Dendric words and morphisms

France Gheeraert

Introduction

Words

Concept

Examples

An alphabet $(\mathcal{A}, \mathcal{B})$ is a finite set of	$\{0,1\}$
letters (a, b, ℓ, \ldots).	

Words

Concept	Examples
An alphabet $(\mathcal{A}, \mathcal{B})$ is a finite set of letters (a, b, ℓ, \ldots).	$\{0,1\}$
A (finite) word (w, u, \ldots) is a finite sequence of letters. The set of finite words on \mathcal{A} is \mathcal{A}^{*}.	$\varepsilon, 10,010,01001$

Words

Concept

Examples

An alphabet $(\mathcal{A}, \mathcal{B})$ is a finite set of letters (a, b, ℓ, \ldots).	$\{0,1\}$
A (finite) word (w, u, \ldots) is a finite sequence of letters. The set of finite words on \mathcal{A} is \mathcal{A}^{*}.	$\varepsilon, 10,010,01001$
The length of a word w is $\|w\|$.	$\|\varepsilon\|=0,\|010\|=3$

Words

Concept

Examples

An alphabet $(\mathcal{A}, \mathcal{B})$ is a finite set of letters (a, b, ℓ, \ldots).	$\{0,1\}$
A (finite) word (w, u, \ldots) is a finite sequence of letters. The set of finite words on \mathcal{A} is \mathcal{A}^{*}.	$\varepsilon, 10,010,01001$
The length of a word w is $\|w\|$.	$\|\varepsilon\|=0,\|010\|=3$
A bi-infinite word (x, y, \ldots) is an el- ement of $\mathcal{A}^{\mathbb{Z}}$	$\omega 011100.010 \cdots$, $\omega(010) .(010)^{\omega}$

Factors

- A factor of a word is a finite consecutive subsequence.

Factors

- A factor of a word is a finite consecutive subsequence.
- The language of x, denoted $\mathcal{L}(x)$, is the set of factors of x.

Factors

- A factor of a word is a finite consecutive subsequence.
- The language of x, denoted $\mathcal{L}(x)$, is the set of factors of x.
- If $w=u v$, then u is a prefix of w and v is a suffix of w.

Factors

- A factor of a word is a finite consecutive subsequence.
- The language of x, denoted $\mathcal{L}(x)$, is the set of factors of x.
- If $w=u v$, then u is a prefix of w and v is a suffix of w.

Examples:

- $\varepsilon, 10$ and 010 are factors of 01001

Factors

- A factor of a word is a finite consecutive subsequence.
- The language of x, denoted $\mathcal{L}(x)$, is the set of factors of x.
- If $w=u v$, then u is a prefix of w and v is a suffix of w.

Examples:

- $\varepsilon, 10$ and 010 are factors of 01001

Factors

- A factor of a word is a finite consecutive subsequence.
- The language of x, denoted $\mathcal{L}(x)$, is the set of factors of x.
- If $w=u v$, then u is a prefix of w and v is a suffix of w.

Examples:

- $\varepsilon, 10$ and 010 are factors of 01001

Factors

- A factor of a word is a finite consecutive subsequence.
- The language of x, denoted $\mathcal{L}(x)$, is the set of factors of x.
- If $w=u v$, then u is a prefix of w and v is a suffix of w.

Examples:

- $\varepsilon, 10$ and 010 are factors of 01001
- $\varepsilon, 0,1,00,01,10,11, \ldots$ are in $\mathcal{L}(\cdots 011100.010 \cdots)$

Factors

- A factor of a word is a finite consecutive subsequence.
- The language of x, denoted $\mathcal{L}(x)$, is the set of factors of x.
- If $w=u v$, then u is a prefix of w and v is a suffix of w.

Examples:

- $\varepsilon, 10$ and 010 are factors of 01001
- $\varepsilon, 0,1,00,01,10,11, \ldots$ are in $\mathcal{L}(\cdots 011100.010 \cdots)$
- ε and 010 are also prefixes of 01001 and ε is a suffix

Left and right extensions

$\ldots 011100.010110101101 \ldots$

Left and right extensions

...011100.010110101101...

