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• Team of Pr Damien Ernst, currently includes 15 PhD students and 5 PostDocs 

• Research areas span:  

• Artificial Intelligence (AI)  

• Systems and control 

• Applications in energy 

• More specifically, recent research topics include [1]: 

• Reinforcement Learning [2-4] 

• Macro energy system planning (multi-carrier and global grid)  [5-7] 

• Energy markets (bidding strategies) [8] 

• Distribution/transmission network control and regulation [9] 

• Funding comes from a variety of sources, including Walloon, Belgian Federal governments and industry
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Notations

• A scalar is noted by a lowercase or uppercase letter  

• A vector is noted by a bold lowercase letter  

• A vector  of size  is defined as  

• The i-th element of a vector  is noted , the indices go from  to  

• A matrix is defined by an uppercase bold letter  

• A set is noted as 

a

x

x n x[n]

x x[i] 0 n − 1

A

𝒳



Energy System Sizing and Operations
• Energy System Modeling  

• Modeling: Creating a (mathematical) representation of a physical system in order to enable its study 

• Energy System Modeling: Creating a representation of an energy system to answer a certain question or 
achieve a certain goal 

• Energy System Sizing 

• Finding the optimal energy system size in order to achieve a certain goal 
e.g. What are the battery capacities needed in a given system ?  

• Energy System Operations 

• Finding the optimal operations to perform in order to achieve a certain goal 
e.g. When do I charge or discharge my battery ? 

• Overall Objective 
e.g. Minimizing the overall cost (investments and operation) or the environmental footprint 

• Energy systems sizing and operations 

• One depends on the other

The Basics



Energy System Sizing and Operations
An Example

FIGURE 1 : Installing the optimal battery capacity given a known demand and a known hourly price of electricity and 
operating it.



Energy System Sizing and Operations

• Time is essential component 

• Time-dependent systems 

• Optimized over a time period 

• Network of components 

• Interconnection of independent components  

• Unique topologies

Properties



Energy System Sizing and Operations

• Heuristics or iterative methods 

• Genetic algorithms 

• Mathematical optimization  

• Expressed as optimizing a function over a feasible set  

 

• The function  and the expression of the set  determines the optimization type 
(quadratic, non-linear, mixed integer, […] programming)

min f(x)
s.t. x ∈ 𝒳

f 𝒳

Finding a Solution



Mixed-Integer Linear Programming

• Problem formulation: 

• Linear objective function 

• Feasible set is expressed as linear constraints 

 

• Enables to deal with relatively large models 

• Non-linearities can be approximated with linear-piecewise functions

min cTx
s.t. Ax ≤ b

The Basics

1

1 Abbreviation : MILP



Mixed-Integer Linear Programming
An MILP Example

Known: electricity_demand[T ] Known: electricity_price[T ]

electricity_exchanged[t]

state_of_charge[T ]

battery_input[t]

battery_output[t]

battery_capacity

electricity_exchanged[T ]

battery_input[T ]
battery_output[T ]

Known: battery_ price

battery_output[t] + electricity_exchanged[t] = =
electricity_demand[t] + battery_input[t]

min electricity_exchanged[t] * electricity_ price[t]+
battery_capacity * battery_ price

Energy balance:

Optimization horizon :  T = 24 * 365 and t ∈ [0,T − 1]

Objective function



Mixed-Integer Linear Programming
An MILP Example

Known: electricity_demand[T ]
Known: electricity_price[T ]

state_of_charge[T ]

battery_capacity

electricity_exchanged[T ]

battery_input[T ]
battery_output[T ]Known: battery_ price

battery_output[t] + electricity_exchanged[t] = = electricity_demand[t] + battery_input[t]

min : electricity_exchanged[t] * electricity_ price[t] + battery_capacity * battery_ price

Energy balance:

Optimization horizon :  T = 24 * 365 and t ∈ [0,T − 1]

Objective function

state_of_charge[t] ≥ 0
electricity_exchanged[t] ≥ 0
battery_output[t] ≥ 0
battery_input[t] ≥ 0
battery_capacity ≥ 0



Mixed-Integer Linear Programming
Workflow

Modeling Tool Solver



Solvers

• Commercial solvers 
 

• Open-source solvers 
 
 

• Meta-solvers 

• DSP

An Overview

[10] [11] [12]

[13] [14] [15]

[16]



Modeling Tools

• Algebraic Modeling Languages (AMLs) 

• Formulation close to mathematical notation 

• Very expressive (e.g. can represent any mixed-integer nonlinear program) 

• Often interface with multiple solvers 

• Examples:

AMLs

[17]

[18] [19]

[20]

[21]



Modeling Tools

• Object-Oriented Modeling Environments (OOMEs) 

• Focus on one particular application (e.g. energy system sizing and operations) 

