
Bardhyl Miftari, Guillaume Derval and Damien Ernst

Tutorial: “An Introduction To Sizing And
Operations of Energy Systems with GBOML”

2nd International workshop on
"Open Source Modeling and Simulation of Energy Systems"

OSMSES 2023
27-29 March 2023

Speakers

• Team of Pr Damien Ernst, currently includes 15 PhD students and 5 PostDocs

• Research areas span:

• Artificial Intelligence (AI)

• Systems and control

• Applications in energy

• More specifically, recent research topics include [1]:

• Reinforcement Learning [2-4]

• Macro energy system planning (multi-carrier and global grid) [5-7]

• Energy markets (bidding strategies) [8]

• Distribution/transmission network control and regulation [9]

• Funding comes from a variety of sources, including Walloon, Belgian Federal governments and industry

SmartGrids Lab, Montefiore, University of Liège, Belgium

Speakers
SmartGrids Lab, Montefiore, University of Liège, Belgium

Pr. Damien Ernst
Full Professor

Guillaume Derval
PhD

Bardhyl Miftari
PhD Student

Speakers
SmartGrids Lab, Montefiore, University of Liège, Belgium

Table Of Content
• Notations
• Energy System Sizing and Operations
• Mixed Integer Linear Programming
• Solvers
• Modeling Tools

• Overview
• GBOML
• Examples

• Hands-on Tutorial
• Future Works
• Conclusion
• Q&A

Notations

• A scalar is noted by a lowercase or uppercase letter

• A vector is noted by a bold lowercase letter

• A vector of size is defined as

• The i-th element of a vector is noted , the indices go from to

• A matrix is defined by an uppercase bold letter

• A set is noted as

a

x

x n x[n]

x x[i] 0 n − 1

A

𝒳

Energy System Sizing and Operations
• Energy System Modeling

• Modeling: Creating a (mathematical) representation of a physical system in order to enable its study

• Energy System Modeling: Creating a representation of an energy system to answer a certain question or
achieve a certain goal

• Energy System Sizing

• Finding the optimal energy system size in order to achieve a certain goal
e.g. What are the battery capacities needed in a given system ?

• Energy System Operations

• Finding the optimal operations to perform in order to achieve a certain goal
e.g. When do I charge or discharge my battery ?

• Overall Objective
e.g. Minimizing the overall cost (investments and operation) or the environmental footprint

• Energy systems sizing and operations

• One depends on the other

The Basics

Energy System Sizing and Operations
An Example

FIGURE 1 : Installing the optimal battery capacity given a known demand and a known hourly price of electricity and
operating it.

Energy System Sizing and Operations

• Time is essential component

• Time-dependent systems

• Optimized over a time period

• Network of components

• Interconnection of independent components

• Unique topologies

Properties

Energy System Sizing and Operations

• Heuristics or iterative methods

• Genetic algorithms

• Mathematical optimization

• Expressed as optimizing a function over a feasible set

• The function and the expression of the set determines the optimization type
(quadratic, non-linear, mixed integer, […] programming)

min f(x)
s.t. x ∈ 𝒳

f 𝒳

Finding a Solution

Mixed-Integer Linear Programming

• Problem formulation:

• Linear objective function

• Feasible set is expressed as linear constraints

• Enables to deal with relatively large models

• Non-linearities can be approximated with linear-piecewise functions

min cTx
s.t. Ax ≤ b

The Basics

1

1 Abbreviation : MILP

Mixed-Integer Linear Programming
An MILP Example

Known: electricity_demand[T] Known: electricity_price[T]

electricity_exchanged[t]

state_of_charge[T]

battery_input[t]

battery_output[t]

battery_capacity

electricity_exchanged[T]

battery_input[T]
battery_output[T]

Known: battery_ price

battery_output[t] + electricity_exchanged[t] = =
electricity_demand[t] + battery_input[t]

min electricity_exchanged[t] * electricity_ price[t]+
battery_capacity * battery_ price

Energy balance:

Optimization horizon : T = 24 * 365 and t ∈ [0,T − 1]

