructed from stars in the
field (see Sect. 2.1.1). Moreover, the GLEE PSF is subsampled by
a factor of 3 compared to the pixel scale of the data, while the
Lenstronomy PSF uses the pixel scale of the original data.

To ensure that the information content is sufficient (and thus
the prior is less important), the two teams focused for this com-
parison on two systems with high signal-to-noise ratio (S/N) data
and visible arcs: J1606−2333 and J2100−4452. We remodeled
these two systems in the F160W (IR) band with our GLEE-
based pipeline, but used the not subsampled Lenstronomy PSF.
We compared the results with those based on the GLEE PSF.
We show the comparison in Figs. 10 and E.2. In both figures,
we present the GLEE blind results as presented in this work
and the new post-blind results using the Lenstronomy PSF. In
most cases, the values obtained with the Lenstronomy PSF are
closer to the modeling results of S22. The Einstein radius of
J1606−2333 is lower with the new PSF because it is degener-
ate with the Einstein radius of the satellite, which is now larger.
The effective Einstein radius of this system remains unchanged.
The influence on the power-law slope is evident, as the slope
values move much closer to the values of S22, and it is closer to
isothermal, without imposing a prior. This also leads to a better
agreement of other quantities such as κ or the Fermat poten-
tial differences to the Lenstronomy modeling results, as shown
in Fig. E.1. We conclude from this that for data with a suffi-
ciently high signal-to-noise ratio, the PSF is a crucial ingredient
for accurately inferring the power-law slope, and thus the Fermat
potential. Crucially, the PSF can be directly reconstructed from
the data, thus improving the accuracy of cosmographic analysis.
This result reinforces the necessity of PSF reconstruction, which
has become best practice in recent years for cosmographic anal-
yses using GLEE and Lenstronomy by members of our team
and collaborators (e.g., Wong et al. 2019; Birrer et al. 2019;
Shajib et al. 2019b; Chen et al. 2019). The counterpoint is that
data of insufficient quality should not be used for cosmographic
analysis, unless an accurate and informative prior is available.

We conducted the same test with a subsampled version of
the Lenstronomy PSF. It is subsampled in the same way as the
GLEE PSF. The modeling results do not agree as well with the
Lenstronomy values, and are closer to the GLEE values. This
comparison shows that although subsampling in the IR band is
important (Suyu et al. 2012, Shajib et al. 2022), the modeling
results depend on the way in which the PSF is subsampled. It
should be done during the PSF reconstruction process, and not
as a simple interpolation after the corrections of the PSF.
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Fig. 10. Change in lens mass parameter and external shear values when using the Lenstronomy PSF with our GLEE automation code for
J1606−2333 and J2100−4452.

To conclude, we recall that the goal of this work was not to
produce cosmography-ready models, but to automate the mod-
eling procedure for a wide range of lens morphologies that
can subsequently enable the construction of cosmography-grade
models; thus differences in the results of the two modeling teams
are expected. Our analysis shows that the origin of the differ-
ences can generally be understood, and that the two most signif-
icant factors are data quality and accuracy of PSF modeling.

5.3. Comparison of astrometry

To assess the precision of our astrometry, we compared the rel-
ative positions of the multiple quasar images from our model
with the modeled positions from S22 and Luhtaru et al. (2021)

and the measured positions from the Gaia satellite data release 3
(Brown et al. 2021). Like in our pipeline, S22 obtained positions
by modeling the surface brightness distribution, while Luhtaru
et al. (2021) used geometric properties in the image plane. The
comparison with S22 and Luhtaru et al. (2021) was performed
for all nine systems in our sample and the comparison with Gaia
for seven of the nine systems. For the remaining two systems, no
Gaia data are available.

In all comparisons, J1721+8842 has the strongest offsets for
all four images of the quad, which is expected because of its
complexity (see Sect. 4.8). When this system is excluded, we
obtain the following results with respect to S22: We have an
r.m.s. scatter of ∼6 mas in the x-direction (RA) and ∼5 mas in
the y-direction (Dec). The comparison with Luhtaru et al. (2021)
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Fig. 11. Relative difference in quasar image positions between our
results and S22 (squares), Luhtaru et al. (2021, circles), or Gaia (tri-
angles) for systems that overlap in the multiple samples. The image
positions of the outlier J1721+8842 are marked in orange (top) or are
excluded (bottom).

