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To model and forecast monthly tax revenue collection, and propose policy 

recommendations for stabilization of revenue collection volatility are our 

objectives in this study. Data analysis of the evolution of tax revenues 

shows a slight growth and the Box.com test gives |λ|=0.07 which leads to a 

check logarithmic transformation. The study revealed a positive trend in 

data with an amplitude of variations increasing slightly over time. It 

showed also a quarterly seasonality, highlighting a peak in each third 

month of each year and a relative increase in the first two quarters. The 

correlogram and partial correlogram show respectively the lag of orders 

3 and 12 and 3 and 9 which was significant and lead to conclude the 

seasonal autoregressive coefficient. Then, the Dickey-Fuller test (p-value 

< 0.01) and Phillips Perron test (p-value < 0.01) come up to confirm the 

stationarity of the series under study. ARIMA (0,0,0) (2,1,2) [4] and 

ARIMA (0,0,0) (2,1,1) [4] models have an AIC of 359.44 and 359.43 

respectively, which is smaller than the other models and have been 

selected for analyzing and predicting the tax revenues of Burundi. But 

specifically, the study used ARIMA (0,0,0) (2,1,2) [4] which is better than 

ARIMA (0,0,0) (2,1,1) [4] because of its least parameters. The study 

thought that this model is recommendable for this institution, which 

supports the governmental constraints. 

Keywords: ARIMA models¸ Burundian revenue authority, forecasting, tax 

revenue, time series. 

 
 
 
 

INTRODUCTION 
 
Financial resources are needed for each Government need 
to provide the city’s public goods and services. That’s why 
governments need to ascertain the availability of financial 

resources to determine the level of provision of these goods 
including tax and non-tax revenues. Thus, within 
governments,   budgetary    procedure    frameworks,   fiscal  
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forecasting, and monitoring techniques have emerged as 
crucially important. Fiscal forecasts include revenue and 
expenditure forecast. In tax revenue, trends in government 
revenue collection in Burundi indicate persistent growth 
which can be explained by, among others, changing tax 
rates, increasing collection efforts widening the tax base, 
simplifying tax payment procedures, and promoting 
voluntary compliance (TRA, 2013) 
Actual revenue collections have seldom met targets despite 
the growth and a result of higher targets driven by 
‘optimism’ or ambition of reaching some percent of the GDP 
target can be the fact that explains the failure to meet these 
targets. It can be also explained by inefficient 
administration in tax collection or forecast accuracy when 
projected revenue collections are beyond potential realized 
collection. 
Tax administrations, as well as the government, are 
stressed because of failure to meet revenue collection and 
failure to meet some expenditure commitments. However, 
revenue collection and its dynamics can be well predicted, 
if proper forecasting techniques are employed, and so have 
accounted with reasonable accuracy. The relevance of this 
problem lies in the fact that the redistributive function of 
the tax system is undermined by the lack of reliable tax 
revenue forecasts. 
Apart from the judgemental methods in forecasting tax 
revenue, quantitative methods based on static and dynamic 
models are also used. Static models include GDP-based 
models. For example, GDP-based models use tax elasticity 
and buoyancy to assume linearity - tax revenue responds at 
a certain percentage with changes in GDP. They, sometimes, 
fail to capture dynamics in tax revenue and may produce 
less accurate forecasts despite several merits of dynamic 
models. Because they are capable of using past information 
to predict dynamics in revenue collection, in this study, 
dynamic time series models have been chosen; in particular 
the issue of volatility. This paper, therefore, undertakes to 
forecast revenue using dynamic models (ARIMA and 
combined forecasts) and volatility models. Further, ARIMA 
models are ideal for high-frequency data like those 
recorded monthly over a long period of exactly 48 months. 
To model and forecast monthly tax revenue collection and 
propose policy recommendations for stabilization of 
revenue collection volatility based on the forecasting model 
are our objectives in this study. This study used monthly 
tax revenue data spanning June 2017 to June 2021. The 
study focuses on ARIMA models to forecast tax revenue and 
its volatility respectively. Tax revenue was found to 
increase steadily over the period, although with persistent 
volatility that increases over time. 
 
