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Test–Retest Data for the Assessment of
Breast MRI Radiomic Feature Repeatability
R.W.Y. Granzier, MD,1,2* A. Ibrahim, MD,2,3,4,5,6 S. Primakov, MSc,2,3,4 S.A. Keek, MSc,2,4

I. Halilaj, MSc,2,4,12 A. Zwanenburg, PhD,7,8,9,10 S.M.E. Engelen, MD, PhD,1

M.B.I. Lobbes, MD, PhD,2,3,11 P. Lambin, MD, PhD,2,3,4 H.C. Woodruff, PhD,2,3,4 and

M.L. Smidt, MD, PhD1,2

Background: Radiomic features extracted from breast MRI have potential for diagnostic, prognostic, and predictive
purposes. However, before they can be used as biomarkers in clinical decision support systems, features need to be
repeatable and reproducible.
Objective: Identify repeatable radiomics features within breast tissue on prospectively collected MRI exams through multi-
ple test–retest measurements.
Study Type: Prospective.
Population: 11 healthy female volunteers.
Field Strength/Sequence: 1.5 T; MRI exams, comprising T2-weighted turbo spin-echo (T2W) sequence, native T1-
weighted turbo gradient-echo (T1W) sequence, diffusion-weighted imaging (DWI) sequence using b-values 0/150/800,
and corresponding derived ADC maps.
Assessment: 18 MRI exams (three test–retest settings, repeated on 2 days) per healthy volunteer were examined on an
identical scanner using a fixed clinical breast protocol. For each scan, 91 features were extracted from the 3D manually
segmented right breast using Pyradiomics, before and after image preprocessing. Image preprocessing consisted of 1)
bias field correction (BFC); 2) z-score normalization with and without BFC; 3) grayscale discretization using 32 and 64 bins
with and without BFC; and 4) z-score normalization + grayscale discretization using 32 and 64 bins with and without BFC.
Statistical Tests: Features’ repeatability was assessed using concordance correlation coefficient(CCC) for each pair,
i.e. each MRI was compared to each of the remaining 17 MRI with a cut-off value of CCC > 0.90.
Results: Images without preprocessing produced the highest number of repeatable features for both T1W sequence and
ADC maps with 15 of 91 (16.5%) and 8 of 91 (8.8%) repeatable features, respectively. Preprocessed images produced
between 4 of 91 (4.4%) and 14 of 91 (15.4%), and 6 of 91 (6.6%) and 7 of 91 (7.7%) repeatable features, respectively for
T1W and ADC maps. Z-score normalization produced highest number of repeatable features, 26 of 91 (28.6%) in T2W
sequences, in these images, no preprocessing produced 11 of 91 (12.1%) repeatable features.
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Data Conclusion: Radiomic features extracted from T1W, T2W sequences and ADC maps from breast MRI exams showed
a varying number of repeatable features, depending on the sequence. Effects of different preprocessing procedures on
repeatability of features were different for each sequence.
Level of Evidence: 2
Technical Efficacy Stage: 1

J. MAGN. RESON. IMAGING 2022;56:592–604.

The use of radiomics to answer diagnostic, predictive, and
prognostic questions has increased in recent years, especially

in the field of oncology.1 Radiomics refers to the extraction of
large amounts of high-throughput quantitative data from medi-
cal images using mathematical algorithms that have the potential
to noninvasively reveal more information about the region of
interest than can be captured by visual inspection alone.2 The
extracted quantitative data, termed radiomics features, capture
information regarding the shape, intensity, and texture of the
chosen region of interest (ROI), which is usually the lesion or
the affected organ. Radiomics features are intended to serve as
biomarkers for the development of clinical decision support sys-
tems to enhance personalized medicine.3

In breast cancer research, multiple radiomics studies
have shown promising results for diagnostic, prognostic, and
predictive purposes.4–6 Despite these seemingly promising
results, translation to clinical practice is limited.7 A major
translational bottleneck can be attributed to the often
unknown effect that multiple steps in the radiomics workflow
have on feature values, including image acquisition, recon-
struction, and preprocessing.8–11 For a radiomics feature to
serve as a biomarker, and to be used reliably in clinical deci-
sion support systems, it must fulfill the criteria repeatability
and reproducibility.12 Repeatability can be defined as “the var-
iability of the biomarker when repeated measurements are
acquired on the same experimental unit under identical or
nearly identical conditions” and reproducibility as to “vari-
ability in the biomarker measurements associated with using
the imaging instrument in real-world clinical settings, which
are subject to a variety of external factors that cannot all be
tightly controlled.”12

