Dendric words and morphisms

France Gheeraert

Introduction

ConceptExamplesAn alphabet $(\mathcal{A}, \mathcal{B})$ is a finite set of
letters $(a, b, \ell, ...)$. $\{0, 1\}$

Concept	Examples
An <i>alphabet</i> $(\mathcal{A}, \mathcal{B})$ is a finite set of <i>letters</i> (a, b, ℓ, \dots) .	{0,1}
A <i>(finite) word</i> $(w, u,)$ is a finite sequence of letters. The set of finite words on \mathcal{A} is \mathcal{A}^* .	arepsilon, 10, 010, 01001

Concept	Examples
An alphabet $(\mathcal{A}, \mathcal{B})$ is a finite set of letters (a, b, ℓ, \dots) .	{0,1}
A (finite) word $(w, u,)$ is a finite sequence of letters. The set of finite words on \mathcal{A} is \mathcal{A}^* .	ε, 10, 010, 01001
The <i>length</i> of a word w is $ w $.	$ \varepsilon = 0$, $ 010 = 3$

Concept	Examples
An alphabet $(\mathcal{A}, \mathcal{B})$ is a finite set of letters (a, b, ℓ, \dots) .	{0,1}
A <i>(finite) word</i> $(w, u,)$ is a finite sequence of letters. The set of finite words on \mathcal{A} is \mathcal{A}^* .	arepsilon, 10, 010, 01001
The <i>length</i> of a word w is $ w $.	$ \varepsilon = 0$, $ 010 = 3$
A bi-infinite word $(x, y,)$ is an element of $\mathcal{A}^{\mathbb{Z}}$	$\cdots 011100.010 \cdots$, $\omega(010).(010)^{\omega}$

• A factor of a word is a finite consecutive subsequence.

- A factor of a word is a finite consecutive subsequence.
- The *language* of x, denoted $\mathcal{L}(x)$, is the set of factors of x.

- A factor of a word is a finite consecutive subsequence.
- The *language* of x, denoted $\mathcal{L}(x)$, is the set of factors of x.
- If w = uv, then u is a *prefix* of w and v is a *suffix* of w.

- A factor of a word is a finite consecutive subsequence.
- The *language* of x, denoted $\mathcal{L}(x)$, is the set of factors of x.
- If w = uv, then u is a *prefix* of w and v is a *suffix* of w.

Examples:

• ε , 10 and 010 are factors of 01001

- A factor of a word is a finite consecutive subsequence.
- The *language* of x, denoted $\mathcal{L}(x)$, is the set of factors of x.
- If w = uv, then u is a *prefix* of w and v is a *suffix* of w.

Examples:

• ε , 10 and 010 are factors of 01001

- A factor of a word is a finite consecutive subsequence.
- The *language* of x, denoted $\mathcal{L}(x)$, is the set of factors of x.
- If w = uv, then u is a *prefix* of w and v is a *suffix* of w.

Examples:

• ε , 10 and 010 are factors of 01001

- A factor of a word is a finite consecutive subsequence.
- The *language* of x, denoted $\mathcal{L}(x)$, is the set of factors of x.
- If w = uv, then u is a *prefix* of w and v is a *suffix* of w.

Examples:

- ε , 10 and 010 are factors of 01001
- $\varepsilon, 0, 1, 00, 01, 10, 11, \ldots$ are in $\mathcal{L}(\cdots 011100.010 \cdots)$

- A factor of a word is a finite consecutive subsequence.
- The *language* of x, denoted $\mathcal{L}(x)$, is the set of factors of x.
- If w = uv, then u is a *prefix* of w and v is a *suffix* of w.