LITERATURE REVIEW 
 
Various tax revenue forecasting techniques divided into 
qualitative or quantitative are available (Jenkins, Kuo and 
Shukla 2000). Referred to as judgmental forecasts, 
qualitative methods are based on human judgment that’s 
why they prone to bias and conservatism. However, they 

are used in situations where historical data are no longer 
representative, where data are scarce or non-existent, or 
such as in cases of structural change. That’s why consensus 
forecasting is a special case of judgmental forecasting. 
Then, in setting revenue targets, this method is determined 
by institutional setup which comprises the parties involved. 
As argued in (Voorhees, 2004) studies, forecasting accuracy 
and institutional arrangements imply consensus forecasting 
which diminishes forecast bias and increases forecast 
accuracy as it takes the politics out of the revenue forecast 
accuracy on one hand. On the other side, lags between 
forecast preparation and forecast use can be increased by 
the time-consuming nature of consensus forecasting, in 
turn potentially reducing accuracy. Tax revenue forecasting 
errors are not solely caused by the fluctuations in the 
economy, but also are attributable to the institutional 
structures and the degree of consensus required for the 
forecast. “It is good practice to try to insulate forecasting 
from the political process and consensus forecasting can 
help achieve that” claimed Borrowing from (Boyd and 
Dadayan, 2014). 
Both causal and extrapolation are included in quantitative 
methods. Causal methods, however static and hence low 
ability to capture dynamics in data collected over a long 
period, involve simple and multiple regression of a 
dependent variable (tax revenue) and some other 
independent variables (e.g., income, imports, consumption). 
Extrapolation techniques, commonly referred to as time 
series techniques, make use of past data to predict the 
future and are accurate compared to the former making 
them more popular. The most widely used extrapolative 
techniques are: moving averages and exponential 
smoothing, naïve models which assume the current 
situation is the same as the previous; which use averages of 
the most recent data to calculate forecasts; trend line 
analysis which regresses a variable on some function of 
quadratic, logarithmic, time – linear,  etc.; autoregressive 
models which, on its past values,  regress a variable; and 
Box-Jenkins models are considered quite an accurate 
approach to forecasting. Box-Jenkins, by combining 
autoregressive, Integrating, and moving average processes 
(ARIMA), provide more objective forecasts because they are 
able of revealing regularities in the data that would be 
overlooked by other methods. 
In developing countries like Burundi, major challenges to 
revenue collection are the prevalence of discretionary 
changes in tax systems, linked with the inadequacy of data 
and limited forecasting skills. For example, (Fjeldstad, 
Jensen and Paulo, 2014) reported the underdeveloped 
administrative capacities and influence of political and 
economic factors as the major challenges for sound fiscal 
policy in Angola where the application of any sophisticated 
forecasting methods or adherence to economic growth 
projections by the revenue forecasters found no evidence. 
Date adequacy and skills form major impediments to the 
use of sophisticated time series models in revenue 
forecasting in developing countries as mentioned 
challenges,  literature  shows  that  time  series  models, like 
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ARIMA, are more extensively used in developed countries 
than in developing countries due to the said challenges. 
Since this study focuses on monthly revenue forecasts it 
benefits from the advantage of a large sample size. 
As measured by the size of forecast error, the accuracy of 
forecasts is very important and represents a key element 
for the design and execution of sound fiscal policies. Budget 
management problems arise from forecasting errors and 
Auerbach (1995) distinguishes between three types of 
errors: policy errors, economic errors, and technical 
(behavioral) errors. A model needs to perform better both 
in-sample and out-of-sample while forecast errors can 
never be entirely avoided. However, better performance of 
most models is seen in-sample forecasts than out-of-sample 
forecasts. Then, the Customary for forecasters is to estimate 
several models and compare them in terms of forecast 
performance. To check forecast accuracy by measuring the 
size and distribution of the errors, several measures can be 
used such as Mean Absolute Error - MAE, Mean Absolute 
Percentage Error - MAPE, Mean Square Error - MSE, and 
Root Mean Square Error – RMSE (Johnston and DiNardo, 
1997; Leal, Perez, Tujula and Vidal, 2007). 
The puzzle of which forecasting model performs better 
remains unresolved. From several kinds of literature, it is 
not clear which method fiscal and monetary authorities, 
international economic organizations, financial market 
analysts, rating agencies, or research institutes should be 
adopting when preparing their forecasts. There is no single 
model that outperforms others universally because of the 
different situations between economies to which the 
models have to be applied. 
Although the recommendation of a single forecasting 
method is prominent in the forecasting literature, it is 
sometimes possible to achieve a more accurate forecast by 
using a combination of several forecasts’ methods. 
In many studies, combined forecasts have shown accurate 
results, and elements such as simple average forecasts, 
weighted forecasts, and linear combination forecasts 
belong to the variants of combined forecasts. 
Bunn, 1985 states that the most widely used combination 
method is still the simple average. However, as it does not 
take into account the dynamics in the forecasts, it becomes 
contested.  
This study adopts linear combination forecasts which are 
ARIMA, used because of out-of-sample forecasts and it 
seems to be very optimistic compared to trends of in-
sample forecasts. 
For dynamic models, more are data better forecasts and 
need to be updated from time to time, and must be data 
intensive. Model updating is important because an 
unexpected event can change the whole calculation of the 
predicted value and therefore forecasting any series is a 
continuous process rather than a single calculation (Nandi, 
Chaudhury and Hasan, 2014). 
A discretionary question remains as to how often and when 
these methods should be updated as the literature does not 
refer to this. It should also be noted that the statistics do 
not prove anywhere that updates lead to greater accuracy, 