reveals an r.m.s. scatter of ∼1.7 mas in the x- and y-directions.
The r.m.s. scatter for the Gaia comparison is 1.7 mas in the
x- and 2.3 mas in the y-direction. The top panel of Fig. 11 shows
the difference in quasar image positions for the comparison with
S22, Luhtaru et al. (2021), and Gaia for all systems that are in
all three samples (seven systems). The images of J1721+8842
are marked in orange as the mentioned outlier. The bottom panel
shows the difference in quasar image positions for all systems
that are in common with Luhtaru et al. (2021) and Gaia. To
give an idea of how small the differences are, we include a box
centered around zero offset with dimensions ±5mas. The vast
majority of points lie within this box. Although we did not per-
form PSF reconstruction in our automated modeling pipeline,
we have recovered the astrometry of the quasar images within
∼2 mas of the Gaia measurements (which are most precise or
accurate because Gaia was designed to measure astrometry).

Birrer & Treu (2019) provided an estimate of how the
astrometric uncertainties translate into the uncertainty on the
H0 inference. The ∼2 mas rms offset to Gaia in our analysis
translates into a ∼0.2 mas offset in the source plane, which leads
to uncertainties on H0 well below 5%, which was chosen by

Birrer & Treu (2019) as an estimate of the total uncertainties
(i.e., from modeling the lens mass potential and the contribution
from the mass along the line of sight). This means that the
astrometric uncertainties in this work do not contribute signifi-
cantly to the cosmographic error budget, which shows that our
automated pipeline can meet the astrometric requirements.

5.4. Possible improvements of the automated lens modeling
pipeline

To further improve the automated uniform modeling in combi-
nation with detailed cosmographic analyses of lenses, we plan to
implement several additions to the code. For the uniform mod-
eling approach, we reconstruct the PSF from several stars in the
field. This approach introduces inaccuracies that are negligible
for uniform modeling, but need to be minimized for a detailed
analysis, as discussed in Sect. 5.2. We will automate a method to
iteratively update the initial PSF using the multiple lensed quasar
images. This PSF correction might also resolve the tendency of
the power-law slope parameter γ̃PL to move to the boundaries of
the prior.

To speed up the modeling procedure and make it more con-
venient, we can automate the detection of extended structures in
the cutout, for instance, the positions of multiple quasar images
and objects that need to be masked. Other automated modeling
codes already show that an accurate detection in the scope of
uniform modeling is often possible , for example in Savary et al.
(2022) and Rojas et al. (2021), who also showed that objects are
occasionally misidentified, and the automated modeling has to
be stopped. Our current approach of manually identifying objects
is thus a compromise to ensure very high accuracy. This works
best for a medium-size sample (e.g., a few dozen), but is not
applicable for samples of some hundred lenses or more.

The initial background subtraction of the data can be made
more accurate by allowing for the selection of multiple sky
regions. This is especially important for systems that show a gra-
dient in background flux. Another improvement can be using a
p-value threshold for the lens light modeling (Sects. 2.1.2 and
2.2). This would decrease the probability that the χ2

red criterion
(Eq. (6)) is met only due to specific noise realizations.

Other modeling teams have shown that optimizing methods
that are based on gradient descent and can be heavily parallelized
are superior to conventional methods in terms of computation
time, for instance, GIGA-Lens (Gu et al. 2022). These directions
are worth exploring for future developments of automated lens
modeling.

6. Conclusions

We presented a new automated modeling code for the uniform
modeling of strongly lensed quasars in galaxy-scale systems with
high-resolution data based on the well-tested software GLEE. We
additionally developed several codes that create necessary input
files (i.e., PSF, error map, and masks) that are used for the mod-
eling. The lens mass distribution of the system is modeled in
two steps. In the first step, the modeling code uses the predicted
source position and the observed image positions to constrain the
distribution of the lens mass parameters. In the second step, the
light distributions of the lens, the multiple lensed quasar images,
and their host galaxy are modeled. The latter is used to recon-
struct the surface brightness distribution of the source. With the
SSB distribution, the code models the light of the arc to further
constrain the lens mass parameters. The modeling code and the
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creation of input files are nearly fully automated, requiring only
minimum user input. Quality control and technical steps in the
modeling process are fully automated.