Examples:

- ε , 10 and 010 are factors of 01001
- $\varepsilon, 0, 1, 00, 01, 10, 11, \ldots$ are in $\mathcal{L}(\cdots 011100.010\cdots)$
- ε and 010 are also prefixes of 01001 and ε is a suffix

 $\cdots 011100.010110101101 \cdots$

 $\cdots 011100.010110101101\cdots$

```
\cdots 011100.010110101101\cdots
```

Definition

Let $x \in \mathcal{A}^{\mathbb{Z}}$ and $w \in \mathcal{L}(x)$. $E_x^L(w) = \{a \in \mathcal{A} \mid aw \in \mathcal{L}(x)\}$

Example:

$$E^{L}(110) = \{1, 0\}$$

 $\cdots 011100.010110101101 \cdots$

Definition

Let $x \in \mathcal{A}^{\mathbb{Z}}$ and $w \in \mathcal{L}(x)$. $E_x^L(w) = \{a \in \mathcal{A} \mid aw \in \mathcal{L}(x)\}, \quad E_x^R(w) = \{b \in \mathcal{A} \mid wb \in \mathcal{L}(x)\},$

Example:

$$E^{L}(110) = \{1, 0\}, \quad E^{R}(110) = \{0, 1\},$$

 $\cdots 011100.010110101101\cdots$

Definition

Let
$$x \in \mathcal{A}^{\mathbb{Z}}$$
 and $w \in \mathcal{L}(x)$.
 $E_x^L(w) = \{a \in \mathcal{A} \mid aw \in \mathcal{L}(x)\}, \quad E_x^R(w) = \{b \in \mathcal{A} \mid wb \in \mathcal{L}(x)\},$
 $E_x(w) = \{(a, b) \in E_x^L(w) \times E_x^R(w) \mid awb \in \mathcal{L}(x)\}$

Example:

$$E^{L}(110) = \{1, 0\}, \quad E^{R}(110) = \{0, 1\},$$

 $E(110) \supseteq \{(1,0), (0,1)\}$

Dendric words and morphisms

Extension graph

Definition

The extension graph of $w \in \mathcal{L}(x)$ is the bipartite graph $\mathcal{E}_x(w)$ with vertices $E_x^L(w) \sqcup E_x^R(w)$ and edges $E_x(w)$.

Example:

 $^{\omega}$ (010).(010) $^{\omega}$

Definition (Berthé et al. '15)

A word $w \in \mathcal{L}(x)$ is *dendric* (in x) if $\mathcal{E}_x(w)$ is a tree.

Definition (Berthé et al. '15)

A word $w \in \mathcal{L}(x)$ is *dendric* (in x) if $\mathcal{E}_x(w)$ is a tree.

A bi-infinite word x is *dendric* if all its factors are dendric.

Definition (Berthé et al. '15)

A word $w \in \mathcal{L}(x)$ is *dendric* (in x) if $\mathcal{E}_x(w)$ is a tree.

A bi-infinite word x is *dendric* if all its factors are dendric.

Definition (Dolce, Perrin '19)

A bi-infinite word x is <u>eventually</u> dendric if all its <u>long enough</u> factors are dendric.

Definition (Berthé et al. '15)

A word $w \in \mathcal{L}(x)$ is *dendric* (in x) if $\mathcal{E}_x(w)$ is a tree.

A bi-infinite word x is *dendric* if all its factors are dendric.

Definition (Dolce, Perrin '19)

A bi-infinite word x is <u>eventually</u> dendric if all its <u>long enough</u> factors are dendric.

Examples: The words \cdots 011100.010110101101 \cdots and ω (010).(010) ω are not dendric. But ω (010).(010) ω is eventually dendric.

First restriction

For the empty word:

- left extensions = all the letters
- right extensions = all the letters
- bi-extensions = the factors of length 2

First restriction

For the empty word:

- left extensions = all the letters = left vertices in $\mathcal{E}(\varepsilon)$
- right extensions = all the letters = right vertices in $\mathcal{E}(\varepsilon)$
- bi-extensions = the factors of length 2 = edges in $\mathcal{E}(\varepsilon)$

First restriction

For the empty word:

- left extensions = all the letters = left vertices in $\mathcal{E}(\varepsilon)$
- right extensions = all the letters = right vertices in $\mathcal{E}(\varepsilon)$

• bi-extensions = the factors of length 2 = edges in $\mathcal{E}(\varepsilon)$ So if ε is dendric,

$$\#(\mathcal{L}(x) \cap \mathcal{A}^2) = 2 \times \#\mathcal{A} - 1$$

or, in other words,

 $\#(\mathcal{L}(x)\cap\mathcal{A}^2)-\#(\mathcal{L}(x)\cap\mathcal{A}^1)=\#(\mathcal{L}(x)\cap\mathcal{A}^1)-\#(\mathcal{L}(x)\cap\mathcal{A}^0).$