Previous research has already identified several steps in
the radiomics workflow that influence the reproducibility and
repeatability of radiomics features. For example, image acqui-
sition and reconstruction appear to cause variation in radi-
omic feature values in research performed on CT
imaging.13,14 Unlike the Hounsfield Units in CT, MRI does
not have absolute signal intensities, potentially causing large
differences between images, emphasizing the importance of
inspecting and possibly adjusting image intensities before per-
forming feature extraction.15 A test–retest MRI study of glio-
blastoma showed that both normalization and intensity
quantization strategies affect radiomic feature repeatability
and that the optimal strategy must be composed per feature
group.16 Further test–retest studies assessing feature repeat-
ability have been performed in cervical,17 and prostate

cancer18,19 and have shown consistent results, although all
studies state that translation of results to other tumor sites has
not been confirmed. In contrast, Peerlings et al20 showed that
9.2% (122/1322) of the features, extracted from apparent dif-
fusion coefficient (ADC) maps in ovarian, liver, and colorec-
tal cancer patients, were repeatable among the different
tumor sites.

The assessment of radiomics feature repeatability by
test–retest studies in breast MRI exams is currently lacking. A
potential reason for this lack of data is the variance present in
a standard clinical breast MRI protocol, which means that
scanning parameters may differ between patients scanned
with the same clinical protocol. Therefore, this study investi-
gated the repeatability of radiomics feature values extracted
from breast MRI exams using a fixed clinical breast protocol
comprising of T2-weighted (T2W) images, T1-weighted
(T1W) images, and diffusion-weighted images (DWI) and
their derived ADC maps.

Material and Methods
Study Population
The study was approved by the local medical ethical commit-
tee and written informed consent was given by all participants
before participation. Eleven healthy female volunteers were
recruited via college-wide advertisement. Participants were
only included if they did not suffer from claustrophobia and
met the requirements for admission to the MRI. Participants’
height, weight, and the phase of the menstrual cycle were
noted. The menstrual cycle of the included healthy volunteers
was not taken into account during the MRI exams.

Imaging Acquisition
All MRI exams were performed using a 16-channel breast coil
on one single 1.5 T scanner (Ingenia, Philips Healthcare,
Best, The Netherlands) in the same research institution by
the same technician. During imaging, the women lay in the
prone position with both breasts in the openings of the breast
coil and both arms above their head. The performed MRI
protocol consisted of a T2-weighted turbo spin echo (T2W),
native T1-weighted turbo gradient echo (T1W), and a single
shot diffusion-weighted imaging (DWI) sequence using b-
values of 0, 150, and 800. A single corresponding ADC-map
was derived from all three DWI sequences. All volunteers
underwent MRI exams using the identical breast protocol
while maintaining as many parameters fixed as possible. The
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acquisition parameters for the different MRI sequences are
shown in the supplementary material (Table S1). The
shimbox, needed for the T1W and DWI sequences, was
placed on the sternum by default. In case the technician
judged the scan as clinically insufficient, the shimbox was
placed on the breasts.

Study Design
A test–retest study was designed to assess the repeatability of
breast-MRI extracted radiomic features. Three separate test–
retest strategies were performed twice at 6–10 day intervals.
From here on, we will use ‘date 1’ to refer to the first scan-
ning date of each healthy volunteer and ‘date 2’ to refer to
the second scanning date. In each strategy, the complete
breast MRI protocol was repeated three times with a
2-minute pause between each protocol. In the first strategy
(S1) the participant remained in the MRI scanner the entire
time (including the pauses) without movement, for the acqui-
sition of the three breast MRI protocols. The second strategy
(S2) differed from S1 only by moving the table out of the
scanner (with the participant still in the same position with-
out movement) during the 2-minute breaks. For the third
strategy (S3) the participant got off the table during the
2 minutes breaks (Fig. 1). In total, 18 different MRI exams
were acquired for each healthy volunteer with a total scanning
time of approximately 198 minutes.

ROI Segmentation
All images were visually checked for quality(including arti-
facts) by a dedicated breast radiologist with 14 years of experi-
ence (ML) before starting the analysis. The region of interest

(ROI) was segmented by a medical researcher (RG) with
4 years of experience in breast MR imaging and validated by
the same dedicated breast radiologist. It was chosen to 3D,
manually segment the right breast. The segmentations were
bounded by the sternum (medial side), the pectoral muscle
(dorsal side), and the axilla (lateral side) in three dimensions
using MIM software (version 7.1.3, Cleveland, OH, USA).
Segmentations were performed on all patients on the T2W
sequences of all MRI exams as anatomical structures are best
visible on this sequence. Subsequently, the T2W sequence
was registered with the T1W sequence, and ADC map, using
rigid alignments within MIM software, followed by segmen-
tations transfer (Fig. 2).