• Usually make use of predefined components that are “imported” 

• Typically have advanced data processing capabilities tailored to the application 

• Often open-source 

• Examples: 

OOMEs

[22]

[23]

[24]

[25]

[26]

[27]



Modeling Tools

• AMLs: 

• Fail to expose block structure  

• Do not enable reuse or do not have import-like capabilities 

• OOMEs:  

• Lack the expressiveness of AMLs 

• Often cumbersome to add new components 

• Often rely on AMLs and inherit their shortcomings

Drawbacks of AMLs and OOMEs



Modeling Tools

• The Graph-Based Optimization Modeling Language (GBOML)[27, 28] combines the strengths of 
AMLs and OOMEs 

• Open-Source and Stand-alone 

• Can represent any MILP 

• Possesses a hierarchical block structure for model encoding, exploits structure in model 
generation and interface with structure exploiting solvers 

• Syntax close to the mathematical notation 

• Time-indexed models can be encoded easily 

• Re-use and combining model components is straightforward 

• Interfaces with various solvers

GBOML



Modeling Tools

• Software developed in Python:  

• Few dependencies (PLY, NumPy, SciPy) 

• Provides two methods to encode models (text file and Python API) 

• Interfaces with several Solvers (Cplex, Gurobi, Xpress, HiGHS, CLP/CBC, DSP) 

• Produces plain .csv and structured .json outputs 

• Model structure is exploited on multiple levels: 

• Model encoding via dedicated language constructs 

• Model generation via parallelism, symbolism and multiprocessing 

• Solving via structure-exploiting solvers  

• Fully documented - Clear issue handling

GBOML



Modeling Tools
GBOML [29]

FIGURE 2 : GBOML working.



Modeling Tools
GBOML Hierarchical Hypergraph

Node

Node Node

Node

Node

Node

Node

Node

Parameters 
Variables 
Constraints 
Objectives

Hyperedges 
Parameters  
Constraints

FIGURE 3 : Representation of one particular hierarchical hypergraph made-up of 5 nodes and 2 hyperedges. The node most to 
the left and to the right both contain a hypergraph themselves.



Modeling Tools
GBOML Hierarchical Hypergraph

Node

Node Node

Node

Parameters 
Internal Variables 
External Variables 

Constraints 
Objectives

Hyperedges

FIGURE 4 : Representation of one node made-up of parameters, internal/external variables, constraints, objectives and a 
hypergraph. The hyperedges connect only the external variables of different nodes.



Modeling Tools
GBOML Language

#NODE <node_name>
#PARAMETERS
<param_def>
#VARIABLES
<var_def>
#CONSTRAINTS
<constr_def>
#OBJECTIVES
<obj_def>

#HYPEREDGE <edge_name>
#PARAMETERS
<param_def>

#CONSTRAINTS
<constr_def>

#TIMEHORIZON
T = <value>;



Modeling Tools
GBOML Language

#NODE <node_name>
#PARAMETERS
<param_def>
#VARIABLES
<var_def>
#CONSTRAINTS
<constr_def>
#OBJECTIVES
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#HYPEREDGE <edge_name>
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#CONSTRAINTS
<constr_def>

#TIMEHORIZON
T = <value>;



Modeling Tools
GBOML Language

#NODE <node_name>
#PARAMETERS
<param_def>
#VARIABLES
<var_def>
#CONSTRAINTS
<constr_def>
#OBJECTIVES
<obj_def>

#HYPEREDGE <edge_name>
#PARAMETERS
<param_def>

#CONSTRAINTS
<constr_def>

#TIMEHORIZON
T = <value>;



Modeling Tools
An Example in GBOML: Battery System

FIGURE 1 : Installing the optimal battery capacity given a known demand and a known hourly price of electricity and 
operating it.



Modeling Tools
An Example in GBOML: Battery System

FIGURE 1 : Installing the optimal battery capacity given a known demand and a known hourly price of electricity and 
operating it.

As one node 



#TIMEHORIZON T = 24*365;

#NODE Bat_House_Grid
#PARAMETERS
elec_demand = import «demand.csv»;
elec_price = import «elec_price.csv»;
bat_price = 120;

#VARIABLES
internal: electricity_exchanged[T];
internal: battery_output[T];
internal: battery_input[T];
internal: state_of_charge[T];
internal: battery_capacity;

#CONSTRAINTS
electricity_exchanged[t] >= 0;
battery_output[t] >= 0;
state_of_charge[t] >= 0;
battery_capacity >= 0;
battery_capacity >= state_of_charge[t];
battery_input[t] <= battery_capacity;
battery_output[t] <= battery_capacity;
state_of_charge[0] == state_of_charge[T-1];
state_of_charge[t+1] == state_of_charge[t]+battery_input[t]-battery_output[t];
battery_output[t]+electricity_exchanged[t] == elec_demand[t]+battery_input[t];

#OBJECTIVES
min: electricity_exchanged[t]*elec_price[t];
min: battery_capacity*bat_price;
 



Modeling Tools
An Example in GBOML : Battery 

As a three node 
hypergraph 

FIGURE 1 : Installing the optimal battery capacity given a known demand and a known hourly price of electricity and 
operating it.