Factor complexity

The factor complexity of $x \in \mathcal{A}^{\mathbb{Z}}$ is the function

 $p_{x}(n):\mathbb{N}\to\mathbb{N},\quad n\mapsto\#(\mathcal{L}(x)\cap\mathcal{A}^{n}).$

Factor complexity

The factor complexity of $x \in \mathcal{A}^{\mathbb{Z}}$ is the function

$$p_{x}(n): \mathbb{N} \to \mathbb{N}, \quad n \mapsto \#(\mathcal{L}(x) \cap \mathcal{A}^{n}).$$

Proposition (Berthé et al., Dolce, Perrin)

If $x \in \mathcal{A}^{\mathbb{Z}}$ is dendric, then

$$p_{X}(n) = (\#\mathcal{A}-1)n+1.$$

If $x \in \mathcal{A}^{\mathbb{Z}}$ is eventually dendric, then, for all large enough n,

$$p_{x}(n)=Sn+C.$$

France Gheeraert

Definition

A morphism is a monoid morphism $\sigma:\mathcal{A}^*\to\mathcal{B}^*,$ i.e. for any $u,v\in\mathcal{A}^*,$

$$\sigma(uv) = \sigma(u)\sigma(v).$$

Definition

A morphism is a monoid morphism $\sigma:\mathcal{A}^*\to\mathcal{B}^*,$ i.e. for any $u,v\in\mathcal{A}^*,$

$$\sigma(uv) = \sigma(u)\sigma(v).$$

Example:

$$\sigma: \{0,1,2\}^* o \{0,1\}^*, \ \begin{cases} 0 \mapsto 001 \ 1 \mapsto 10 \ 2 \mapsto 0 \end{cases}$$

Definition

A morphism is a monoid morphism $\sigma:\mathcal{A}^*\to\mathcal{B}^*,$ i.e. for any $u,v\in\mathcal{A}^*,$

$$\sigma(uv) = \sigma(u)\sigma(v).$$

Example:

$$\sigma: \{0,1,2\}^* \to \{0,1\}^*, egin{cases} 0 &\mapsto 001 & \sigma(021) = 001 \ 0 \ 10 \ 1 \mapsto 10 \ 2 \mapsto 0 & \sigma(\cdots 1.20 \cdots) = \cdots 10.0 \ 001 \cdots \end{cases}$$

Definition

A morphism is a monoid morphism $\sigma:\mathcal{A}^*\to\mathcal{B}^*,$ i.e. for any $u,v\in\mathcal{A}^*,$

$$\sigma(uv) = \sigma(u)\sigma(v).$$

Example:

$$\sigma: \{0,1,2\}^* \to \{0,1\}^*, egin{cases} 0 &\mapsto 001 & \sigma(021) = 001 \ 0 \ 10 \ 1 \mapsto 10 \ 2 \mapsto 0 & \sigma(\cdots 1.20 \cdots) = \cdots 10.0 \ 001 \cdots \end{cases}$$

Assumptions: the **image alphabet is minimal** and the morphism is **non erasing**.

France Gheeraert

Questions

If x is (eventually) dendric, what can we say about $\sigma(x)$?

Questions

If x is (eventually) dendric, what can we say about $\sigma(x)$?

 If x is dendric, what can we say about the factor complexity of σ(x)?

Questions

If x is (eventually) dendric, what can we say about $\sigma(x)$?

If x is dendric, what can we say about the factor complexity of σ(x)?
 If x is eventually dendric, what can we say about the factor complexity of σ(x)?
Questions

If x is (eventually) dendric, what can we say about $\sigma(x)$?

- If x is dendric, what can we say about the factor complexity of σ(x)?
 If x is eventually dendric, what can we say about the factor complexity of σ(x)?
- If x is dendric, under what conditions is $\sigma(x)$ dendric?

