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Representing integers
via an integer

base sequence U

Representing real numbers

via a real base 3

Bertrand-Mathis's work




Representing integers in base 3

Any n € N can be decomposed in a unique way as

4

i

n:E a,-3 !
i=1

where a; € {0,1,2} and a; # 0. We write rep;(n) = a1 - - - a¢.

The numeration language A3 is the set 0" rep;(N), which is simply {0,1,2}".

0,1,2



Representing real numbers in base 3

Any x € [0,1) can be decomposed in a unique way as

oo
=2
i=1

aj
i

w

where a; € {0,1,2} and a;ai113i42 -+ - # 2* for all i. We write d3(x) = a1azaz---.

Define D3 = {ds5(x) : x € [0,1)}.
The topological closure of Ds is called the 3-shift:
S3={w € {0,1,2}* : Fac(w) C Fac(Ds)} = {0,1,2}*.

Straightforward but crucial observation: Fac(S3) = M.



Representing integers thanks to the Fibonacci sequence

We let Fop =1, F; =2 and Fij2 = Fiy1 + Fi for i > 0.

Any n € N can be decomposed in a unique way as

0
n= g aiFe—;
i=1

where a; € {0,1} and a; # 0 with the condition that a;ai11 # 11. We write

repF(n) =ai---ap.

The numeration language Nr is the set 0*repg(N).
0
O—0
0

This numeration system is called the Zeckendorf numeration system.



Representing real numbers in base ¢

Let ¢ = 1275 (the golden mean).

Any x € [0,1) can be decomposed in a unique way as

N

i=1

where a; € {0,1}, ajair1 # 11 and a;aiy1ai42 - - - # (10)® for all i. We write
dw(X) = giazasz---.

Define D, = {d,(x) : x € [0,1)}.

The topological closure of D, is called the (-shift:

S, ={w € {0,1}* : Fac(w) C Fac(D,)} = {0,1}* \ {0,1}"11{0,1}~.

Straightforward but crucial observation: Fac(S,) = Nr.



Representing integers via positional numeration systems U

Let U = (U(/))i>o be an increasing integer sequence such that U(0) =1 and
Cy:=sup{i>0: [U('H ]} < oo.
We may represent any n € N by using the following greedy algorithm.

First, compute the least ¢ such that n < U(¢). Then for all i =1,...,¢, let a; be the
greatest integer a such that

i—1

D aqu(e—j)+au(t—i)<n.

j=1

We get that
‘

> au—i)=n.

i=1

The finite word rep,(n) = a; - - - a, is called the U-expansion of n.

These words are written over the finite alphabet Ay = {0,..., Cy — 1}.



Representing real numbers via real bases § > 1

Let 8 > 1 be real number (called the base).
We may represent any x € [0, 1] by using the following greedy algorithm.

For all i > 1, let a; be the greatest integer a such that
aj
>4+

We get that

oo

>

i=1 B
The infinite word dg(x) = aiaz - - - is called the 3-expansion of x.

Only finitely many digits are used, namely 0,1, ..., [3].



Bertrand numeration systems

Let U be a positional numeration system.
The set Ny = 0"rep(N) is called the numeration language.
Two desirable properties of Ny are:
> Ny is prefix-closed if all prefixes of words in Ny also belong to Ny.
» ANy is prolongable if for all w in Ny, the word w0 also belongs to Ny .

We say that U is a Bertrand numeration system if Ny is both prefix-closed and

prolongable.

Equivalently: Yw € A}, w e Ny < w0 € Ny.



State of the art

This form of the definition of Bertrand numeration systems, as well as their names
after Bertrand-Mathis, was first given in

|

Bruyere & Hansel 1997. Bertrand numeration systems and recognizability.

Then it was used in

>

Point 2000. On decidable extensions of Presburger arithmetic: from A. Bertrand

numeration systems to Pisot numbers

Frougny 2002. Numeration systems. (Chapter 7 of Lothaire's book "Algebraic

combinatorics on words".)

Lecomte & Rigo 2004. Real numbers having ultimately periodic representations in
abstract numeration systems.

Berthé & Rigo 2007. Odometers on regular languages.

» Charlier, Rampersad, Rigo & Waxweiler 2011. The minimal automaton recognizing

mN in a linear numeration system.

Massuir, Peltomaki & Rigo 2019. Automatic sequences based on Parry or Bertrand
numeration systems.

Stipulanti 2019. Convergence of Pascal-like triangles in Parry-Bertrand numeration

systems.



Other works considering Bertrand numeration systems are

|

| 2

Loraud 1995. B-shift, systémes de numération et automates.

Frougny & Solomyak 1996. On representation of integers in linear numeration
systems.