Image Preprocessing and Feature Extraction
All MRI exams including ROI segmentations were converted
to the nearly raw raster data (NRRD) file format using
Python (version 3.7.3) for subsequent analysis. Before feature
extraction, multiple preprocessing procedures were applied to
the images to study their impact on feature repeatability.
First, feature extraction was performed without any image
preprocessing as a baseline measurement. Second, N4 bias
field correction was applied to the images prior to feature
extraction.21 Lastly, the bias field corrected images were fur-
ther preprocessed using the built-in image z-score normaliza-
tion by Pyradiomics software (version 2.2.0), with and
without binning the voxel grayscale values using a fixed bin
width of 32 and 64 (Pyradiomics suggested a bin width
between 16 and 128).16,22 Image preprocessing steps were
performed in Python (version 3.7) using an in-house devel-
oped pipeline based on the computer vision packages,

FIGURE 1: Visual representation of the three test–retest strategies.
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including OpenCV (version 4.1.0), SimpleITK (version
1.2.0), and NumPy (version 1.16.2). For each ROI, 91 origi-
nal features were extracted using the Pyradiomics software
(version 3.0.1), which is mostly compliant with the Image
Biomarker Standardization Initiative.23 The extracted radi-
omics feature included first-order statistics features, gray-level
co-occurrence matrix features (GLCM), gray-level run length
matrix features (GLRLM), gray-level size zone matrix features
(GLSZM), neighboring gray tone difference matrix features
(NGTDM), and gray-level dependence matrix features
(GLDM). All texture features were extracted using default
Pyradiomics settings. A detailed Pyradiomics feature descrip-
tion can be found online.24

Statistical Analysis
To assess the repeatability of the extracted radiomic features
for the various ROI’s in the multiple test–retest strategies, the

concordance correlation coefficient (CCC) was calculated
using the epiR package (Version 0.9-99) (REF) in R language
(version 3.6.3) performed in R studio (version 1.2.1335,
Vienna, Austria).25 Radiomics features extracted from a given
MRI exam are compared to radiomic features extracted from
the remaining MRI exams in a pairwise manner. The CCC
was used to evaluate the agreement in radiomic feature values,
taking into account both the rank and the value of the mea-
surements.26 This metric has the advantage of robust results
in small sample sizes.26 The CCC provides values between
�1 and 1, with 0 representing no concordance, 1 representing
perfect concordance, and �1 perfect inverse concordance.
Features with a CCC of >0.90 were defined as repeatable fea-
tures, according to suggestions in literature.27 Feature concor-
dance was assessed for each preprocessing procedure using the
results of all test–retest strategies of both scanning dates as
well as for the results collected on the separate scanning dates.
To create an overview of repeatable features across all pairs
for the different preprocessing procedures, the intersection of
the repeatable features across pairs was noted.

Results
Patients Demographics
The median age of the 11 healthy female volunteers was
28 years (interquartile range 25–30 years). Table 1 summa-
rizes the healthy volunteers’ characteristics. Shimbox displace-
ment occurred in 22.6% of the scanned sequences.

Repeatable Radiomic Features
Due to a scanning error of all T1-weighted images and the
ADC maps of one healthy volunteer during scanning date
1, all data of this participant was excluded from the analysis.
In both the T1W and T2W sequences as in the ADC maps,
in pairwise comparison, the number of concordant features
varied per scanning date, per test–retest strategy and, per
image preprocessing procedure (Figs. 3–5). Furthermore, for
all preprocessing procedures, the lowest number of concor-
dant features was observed between the MRI exams scanned
on date 1 and the MRI exams scanned on date 2, seen in the
reddest field outside the black demarcations in Figs. 3–5.