and this assertion is consistent with the study of (Boyd and 
Dadayan, 2014). From this perspective, our paper does not 
specify such a recommendation for the models we have 
used.  
 
Materials and methods 
 
Research Design 
 
Since 2010 the Burundi Revenue Authority has been 
operating under the strategic planning model in all its 
activities to better accomplish its missions. Currently, the 
Burundian Revenue Office (BRO) has a strategic plan that 
covers the period from 2018 to 2022.  In this strategic plan, 
the BR0 attempts to achieve revenue mobilization through 
the assessment, collection, and accounting of taxes through 
the administration of tax laws fairly and equitably. But to 
optimize revenue collection the tool of forecasting is 
indispensable. To make forecasts, time series theory is 
applied when one is interested in the evolution of a 
phenomenon over time. 
 
Source and method of Data collection 
 
This study mainly employs a time series approach using 
Box-Jenkins models to model and forecast monthly taxes 
revenues. The study uses secondary data which represent 
monthly and annual total tax revenue collection data 
published by Burundian customs officers. The monthly 
revenue data covers the period of 48 months from June 
2017 to June 2021. This sample size is adequate for the 
estimation of ARIMA models; according to (Garrett and 
Leatherman, 2000), the generally accepted threshold for 
ARIMA estimation is 54 data points 
 
Method of Data analysis 
 
Data analysis undertaken involves descriptive analysis, 
stationarity tests, model fitting, and forecasting. Descriptive 
analyses are used to explore the internal properties of data. 
Analytical models used include ARIMA with seasonality. 
This study followed the standard procedure for the 
estimation of ARIMA models which has five steps: 
stationarity test, identification of the model, Selection of the 
model, Validation of the model, and forecasting of the 
future values (Johnston and DiNardo, 1997). Identification 
involves checking for stationarity and determination of the 
order of the model. The best models are selected by using 
Akaike Information Criteria (AIC) and Bayes-Schwarz 
Information Criteria (BIC), forecast performance measures, 
and other statistical criteria. AIC is an asymptotically model 
selection criterion. AIC provides a trade-off between 
goodness of fit and the complexity of model specification 
(Akaike, 1974). For this purpose, ARIMA-type models 
consist of removing obvious trends and seasonality (or 
periodicity) from the series and modeling the remaining 
residual. These methods are more sophisticated and 
numerically more cumbersome than  the previous ones, but 
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also more efficient.  These are the ones that have been used 
in our study. 
ARIMA (Auto-Regressive-Integrated-Moving-Average) 
models, popularised and formalized by Box and Jenkins 
(1976), have as their main objective to allow a prediction of 
the future evolution of a phenomenon. They seek to 
determine each value of the series according to the values 
that precede it (yt = f (yt-1, yt-2,...)). 
Autoregressive (AR) processes assume that each point can 
be predicted by the weighted sum of a set of previous 
points, plus a random error term tainting the previous 
points, plus its error. Moving average (MA) methods 
assume that each point is a function of the errors.  The 
integration process (I) assumes that each point has a 
constant difference from the previous point. 
An ARIMA model is labeled as an ARIMA (p, d, q) model, 
where: p is the number of autoregressive terms, d is the 
number of differences and q is the number of moving 
averages. Stationarity is the rule that the series must satisfy 
to be estimated by ARIMA models. This means that the 
mean and variance of the series are constant over time. To 
eliminate the trend, differentiation is applied, i.e replacing 
the original series with the series of adjacent differences. 
The differentiated series to verify stationarity is considered 
as an integrated version of a stationary series (hence the 
term Integrated). Mathematically, a first-order 
differentiation is given by the difference between two 
successive values and this difference is constant. We have 
yt- yt-1 = µ +εt where µ is the constant of the model and 
represents the average difference in y. Such a model is an 
ARIMA (0;1;0). The second-order model operates on a 
difference of a difference and not on a raw difference. 
An undifferentiated white noise ARIMA (0,0,0) process 
suggests random fluctuations around a reference value.  
This value can be considered a stable characteristic of the 
system under study.  
 