Factor complexity

$$\sigma: egin{cases} 0\mapsto 001\ 1\mapsto 10\ 2\mapsto 0 \end{cases}$$

 $x: \dots 2.001210\dots$ $\sigma(x): \dots 0.001\ 001\ 10\ 0\ 10\ 001\dots$

$$\sigma: egin{cases} 0\mapsto 001\ 1\mapsto 10\ 2\mapsto 0 \end{cases}$$

 $x: \dots 2.001210\dots$ $\sigma(x): \dots 0.001 \ 001 \ 10 \ 0 \ 10 \ 001\dots$

$$\sigma:\begin{cases} 0 \mapsto 001 & x : \dots 2.001210 \dots \\ 1 \mapsto 10 & \\ 2 \mapsto 0 & \sigma(x) : \dots 0.001 \ 001 \ 10 \ 0 \ 10 \ 001 \dots \end{cases}$$

0010 appears in

• $\sigma(00)$ after 0 letter

$$\sigma:\begin{cases} 0 \mapsto 001 & x : \dots 2.001210 \dots \\ 1 \mapsto 10 & \\ 2 \mapsto 0 & \sigma(x): \dots 0.001 \ 001 \ 10 \ 0 \ 10 \ 001 \dots \end{cases}$$

0010 appears in

• $\sigma(00)$ after 0 letter

$$\sigma:\begin{cases} 0 \mapsto 001 & x : \dots 2.001210 \dots \\ 1 \mapsto 10 & \\ 2 \mapsto 0 & \sigma(x): \dots 0.001 \ 001 \ 10 \ 0 \ 10 \ 001 \dots \end{cases}$$

0010 appears in

- $\sigma(00)$ after 0 letter
- $\sigma(121)$ after 1 letter

$$\sigma: \begin{cases} 0 \mapsto 001 & x : \dots 2.001210 \dots \\ 1 \mapsto 10 & \\ 2 \mapsto 0 & \sigma(x) : \dots 0.001 \ 001 \ 10 \ 0 \ 10 \ 001 \dots \end{cases}$$

0010 appears in

- $\sigma(00)$ after 0 letter
- $\sigma(121)$ after 1 letter

Definition

Definition

A covering of $u \in \mathcal{B}^n$ is a pair $(w, k) \in \mathcal{L}(x) \times \mathbb{Z}_{\geq 0}$ where $u = \sigma(w)_{[k+1,k+n]}$ and w is minimal, i.e.

$$|k+1 \leq |\sigma(w_1)|$$
 and $|k+n \geq \left|\sigma(w_{[1,|w|[}))\right| + 1$

Definition

Definition

A covering of $u \in \mathcal{B}^n$ is a pair $(w, k) \in \mathcal{L}(x) \times \mathbb{Z}_{\geq 0}$ where $u = \sigma(w)_{[k+1,k+n]}$ and w is minimal, i.e.

$$|k+1 \leq |\sigma(w_1)|$$
 and $|k+n \geq \left|\sigma(w_{[1,|w|[}))\right| + 1$

Proposition

If the set of coverings of words of length n is denoted $C_{x,\sigma}(n),$ we have

$$\mathcal{D}_{\sigma(x)}(n) \leq \# \mathcal{C}_{x,\sigma}(n).$$

$$\sigma:\begin{cases} 0 \mapsto 001 & x : \dots 2.001210 \dots \\ 1 \mapsto 10 & \\ 2 \mapsto 0 & \sigma(x) : \dots 0.001 \ 001 \ 10 \ 0 \ 10 \ 001 \dots \end{cases}$$

$$\sigma:\begin{cases} 0 \mapsto 001 & x : \dots 2.001210 \dots \\ 1 \mapsto 10 & \\ 2 \mapsto 0 & \sigma(x) : \dots 0.001 \ 001 \ 10 \ 0 \ 10 \ 001 \dots \end{cases}$$

• (00,0) is a covering of 0010

$$\sigma:\begin{cases} 0 \mapsto 001 & x : \dots 2.001210 \dots \\ 1 \mapsto 10 & \\ 2 \mapsto 0 & \sigma(x) : \dots 0.001 \ 001 \ 10 \ 0 \ 10 \ 001 \dots \end{cases}$$

• (00,0) is a covering of 0010 and of 00100

$$\sigma:\begin{cases} 0 \mapsto 001 & x : \dots 2.001210 \dots \\ 1 \mapsto 10 & \\ 2 \mapsto 0 & \sigma(x): \dots 0.001 \ 001 \ 10 \ 0 \ 10 \ 001 \dots \end{cases}$$