Left and right extensions

...011100.010110101101...

$$
\begin{aligned}
& \text { Definition } \\
& \text { Let } x \in \mathcal{A}^{\mathbb{Z}} \text { and } w \in \mathcal{L}(x) \\
& E_{x}^{L}(w)=\{a \in \mathcal{A} \mid a w \in \mathcal{L}(x)\}
\end{aligned}
$$

Example:

$$
E^{L}(110)=\{1,0\}
$$

Left and right extensions

...011100.010110101101...

Definition

Let $x \in \mathcal{A}^{\mathbb{Z}}$ and $w \in \mathcal{L}(x)$.

$$
E_{x}^{L}(w)=\{a \in \mathcal{A} \mid a w \in \mathcal{L}(x)\}, \quad E_{x}^{R}(w)=\{b \in \mathcal{A} \mid w b \in \mathcal{L}(x)\}
$$

Example:

$$
E^{L}(110)=\{1,0\}, \quad E^{R}(110)=\{0,1\}
$$

Left and right extensions

...011100.010110101101...

Definition

Let $x \in \mathcal{A}^{\mathbb{Z}}$ and $w \in \mathcal{L}(x)$.

$$
E_{x}^{L}(w)=\{a \in \mathcal{A} \mid a w \in \mathcal{L}(x)\}, \quad E_{x}^{R}(w)=\{b \in \mathcal{A} \mid w b \in \mathcal{L}(x)\}
$$

$$
E_{x}(w)=\left\{(a, b) \in E_{x}^{L}(w) \times E_{x}^{R}(w) \mid a w b \in \mathcal{L}(x)\right\}
$$

Example:

$$
\begin{gathered}
E^{L}(110)=\{1,0\}, \quad E^{R}(110)=\{0,1\}, \\
E(110) \supseteq\{(1,0),(0,1)\}
\end{gathered}
$$

Extension graph

Definition

The extension graph of $w \in \mathcal{L}(x)$ is the bipartite graph $\mathcal{E}_{x}(w)$ with vertices $E_{x}^{L}(w) \sqcup E_{x}^{R}(w)$ and edges $E_{x}(w)$.

Example:

$$
{ }^{\omega}(010) \cdot(010)^{\omega}
$$

$\mathcal{E}(\varepsilon)$

Dendric words

Definition (Berthé et al. '15)
A word $w \in \mathcal{L}(x)$ is dendric (in x) if $\mathcal{E}_{x}(w)$ is a tree.

Dendric words

Definition (Berthé et al. '15)
A word $w \in \mathcal{L}(x)$ is dendric (in x) if $\mathcal{E}_{x}(w)$ is a tree.
A bi-infinite word x is dendric if all its factors are dendric.

Dendric words

Definition (Berthé et al. '15)

A word $w \in \mathcal{L}(x)$ is dendric (in x) if $\mathcal{E}_{x}(w)$ is a tree.
A bi-infinite word x is dendric if all its factors are dendric.
Definition (Dolce, Perrin '19)
A bi-infinite word x is eventually dendric if all its long enough factors are dendric.

Dendric words

Definition (Berthé et al. '15)
A word $w \in \mathcal{L}(x)$ is dendric (in x) if $\mathcal{E}_{x}(w)$ is a tree.
A bi-infinite word x is dendric if all its factors are dendric.
Definition (Dolce, Perrin '19)
A bi-infinite word x is eventually dendric if all its long enough factors are dendric.

Examples:
The words $\cdots 011100.010110101101 \cdots$ and ${ }^{\omega}(010) .(010)^{\omega}$ are not dendric.
But ${ }^{\omega}(010) .(010)^{\omega}$ is eventually dendric.