FIGURE 2: An axial slice of a 3D MRI exam of a healthy volunteer including right breast segmentation (red margin). (a) ADC map, (b)
T2-weighted image, (c) T1-weighted image

TABLE 1. Patient Characteristics

Healthy Volunteers
(n = 11)

Age (years) (median; IQR) 28 (25–30)

Height (cm) (median; IQR) 167 (167–172)

Weight (kg) (median; IQR) 60 (58–63)

Week of the menstrual cyclea Date 1/date 2

Week 1 1/5

Week 2 1/1

Week 3 3/1

Week 4 4/2

Days between scan
(mean; range)

7 (6–9)

IQR: interquartile range.
aNo measurement of the menstrual cycle possible for two
healthy volunteers.
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FIGURE 3: Number of pairwise concordant radiomic features using a concordance correlation coefficient > 0.90 for T1-weighted
images with (a) no further preprocessing, (b) 32-bin grayscale discretization, (c) 64-bin grayscale discretization, (d) z-score
normalization, (e) z-score normalization +32-bin grayscale discretization, and (f ) z-score normalization +64-bin grayscale
discretization. The black frame in the top left corner shows the MRI exams taken during the first scan date and the black frame in
the bottom right corner shows the MRI exams taken during the second scan date. The numbers on the axis refer to the different
MRI exams scanned, wherein the first number corresponds to the scan date and the second number to the test–retest strategy. In
each test–retest strategy, three scans were examined which is represented by the last number. A total of 91 radiomic features was
examined.
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FIGURE 4: Number of pairwise concordant radiomic features using a concordance correlation coefficient >0.90 for T2-weighted
images with (a) no further preprocessing, (b) 32-bin grayscale discretization, (c) 64-bin grayscale discretization, (d) z-score
normalization, (e) z-score normalization +32-bin grayscale discretization, and (f) z-score normalization +64-bin grayscale
discretization. The black frame in the top left corner shows the MRI exams taken during the first scan date and the black frame in
the bottom right corner shows the MRI exams taken during the second scan date. The numbers on the axis refer to the different
MRI exams scanned, wherein the first number corresponds to the scan date and the second number to the test–retest strategy. In
each test–retest strategy, three scans were examined which is represented by the last number. A total of 91 radiomic features was
examined.
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T1W Sequence
Across all pairs, regardless of scanning date and test–retest
strategy, the highest number of concordant features was seen
in the images without preprocessing, resulting in 15 of
91 (16.5%) concordant features. These 15 features consisted
of 7 first-order, 1 GLCM, 2 GLRLM, 2 GLSZM, and
2 GLDM and, 1 NGTDM feature(s) (Table 2). Applying
grayscale discretization resulted in 13 of 91 (14.3%) and
14 of 91 (15.4%) concordant features for 32-bins and
64-bins, respectively. Compared to the images without
preprocessing, the texture features showed less concordant
features. The z-score normalized images resulted in the lowest
number of 4 of 91 (4.4%) concordant features. Applying

gray-scale discretization after z-score normalization improved
the number of concordant textural features to 7of 91 (7.7%)
and 8 of 91 (8.8%) for 32-bins and 64-bins, respectively.
The loss in the number of concordant features for z-score
normalized images (with and without grayscale discretization),
when compared to the images without preprocessing, was
mainly due to a loss in the number of concordant first-order
features, which were 6 of 91 (6.6%).

For the majority of preprocessing strategies, the images
collected during date 2 showed a higher number of concor-
dant features (varying between 10/91 and 48/91 in images
without BFC and between 11/91 and 35/91 in BFC images)
compared to images collected during date 1 (varying between

a

b

c

FIGURE 5: Number of pairwise concordant radiomic features using a concordance correlation coefficient >0.90 for ADC maps with
(a) no further preprocessing, (b) 32-bin grayscale discretization, and (c) 64-bin grayscale discretization. The black frame in the top
left corner shows the MRI exams taken during the first scan date and the black frame in the bottom right corner shows the MRI
exams taken during the second scan date. The numbers on the axis refer to the different MRI exams scanned, wherein the first
number corresponds to the scan date and the second number to the test–retest strategy. In each test–retest strategy, three scans
were examined which is represented by the last number. A total of 91 radiomic features was examined.
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4/91 and 32/91 in images without BFC and between 9/91
and 14/91 in BFC images) (Table 3, Fig. 3), with these dif-
ferences being greatest after applying grayscale discretization.
Furthermore, for most image preprocessing procedures, the
addition of BFC resulted in less concordant features com-
pared to the images without BFC (Table 3, Table S2 in the
Supplemental Material). For the BFC images without further
preprocessing and for the BFC images with grayscale dis-
cretization, it was mainly the first-order features that showed
a loss of concordance compared to not performing BFC.