Objective function

Mixed-Integer Linear Programming
An MILP Example

Known: electricity_demand[T]
Known: electricity_price[T]

state_of_charge[T]

battery_capacity

electricity_exchanged[T]

battery_input[T]
battery_output[T]Known: battery_ price

battery_output[t] + electricity_exchanged[t] = = electricity_demand[t] + battery_input[t]

min : electricity_exchanged[t] * electricity_ price[t] + battery_capacity * battery_ price

Energy balance:

Optimization horizon : T = 24 * 365 and t ∈ [0,T − 1]

Objective function

state_of_charge[t] ≥ 0
electricity_exchanged[t] ≥ 0
battery_output[t] ≥ 0
battery_input[t] ≥ 0
battery_capacity ≥ 0

Mixed-Integer Linear Programming
Workflow

Modeling Tool Solver

Solvers

• Commercial solvers

• Open-source solvers

• Meta-solvers

• DSP

An Overview

[10] [11] [12]

[13] [14] [15]

[16]

Modeling Tools

• Algebraic Modeling Languages (AMLs)

• Formulation close to mathematical notation

• Very expressive (e.g. can represent any mixed-integer nonlinear program)

• Often interface with multiple solvers

• Examples:

AMLs

[17]

[18] [19]

[20]

[21]

Modeling Tools

• Object-Oriented Modeling Environments (OOMEs)

• Focus on one particular application (e.g. energy system sizing and operations)

• Usually make use of predefined components that are “imported”

• Typically have advanced data processing capabilities tailored to the application

• Often open-source

• Examples:

OOMEs

[22]

[23]

[24]

[25]

[26]

[27]

Modeling Tools

• AMLs:

• Fail to expose block structure

• Do not enable reuse or do not have import-like capabilities

• OOMEs:

• Lack the expressiveness of AMLs

• Often cumbersome to add new components

• Often rely on AMLs and inherit their shortcomings

Drawbacks of AMLs and OOMEs

Modeling Tools

• The Graph-Based Optimization Modeling Language (GBOML)[27, 28] combines the strengths of
AMLs and OOMEs

• Open-Source and Stand-alone

• Can represent any MILP

• Possesses a hierarchical block structure for model encoding, exploits structure in model
generation and interface with structure exploiting solvers

• Syntax close to the mathematical notation

• Time-indexed models can be encoded easily

• Re-use and combining model components is straightforward

• Interfaces with various solvers

GBOML

Modeling Tools

• Software developed in Python:

• Few dependencies (PLY, NumPy, SciPy)

• Provides two methods to encode models (text file and Python API)

• Interfaces with several Solvers (Cplex, Gurobi, Xpress, HiGHS, CLP/CBC, DSP)

• Produces plain .csv and structured .json outputs

• Model structure is exploited on multiple levels:

• Model encoding via dedicated language constructs

• Model generation via parallelism, symbolism and multiprocessing

• Solving via structure-exploiting solvers

• Fully documented - Clear issue handling

GBOML

Modeling Tools
GBOML [29]

FIGURE 2 : GBOML working.

Modeling Tools
GBOML Hierarchical Hypergraph

Node

Node Node

Node

Node

Node

Node

Node

Parameters
Variables
Constraints
Objectives

Hyperedges
Parameters
Constraints

FIGURE 3 : Representation of one particular hierarchical hypergraph made-up of 5 nodes and 2 hyperedges. The node most to
the left and to the right both contain a hypergraph themselves.

Modeling Tools
GBOML Hierarchical Hypergraph

Node

Node Node

Node

Parameters
Internal Variables
External Variables

Constraints
Objectives

Hyperedges

FIGURE 4 : Representation of one node made-up of parameters, internal/external variables, constraints, objectives and a
hypergraph. The hyperedges connect only the external variables of different nodes.