Auto-regression 
 
Autoregressive models assume that Yt is determined by 
past values. 
yt = µ + φ1yt−1 + φ2yt−2 + φ3yt−3+ … + φpyt−p + εt …...  (1) 

 ...… (2) 

Where L is a delay operator and ϕ1; ϕ2; ϕ3; are the 
autoregression coefficients. If differentiation was 
necessary, the autoregressive model ARIMA (1,1,0) is given 
by:  
yt – yt-1 = µ + φ(yt-1 – yt-2) + εt ………………………………………(3) 
The autoregressive model is therefore multiplied by the 
value (1-L). Each observation in the autoregressive model 
consists of a random component (ϵt) and a linear 
combination of past observations.  
An autoregressive process suggests that the phenomenon 
under study is not determined by a reference value. It is the 
previous performance (or performances) that fully 
determine the present performance. 
 

Moving average 
 
Moving average models assume that the series is subject to 
fluctuation around the mean. The series is therefore 
estimated by the weighted average of a certain number of 
previous values, which amounts to considering that the 
estimate is equal to the true average to which is added a 
sum of the errors that have affected the previous values.  

 …. (4) 

 
The model consists of a random error component and a 
linear combination of past random errors. The moving 
average process suggests that the reference value evolves 
from one measurement to the next. Specifically, the 
reference value is a function of the previous reference value 
and the error in the previous measurement.  
 
Mixed model 
 
The addition of an autoregressive (AR) component and a 
moving average (MA) component provides mixed ARIMA 
models.  In the presence of a series with a seasonal 
component, the SARIMA-seasonal model is used. It is 
labeled as SARIMA (p,d,q)(P, D ,Q)m with p, d, q the same as 
those of ARIMA and P order of the seasonal autoregressive 
part, D order of the seasonal moving average, Q order of the 
seasonal moving average and m the period of the seasonal 
component. A SARIMA (p,d,q)(P, D,Q) model of period m is 
given by the relation:  
 

 …………………… (6) 

…………. (6’) 

 … (6’’) 

 
Box-Jenkins steps (Jenkins et al, 2000).  
Box-Jenkins defines 5 steps to analyze a time series: 
1. Transformation: this involves analyzing the series to be 
able to describe it to make it stationary if it is not, but also 
to obtain a normal distribution of the series. Here d is 
known; 
2. Identification of the parameters p and q: Observation of 
the ACF and PACF graphs. The values found at this level 
constitute the upper limits that can be reached for the 
definition of the ranges of the parameter values; 
3. Evaluation of the parameters: Select the candidate 
model(s) that minimizes one of the AIC, AICc, or BIC 
criteria;  
4. Model diagnosis: Check the normality and non-
correlation of the residual terms. If the residual terms 
follow a normal distribution and are uncorrelated, then the 
model can be used to make predictions, otherwise, the 
previous steps are repeated; 
5. Prediction: Predict future values, then evaluate the 
performance of the model by calculating. 
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RESULTS AND DISCUSSION 
 
Observation and Stationarity of the Series. 
Before modeling a time series, it is first necessary to 
represent it and to test its possible particularities such as 

the trend and the seasonality. The analysis of the evolution 
of the tax revenues shows that the variability has a slight 
growth, but also the Box. cox test informs that |λ|=0.07 
which is close to 0, therefore a logarithmic transformation 
(Log Receipt) is necessary 

 

Figure 1: Tendance of Monthly Tax (fbu million) 

Figure 2: Seasonality of Monthly Tax 
Source: Burundian Revenue office.