We tested the modeling code on a sample of nine strongly
lensed quasars and obtained a good light fit and a good align-
ment of the mass and light distributions. The current automated
pipeline is versatile enough to model a variety of lens systems
in a uniform manner to obtain lens mass models. The models
provide robust estimates of Einstein radii and astrometry of the
quasar images. The accuracy of parameters such as the power-
law slope depends crucially on the data quality and on the details
of the modeling. This is highlighted by a blind comparison of
our models with those of an automated modeling framework
from S22, based on the lens modeling code Lenstronomy. The
two approaches are similar in the choice of parameterization
and philosophy, but have a few crucial differences: the descrip-
tion of the lensed galaxy light (pixellated vs. Sérsic+shapelets),
the number of modeled bands (user choice vs. all available
bands), priors (uniform vs. informative), and the PSF (initial
guess based on stars vs. corrections based on the QSO images
for S22). Despite the differences, Einstein radii and mass flat-
tening agree well between the two studies, with a few exceptions
that can be traced to inadequacy of the data or the PSF modeling.
Other quantities such as convergence and image magnifications
show differences that are generally larger than the estimated for-
mal statistical uncertainties, but they are still encouraging in
amplitude, considering the automated approach.

The differences primarily arise from two effects, as shown
by our post-blind analysis. First, when the data quality is insuffi-
cient to constrain the slope of the power-law mass density profile,
the S22 results are driven by the prior, while our current results
tend to be more uncertain and constrained by the bounds of
the uniform prior. We showed that if the same power-law slope
is imposed, the agreement between the codes improves signifi-
cantly. Second, the reconstruction of the PSF is a key factor in
determining the slope and other parameters for data of sufficient
quality. We illustrated this point by modeling two high-quality
systems with the same PSF as S22, and we found a much better
agreement. We conclude that for systems with high S/N, the PSF
can be directly reconstructed from the data and the power-law
slope can be stably inferred (this confirms the results obtained
via detailed modeling by Wong et al. 2019; Birrer et al. 2019;
Shajib et al. 2019b, 2022; Chen et al. 2019).

In terms of our automated modeling pipeline, we conclude
that the models are a good starting point, but more work, par-
ticularly PSF corrections, and in some cases, better data, are
needed to reach cosmography grade. Nonetheless, these auto-
mated modeling results provide important information about the
lens systems, such as the approximate time delays, to help sched-
ule the monitoring of the system. The lensing systems modeled
with our automated pipeline are being followed up observation-
ally to acquire the redshift and velocity dispersion of the lens,
time delays, and environment properties, for example. We can
use the modeling results that are presented here and models from
lensing systems that are obtained with the automation code in
the future, as input models for a more detailed modeling, in a
fraction of the user time compared to conventional modeling.
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Appendix C: Results and predictions for other
lensing quantities

Table C.1: Convergence κ, total shear strength γtot, position angle
ϕγtot of the total shear (γtot), and magnification µ at the (modeled)
image positions.

System Image Convergence Total shear Position angle of total shear Image mag.
κ γtot ϕγtot µ