Frougny 2003. On-line digit set conversion in real base.

Frougny, Gazeau & Krejcar 2003. Additive and multiplicative properties of point sets
based on beta-integers.

Barat, Frougny & Pethd 2005. A note on linear recurrent Mahler numbers.
Berthé & Siegel 2007. Purely periodic S-expansions in the Pisot non-unit case.

Frougny & Sakarovitch 2010. Number representation and finite automata. (Chapter 2
of the book "Combinatorics, automata and number theory").

Berthé, Frougny, Rigo & Sakarovitch 2020. The carry propagation of the successor
function.



The [-shift

Before giving Bertrand-Mathis's statement, we need one more notion on the real base

side.

For 8 > 1, we let Dg = {da(x) : x € [0,1)}.

The [-shift is the topological closure of Dg:

Sg={we€{0,...,[8] — 1} : Fac(w) C Fac(Dg)}.



Parry's characterization of elements in the [5-shift

In Parry’s theorem, the -expansion and the quasi-greedy (-expansion of 1 play crucial

roles.

The quasi-greedy [-expansion of 1 is
d;(1) = lim dg(x).
x—=1-
If ds(1) does not end with a tail of zeros, we simply have dj(1) = ds(1).
Otherwise, if ds(1) = t1--- ;0% with t, # 0, then d3(1) = (t1--- ta—1(ts — 1))“.
Theorem (Parry 1960)

Sg={we{0,....[B] -1} :Vi>1, wiwiz1--- <iex d5(1)}.



Parry’s descriptions of the 3-shift and the (-shift

For = 3, we get d3(1) = 30“ and d3 (1) = 2. So Parry’s theorem gives

S3={we{0,1,2}*:Vi>1 wiwii- - <jex 2}

For = ¢, we get d,(1) = 110“ and d;(1) = (10)“. So Parry's theorem gives

Scp = {W € {0, 1}w VI 2 ].7 WiWi41 - Slex (10)w}



Bertrand-Mathis's statement
In 1989, Bertrand-Mathis stated that
U is Bertrand if and only if 38 > 1 such that Ny = Fac(Ss).
In this case, the following hold:
a. There is a unique such §.
b. The alphabet Ay equals {0,...,[8] — 1}.
c. We have
Vi>0, U(i)=dU(i—-1)+dU(i—-2)+ --+dU0)+1

and

0] B

| — =

L ) SRR
where (di)i>1 = d3(1).

d. The system U has the dominant root 3, i.e., limi_ % = 0.
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Full characterization of Bertrand numeration systems

For a real number 8 > 1, define

Sh={w e {0, [BI} Vi > 1, wiwiss -+ iex da(1)}.

Theorem (Charlier, Cisternino & Stipulanti 2022)
A positional numeration system U is Bertrand if and only if one of the following

occurs.
1. Foralli>0, U(i)=i+1.
2. There exists a real number 3 > 1 such that Ny = Fac(Sg).

3. There exists a real number 3 > 1 such that Ny = Fac(Sp).



Moreover, in Case 2 (resp. Case 3), the following hold:

a.

b.

There is a unique such 5.
The alphabet Ay equals {0, ..., [5] — 1} (resp. {0,..., [5]}).
We have
Vi>0, U(i)=al(i—-1)+aU(i-2)+ --+aU(0)+1

and

U@ B
s T B 0> iaB
where (a;)i>1 is d;(1) (resp. ds(1)).

The system U has the dominant root (3, i.e., lim;_oo Ul(jizl’.)l) = B.




Non-canonical Bertrand systems and non-canonical (-shifts

Let 8 be a simple Parry number, i.e., such that ds(1) ends with a tail of zeroes.
In this case, dj(1) # ds(1), and hence there are two Bertrand numeration systems
associated with f.

» The canonical Bertrand system is built from the digits of d3(1).

» The non-canonical Bertrand system is built from the digits of dg(1).

Similarly,
» Theset Sg={wc{0,...,[8] —1}* :Vi> 1, wiwis1--- <jex d5(1)} is called

the canonical S-shift

> Theset Sy ={we{0,...,|B]}* :Vi>1, wiwir1- - <iex dg(1)} is called the
non-canonical B-shift.



The canonical Bertrand numeration system associated with 3

Since dj(1) = 2%, the canonical Bertrand system associated with 3 is given by
Vi>0, U(i)=2U(—1)+2U(i —2)+---+2U(0) + 1.
Thus, U(0) =1 and for all i > 0, one has

U(i +1) — U(i) = (U(i) +2U(i — 1) + - -- +2U(0) + 1)
—(U(i = 1) +2U(i = 2) + - - - + 2U(0) + 1)
= 2U(i).