First restriction

For the empty word:

- left extensions = all the letters
- right extensions $=$ all the letters
- bi-extensions $=$ the factors of length 2

First restriction

For the empty word:

- left extensions $=$ all the letters $=$ left vertices in $\mathcal{E}(\varepsilon)$
- right extensions $=$ all the letters $=$ right vertices in $\mathcal{E}(\varepsilon)$
- bi-extensions $=$ the factors of length $2=$ edges in $\mathcal{E}(\varepsilon)$

First restriction

For the empty word:

- left extensions $=$ all the letters $=$ left vertices in $\mathcal{E}(\varepsilon)$
- right extensions $=$ all the letters $=$ right vertices in $\mathcal{E}(\varepsilon)$
- bi-extensions $=$ the factors of length $2=$ edges in $\mathcal{E}(\varepsilon)$

So if ε is dendric,

$$
\#\left(\mathcal{L}(x) \cap \mathcal{A}^{2}\right)=2 \times \# \mathcal{A}-1
$$

or, in other words,
$\#\left(\mathcal{L}(x) \cap \mathcal{A}^{2}\right)-\#\left(\mathcal{L}(x) \cap \mathcal{A}^{1}\right)=\#\left(\mathcal{L}(x) \cap \mathcal{A}^{1}\right)-\#\left(\mathcal{L}(x) \cap \mathcal{A}^{0}\right)$.

Factor complexity

The factor complexity of $x \in \mathcal{A}^{\mathbb{Z}}$ is the function

$$
p_{x}(n): \mathbb{N} \rightarrow \mathbb{N}, \quad n \mapsto \#\left(\mathcal{L}(x) \cap \mathcal{A}^{n}\right) .
$$

Factor complexity

The factor complexity of $x \in \mathcal{A}^{\mathbb{Z}}$ is the function

$$
p_{x}(n): \mathbb{N} \rightarrow \mathbb{N}, \quad n \mapsto \#\left(\mathcal{L}(x) \cap \mathcal{A}^{n}\right)
$$

Proposition (Berthé et al., Dolce, Perrin)
If $x \in \mathcal{A}^{\mathbb{Z}}$ is dendric, then

$$
p_{x}(n)=(\# \mathcal{A}-1) n+1
$$

If $x \in \mathcal{A}^{\mathbb{Z}}$ is eventually dendric, then, for all large enough n,

$$
p_{x}(n)=S n+C
$$

Definition

Definition

A morphism is a monoid morphism $\sigma: \mathcal{A}^{*} \rightarrow \mathcal{B}^{*}$, i.e. for any $u, v \in \mathcal{A}^{*}$,

$$
\sigma(u v)=\sigma(u) \sigma(v)
$$

Definition

Definition

A morphism is a monoid morphism $\sigma: \mathcal{A}^{*} \rightarrow \mathcal{B}^{*}$, i.e. for any $u, v \in \mathcal{A}^{*}$,

$$
\sigma(u v)=\sigma(u) \sigma(v)
$$

Example:

$$
\sigma:\{0,1,2\}^{*} \rightarrow\{0,1\}^{*},\left\{\begin{aligned}
0 & \mapsto 001 \\
1 & \mapsto 10 \\
2 & \mapsto 0
\end{aligned}\right.
$$

Definition

Definition

A morphism is a monoid morphism $\sigma: \mathcal{A}^{*} \rightarrow \mathcal{B}^{*}$, i.e. for any $u, v \in \mathcal{A}^{*}$,

$$
\sigma(u v)=\sigma(u) \sigma(v)
$$

Example:

$$
\sigma:\{0,1,2\}^{*} \rightarrow\{0,1\}^{*},\left\{\begin{array}{l}
0 \mapsto 001 \\
1 \mapsto 10 \\
2 \mapsto 0
\end{array} \quad \sigma(\cdots 1.20 \cdots)=\cdots 10.0001 \cdots\right.
$$

Definition

Definition

A morphism is a monoid morphism $\sigma: \mathcal{A}^{*} \rightarrow \mathcal{B}^{*}$, i.e. for any $u, v \in \mathcal{A}^{*}$,

$$
\sigma(u v)=\sigma(u) \sigma(v)
$$

Example:
$\sigma:\{0,1,2\}^{*} \rightarrow\{0,1\}^{*},\left\{\begin{array}{l}0 \\ 1 \\ 1 \\ 2\end{array}>00010 \quad \sigma(\cdots 1.20 \cdots)=\cdots 10.0001 \cdots\right.$
Assumptions: the image alphabet is minimal and the morphism is non erasing.