J0029−3814 A 0.60+0.04
−0.07 0.08+0.01

−0.01 102.5+2.1
−2.2 6.4+1.6

−1.7
B 0.82+0.03

−0.05 0.6+0.1
−0.1 174.6+0.3

−0.2 −3.0+0.9
−0.9

C 0.82+0.02
−0.05 0.59+0.1

−0.07 37.6+0.2
−0.2 −3.2+1

−0.9

D 0.41+0.05
−0.07 0.02+0.02

−0.01 171.8+5.9
−14.7 2.9+0.5

−0.6

J0214−2105 A 0.3+0.1
−0.1 0.36+0.04

−0.05 152.5+0.3
−0.3 3.2+1.3

−0.8

B 0.4+0.1
−0.1 0.44+0.07

−0.07 162.1+0.5
−0.5 5.4+2.4

−1.4
C 0.5+0.1

−0.1 0.7+0.1
−0.1 47.0+0.3

−0.3 −3.7+1.2
−1.8

D 0.6+0.1
−0.1 0.7+0.1

−0.1 78.2+0.2
−0.2 −2.8+0.9

−1.4

J0420−4037 A 0.37+0.05
−0.03 0.74+0.04

−0.06 64.3+0.3
−0.3 −6.8+0.9

−1.3

B 0.35+0.04
−0.03 0.59+0.03

−0.04 146.0+0.4
−0.4 14.3+2.6

−1.9
C 0.31+0.04

−0.03 0.54+0.02
−0.03 126.4+0.2

−0.2 5.5+0.9
−0.7

D 0.38+0.05
−0.03 0.69+0.04

−0.05 13.4+0.4
−0.4 −11.6+1.6

−2.2

J0659+1629 A 0.278+0.009
−0.009 0.588+0.008

−0.008 66.1+0.4
−0.3 5.7+0.2

−0.2
B 0.136+0.007

−0.006 0.33+0.01
−0.01 78.0+1.1

−0.9 1.57+0.04
−0.03

C 0.30+0.01
−0.02 0.90+0.01

−0.02 116.0+0.3
−0.3 −3.2+0.2

−0.2
D 0.541+0.009

−0.008 0.81+0.01
−0.02 21.4+0.4

−0.4 −2.2+0.1
−0.1

2M1134−2103 A 0.627+0.009
−0.009 1.40+0.02

−0.01 134.84+0.09
−0.08 −0.55+0.01

−0.01

B 0.134+0.003
−0.004 0.145+0.003

−0.003 105.5+0.6
−0.6 1.37+0.01

−0.01
C 0.123+0.003

−0.004 0.113+0.004
−0.003 152.3+0.7

−0.6 1.32+0.01
−0.01

D 0.98+0.02
−0.02 1.95+0.03

−0.03 139.35+0.09
−0.08 −0.263+0.008

−0.007

J1537−3010 A 0.617+0.001
−0.001 0.1892+0.0006

−0.0004 118.9+0.1
−0.1 8.99+0.05

−0.06
B 0.808+0.001

−0.002 0.432+0.002
−0.001 27.46+0.04

−0.04 −6.68+0.05
−0.05

C 0.605+0.001
−0.001 0.1855+0.0005

−0.0004 122.2+0.1
−0.1 8.22+0.05

−0.06
D 0.800+0.001

−0.002 0.427+0.002
−0.001 32.33+0.05

−0.04 −7.01+0.06
−0.05

J1606−2333 A 0.52+0.01
−0.02 0.178+0.009

−0.009 70.2+1.0
−0.7 5.0+0.2

−0.4
B 0.58+0.01

−0.02 0.151+0.007
−0.005 85.4+1.4

−1.2 6.3+0.3
−0.5

C 0.99+0.02
−0.02 0.53+0.03

−0.02 175.1+1.0
−1.5 −3.6+0.3

−0.2

D 0.90+0.02
−0.01 0.51+0.02

−0.01 151.3+0.5
−0.4 −3.9+0.3

−0.3

J1721+8842 A 0.632+0.006
−0.005 0.508+0.007

−0.008 69.13+0.08
−0.08 −8.2+0.3

−0.3
B 0.498+0.007

−0.007 0.341+0.004
−0.005 20.5+0.1

−0.1 7.4+0.3
−0.2

C 0.485+0.008
−0.007 0.314+0.004

−0.004 131.4+0.2
−0.2 6.0+0.2

−0.2
D 0.868+0.005

−0.005 0.69+0.01
−0.01 75.5+0.05

−0.05 −2.20+0.08
−0.08

E 0.364+0.008
−0.007 0.213+0.002

−0.002 158.1+0.1
−0.1 2.79+0.07

−0.07
F 0.786+0.007

−0.007 0.51+0.01
−0.01 139.2+0.1

−0.1 −4.7+0.2
−0.2

J2100−4452 A 0.60+0.04
−0.05 0.32+0.04

−0.03 53.8+0.6
−0.6 18.8+4.4

−4.3

B 0.72+0.03
−0.04 0.38+0.06

−0.04 28.2+0.3
−0.3 −16.0+4.0

−4.1
C 0.48+0.05

−0.06 0.29+0.03
−0.02 106.7+0.4

−0.4 5.5+1.2
−1.2

D 0.96+0.02
−0.03 0.55+0.09

−0.06 170.3+0.2
−0.2 −3.3+0.9

−0.9
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Appendix D: Degeneracies between the mass
parameters

Fig. D.1: Posterior distributions for the main mass parameters
and external shear of J0659+1629. The correlation between the
Einstein radius of the lens and the satellite is highlighted in
red. The three shaded areas show the 1, 2, and 3σ credible
regions. The one-dimensional histograms show the marginalized
posterior distribution for the selected mass parameters, and the
vertical lines mark the 1σ confidence intervals.
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Appendix E: Plots for the comparison with Lenstronomy models
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Fig. E.1: Comparison of κ, γtot, µ, Fermat potential difference ∆τ, and predicted time delay ∆t between the GLEE and Lenstronomy
models. Additionally, we compare κiso and ∆τiso, where we assume isothermal instead of power-law mass profiles.
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Fig. E.2: Change in κ, γtot, µ, Fermat potential difference ∆τ, and predicted time delay ∆t when using the Lenstronomy PSF with
our GLEE automation code for J1606−2333 and J2100−4452 in the F160W (IR) band.
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