Hence U(i + 1) = 3U(i) for all i > 0.

We see that this is precisely the integer base 3 numeration system U = (3');0.



The non-canonical Bertrand system associated with 3
Since d5(1) = 30“, the non-canonical Bertrand system associated with 3 is given by
Vi>0, U(i)=3U(i —1)+1.

We have U = (1,4,13,40,121,...).

The corresponding numeration language Ny is equal to Fac(S3) where the
non-canonical 3-shift is

S3={we{0,1,2,3}* :Vi > 1, wiwij1--- <iex 307}

It is accepted by the DFA
0,1,2 0

O——0O
From this DFA, we can see that U is Bertrand, i.e., that Ay is prefix-closed and
prolongable.



The canonical Bertrand system associated with ¢

Since d;(1) = (10)“, the canonical Bertrand system associated with ¢ is given by

vis o0, U - {U(i1)+U(i3)+~-+U(1)+1, if i is even;
Ui-1)+U@Gl—-3)+---+U0)+1, ifiisodd.
Thus, U(0) =1, U(1) = U(0) +1 =2 and for all i > 0, one has
U(i+2)—U(i)y=U(i+1).
Hence U(i 4+ 2) = U(i + 1) + U(i) for all i > 0.

We see that this is precisely the Zeckendorf system F = (1,2,3,5,8,13,...).



The non-canonical Bertrand system associated with ¢

Since d,(1) = 110%, the non-canonical Bertrand system associated with ¢ is given by
Vi>0, Ui)=U(li—-1)+U(i —2)+1,
ie.,
Uu)=1, U1)=U(0)+1=2, and Vi >0, U(i+2)=U(i+1)+ U(i)+ 1.
We have U = (1,2,4,7,12,20,33,54,...).
The corresponding numeration language Ny is equal to Fac(S;,) where the
non-canonical @-shift is
S, ={we{0,1}*:Vi>1, wiwir--- <iex 110°}.

It is accepted by the DFA

O—0—
0

From this DFA, we can check that U is indeed a Bertrand numeration system.



Intermediate [-representations of 1

At first, our guess was that there could be other kinds of Bertrand numeration
systems, namely any U defined by

Vi>0, U(i)=aU(i—-1)4+aU(i—2)+---+aU0)+1
with the sequence of coefficients given by
(ai)iz1=(t1-- - ta—1(tn — 1))kt1 -+ 1,0%

for any k € NU {oo}.

In fact, what we get is that only the cases k = 0 or k = oo are possible.



Intermediates are not Bertrand

Let (a)i>1 = 230“. We have 2 + 3 = 1.

Define U by
u(0) =1,
U(1) = 2U(0) +1 =3,
Ui)=20(Gi—1)+3U(i—2)+1, i>2.

We get U = (1,3,10,30,91,...).
This system is not Bertrand since for example, 30 € Ny but 3,300 ¢ Ay, showing that

Ny is neither prefix-closed nor prolongable.

In fact, we have
3U(i), if i is odd;

U(i+1) =
3U(i)+ 1, ifiiseven.



Intermediates are not Bertrand

Let (a,'),'zl = 10110%. We have é + % + % =1.

Define U by

u(0) =1,

u(t) = UE) +1=2,

U@2)=U@1)+1=3,

U@3) = U(2) + U(0) +1 =5,

Ui =U@G—1)4+UG—3)+U(i—4)+1, i>a4.
We get U = (1,2,3,5,9,15,24,39,...).

This system is not Bertrand since for example, 1100, 11000 € Ay but
11,110, 110000 ¢ Ny, showing that Ay is neither prefix-closed nor prolongable.

In fact, we have

(i +2) = Ui + 1)+ U(), if i =2,3 (mod 4);
S lUuG+1)+ U@ 1, ifi=0,1 (mod 4).



Proposition (HoIIander 1998)
=p6>1.

» If B is not a simple Parry number, then
lim rep,(U(i) — 1) = ds(1).
1—00

» Ifdg(l) =t1---t, with t, # 0, then for all £ > 0, there exists | > 0 such that for
all i > 1, there exists k > 0 such that

Prefy(rep,(U(i) — 1)) = Prefo((t1 - - - th—1(tn — 1)) -+ £,0%).

Proposition (Charlier, Cisternino & Stipulanti 2022)

Let U be a positional numeration system such that lim U'H =p>1
i— o0

If lim rep,(U(i) — 1) exists, then it is either d3(1) or ds(1).
I— 00



Another characterization of Bertrand numeration systems

Theorem (Charlier, Cisternino & Stipulanti 2022)

A positional numeration system U is Bertrand if and only if one of the following
conditions is satisfied.