Questions

If x is (eventually) dendric, what can we say about $\sigma(x)$?

Questions

If x is (eventually) dendric, what can we say about $\sigma(x)$?

- If x is dendric, what can we say about the factor complexity of $\sigma(x)$?

Questions

If x is (eventually) dendric, what can we say about $\sigma(x)$?

- If x is dendric, what can we say about the factor complexity of $\sigma(x)$?
If x is eventually dendric, what can we say about the factor complexity of $\sigma(x)$?

Questions

If x is (eventually) dendric, what can we say about $\sigma(x)$?

- If x is dendric, what can we say about the factor complexity of $\sigma(x)$?
If x is eventually dendric, what can we say about the factor complexity of $\sigma(x)$?
- If x is dendric, under what conditions is $\sigma(x)$ dendric?

Factor complexity

Intuition

$$
\sigma:\left\{\begin{array}{l}
0 \mapsto 001 \\
1 \mapsto 10 \\
2 \mapsto 0
\end{array}\right.
$$

$$
x: \quad . .2 .001210 \ldots
$$
 $$
\sigma(x): \ldots 0.00100110010001 \ldots
$$

Intuition

$$
\sigma:\left\{\begin{array}{lr}
0 \mapsto 001 \\
1 & \mapsto 10 \\
2 \mapsto 0
\end{array} \quad \sigma(x): \quad \ldots 2.001210 \ldots 0.00100110010001 \ldots\right.
$$

Intuition

$$
\sigma:\left\{\begin{array}{lr}
0 & \mapsto 001 \\
1 \mapsto 10 \\
2 \mapsto 0
\end{array} \quad \sigma: \quad \ldots 2.001210 \ldots\right.
$$

0010 appears in

- $\sigma(00)$ after 0 letter

Intuition

$$
\sigma:\left\{\begin{array}{lr}
0 \mapsto 001 & x: \\
1 & \mapsto 10 \\
2 \mapsto 0
\end{array} \quad \sigma(x): \quad \ldots 0.00100110010001 \ldots\right.
$$

0010 appears in

- $\sigma(00)$ after 0 letter

Intuition

$$
\sigma:\left\{\begin{array}{lr}
0 & \mapsto 001 \\
1 & \mapsto 10 \\
2 \mapsto 0
\end{array} \quad \sigma(x): \quad \ldots 2.001210 \ldots\right.
$$

0010 appears in

- $\sigma(00)$ after 0 letter
- $\sigma(121)$ after 1 letter

Intuition

$$
\sigma:\left\{\begin{array}{lr}
0 & \mapsto 001 \\
1 & \mapsto 10 \\
2 \mapsto 0
\end{array} \quad \sigma(x): \quad \ldots 2.001210 \ldots\right.
$$

0010 appears in

- $\sigma(00)$ after 0 letter
- $\sigma(121)$ after 1 letter

Definition

Definition

A covering of $u \in \mathcal{B}^{n}$ is a pair $(w, k) \in \mathcal{L}(x) \times \mathbb{Z}_{\geq 0}$ where $u=\sigma(w)_{[k+1, k+n]}$ and w is minimal, i.e.

$$
k+1 \leq\left|\sigma\left(w_{1}\right)\right| \quad \text { and } \quad k+n \geq\left|\sigma\left(w_{[1,|w|[}\right)\right|+1
$$

Definition

Definition

A covering of $u \in \mathcal{B}^{n}$ is a pair $(w, k) \in \mathcal{L}(x) \times \mathbb{Z}_{\geq 0}$ where $u=\sigma(w)_{[k+1, k+n]}$ and w is minimal, i.e.