#TIMEHORIZON T = 24*365;

#NODE Battery
#PARAMETERS

bat_price = 120;
#VARIABLES

external: battery_output[T];
external: battery_input[T];
internal: state_of_charge[T];
internal: battery_capacity;

#CONSTRAINTS
battery_output[t] >= 0;
state_of_charge[t] >= 0;
battery_capacity >= 0;
battery_capacity >= state_of_charge[t];
battery_input[t] <= battery_capacity;
battery_output[t] <= battery_capacity;
state_of_charge[0] == state_of_charge[T-1];
state_of_charge[t+1] == state_of_charge[t]
                        + battery_input[t]
                        - battery_output[t];

#OBJECTIVES
min: battery_capacity*bat_price;  

#NODE Grid
#PARAMETERS

elec_price = import «elec_price.csv»;
#VARIABLES

external: electricity_exchanged[T];
#CONSTRAINTS

electricity_exchanged[t]>=0;
#OBJECTIVES

min: electricity_exchanged[t]*elec_price[t];

#NODE House
#PARAMETERS

elec_demand = import «demand.csv»;
#VARIABLES

external:demand[T];
#CONSTRAINTS

demand[t] == elec_demand[t];

#HYPEREDGE Interconnection
#CONSTRAINTS

Battery.battery_output[t]+Grid.electricity_exchanged[t] 
== House.demand[t]+Battery.battery_input[t];



Modeling Tools
An Example in GBOML: Battery - PV Panels

Adding a new node

FIGURE 5 : Installing the optimal battery capacity and PV capacity  given a known demand and a known hourly price of 
electricity and operating it.



#TIMEHORIZON T = 24*365;

#NODE Battery = import Battery from ”house_bat_grid_3_node.txt”; 

#NODE Grid = import Grid from ”house_bat_grid_3_node.txt”; 

#NODE House = import House from ”house_bat_grid_3_node.txt”; 

#NODE PV_panels
#PARAMETERS
cost = 110;
irradiance = import ”irradiance.csv”;

#VARIABLES
external: electricity_prod[T];
internal: capacity;

#CONSTRAINTS
electricity_prod[t] == irradiance[t]*capacity;

#OBJECTIVES
  min: capacity*cost;

#HYPEREDGE Interconnection
#CONSTRAINTS
Battery.battery_output[t]+Grid.electricity_exchanged[t]+PV_panels.electricity_prod[t] 
== House.demand[t]+Battery.battery_input[t];



Modeling Tools
An Example in GBOML: Renewable Energy Community

FIGURE 6 : Installing the optimal battery capacity and PV capacity in a renewable energy community



#NODE Prosumer
#PARAMETERS
elec_demand = import ”elec.csv”;
cost = 110;
irradiance = import ”irradiance.csv”

#NODE House = import Grid from ”house_bat_grid_3_node.txt“ with
elec_demand = Prosumer.elec_demand;

#NODE PV = import PV_panels from ”house_bat_grid_pv.txt” with 
cost = Prosumer.cost;
irradiance = Prosumer.cost;

#VARIABLES
external : pv_prod[T] <- PV.electricity_prod[T];
external : demand[T] <-  House.demand[T];



#NODE Bat_consumer
#PARAMETERS
cost_bat = 110;
elec_demand = import ”elec_demand.csv”;

#NODE House = import House from ”house_bat_grid_3_node.txt” with 
elec_demand = Bat_consumer.elec_demand;

#NODE Battery = import Battery from ”house_bat_grid_pv.txt” with
bat_price = Prosumer.cost_bat; 

#VARIABLES
internal : bat_input[T] <- Battery.battery_input[T];
external : bat_output[T] <- Battery.battery_output[T];
internal : energy_demand[T] <-  House.demand[T];
external : demand[T];

#CONSTRAINTS
  demand[t] == bat_input[t] + energy_demand[t];



Modeling Tools
An Example in GBOML: Renewable Energy Community

FIGURE 6 : Installing the optimal battery capacity and PV capacity in a renewable energy community



#TIMEHORIZON T = 24*365;

#NODE Bat_consumer = import Bat-consumer from ”bat_consumer.txt”;

#NODE Prosumer1 = import Prosumer from ”prosumer.txt”;

#NODE Prosumer2 = import Prosumer from ”prosumer.txt”;

#NODE Grid = import Grid from ”house_bat_grid_3_node.txt”; 