1. We have rep,(U(i) — 1) = Pref;(10*) for all i > 0.
2. There exists 3 > 1 such that rep,(U(i) — 1) = Pref;(d5(1)) for all i > 0.

3. There exists 8 > 1 such that rep,(U(i) — 1) = Pref;(ds(1)) for all i > 0.



Understanding the non-canonical S-shift

A subshift (i.e., a subset of A that is topologically closed and shift-invariant) is said
to be sofic if its factors form a language that is accepted by a finite automaton.

A Parry number is a real number § > 1 such that dg(1) is ultimately periodic (or
equivalently, d5(1) is ultimately periodic).

Theorem (Bertrand-Mathis 1986)
For 3 > 1, the subshift Sg is sofic if and only if B is a Parry number.

We get the analogous result:

Proposition
For 8 > 1, the subshift Sy is sofic if and only if 3 is a Parry number.



Linear Bertrand numeration systems

We also get:
Proposition

Let U be a Bertrand numeration system such that there exists 3 > 1 such that
Ny = Fac(Sg) or Ny = Fac(Sg). Then U is linear if and only if 3 is a Parry number.



The entropy of a subshift S of A is

lim % log(Card(Fac(S) N A")).
11— 00

Theorem
For all B > 1, the B-shift Sg has entropy log(3).

We have the analogous result:

Proposition
For all 8 > 1, the subshift Sy has entropy log(j3).



Some negative results

A subshift S is said to be of finite type if there exists a finite set X C A* such that
S ={w € AV : Fac(w) N X = 0}.

Theorem
For all B > 1, the B-shift Sg is of finite type if and only is 3 is a simple Parry number.

However:

Proposition

For any simple Parry number 3 > 1, the subshift Sy is not of finite type.



A subshift S is said to be coded if there exists a prefix code Y C A* such that
Fac(S) = Fac(Y™).

Theorem
For all p > 1, the canonical 3-shift Sg is coded.

In order to show that Sj is not coded, we prove the stronger statement that Sj is not
irreducible.

A subshift S is said to be irreducible if for all u, v € Fac(S), there exists w € Fac(S)
such that uwv € Fac(S).

Proposition

For any simple Parry number (3, the non-canonical 3-shift Sé is not irreducible.



A relation between the number of words of length i in the

canonical and the non-canonical S-shifts.

Suppose that 3 > 1 is a real number such that dg(1) = t1 - - - t,0 with n > 1 and
t, # 0, and let U and U’ respectively be the canonical and non-canonical Bertrand
numeration systems associated with f.

Thanks to our characterization of Bertrand systems, we know that for all i > 0,
» the number of words of length i in Fac(Sg) is U(i)
> the number of words of length i in Fac(Sg) is U'(i).

Proposition
For all i > 0, one has U'(i + n) = U(i + n) + U'(i).



U(i+n)=U@G+n)+ U(i)foralli>0

For 8 = 3, we have d3(1) = 30%, hence n = 1.
We have seen that
U(i)=3" Vvi>o0
and that
U©y=1, U'(i+1)=3U'(i)+1 Vi>o.

i o1 2 3 4 5
UG) 1 3 9 27 81 243
UG)|1 4 13 40 121 364




U(i+n)=U@G+n)+ U(i)foralli>0

For 8 = ¢, we have d,(1) = 110“, hence n = 2.
We have seen that

u)=1, Uu(1)=2, U@{i+2)=U(>(+1)+U(i) Vi>0
and that

U'o)y=1, UQ1)=2, U(@(i+2)=U(i+1)+U@li)+1 Vi>o.

0123 4 5 6 7 8
U)[1 2 3 5 8 13 21 34 55
|1 2 4 7 12 20 33 54 88




Superlinear factor complexity

For a positional numeration system U, an infinite word w = wyws - - - over an alphabet
B is said to be U-automatic if there is a DFAO (Q, qo, Au, 0, A, 7) such that
wi = 7(6(qo, repy(k))) for all k € N.

The factor complexity of an infinite word w = wiws - - - over an alphabet A is the
function p,,: N — N that maps k to the number of length-k factors of w.

Proposition

Let B> 1 be such that dg(1) = t1 -ty with n > 1 and t, # 0. Consider U’ to be the
non-canonical Bertrand numeration system associated with 3. Define the morphism
¥:{0,1,...,n+1} = {0,1,...,n+ 1} by ¢(i) =0%(i + 1) fori € {0,1,...,n} and
Y(n+1) = n+1. Then the fixed point ¥*(0) is U'-automatic with factor complexity
in ©(k?).



Thank you!
Merci !