$$
k+1 \leq\left|\sigma\left(w_{1}\right)\right| \quad \text { and } \quad k+n \geq\left|\sigma\left(w_{[1,|w|[}\right)\right|+1
$$

Proposition

If the set of coverings of words of length n is denoted $C_{x, \sigma}(n)$, we have

$$
p_{\sigma(x)}(n) \leq \# C_{x, \sigma}(n)
$$

Link between $C_{X, \sigma}(n)$ and $C_{X, \sigma}(n+1)$

$$
\sigma:\left\{\begin{array}{lrl}
0 & \mapsto 001 \\
1 & \mapsto 10 \\
2 & \mapsto 0
\end{array} \quad \sigma(x): \ldots 2.001210 \ldots 0.0000010010001 \ldots\right.
$$

Link between $C_{x, \sigma}(n)$ and $C_{x, \sigma}(n+1)$

$$
\sigma:\left\{\begin{array}{lrl}
0 & \mapsto 001 \\
1 & \mapsto 10 \\
2 & \mapsto 0
\end{array} \quad \sigma(x): \ldots 2.001210 \ldots 0.000100110010001 \ldots\right.
$$

$(00,0)$ is a covering of 0010

Link between $C_{x, \sigma}(n)$ and $C_{x, \sigma}(n+1)$

$$
\sigma:\left\{\begin{array}{lrl}
0 & \mapsto 001 \\
1 & \mapsto 10 \\
2 & \mapsto 0
\end{array} \quad \sigma(x): \ldots 2.001210 \ldots 0.00100110010001 \ldots\right.
$$

$(00,0)$ is a covering of 0010 and of 00100

Link between $C_{X, \sigma}(n)$ and $C_{X, \sigma}(n+1)$

$$
\sigma:\left\{\begin{array}{lrl}
0 & \mapsto 001 \\
1 & \mapsto 10 \\
2 & \mapsto 0
\end{array} \quad \sigma(x): \ldots 2.001210 \ldots 0.00100110010001 \ldots\right.
$$

- $(00,0)$ is a covering of 0010 and of 00100
- $(121,1)$ is a covering of 0010 but $(121,1) \notin C_{x, \sigma}(5)$

Link between $C_{X, \sigma}(n)$ and $C_{X, \sigma}(n+1)$

$$
\sigma:\left\{\begin{array}{lrl}
0 & \mapsto 001 \\
1 & \mapsto 10 \\
2 & \mapsto 0
\end{array} \quad \sigma(x): \ldots 2.001210 \ldots 0.00000110010001 \ldots\right.
$$

- $(00,0)$ is a covering of 0010 and of 00100
- $(121,1)$ is a covering of 0010 but $(121,1) \notin C_{x, \sigma}(5)$
- $(1210,1)$ is a covering of 00100

Link between $C_{x, \sigma}(n)$ and $C_{x, \sigma}(n+1)$

$$
\sigma:\left\{\begin{array}{lr}
0 & \mapsto 001 \\
1 & \mapsto 10 \\
2 & \mapsto 0
\end{array} \quad \sigma(x): \ldots 2.001210 \ldots 0.00100110010001 \ldots\right.
$$

- $(00,0)$ is a covering of 0010 and of 00100
- $(121,1)$ is a covering of 0010 but $(121,1) \notin C_{x, \sigma}(5)$
- $(1210,1)$ is a covering of 00100

We have

$$
\# C_{x, \sigma}(n+1)-\# C_{x, \sigma}(n)=\sum_{w \in W_{n}}\left(\# E_{x}^{R}(w)-1\right)
$$

where $W_{n}=\left\{w \in \mathcal{L}(x)| | \sigma\left(w_{[2,|w|]}\right)|<n \leq|\sigma(w)|\}\right.$.