- (00,0) is a covering of 0010 and of 00100
- (121, 1) is a covering of 0010 but (121, 1) $\notin C_{x,\sigma}(5)$

$$\sigma:\begin{cases} 0 \mapsto 001 & x : \dots 2.001210 \dots \\ 1 \mapsto 10 & \\ 2 \mapsto 0 & \sigma(x): \dots 0.001 \ 001 \ 10 \ 0 \ 10 \ 001 \dots \end{cases}$$

- (00,0) is a covering of 0010 and of 00100
- (121, 1) is a covering of 0010 but (121, 1) $\notin C_{x,\sigma}(5)$
- (1210, 1) is a covering of 00100

$$\sigma:\begin{cases} 0 \mapsto 001 & x : \dots 2.001210 \dots \\ 1 \mapsto 10 & \\ 2 \mapsto 0 & \sigma(x): \dots 0.001 \ 001 \ 10 \ 0 \ 10 \ 001 \dots \end{cases}$$

- (00,0) is a covering of 0010 and of 00100
- (121, 1) is a covering of 0010 but (121, 1) $\notin C_{x,\sigma}(5)$
- (1210, 1) is a covering of 00100

We have

$$\#C_{x,\sigma}(n+1) - \#C_{x,\sigma}(n) = \sum_{w \in W_n} (\#E_x^R(w) - 1)$$

where $W_n = \{ w \in \mathcal{L}(x) \mid |\sigma(w_{[2,|w|]})| < n \le |\sigma(w)| \}.$

France Gheeraert

Number of coverings

Proposition

If x ∈ A^ℤ is eventually dendric, then there exists C ∈ ℤ such that, for all n large enough,

$$\#C_{x,\sigma}(n)=p_x(n)+C.$$

Number of coverings

Proposition

If x ∈ A^ℤ is eventually dendric, then there exists C ∈ ℤ such that, for all n large enough,

$$\#C_{x,\sigma}(n)=p_x(n)+C.$$

• If
$$x \in \mathcal{A}^{\mathbb{Z}}$$
 is dendric, then, for all $n \ge 1$,

$$\#\mathcal{C}_{x,\sigma}(n) = \sum_{a\in\mathcal{A}} |\sigma(a)| + (\#\mathcal{A}-1)(n-1).$$

Factor complexity and alphabet sizes

Theorem

If x is eventually dendric and σ is non-erasing, then

 $p_{\sigma(x)}(n) \leq p_x(n) + C$

for some $C \in \mathbb{N}$.

Factor complexity and alphabet sizes

Theorem

If x is eventually dendric and σ is non-erasing, then

 $p_{\sigma(x)}(n) \leq p_x(n) + C$

for some $C \in \mathbb{N}$.

Corollary

If $x \in A^{\mathbb{Z}}$ and $\sigma(x) \in B^{\mathbb{Z}}$ are dendric, then $\#B \leq \#A$.

Preserving dendricity

Let $\sigma : \mathcal{A}^* \to \mathcal{B}^*$ be a morphism and $x \in \mathcal{A}^{\mathbb{Z}}$.

Let $\sigma : \mathcal{A}^* \to \mathcal{B}^*$ be a morphism and $x \in \mathcal{A}^{\mathbb{Z}}$.

• If
$$\mathcal{B} = \{a\}$$
, then $\sigma(x) = {}^{\omega}a.a^{\omega}$
 \longrightarrow always dendric

Let $\sigma : \mathcal{A}^* \to \mathcal{B}^*$ be a morphism and $x \in \mathcal{A}^{\mathbb{Z}}$.

• If
$$\mathcal{B} = \{a\}$$
, then $\sigma(x) = {}^{\omega}a.a^{\omega}$
 \longrightarrow always dendric
• If $A = \{a\}$ and $\sigma(a) = w$ then $\sigma(x) = {}^{\omega}a.a^{\omega}$

• If
$$\mathcal{A} = \{a\}$$
 and $\sigma(a) = v$, then $\sigma(x) = {}^{\omega}v.v^{\omega}$
 \longrightarrow dendric iff $\#\mathcal{B} = 1$

Let $\sigma : \mathcal{A}^* \to \mathcal{B}^*$ be a morphism and $x \in \mathcal{A}^{\mathbb{Z}}$.

From now on, we assume that the alphabets are of size at least 2.