#HYPEREDGE Interconnection
#CONSTRAINTS
Grid.electricity_exchange[t]
+ Bat_consumer.bat_output[t]
+ Prosumer1.pv_prod[t] 
+ Prosumer1.pv_prod[t] == Prosumer1.demand[t]
                          + Prosumer2.demand[t]
                          + Bat_consumer.demand[t];



Modeling Tools
GBOML Output



Modeling Tools
GBOML Performance[29]

FIGURE 7 : Time taken to generate the matrices in different modeling tools for a growing time horizon for the remote hub [5, 29]



Tutorial
Hands-on

http://tiny.cc/gboml_tutorial

http://tiny.cc/gboml_tutorial


Future Works

• In terms of tool :  

• Sensitivity Analysis in GBOML 

• Augmenting the python interface 

• Energy templates 

• Finding optimal partitions for structure exploiting methods 

• In terms of energy modeling:  

• Modeling the belgian energy system 

• Modeling renewable energy communities 

• Modeling remote renewable energy hubs

GBOML and in the Lab



Conclusion

•Explained the sizing and operations of energy system 

•Overview of the resolution process  

• Introduced GBOML, a modeling tool for supply chain management and energy system sizing and 
operations 

•Easy to use and install 

•Allows model combination and re-use 

•Enables structure encoding 

•Fast 

• Interfaces with structure exploiting algorithms 

• Illustrated several examples

GBOML
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Appendix A
GBOML Detailed Inner-working

FIGURE 8 : GBOML detailed inner-workings [29]



Appendix B

• Each node  can be defined as a tuple where, 

•  and  respectively denote the external and internal vector variables such as their 
concatenation is denoted  

•  and  denote the inequality and equality constraints 

such that  

•  is the hypergraph  contained in node  where  represents the set of 
subnodes of the hypergraph contained in node  and  the set of sub-hyperedges, 

• and the matrix  represents the objective function to minimize  

representing the number of objectives defined in node , . 

𝗇 < vext
𝗇 , vint

𝗇 , G𝗇, H𝗇, 𝖦𝗇, O𝗇 >

vext
𝗇 vint

𝗇
v𝗇 = vext

𝗇 ⊕ vint
𝗇

G𝗇 ∈ ℝψ𝗇×(1+∣v𝗇∣) H𝗇 ∈ ℝη𝗇×(1+∣v𝗇∣)

G𝗇 [ 1
v𝗇] ≤ 0, H𝗇 [ 1

v𝗇] = 0,

𝖦𝗇 (𝒩𝗇, ℰ𝗇) 𝗇 𝒩𝗇
𝗇 ℰ𝗇

O𝗇 ∈ ℝσ𝗇×(1+∣v𝗇∣) σ𝗇

𝗇 min 11×σ𝗇 O𝗇 [ 1
v𝗇]

Mathematic Formulation of GBOML



Appendix B

• Each hyperedge  is defined as a tuple where,  

•  is the set of nodes concerned by the hyperedge  and  the concatenation of 
all the external variables in  

•  denote the inequality constraints such that  , and 

•  denote the equality constraints such that 

𝖾 < 𝒩𝖾, G𝖾, H𝖾 >

𝒩𝖾 𝖾 v𝖾
𝒩𝖾

G𝖾 G𝖾 [ 1
v𝖾] ≤ 0

H𝖾 H𝖾 [ 1
v𝖾] = 0

Mathematic Formulation of GBOML



Appendix B
• Let us define,  

• the function  that takes a set of nodes  as input and returns the sum of the objectives 
of the nodes and their subnodes recursively, 

 

• the Boolean-valued function  that takes a hypergraph  as input and returns,  

 

• the Boolean-valued function  that takes a hypergraph  as input and returns, 

f 𝒩

f(𝒩) = ∑
𝗇∈𝒩

(11×σ𝗇 O𝗇 [ 1
v𝗇] + f(𝒩𝗇)) .

g 𝖦 = (𝒩, ℰ)
g(𝖦) = [G𝖾 [ 1

v𝖾] ≤ 0 ∀𝖾 ∈ ℰ] ∧ [(G𝗇 [ 1
v𝗇] ≤ 0 ∧ g(𝖦𝗇))∀𝗇 ∈ 𝒩] .

h 𝖦 = (𝒩, ℰ)
h(𝖦) = [H𝖾 [ 1

v𝖾] = 0 ∀𝖾 ∈ ℰ] ∧ [(H𝗇 [ 1
v𝗇] = 0 ∧ h(𝖦𝗇))∀𝗇 ∈ 𝒩] .

Mathematic Formulation of GBOML



Appendix B

• A compact representation of the problem is given as, 

min f(𝒩g)
s.t. h(𝖦g) is true

g(𝖦g) is true

Mathematic Formulation of GBOML