Number of coverings

Proposition

- If $x \in \mathcal{A}^{\mathbb{Z}}$ is eventually dendric, then there exists $C \in \mathbb{Z}$ such that, for all n large enough,

$$
\# C_{x, \sigma}(n)=p_{x}(n)+C
$$

Number of coverings

Proposition

- If $x \in \mathcal{A}^{\mathbb{Z}}$ is eventually dendric, then there exists $C \in \mathbb{Z}$ such that, for all n large enough,

$$
\# C_{x, \sigma}(n)=p_{x}(n)+C
$$

- If $x \in \mathcal{A}^{\mathbb{Z}}$ is dendric, then, for all $n \geq 1$,

$$
\# C_{x, \sigma}(n)=\sum_{a \in \mathcal{A}}|\sigma(a)|+(\# \mathcal{A}-1)(n-1)
$$

Factor complexity and alphabet sizes

Theorem

If x is eventually dendric and σ is non-erasing, then

$$
p_{\sigma(x)}(n) \leq p_{x}(n)+C
$$

for some $C \in \mathbb{N}$.

Factor complexity and alphabet sizes

$$
\begin{aligned}
& \text { Theorem } \\
& \text { If } x \text { is eventually dendric and } \sigma \text { is non-erasing, then } \\
& \qquad p_{\sigma(x)}(n) \leq p_{x}(n)+C \\
& \text { for some } C \in \mathbb{N} \text {. } \\
& \text { Corollary } \\
& \text { If } x \in \mathcal{A}^{\mathbb{Z}} \text { and } \sigma(x) \in \mathcal{B}^{\mathbb{Z}} \text { are dendric, then } \# \mathcal{B} \leq \# \mathcal{A} .
\end{aligned}
$$

Preserving dendricity

Unary alphabets

Let $\sigma: \mathcal{A}^{*} \rightarrow \mathcal{B}^{*}$ be a morphism and $x \in \mathcal{A}^{\mathbb{Z}}$.

Unary alphabets

Let $\sigma: \mathcal{A}^{*} \rightarrow \mathcal{B}^{*}$ be a morphism and $x \in \mathcal{A}^{\mathbb{Z}}$.

- If $\mathcal{B}=\{a\}$, then $\sigma(x)=\omega_{a}$. a^{ω}
\longrightarrow always dendric

Unary alphabets

Let $\sigma: \mathcal{A}^{*} \rightarrow \mathcal{B}^{*}$ be a morphism and $x \in \mathcal{A}^{\mathbb{Z}}$.

- If $\mathcal{B}=\{a\}$, then $\sigma(x)=\omega_{a . a^{\omega}}$
\longrightarrow always dendric
- If $\mathcal{A}=\{a\}$ and $\sigma(a)=v$, then $\sigma(x)={ }^{\omega}{ }_{V} \cdot v^{\omega}$
\longrightarrow dendric iff $\# \mathcal{B}=1$

Unary alphabets

Let $\sigma: \mathcal{A}^{*} \rightarrow \mathcal{B}^{*}$ be a morphism and $x \in \mathcal{A}^{\mathbb{Z}}$.

- If $\mathcal{B}=\{a\}$, then $\sigma(x)=\omega_{a . a^{\omega}}$
\longrightarrow always dendric
- If $\mathcal{A}=\{a\}$ and $\sigma(a)=v$, then $\sigma(x)={ }^{\omega}{ }_{V} \cdot v^{\omega}$
\longrightarrow dendric iff $\# \mathcal{B}=1$

From now on, we assume that the alphabets are of size at least 2 .

Definition

In general, it is difficult to know if $\sigma(x)$ is dendric, even if we know that x is dendric.

Definition

A morphism $\sigma: \mathcal{A}^{*} \rightarrow \mathcal{B}^{*}$ is dendric preserving if, for all dendric $x \in \mathcal{A}^{\mathbb{Z}}, \sigma(x)$ is dendric.

What are the dendric preserving morphisms?