Definition

In general, it is difficult to know if $\sigma(x)$ is dendric, even if we know that x is dendric.

Definition

A morphism $\sigma : \mathcal{A}^* \to \mathcal{B}^*$ is *dendric preserving* if, for all dendric $x \in \mathcal{A}^{\mathbb{Z}}$, $\sigma(x)$ is dendric.

What are the dendric preserving morphisms?

Bijective codings

$$\sigma: \{a, b, c\}^* \to \{b, 0, 1\}^*, \quad \begin{cases} a \mapsto b \\ b \mapsto 0 \\ c \mapsto 1 \end{cases}$$

Arnoux-Rauzy morphisms

The Arnoux-Rauzy morphisms are defined by

$$\alpha_{\ell}^{L}: \begin{cases} \ell \mapsto \ell \\ \mathsf{a} \mapsto \ell \mathsf{a} & \text{if } \mathsf{a} \neq \ell \end{cases} \qquad \alpha_{\ell}^{R}: \begin{cases} \ell \mapsto \ell \\ \mathsf{a} \mapsto \mathsf{a}\ell & \text{if } \mathsf{a} \neq \ell \end{cases}$$

for any letter $\ell.$

Arnoux-Rauzy morphisms

The Arnoux-Rauzy morphisms are defined by

$$\alpha_{\ell}^{L} : \begin{cases} \ell \mapsto \ell \\ a \mapsto \ell a & \text{if } a \neq \ell \end{cases} \qquad \alpha_{\ell}^{R} : \begin{cases} \ell \mapsto \ell \\ a \mapsto a\ell & \text{if } a \neq \ell \end{cases}$$

for any letter ℓ .

Arnoux-Rauzy morphisms

The Arnoux-Rauzy morphisms are defined by

$$\alpha_{\ell}^{L}: \begin{cases} \ell \mapsto \ell \\ a \mapsto \ell a & \text{if } a \neq \ell \end{cases} \qquad \alpha_{\ell}^{R}: \begin{cases} \ell \mapsto \ell \\ a \mapsto a\ell & \text{if } a \neq \ell \end{cases}$$

for any letter ℓ .

First result

Proposition

If σ is a bijective coding or an Arnoux-Rauzy morphism, then x is dendric if and only if $\sigma(x)$ is dendric.

First result

Proposition

If σ is a composition of bijective codings and Arnoux-Rauzy morphisms, then x is dendric if and only if $\sigma(x)$ is dendric.

First result

Proposition

If σ is a composition of bijective codings and Arnoux-Rauzy morphisms, then x is dendric if and only if $\sigma(x)$ is dendric.

Corollary

If σ is as above, for any morphism τ , τ is dendric preserving if and only if $\sigma \circ \tau$ is dendric preserving.

Properties of bijective codings and AR morphisms

$$\sigma: \begin{cases} a \mapsto b \\ b \mapsto 0 \\ c \mapsto 1 \end{cases} \qquad \sigma: \begin{cases} a \mapsto a \\ b \mapsto ab \\ c \mapsto ac \end{cases} \qquad \sigma: \begin{cases} a \mapsto ab \\ b \mapsto b \\ c \mapsto cb \end{cases}$$

Properties of bijective codings and AR morphisms

$$\sigma: \begin{cases} a \mapsto b \\ b \mapsto 0 \\ c \mapsto 1 \end{cases} \qquad \sigma: \begin{cases} a \mapsto a \\ b \mapsto ab \\ c \mapsto ac \end{cases} \qquad \sigma: \begin{cases} a \mapsto ab \\ b \mapsto b \\ c \mapsto cb \end{cases}$$