Figures S1–S6 in the Supplemental Material present the
pairwise CCC values in scatterplots for all features in the dif-
ferent preprocessing procedures, wherein the different colors
represent the use of all pairwise comparisons or only the
pairwise comparisons between MRI exams scanned on the
same day.

T2W Sequence
Across all pairs, regardless of scanning date and test–retest
strategy, the z-score normalized images showed the highest
number of concordant features, 26 of 91 (28.6%), of which,

3 first-order, 11 GLCM, 3 GLRLM, 0 GLSZM, 8 GLDM,
and 1 NGTDM feature(s) (Table 4). Compared to the other
preprocessing procedures, the difference in the number of
concordant features was mainly in the concordant texture fea-
tures, which were almost nonconcordant for the other
preprocessing procedures.

The images without preprocessing resulted in 11 of
91 (12.1%) concordant features across all pairs, of which more
than half of these features were first-order features (Table 4).
Applying grayscale discretization resulted in a further decrease of
concordant features to 7 of 91 (7.7%) for both 32 and 64 bins.
Applying grayscale discretization after z-score normalization
resulted in a loss of almost all concordant textural features when
compared to z-score normalized images alone. These images
resulted in only 4 of 91 (4.4%) concordant features for both
32 and 64 bins. Notably, the only concordant texture feature
(gldm_SmallDependenceLowGrayLevelEmphasis) was not con-
cordant after z-score normalization alone.

The addition of BFC resulted in different feature con-
cordance when compared to the same image preprocessing
procedures without BFC (Table 4, Table S3 in the

TABLE 2. Concordant Features across All Pairs for the T1-Weighted MRI Exams, with A: No Preprocessing, B:
32-Bin Grayscale Discretization, C: 64-Bin Grayscale Discretization, D: z-score Normalization, E: z-score
Normalization +32-bin Grayscale Discretization, and F: z-score Normalization +64-bin Grayscale Discretization

A B C D E F

Number of Concordant Features 15 (16.5%) 13 (14.3%) 14 (15.4%) 4 (4.4%) 7 (7.7%) 8 (8.8%)

firstorder_90Percentile � � �
firstorder_InterquartileRange � � �
firstorder_MeanAbsoluteDeviation � � �
firstorder_Mean � � �
firstorder_RobustMeanAbsoluteDeviation � � �
firstorder_RootMeanSquared � � �
firstorder_Skewness � � � � � �
glcm_JointAverage �
glrlm_GrayLevelNonUniformity � � � � �
glrlm_RunLengthNonUniformity � � � � �
glszm_GrayLevelNonUniformity � � � �
glszm_SizeZoneNonUniformity �
glszm_SmallAreaHighGrayLevelEmphasis �
gldm_DependenceNonUniformity � � � � �
gldm_GrayLevelNonUniformity � � � � � �
ngtdm_Busyness � � � �
ngtdm_Coarseness � � � � �
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Supplemental Material). The BFC images without further
preprocessing, with 32-bin grayscale discretization and, with
64-bin grayscale discretization resulted in 0 of 91 (0.0%),
2 of 91 (2.2%), and 1 of 91 (1.1%) concordant features,
respectively. Despite the overall loss of concordant features,
2 of 91 (2.2%) features were found to be concordant after
the addition of BFC. The BFC z-score normalized images
showed the same number of concordant features compared to
the z-score normalized images without BFC, although some
features improved in concordance, where others lost concor-
dance. The application of grayscale discretization after z-score
normalization on BFC images showed the same pattern in
concordant features when compared to the images without
BFC, namely, a loss of almost all concordant textural features
(Tables 4 and S3 in the Supplemental Material). These
preprocessing procedures resulted in 6 of 91 (6.6%) and 5 of
91 (5.5%) concordant features, for 32-bins and 64-bins,
respectively. Furthermore, it is noteworthy that when looking

at the pairwise concordance features for the different scan
dates, BFC decreased the feature concordance for MRI exams
scanned on date 1, while there was an increase in feature con-
cordance for MRI exams scanned on date 2 (Fig. 4, Table 3).

Figures S7–S12 in the Supplemental Material present
the pairwise CCC values in scatterplots for all features in the
different preprocessing procedures, wherein the different
colors represented the use of all pairwise comparisons or only
the pairwise comparisons between MRI exams scanned on
the same day.