Bijective codings

$$
\sigma:\{a, b, c\}^{*} \rightarrow\{b, 0,1\}^{*}, \quad\left\{\begin{array}{l}
a \mapsto b \\
b \mapsto 0 \\
c \mapsto 1
\end{array}\right\}
$$

Arnoux-Rauzy morphisms

The Arnoux-Rauzy morphisms are defined by

$$
\alpha_{\ell}^{L}:\left\{\begin{array}{l}
\ell \mapsto \ell \\
a \mapsto \ell a \quad \text { if } a \neq \ell
\end{array} \quad \alpha_{\ell}^{R}:\left\{\begin{array}{l}
\ell \mapsto \ell \\
a \mapsto a \ell \quad \text { if } a \neq \ell
\end{array}\right.\right.
$$

for any letter ℓ.

Arnoux-Rauzy morphisms

The Arnoux-Rauzy morphisms are defined by

$$
\alpha_{\ell}^{L}:\left\{\begin{array}{l}
\ell \mapsto \ell \\
a \mapsto \ell a \quad \text { if } a \neq \ell
\end{array} \quad \alpha_{\ell}^{R}:\left\{\begin{array}{l}
\ell \mapsto \ell \\
a \mapsto a \ell \quad \text { if } a \neq \ell
\end{array}\right.\right.
$$

for any letter ℓ.

$$
\mathcal{E}_{x}(b a)
$$

$\mathcal{E}_{\alpha_{\ell}^{L}(x)}(\ell b \ell a \ell)$

Arnoux-Rauzy morphisms

The Arnoux-Rauzy morphisms are defined by

$$
\alpha_{\ell}^{L}:\left\{\begin{array}{l}
\ell \mapsto \ell \\
a \mapsto \ell a \quad \text { if } a \neq \ell
\end{array} \quad \alpha_{\ell}^{R}:\left\{\begin{array}{l}
\ell \mapsto \ell \\
a \mapsto a \ell \quad \text { if } a \neq \ell
\end{array}\right.\right.
$$

for any letter ℓ.

$$
\mathcal{E}_{x}(b a)
$$

$\mathcal{E}_{\alpha_{\ell}^{L}(x)}(\ell b \ell a \ell)$

$$
\mathcal{E}_{\alpha_{\ell}^{L}(x)}(\varepsilon)
$$

First result

Proposition

If σ is a bijective coding or an Arnoux-Rauzy morphism, then x is dendric if and only if $\sigma(x)$ is dendric.

First result

Proposition

If σ is a composition of bijective codings and Arnoux-Rauzy morphisms, then x is dendric if and only if $\sigma(x)$ is dendric.

First result

Proposition

If σ is a composition of bijective codings and Arnoux-Rauzy morphisms, then x is dendric if and only if $\sigma(x)$ is dendric.

Corollary

If σ is as above, for any morphism τ, τ is dendric preserving if and only if $\sigma \circ \tau$ is dendric preserving.

Properties of bijective codings and AR morphisms

$$
\sigma:\left\{\begin{array}{l}
a \mapsto b \\
b \mapsto 0 \\
c \mapsto 1
\end{array} \quad \sigma:\left\{\begin{array}{l}
a \mapsto a \\
b \mapsto a b \\
c \mapsto a c
\end{array} \quad \sigma:\left\{\begin{array}{l}
a \mapsto a b \\
b \mapsto b \\
c \mapsto c b
\end{array}\right.\right.\right.
$$

Properties of bijective codings and AR morphisms

$$
\sigma:\left\{\begin{array}{l}
a \mapsto b \\
b \mapsto 0 \\
c \mapsto 1
\end{array} \quad \sigma:\left\{\begin{array}{l}
a \mapsto a \\
b \mapsto a b \\
c \mapsto a c
\end{array} \quad \sigma:\left\{\begin{array}{l}
a \mapsto a b \\
b \mapsto b \\
c \mapsto c b
\end{array}\right.\right.\right.
$$

Properties of bijective codings and AR morphisms

$$
\sigma:\left\{\begin{array}{l}
a \mapsto b \\
b \mapsto 0 \\
c \mapsto 1
\end{array} \quad \sigma:\left\{\begin{array}{l}
a \mapsto a \\
b \mapsto a b \\
c \mapsto a c
\end{array} \quad \sigma:\left\{\begin{array}{l}
a \mapsto a b \\
b \mapsto b \\
c \mapsto c b
\end{array}\right.\right.\right.
$$