 
In the graph above of the evolution of the logarithm of 
revenues, the study reveals a positive trend in the data, 
with the amplitude of the variations increasing slightly 
over time. There is also a quarterly seasonality, with 
significant peaks indicating a large increase in revenue in 
each third month. Also, revenues in the first two quarters 

of the year show a relatively large increase compared to 
the last two. The study performs panel unit-root tests 
using the techniques by Litterman (Litterman and Supel, 
1983) designated as hypothesis H0: the time-series data 
are not accepted. 
 

Figure 3: Display Correlogram ACF and partial correlogram PACF 
Source:  Researcher’s computations 
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The correlogram obtained from the data shows that there is 
a quarterly seasonality: particularly significant lags are 
observed at orders 3, 6, 9, 12, and 15. Differentiation is 
therefore necessary. After the seasonal differentiation, as 
can be seen in the graph below, the seasonality has been 

eliminated and so has the trend, so regular differentiation 
will not be necessary. The parameters of the seasonal 
component are identified by analysis of the correlogram 
(ACF) and the partial correlogram (PACF) 

 

Figure 4: Display both tendance and seasonality of monthly data collection (in fbu million) 
Source: Researcher’s computations 

  

Figure 5: Display lags component on both correlogram and partial correlogram 
Source: Researcher’s computations

On the correlogram, the study shows that the lags of orders 
3 and 12 are significant, so the coefficient of the seasonal 
component MA could be equal to 1 or 2. On the partial 
correlogram, the study reveals that the lags of orders 3 and 
9 are significant, so the seasonal autoregressive coefficient 
could be equal to 1 or 2. After seasonal differentiation, 
according to the Dickey-Fuller test (p-value < 0.01) and the 
Phillips Perron test (p-value < 0.01), the survey concludes 
that the series is indeed stationary with a p-value below 
1%.The competitive models are as followed:  
a. ARIMA (0,0,0) (1,1,1) [4], b. ARIMA (0,0,0) (1,1,2) [4], c. 
ARIMA (0,0,0) (2,1,2) [4] and  d. ARIMA (0,0,0) (2,1,1) [4] 

Model Selection and Validation 
 

The choice of the model is made according to the Akaike 
information criterion (AIC), the rule requires retaining the 
one that minimizes the AIC. The ARIMA (0,0,0) (2,1,2) [4] 
and ARIMA (0,0,0) (2,1,1) [4] models have an AIC of 359.44 
and 359.43 respectively, which is smaller than the other 
models. Both models can model our series. We retain the 
ARIMA (0,0,0) (2,1,1) model [4] which has the least 
parameter compared to ARIMA (0,0,0) (2,1,2) model [4].
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Table 1: Display ARIMA (0,0,0) (2,1,1) [4] with drift componen

Coefficients 
 Sar1 Sar2 Sma1 Drift    
 -0.9581 -0.8866 0.0845 0.8084    
s.e 0.0827 0.0532 0.2266 0.1032    
sigma^2 = 53.27 log-likelihood = -174.71     
AIC=359.43   AICc=360.79   BIC=368.99 
 

   

Training set errors measures    
 ME RMSE MAE MPE MAPE MASE ACF1 
Training ste 0.1101    6.7362    4.9573 -0.6887     6.3053         0.4713 0.1224522 
Z test of Coefficients 
 Estimate Std.Error z value Pr(>|z|)      
Sar1 -0.958099 0.082704 -11.5847 <2.2e-16 

*** 
   

Sar2 0.084534 0.226592 0.3731 0.7091        
Drift 0.808387 0.103237    7.8304 4.864e-

15 *** 
   

Significant.Codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Source: Researcher’s computations 

 
 

Once the model has been chosen, its validation is carried 
out by analyzing the estimation residuals to check whether 
it presents certain trends or irregularities. It is therefore 

analyzed to see if it meets the white noise, normality, and 
non-autocorrelation hypothesis. 