Modeling Tools
GBOML Language

#NODE <node_name>
#PARAMETERS
<param_def>
#VARIABLES
<var_def>
#CONSTRAINTS
<constr_def>
#OBJECTIVES
<obj_def>

#HYPEREDGE <edge_name>
#PARAMETERS
<param_def>

#CONSTRAINTS
<constr_def>

#TIMEHORIZON
T = <value>;

Modeling Tools
GBOML Language

#NODE <node_name>
#PARAMETERS
<param_def>
#VARIABLES
<var_def>
#CONSTRAINTS
<constr_def>
#OBJECTIVES
<obj_def>

#HYPEREDGE <edge_name>
#PARAMETERS
<param_def>

#CONSTRAINTS
<constr_def>

#TIMEHORIZON
T = <value>;

Modeling Tools
GBOML Language

#NODE <node_name>
#PARAMETERS
<param_def>
#VARIABLES
<var_def>
#CONSTRAINTS
<constr_def>
#OBJECTIVES
<obj_def>

#HYPEREDGE <edge_name>
#PARAMETERS
<param_def>

#CONSTRAINTS
<constr_def>

#TIMEHORIZON
T = <value>;

Modeling Tools
An Example in GBOML: Battery System

FIGURE 1 : Installing the optimal battery capacity given a known demand and a known hourly price of electricity and
operating it.

Modeling Tools
An Example in GBOML: Battery System

FIGURE 1 : Installing the optimal battery capacity given a known demand and a known hourly price of electricity and
operating it.

As one node

#TIMEHORIZON T = 24*365;

#NODE Bat_House_Grid
#PARAMETERS
elec_demand = import «demand.csv»;
elec_price = import «elec_price.csv»;
bat_price = 120;

#VARIABLES
internal: electricity_exchanged[T];
internal: battery_output[T];
internal: battery_input[T];
internal: state_of_charge[T];
internal: battery_capacity;

#CONSTRAINTS
electricity_exchanged[t] >= 0;
battery_output[t] >= 0;
state_of_charge[t] >= 0;
battery_capacity >= 0;
battery_capacity >= state_of_charge[t];
battery_input[t] <= battery_capacity;
battery_output[t] <= battery_capacity;
state_of_charge[0] == state_of_charge[T-1];
state_of_charge[t+1] == state_of_charge[t]+battery_input[t]-battery_output[t];
battery_output[t]+electricity_exchanged[t] == elec_demand[t]+battery_input[t];

#OBJECTIVES
min: electricity_exchanged[t]*elec_price[t];
min: battery_capacity*bat_price;

Modeling Tools
An Example in GBOML : Battery

As a three node
hypergraph

FIGURE 1 : Installing the optimal battery capacity given a known demand and a known hourly price of electricity and
operating it.

#TIMEHORIZON T = 24*365;

#NODE Battery
#PARAMETERS

bat_price = 120;
#VARIABLES

external: battery_output[T];
external: battery_input[T];
internal: state_of_charge[T];
internal: battery_capacity;

#CONSTRAINTS
battery_output[t] >= 0;
state_of_charge[t] >= 0;
battery_capacity >= 0;
battery_capacity >= state_of_charge[t];
battery_input[t] <= battery_capacity;
battery_output[t] <= battery_capacity;
state_of_charge[0] == state_of_charge[T-1];
state_of_charge[t+1] == state_of_charge[t]
 + battery_input[t]
 - battery_output[t];

#OBJECTIVES
min: battery_capacity*bat_price;  

#NODE Grid
#PARAMETERS

elec_price = import «elec_price.csv»;
#VARIABLES

external: electricity_exchanged[T];
#CONSTRAINTS

electricity_exchanged[t]>=0;
#OBJECTIVES

min: electricity_exchanged[t]*elec_price[t];

#NODE House
#PARAMETERS

elec_demand = import «demand.csv»;
#VARIABLES

external:demand[T];
#CONSTRAINTS

demand[t] == elec_demand[t];

#HYPEREDGE Interconnection
#CONSTRAINTS

Battery.battery_output[t]+Grid.electricity_exchanged[t]
== House.demand[t]+Battery.battery_input[t];

Modeling Tools
An Example in GBOML: Battery - PV Panels

Adding a new node

FIGURE 5 : Installing the optimal battery capacity and PV capacity given a known demand and a known hourly price of
electricity and operating it.