ADC Map
Across all pairs, regardless of scanning date and test–retest
strategy, the number of concordant features for the images
without preprocessing, with 32-bin grayscale discretization,
and 64-bin grayscale discretization was 8 of 91 (8.8%), 7 of
91 (7.7%), and 6 (6.6%), respectively (Table 5). In none of
the preprocessing procedures, first-order features appeared to

TABLE 3. Number of Concordant Features Across all Pairs for the Entire Dataset (All) and Across All Pairs from the
Separate Scanning Dates (Date 1 and Date 2) for All Sequences With and Without Bias Field Correction, With A:
No Further Preprocessing, B: 32-bin Grayscale Discretization, C: 64-bin Grayscale Discretization, D: z-score
normalization, E: z-score Normalization +32-bin grayscale discretization, and F: z-Score Normalization +64-bin
Grayscale Discretization

Sequences

Without BFC With BFC

All Date 1 Date 2 All Date 1 Date 2

T1W

A 15 32 40 8 13 11

B 13 19 45 10 11 30

C 14 18 48 8 12 31

D 4 4 10 4 9 12

E 7 10 35 10 13 34

F 8 9 38 8 14 35

T2W

A 11 31 16 0 1 60

B 7 9 12 2 3 22

C 7 9 11 1 3 23

D 26 35 44 26 39 37

E 4 7 7 6 11 17

F 4 7 6 5 11 18

ADC

A 8 28 22 8 9 12

B 7 15 13 6 9 12

C 6 11 11 6 11 11
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TABLE 4. Concordant Features Across All Pairs for the T2-weighted MRI Exams, With A: No Preprocessing, B:
32-bin Grayscale Discretization, C: 64-bin Grayscale Discretization, D: z-score Normalization, E: z-score
Normalization +32-bin Grayscale Discretization, and F: z-score Normalization +64-bin Grayscale Discretization

A B C D E F

Number of Concordant Features 11 (12.1%) 7 (7.7%) 7 (7.7%) 26 (28.6%) 4 (4.4%) 4 (4.4%)

firstorder_10Percentile � � �
firstorder_90Percentile � � �
firstorder_InterquartileRange � � � � � �
firstorder_MeanAbsoluteDeviation � � �
firstorder_Mean � � �
firstorder_RobustMeanAbsoluteDeviation � � � � � �
firstorder_RootMeanSquared � � �
glcm_JointAverage �
glcm_Contrast �
glcm_DifferenceAverage � �
glcm_DifferenceEntropy �
glcm_DifferenceVariance �
glcm_JointEntropy �
glcm_Idm �
glcm_Idmn �
glcm_Id �
glcm_Idn �
glcm_InverseVariance �
glcm_SumEntropy �
glrlm_GrayLevelNonUniformity �
glrlm_RunLengthNonUniformity �
glrlm_RunPercentage �
glrlm_RunVariance �
gldm_DependenceEntropy �
gldm_DependenceNonUniformity �
gldm_DependenceNonUniformityNormalized �
gldm_DependenceVariance �
gldm_GrayLevelNonUniformity �
gldm_LargeDependenceEmphasis �
gldm_LargeDependenceHighGrayLevelEmphasis �
gldm_SmallDependenceHighGrayLevelEmphasis �
gldm_SmallDependenceLowGrayLevelEmphasis � � � � �
ngtdm_Complexity �
ngtdm_Contrast �
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be concordant. The number of concordant features was
roughly the same for the BFC images with 8 of 91 (8.8%),
6 of 91 (6.6%), and 6 of 91 (6.6%) concordant features for
images without further preprocessing, with 32-bin grayscale
discretization, and 64-bin grayscale discretization, respectively
(Table 5). Although compared to the images without BFC,
some features improved in concordance, where others lost
concordance (Table 5).

The number of concordant features differed between
the images collected on the separated scanning dates,
although these differences were minor compared to the T1W
and T2W sequences (Fig. 5, Table 3). The number of con-
cordant features was 28 of 91 (30.8%), 15 of 91 (16.5%)
and 11 of 91 (12.1%) for date 1 and 22 of 91 (24.1%),
13 of 91 (14.3%) and 11 of 91 (12.1%) for date 2, using the
images without BFC. The number of concordant features was
9 of 91 (9.9%), 9 of 91 (9.9%) and 11 of 91 (12.1%) for
date 1 and 12 of 91 (13.2%), 12 of 91 (13.2%) and 11 of
91 (12.1%) for date 2, using the BFC images.

Figures S13–S15 in the Supplemental Material present
the pairwise CCC values in scatterplots for all features in the
different preprocessing procedures, wherein the different
colors represented the use of all pairwise comparisons or only
the pairwise comparisons MRI exams scanned on the
same day.