 
 

 
Figure 6: Display residue stability test 
Source: Researcher’s computations

 
 

Table 2: Model conditions  for forecasting 
 

#Ljung-Boxtest 
Data:  Residuals from  ARIMA (0,0,0) (2,1,1) [4] 
X-squared = 0.85554,        df = 1, p-value = 0.355 
#Shapiro-Wilk normality test 
Data:  Residuals from  ARIMA (0,0,0) (2,1,1) [4] 
W = 0.96487, p-value = 0.1139 

Source: Researcher’s computations

  
The residuals resulting from the model are normally 
distributed and are not auto-correlated as the Ljung-Box 
and Shapiro tests are significant. Thus, the model is good 
and can be used for predicting future values of total 
revenue  
 

Calculation of forecasts 
The revenue forecast made is from July 2021 
to December 2022. The red part of the graph below shows 
the period over which we estimate future revenue values. 
The future revenue forecasts are calculated with a 95% 
confidence interval. 
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Figure 7: Display forecasting values  
Source: Researcher’s computation

 
 

 
 

Table 3: Forecasting tax (in million of Burundian Francs)

Month Forecasting 
Minimum 
Revenue 

Maximum 
Revenue 

July 2021 92.906 78.924 106.889 
August 2021 105.684 91.701 119.666 
September 2021 111.425 97.442 125.407 
October 2021 102.238 88.256 116.221 
November 2021 95.513 81.530 109.497 
Décember 2021 110.337 96.353 124.320 
January 2022 97.237 83.254 111.220 
February 2022 91.545 77.562 105.528 
March 2022 120.307 106.042 134.572 
Avril 2022 110.581 96.316 124.847 
May 2022 99.062 84.796 113.327 
June 2022 126.928 112.663 141.194 
July 2022 103.110 84.724 121.495 
August 2022 115.378 96.993 133.764 
September 2022 118.115 99.730 136.500 
October 2022 110.645 92.260 129.030 
November 2022 107.880 89.495 126.266 
Décember 2022 119.471 101.086 137.857 
Source:  Researcher’s computations 

 
Table 3 shows the projected revenues for the second half of 
2021 and the year 2022. It can be seen that revenues in 
April 2022 will range from 96.3 billion Burundian francs 
(fbu) to 124.8 billion Burundian francs. In May, revenues 
will decrease to 99.06 billion fbu and increase again in June 
to 126.9 billion fbu. This result is supported by the findings 
of other studies (Thompson and Gates, 2007; Boyd and 
Dadayan, 2014) which can be separated into two; those 
which suggest the substitution of more progressive taxes 
with a less progressive tax to reduce revenue volatility and 
improve revenue forecasting and those which emphasize 
on diversification of taxes, than the substitution of taxes, as 
a means to reduce revenue volatility (Crain, 2003) 
From the above results, it is clear that Burundian revenues 
evolve according to the ARIMA model (0,0,0) (2,1,1) [4]:  

…………. (7) 

 

Conclusion 
 
This study analyzed and forecasted tax revenue for Burundi 
Tax Authority using dynamic models (ARIMA and combined 
forecasts) and volatility models. The study proceeded by 
testing the trend and the seasonality which constitute 
possible particularities. The analysis of the evolution of the 
receipts shows that the variability has a slight growth, but 
also the Box. cox test informs us that |λ|=0.07 close to 0 
leads to the necessity of a logarithmic transformation (Log 
Receipt). A positive trend in the data, with the amplitude of 
the variations increasing slightly over time, is observed and 
a quarterly seasonality is also detected. Indeed, significant 
peaks are indicating a large increase in revenue in each 
third month. Also, revenues in the first two quarters of the 
year show a relatively large increase compared to the last 
two. From these results, we see that a seasonal 
differentiation is necessary. There is a quarterly  
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seasonality, particularly at the lags, which are particularly 
significant at orders 3, 6, 9, 12, and 15. A differentiation is 
therefore necessary. After eliminating the trend and 
seasonality, we identified the parameters of the seasonal 
component by analysis of the correlogram (ACF) and the 
partial correlogram (PACF). Several ARIMA models such 
as ARIMA (0,0,0) (2,1,2) [4] and ARIMA (0,0,0) (2,1,1) [4] 
have a smaller AIC of 359.44 and 359.43 respectively 
compared to the other models. Both models were retained 
to model our series. We retain the ARIMA (0,0,0) (2,1,1) 
model [4] which has the least parameter compared to the 
ARIMA (0,0,0) (2,1,2) model [4] but also the residuals 
resulting from the model are normally distributed and are 
not auto-correlated as the Ljung-Box and Shapiro tests are 
significant. Thus, the model is good and can be used for 
the prediction of future values of the total revenue under 
study. 
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