#TIMEHORIZON T = 24*365;

#NODE Battery = import Battery from ”house_bat_grid_3_node.txt”; 

#NODE Grid = import Grid from ”house_bat_grid_3_node.txt”; 

#NODE House = import House from ”house_bat_grid_3_node.txt”; 

#NODE PV_panels
#PARAMETERS
cost = 110;
irradiance = import ”irradiance.csv”;

#VARIABLES
external: electricity_prod[T];
internal: capacity;

#CONSTRAINTS
electricity_prod[t] == irradiance[t]*capacity;

#OBJECTIVES
 min: capacity*cost;

#HYPEREDGE Interconnection
#CONSTRAINTS
Battery.battery_output[t]+Grid.electricity_exchanged[t]+PV_panels.electricity_prod[t]
== House.demand[t]+Battery.battery_input[t];

Modeling Tools
An Example in GBOML: Renewable Energy Community

FIGURE 6 : Installing the optimal battery capacity and PV capacity in a renewable energy community

#NODE Prosumer
#PARAMETERS
elec_demand = import ”elec.csv”;
cost = 110;
irradiance = import ”irradiance.csv”

#NODE House = import Grid from ”house_bat_grid_3_node.txt“ with
elec_demand = Prosumer.elec_demand;

#NODE PV = import PV_panels from ”house_bat_grid_pv.txt” with
cost = Prosumer.cost;
irradiance = Prosumer.cost;

#VARIABLES
external : pv_prod[T] <- PV.electricity_prod[T];
external : demand[T] <- House.demand[T];

#NODE Bat_consumer
#PARAMETERS
cost_bat = 110;
elec_demand = import ”elec_demand.csv”;

#NODE House = import House from ”house_bat_grid_3_node.txt” with
elec_demand = Bat_consumer.elec_demand;

#NODE Battery = import Battery from ”house_bat_grid_pv.txt” with
bat_price = Prosumer.cost_bat;

#VARIABLES
internal : bat_input[T] <- Battery.battery_input[T];
external : bat_output[T] <- Battery.battery_output[T];
internal : energy_demand[T] <- House.demand[T];
external : demand[T];

#CONSTRAINTS
 demand[t] == bat_input[t] + energy_demand[t];

Modeling Tools
An Example in GBOML: Renewable Energy Community

FIGURE 6 : Installing the optimal battery capacity and PV capacity in a renewable energy community

#TIMEHORIZON T = 24*365;

#NODE Bat_consumer = import Bat-consumer from ”bat_consumer.txt”;

#NODE Prosumer1 = import Prosumer from ”prosumer.txt”;

#NODE Prosumer2 = import Prosumer from ”prosumer.txt”;

#NODE Grid = import Grid from ”house_bat_grid_3_node.txt”; 

#HYPEREDGE Interconnection
#CONSTRAINTS
Grid.electricity_exchange[t]
+ Bat_consumer.bat_output[t]
+ Prosumer1.pv_prod[t]
+ Prosumer1.pv_prod[t] == Prosumer1.demand[t]
 + Prosumer2.demand[t]
 + Bat_consumer.demand[t];

Modeling Tools
GBOML Output

Modeling Tools
GBOML Performance[29]

FIGURE 7 : Time taken to generate the matrices in different modeling tools for a growing time horizon for the remote hub [5, 29]

Tutorial
Hands-on

http://tiny.cc/gboml_tutorial

http://tiny.cc/gboml_tutorial

Future Works

• In terms of tool :

• Sensitivity Analysis in GBOML

• Augmenting the python interface

• Energy templates

• Finding optimal partitions for structure exploiting methods

• In terms of energy modeling:

• Modeling the belgian energy system

• Modeling renewable energy communities

• Modeling remote renewable energy hubs

GBOML and in the Lab

Conclusion

•Explained the sizing and operations of energy system

•Overview of the resolution process

• Introduced GBOML, a modeling tool for supply chain management and energy system sizing and
operations

•Easy to use and install

•Allows model combination and re-use

•Enables structure encoding

•Fast

• Interfaces with structure exploiting algorithms

• Illustrated several examples

GBOML

Acknowledgments

• We would like to thank

• SPF Economie (Federal government of Belgium)[30] for their financial support through the
INTEGRATION project

• The Walloon Region for their financial support through the INTEGCER project on renewable energy
communities