Discussion
In this test–retest study, repeatable radiomics features
extracted from breast MRI exams from healthy volunteers
were identified, using a fixed scanning protocol including

T2-weighted (T2W), unenhanced T1-weighted (T1W), and
diffusion-weighted images with corresponding derived ADC
maps. This study showed the effects of varying image
preprocessing procedures on the radiomics feature repeatabil-
ity. Across all pairs, the images without preprocessing pro-
duced the highest number of repeatable features for both the
T1W sequence as well as the ADC maps. In the T2W
images, applying z-score normalization produced the highest
number of repeatable features.

The assessment of radiomics feature repeatability via
test–retest studies in breast MRI exams is currently lacking.
The three different MRI sequences examined in this study
showed differences in feature repeatability. In addition, the
effect of image preprocessing on feature repeatability was dif-
ferent for the two MRI sequences and ADC maps. Not
applying image preprocessing produced the highest number
of repeatable features in the T1W sequence and the ADC
maps. Overall, applying grayscale discretization caused a loss
of repeatable textural features in the T1W and T2W
sequences, although some texture features became repeatable
after grayscale discretization. It is notable that in general, the
number of repeatable texture features was reduced after apply-
ing grayscale discretization, although grayscale discretization is
considered necessary for the extraction of texture features by
both Pyradiomics and the IBSI guidelines.22 Given that MR
images do not contain absolute signal values, MRI exams per-
formed on the same scanner using an identical scan protocol
could potentially eliminate the need for grayscale dis-
cretization. Furthermore, z-score normalized images showed
the highest number of repeatable features in the T2W
sequence, on the other hand, applying normalization

TABLE 5. Concordant Features Across All Pairs for the ADC Maps, With A: No Preprocessing, B: 32-bin Grayscale
Discretization, and C: 64-bin Grayscale Discretization, D: Bias Field Correction, E: Bias Field Correction +32-bin
Grayscale Discretization and, F: Bias Field Correction +64-bin Grayscale Discretization

A B C D E F

Number of Concordant Features 8 (8.8%) 7 (7.7%) 6 (6.6%) 8 (8.8%) 6 (6.6%) 6 (6.6%)

glcm_ClusterProminence �
glcm_Correlation � � � � � �
glcm_Imc1 � � � � �
glcm_Imc2 � � � � � �
glrlm_GrayLevelNonUniformity � � � �
glrlm_RunLengthNonUniformity � � � � � �
glszm_GrayLevelNonUniformity � � � � � �
glszm_SizeZoneNonUniformity � �
gldm_DependenceNonUniformity � �
ngtdm_Coarseness � � �
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decreased the number of repeatable features in the T1W
sequence. Failure to improve the repeatability of features after
z-score normalization was also found in the study by Schwier
et al,19 although, in contrast to our results, this was seen in
the T2W sequence. They state that image normalization was
used to homogenize images acquired from different scanners
with different protocols. In our study, however, it was
assumed that images scanned with the same protocol on the
same scanner were already well comparable in terms of imag-
ing parameters. In addition, the applied normalization uses
the whole image for normalization and since the MRI quality
decreases further from the coil (at the edges of the images),
this reduction in quality can degrade the quality of the breast
region (which is close to the coil) and with that the ROI
comparability. The same principle could account for the use
of BFC since for all sequences it either did not change the
number of repeatable features or caused a loss of repeatable
features compared to not using BFC. However, failure to
improve the repeatability of functions after BFC may also be
due to use of default settings for the N4 BFC; findings of
Saint Martin et al28 showed that the default settings for the
N4 BFC were not optimal for breast MRI exams.

By considering pairwise comparisons between scans
taken on the same day, it was found that for all sequences,
including all different preprocessing procedures, except for
the T2W sequence and ADC maps without preprocessing,
date 2 produced a higher number of repeatable features com-
pared to date 1. One explanation for this may be that the
healthy volunteers knew better what to expect on the second
scan date after going through the first scan date. In addition,
in most cases, the number of repeatable features was higher
for the scans taken on the same day compared to the number
of repeatable features found from the data of both days, as
expected. These differences may be explained by changing
factors over time (eg, system changes in the MRI scanner or
biology of the healthy volunteer) that caused variation in the
feature values. For example, the homogeneity of the MRI
field, gradient systems, and coil affects the image quality.29

Furthermore, changes in the biology of the healthy volunteer,
including the menstrual cycle and body temperature, are
known to affect the MRI exams.30 These factors may impact
clinical decision making and hence, radiomic features must
be robust to these changes.