Properties of bijective codings and AR morphisms

$$\sigma: \begin{cases} a \mapsto b \\ b \mapsto 0 \\ c \mapsto 1 \end{cases} \qquad \sigma: \begin{cases} a \mapsto a \\ b \mapsto ab \\ c \mapsto ac \end{cases} \qquad \sigma: \begin{cases} a \mapsto ab \\ b \mapsto b \\ c \mapsto cb \end{cases}$$
Properties of bijective codings and AR morphisms

$$\sigma: \begin{cases} \mathbf{a} \mapsto \mathbf{b} \\ \mathbf{b} \mapsto \mathbf{0} \\ \mathbf{c} \mapsto \mathbf{1} \end{cases} \qquad \sigma: \begin{cases} \mathbf{a} \mapsto \mathbf{a} \mathbf{a} \\ \mathbf{b} \mapsto \mathbf{a} \mathbf{b} \mathbf{a} \\ \mathbf{c} \mapsto \mathbf{a} \mathbf{c} \mathbf{a} \end{cases} \qquad \sigma: \begin{cases} \mathbf{a} \mapsto \mathbf{a} \mathbf{b} \\ \mathbf{b} \mapsto \mathbf{b} \\ \mathbf{c} \mapsto \mathbf{c} \mathbf{c} \\ \mathbf{c} \mapsto \mathbf{c} \mathbf{b} \end{cases}$$

If p_{σ} is the longuest common prefix of all $\sigma(\ell)p_{\sigma}$, $\ell \in \mathcal{A}$, then the letters that follow it in $\sigma(\ell)p_{\sigma}$ are different for all ℓ .

Properties of bijective codings and AR morphisms

$$\sigma: \begin{cases} \mathsf{a} \mapsto \mathsf{b} \\ \mathsf{b} \mapsto \mathsf{0} \\ \mathsf{c} \mapsto \mathsf{1} \end{cases} \qquad \sigma: \begin{cases} \mathsf{a} \mapsto \mathsf{a} \\ \mathsf{b} \mapsto \mathsf{a} \mathsf{b} \\ \mathsf{c} \mapsto \mathsf{a} \mathsf{c} \end{cases} \qquad \sigma: \begin{cases} \mathsf{a} \mapsto \mathsf{a} \mathsf{b} \\ \mathsf{b} \mapsto \mathsf{b} \\ \mathsf{c} \mapsto \mathsf{c} \mathsf{b} \end{cases}$$

If p_{σ} is the longuest common prefix of all $\sigma(\ell)p_{\sigma}$, $\ell \in \mathcal{A}$, then the letters that follow it in $\sigma(\ell)p_{\sigma}$ are different for all ℓ .

We have a similar result with suffixes.

First result on dendric preserving morphisms

Lemma

If $\sigma : \mathcal{A}^* \to \mathcal{B}^*$ is dendric preserving, for each $a \in \mathcal{A}$, the letter b such that $p_{\sigma}b$ is a prefix of $\sigma(a)p_{\sigma}$ is different.

Corollary

If $\sigma : \mathcal{A}^* \to \mathcal{B}^*$ is dendric preserving, then $#\mathcal{A} = #\mathcal{B}$.

We have a similar result with suffixes.

Induction on $|s_{\sigma}p_{\sigma}|$

Lemma

If σ is dendric preserving and $s_{\sigma}p_{\sigma} = \varepsilon$, then σ is a bijective coding.

Lemma

If σ is dendric preserving and $|s_{\sigma}p_{\sigma}| > 0$, then there exists a morphism τ such that $\sigma \in \{\alpha_{\ell}^{L} \circ \tau, \alpha_{\ell}^{R} \circ \tau\}$ and $|s_{\tau}p_{\tau}| < |s_{\sigma}p_{\sigma}|$.

Induction on $|s_{\sigma}p_{\sigma}|$

Lemma

If σ is dendric preserving and $s_{\sigma}p_{\sigma} = \varepsilon$, then σ is a bijective coding.

Lemma

If σ is dendric preserving and $|s_{\sigma}p_{\sigma}| > 0$, then there exists a morphism τ such that $\sigma \in \{\alpha_{\ell}^{L} \circ \tau, \alpha_{\ell}^{R} \circ \tau\}$ and $|s_{\tau}p_{\tau}| < |s_{\sigma}p_{\sigma}|$.

Ideas of the proofs:

If it is not the case, we can build dendric words whose images are not dendric.

Characterization of dendric preserving morphisms

Proposition

A morphism is dendric preserving if and only if

- the image alphabet is of size 1
- or it is, up to a bijective coding, in the monoid generated by the Arnoux-Rauzy morphisms.

Conclusion

Open questions

- Can we characterize when the image of a dendric word x under a morphism σ is dendric?
- Is the image of an eventually dendric word always eventually dendric?

Thank you for your attention!