• Mathias Berger for his work on a previous version of these slides

• Amina Benzerga for her feedback on this presentation

• OSMSES 2023 for the opportunity of presenting our work and the organization

Articles

[1] Group publication: http://blogs.ulg.ac.be/damien-ernst

[2] Adrien Bolland et al. “Jointly Learning Environments and Control Policies with Projected Stochastic Gradient Ascent“, in Journal of Artificial Intelligence Research,
2022. https://arxiv.org/abs/2006.01738

[3] Gaspard Lambrechts et al. “Recurrent networks, hidden states and beliefs in partially observable environments“, Transactions on Machine Learning Research
2022. https://arxiv.org/abs/2208.03520

[4] Pascal Leroy et al. "Value-based CTDE Methods in Symmetric Two-team Markov Game: from Cooperation to Team Competition“, 2022. https://arxiv.org/abs/
2211.11886

[5] Mathias Berger et al., “Remote Renewable Hubs for Carbon-Neutral Synthetic Fuel Production”, in Frontiers in Energy Research 9 (2021), p.200. DOI 10.3389/
fenrg.2021.671279. https://www.frontiersin.org/article/10.3389/fenrg.2021.671279

[6] Victor Dachet et al. “Towards CO2 valorization in a multi remote renewable energy hub framework“, 2023. https://orbi.uliege.be/handle/2268/301033

[7] Antoine Dubois et al. “Multi-objective near-optimal necessary conditions for multi-sectoral planning“, 2023. https://arxiv.org/abs/2302.12654

[8] Thibault Théate et al. “An application of deep reinforcement learning to algorithmic trading“, Expert Systems with Applications 2021. https://arxiv.org/abs/
2004.06627

[9] Amina Benzerga et al. “Optimal Connection Phase Selection of Residential Distributed Energy Resources and its Impact on Aggregated Demand“. https://
arxiv.org/abs/2207.05059

The Lab

http://blogs.ulg.ac.be/damien-ernst
https://arxiv.org/abs/2006.01738
https://arxiv.org/abs/2208.03520
https://arxiv.org/abs/2211.11886
https://arxiv.org/abs/2211.11886
https://www.frontiersin.org/article/10.3389/fenrg.2021.671279
https://orbi.uliege.be/handle/2268/301033
https://arxiv.org/abs/2302.12654
https://arxiv.org/abs/2004.06627
https://arxiv.org/abs/2004.06627
https://arxiv.org/abs/2207.05059
https://arxiv.org/abs/2207.05059

References
[10] Gurobi Optimization, LLC. All Rights Reserved. https://www.gurobi.com/

[11] FICO® Xpress Optimization. https://www.fico.com/en/products/fico-xpress-optimization

[12] IBM ILOG CPLEX Optimizer. https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer

[13] SCIP, Solving Constraint Integer Programs. https://www.scipopt.org/

[14] HiGHS - high performance software for linear optimization. https://highs.dev/

[15] CBC/CLP from COIN-OR Foundation, Inc..https://www.coin-or.org/

[16] DSP, Argonne National Laboratory. https://github.com/Argonne-National-Laboratory/DSP

[17] The General Algebraic Modeling Language, GAMS. https://www.gams.com/

[18] A Mathematical Programming Language, AMPL. https://ampl.com/

[19] Pulp. https://github.com/coin-or/pulp

[20] Pyomo. http://www.pyomo.org/

[21] PyPSA, Python for Power System Analysis. https://pypsa.org/

[22] Calliope. Calliope: a multi-scale energy systems modelling framework. https://calliope.readthedocs.io/en/stable/#

[23] Plexos, The Energy Analytics and Decision Platform for all Systems. https://www.energyexemplar.com/plexos

[24] Balmorel, http://www.balmorel.com/

[25] oemof.solph, https://github.com/oemof/oemof-solph

[26] The Dispa-SET model. http://www.dispaset.eu/en/latest/

[27] Bardhyl Miftari et al., ”GBOML: Graph-Based Optimization Modeling Language”, https://joss.theoj.org/papers/10.21105/joss.04158, 2022

[28] Bardhyl Miftari et al., “GBOML repository”, https://gitlab.uliege.be/smart_grids/public/gboml, 2021-23

[29] Bardhyl Miftari et al., ”GBOML: a Structure-exploiting Optimization Modeling Language in Python”, https://orbi.uliege.be/handle/2268/296930, 2022