To date, MRI test–retest studies for the evaluation of
repeatable and reproducible features, have been conducted
through phantom research15,28,31–33 and by the use of MRI
exams of healthy volunteers or cancer patients.17,19,20,32,34–36

None of these studies investigated feature repeatability and/or
reproducibility in human breast MRI exams, and only one
study investigated a breast phantom.28 The study of Saint
Martin et al28 showed the necessity of image preprocessing
dedicated to breast MRI exams before using features in fur-
ther analysis. Phantom repeatability and reproducibility

results seem to be overly optimistic as these overall appear to
score higher than the test–retest studies performed within
human data. For example, the study by Lee et al32 tested fea-
ture repeatability in T1W and T2W in both a phantom and
MRI brain of healthy volunteers. The average ICC repeatabil-
ity measures for the T1W and T2W images were higher for
the phantom (0.963 and 0.959) compared to healthy volun-
teers (0.856 and 0.849). Furthermore, a recently published
phantom study by Shur et al31 showed that 37 of 46 (80%)
of the radiomic features were concordant (CCC > 0.9) in a
test–retest study. By contrast, the test–retest study by Eck
et al34 investigating feature repeatability in T2W brain MRI
exams of 15 healthy volunteers showed only 76 of 146 (52%)
of good to excellent repeatable features (CCC ≥0.7). Consid-
ering only the excellent repeatable features (CCC > 0.85) in
the above-mentioned article, the number of concordant fea-
tures decreased to 40 of 146 (27.4%), which is more compa-
rable to the results found in this study. The same accounts
for a test–retest study in brain MRI exams of glioblastoma
patients, in which they identified 386 of 1043 (37.0%)
repeatable features, although they used CCC > 0.8 as a cut-
off value.36 A prostate MRI repeatability study by Schwier
et al19 concluded that feature repeatability can vary greatly
among the radiomic features and that the repeatability of the
features is highly sensitive to image preprocessing procedures.

In clinical (prospective) trials, variance in scanners and
acquisition and reconstruction parameters between and even
within patients is unsurmountable and will therefore affect
the reproducibility of the features. Although exploring feature
reproducibility was not the aim of this study, this data will be
a starting point to investigate the reproducibility of breast
MRI extracted radiomic features. Future studies can investi-
gate feature reproducibility by changing the different acquisi-
tion parameters one by one while leaving the others fixed.
Furthermore, the harmonization method called ComBat,
which was originally developed to harmonize gene expression
data,37 is increasingly being applied in radiomics studies to
remove batch effects.8,14,38–40 However, caution should be
exercised when applying this harmonization method, as it can
only correct for one variable and, MRI data collected from
multiple hospitals often contains a multitude of variables. In
addition, future studies should focus on the discriminative
power of a repeatable and reproducible feature, as a repeatable
and reproducible feature does not necessarily imply that this
feature is a predictive or prognostic radiomic feature.

Limitations
First, the number of healthy volunteers included was quite
limited, although the test–retest set-up allowed for 18 MRI
exams per healthy volunteer, resulting in the analysis of a
total of 198 MRI exams. Nevertheless, since this is an early
study investigating this topic, we believe that these results are
valuable and useful for the radiomics community. Second,
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the included T1W images were examined without adding a
contrast agent, so these images cannot be fully compared to
the dynamic T1W images normally examined in a clinical
breast protocol. Future test–retest studies in breast cancer
patients should show whether the repeatable features found in
this study are also repeatable in dynamic T1W images. Third,
this study investigated only Pyradiomics features extracted
from the original image. Future studies could focus more on
other feature groups, among others, Gabor, gradient, or Laws.
Fourth, the region of interest contained only healthy tissue,
further research in breast cancer patients will have to show
whether the repeatable features found in healthy breast tissue
can also be considered repeatable in breast tumor tissue.
Lastly, it is important to keep in mind that there is a great
variety of preprocessing procedures, which can influence fea-
ture values. In this study, we choose to use the open-source
software Pyradiomics to apply normalization and grayscale
discretization to easily reproduce results. In the future, we
aim to extend this study with other alternative normalization
procedures and focus on feature repeatability.

Conclusions
Varying numbers of repeatable breast MRI radiomic features
extracted from healthy volunteers were found for each differ-
ent test–retest strategy. Furthermore, the effects of image
preprocessing procedures on the repeatability of radiomic fea-
tures were found to be different depending on the MRI
sequence.
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