Properties of bijective codings and AR morphisms

$$
\sigma:\left\{\begin{array}{l}
a \mapsto b \\
b \mapsto 0 \\
c \mapsto 1
\end{array} \quad \sigma:\left\{\begin{array}{l}
a \mapsto a a \\
b \mapsto a b a \\
c \mapsto a c a
\end{array} \quad \sigma:\left\{\begin{array}{l}
a \mapsto a b \\
b \mapsto b \\
c \mapsto c b
\end{array}\right.\right.\right.
$$

If p_{σ} is the longuest common prefix of all $\sigma(\ell) p_{\sigma}, \ell \in \mathcal{A}$, then the letters that follow it in $\sigma(\ell) p_{\sigma}$ are different for all ℓ.

Properties of bijective codings and AR morphisms

$$
\sigma:\left\{\begin{array}{l}
a \mapsto b \\
b \mapsto 0 \\
c \mapsto 1
\end{array} \quad \sigma:\left\{\begin{array}{l}
a \mapsto a \\
b \mapsto a b \\
c \mapsto a c
\end{array} \quad \sigma:\left\{\begin{array}{l}
a \mapsto a b \\
b \mapsto b \\
c \mapsto c b
\end{array}\right.\right.\right.
$$

If p_{σ} is the longuest common prefix of all $\sigma(\ell) p_{\sigma}, \ell \in \mathcal{A}$, then the letters that follow it in $\sigma(\ell) p_{\sigma}$ are different for all ℓ.

We have a similar result with suffixes.

First result on dendric preserving morphisms

Lemma

If $\sigma: \mathcal{A}^{*} \rightarrow \mathcal{B}^{*}$ is dendric preserving, for each $a \in \mathcal{A}$, the letter b such that $p_{\sigma} b$ is a prefix of $\sigma(a) p_{\sigma}$ is different.

Corollary
If $\sigma: \mathcal{A}^{*} \rightarrow \mathcal{B}^{*}$ is dendric preserving, then $\# \mathcal{A}=\# \mathcal{B}$.

We have a similar result with suffixes.

Induction on $\left|s_{\sigma} p_{\sigma}\right|$

Lemma

If σ is dendric preserving and $s_{\sigma} p_{\sigma}=\varepsilon$, then σ is a bijective coding.

Lemma

If σ is dendric preserving and $\left|s_{\sigma} p_{\sigma}\right|>0$, then there exists a morphism τ such that $\sigma \in\left\{\alpha_{\ell}^{L} \circ \tau, \alpha_{\ell}^{R} \circ \tau\right\}$ and $\left|s_{\tau} p_{\tau}\right|<\left|s_{\sigma} p_{\sigma}\right|$.

Induction on $\left|s_{\sigma} p_{\sigma}\right|$

Lemma

If σ is dendric preserving and $s_{\sigma} p_{\sigma}=\varepsilon$, then σ is a bijective coding.

Lemma

If σ is dendric preserving and $\left|s_{\sigma} p_{\sigma}\right|>0$, then there exists a morphism τ such that $\sigma \in\left\{\alpha_{\ell}^{L} \circ \tau, \alpha_{\ell}^{R} \circ \tau\right\}$ and $\left|s_{\tau} p_{\tau}\right|<\left|s_{\sigma} p_{\sigma}\right|$.

Ideas of the proofs:
If it is not the case, we can build dendric words whose images are not dendric.

Characterization of dendric preserving morphisms

Proposition

A morphism is dendric preserving if and only if

- the image alphabet is of size 1
- or it is, up to a bijective coding, in the monoid generated by the Arnoux-Rauzy morphisms.

Conclusion

Open questions

- Can we characterize when the image of a dendric word x under a morphism σ is dendric?
- Is the image of an eventually dendric word always eventually dendric?

Thank you for your attention!