[30] SPF Economie, Region Wallonne Belgique. https://economie.fgov.be/fr

https://www.gurobi.com/
https://www.fico.com/en/products/fico-xpress-optimization
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
https://www.scipopt.org/
https://highs.dev/
https://www.coin-or.org/
https://github.com/Argonne-National-Laboratory/DSP
https://www.gams.com/
https://ampl.com/
https://github.com/coin-or/pulp
http://www.pyomo.org/
https://pypsa.org/
https://calliope.readthedocs.io/en/stable/#
https://www.energyexemplar.com/plexos
http://www.balmorel.com/
https://github.com/oemof/oemof-solph
http://www.dispaset.eu/en/latest/
https://joss.theoj.org/papers/10.21105/joss.04158
https://gitlab.uliege.be/smart_grids/public/gboml
https://orbi.uliege.be/handle/2268/296930
https://economie.fgov.be/fr

Appendix

Appendix A
GBOML Detailed Inner-working

FIGURE 8 : GBOML detailed inner-workings [29]

Appendix B

• Each node can be defined as a tuple where,

• and respectively denote the external and internal vector variables such as their
concatenation is denoted

• and denote the inequality and equality constraints

such that

• is the hypergraph contained in node where represents the set of
subnodes of the hypergraph contained in node and the set of sub-hyperedges,

• and the matrix represents the objective function to minimize

representing the number of objectives defined in node , .

𝗇 < vext
𝗇 , vint

𝗇 , G𝗇, H𝗇, 𝖦𝗇, O𝗇 >

vext
𝗇 vint

𝗇
v𝗇 = vext

𝗇 ⊕ vint
𝗇

G𝗇 ∈ ℝψ𝗇×(1+∣v𝗇∣) H𝗇 ∈ ℝη𝗇×(1+∣v𝗇∣)

G𝗇 [1
v𝗇] ≤ 0, H𝗇 [1

v𝗇] = 0,

𝖦𝗇 (𝒩𝗇, ℰ𝗇) 𝗇 𝒩𝗇
𝗇 ℰ𝗇

O𝗇 ∈ ℝσ𝗇×(1+∣v𝗇∣) σ𝗇

𝗇 min 11×σ𝗇 O𝗇 [1
v𝗇]

Mathematic Formulation of GBOML

Appendix B

• Each hyperedge is defined as a tuple where,

• is the set of nodes concerned by the hyperedge and the concatenation of
all the external variables in

• denote the inequality constraints such that , and

• denote the equality constraints such that

𝖾 < 𝒩𝖾, G𝖾, H𝖾 >

𝒩𝖾 𝖾 v𝖾
𝒩𝖾

G𝖾 G𝖾 [1
v𝖾] ≤ 0

H𝖾 H𝖾 [1
v𝖾] = 0

Mathematic Formulation of GBOML

Appendix B
• Let us define,

• the function that takes a set of nodes as input and returns the sum of the objectives
of the nodes and their subnodes recursively,

• the Boolean-valued function that takes a hypergraph as input and returns,

• the Boolean-valued function that takes a hypergraph as input and returns,

f 𝒩

f(𝒩) = ∑
𝗇∈𝒩

(11×σ𝗇 O𝗇 [1
v𝗇] + f(𝒩𝗇)) .

g 𝖦 = (𝒩, ℰ)
g(𝖦) = [G𝖾 [1

v𝖾] ≤ 0 ∀𝖾 ∈ ℰ] ∧ [(G𝗇 [1
v𝗇] ≤ 0 ∧ g(𝖦𝗇))∀𝗇 ∈ 𝒩] .

h 𝖦 = (𝒩, ℰ)
h(𝖦) = [H𝖾 [1

v𝖾] = 0 ∀𝖾 ∈ ℰ] ∧ [(H𝗇 [1
v𝗇] = 0 ∧ h(𝖦𝗇))∀𝗇 ∈ 𝒩] .

Mathematic Formulation of GBOML

Appendix B

• A compact representation of the problem is given as,

min f(𝒩g)
s.t. h(𝖦g) is true

g(𝖦g) is true

Mathematic Formulation of GBOML

