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Representing integers
via an integer

base sequence U

Representing real numbers
via a real base β

Bertrand-Mathis’s work



Representing integers in base 3

Any n ∈ N can be decomposed in a unique way as

n =
ℓ∑

i=1

ai 3ℓ−i

where ai ∈ {0, 1, 2} and a1 ̸= 0. We write rep3(n) = a1 · · · aℓ.

The numeration language N3 is the set 0∗rep3(N), which is simply {0, 1, 2}∗.

0, 1, 2



Representing real numbers in base 3

Any x ∈ [0, 1) can be decomposed in a unique way as

x =
∞∑
i=1

ai

3i

where ai ∈ {0, 1, 2} and ai ai+1ai+2 · · · ̸= 2ω for all i . We write d3(x) = a1a2a3 · · · .

Define D3 = {d3(x) : x ∈ [0, 1)}.

The topological closure of D3 is called the 3-shift:

S3 = {w ∈ {0, 1, 2}ω : Fac(w) ⊆ Fac(D3)} = {0, 1, 2}ω.

Straightforward but crucial observation: Fac(S3) = N3.



Representing integers thanks to the Fibonacci sequence
We let F0 = 1, F1 = 2 and Fi+2 = Fi+1 + Fi for i ≥ 0.

Any n ∈ N can be decomposed in a unique way as

n =
ℓ∑

i=1

ai Fℓ−i

where ai ∈ {0, 1} and a1 ̸= 0 with the condition that ai ai+1 ̸= 11. We write
repF (n) = a1 · · · aℓ.

The numeration language NF is the set 0∗repF (N).

0

0

1

This numeration system is called the Zeckendorf numeration system.



Representing real numbers in base φ

Let φ = 1+
√

5
2 (the golden mean).

Any x ∈ [0, 1) can be decomposed in a unique way as

x =
∞∑
i=1

ai

φi

where ai ∈ {0, 1}, ai ai+1 ̸= 11 and ai ai+1ai+2 · · · ̸= (10)ω for all i . We write
dφ(x) = a1a2a3 · · · .

Define Dφ = {dφ(x) : x ∈ [0, 1)}.

The topological closure of Dφ is called the φ-shift:

Sφ = {w ∈ {0, 1}ω : Fac(w) ⊆ Fac(Dφ)} = {0, 1}ω \ {0, 1}∗11{0, 1}ω.

Straightforward but crucial observation: Fac(Sφ) = NF .



Representing integers via positional numeration systems U

Let U = (U(i))i≥0 be an increasing integer sequence such that U(0) = 1 and

CU := sup{i ≥ 0 :
⌈ U(i+1)

U(i)

⌉
} < ∞.

We may represent any n ∈ N by using the following greedy algorithm.

First, compute the least ℓ such that n < U(ℓ). Then for all i = 1, . . . , ℓ, let ai be the
greatest integer a such that

i−1∑
j=1

ajU(ℓ− j) + aU(ℓ− i) ≤ n.

We get that
ℓ∑

i=1

ai U(ℓ− i) = n.

The finite word repU(n) = a1 · · · aℓ is called the U-expansion of n.

These words are written over the finite alphabet AU = {0, . . . ,CU − 1}.



Representing real numbers via real bases β > 1

Let β > 1 be real number (called the base).

We may represent any x ∈ [0, 1] by using the following greedy algorithm.

For all i ≥ 1, let ai be the greatest integer a such that

i−1∑
j=1

aj

βj + a
β i ≤ x .

We get that
∞∑
i=1

ai

β i = x .

The infinite word dβ(x) = a1a2 · · · is called the β-expansion of x .

Only finitely many digits are used, namely 0, 1, . . . , ⌊β⌋.



Bertrand numeration systems

Let U be a positional numeration system.

The set NU = 0∗repU(N) is called the numeration language.

Two desirable properties of NU are:

▶ NU is prefix-closed if all prefixes of words in NU also belong to NU .

▶ NU is prolongable if for all w in NU , the word w0 also belongs to NU .

We say that U is a Bertrand numeration system if NU is both prefix-closed and
prolongable.

Equivalently: ∀w ∈ A∗
U , w ∈ NU ⇐⇒ w0 ∈ NU .



State of the art
This form of the definition of Bertrand numeration systems, as well as their names
after Bertrand-Mathis, was first given in

▶ Bruyère & Hansel 1997. Bertrand numeration systems and recognizability.
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numeration systems to Pisot numbers
▶ Frougny 2002. Numeration systems. (Chapter 7 of Lothaire’s book "Algebraic
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▶ Lecomte & Rigo 2004. Real numbers having ultimately periodic representations in

abstract numeration systems.
▶ Berthé & Rigo 2007. Odometers on regular languages.
▶ Charlier, Rampersad, Rigo & Waxweiler 2011. The minimal automaton recognizing

mN in a linear numeration system.
▶ Massuir, Peltomäki & Rigo 2019. Automatic sequences based on Parry or Bertrand

numeration systems.
▶ Stipulanti 2019. Convergence of Pascal-like triangles in Parry-Bertrand numeration

systems.



Other works considering Bertrand numeration systems are
▶ Loraud 1995. β-shift, systèmes de numération et automates.
▶ Frougny & Solomyak 1996. On representation of integers in linear numeration

systems.
▶ Frougny 2003. On-line digit set conversion in real base.
▶ Frougny, Gazeau & Krejcar 2003. Additive and multiplicative properties of point sets

based on beta-integers.
▶ Barat, Frougny & Pethö 2005. A note on linear recurrent Mahler numbers.
▶ Berthé & Siegel 2007. Purely periodic β-expansions in the Pisot non-unit case.
▶ Frougny & Sakarovitch 2010. Number representation and finite automata. (Chapter 2

of the book "Combinatorics, automata and number theory").
▶ Berthé, Frougny, Rigo & Sakarovitch 2020. The carry propagation of the successor

function.



The β-shift

Before giving Bertrand-Mathis’s statement, we need one more notion on the real base
side.

For β > 1, we let Dβ = {dβ(x) : x ∈ [0, 1)}.

The β-shift is the topological closure of Dβ :

Sβ = {w ∈ {0, . . . , ⌈β⌉ − 1}ω : Fac(w) ⊆ Fac(Dβ)}.



Parry’s characterization of elements in the β-shift

In Parry’s theorem, the β-expansion and the quasi-greedy β-expansion of 1 play crucial
roles.

The quasi-greedy β-expansion of 1 is

d∗
β(1) = lim

x→1−
dβ(x).

If dβ(1) does not end with a tail of zeros, we simply have d∗
β(1) = dβ(1).

Otherwise, if dβ(1) = t1 · · · tn0ω with tn ̸= 0, then d∗
β(1) = (t1 · · · tn−1(tn − 1))ω.

Theorem (Parry 1960)

Sβ = {w ∈ {0, . . . , ⌈β⌉ − 1}ω : ∀i ≥ 1, wi wi+1 · · · ≤lex d∗
β(1)}.



Parry’s descriptions of the 3-shift and the φ-shift

For β = 3, we get d3(1) = 30ω and d∗
3 (1) = 2ω. So Parry’s theorem gives

S3 = {w ∈ {0, 1, 2}ω : ∀i ≥ 1, wi wi+1 · · · ≤lex 2ω}.

For β = φ, we get dφ(1) = 110ω and d∗
φ(1) = (10)ω. So Parry’s theorem gives

Sφ = {w ∈ {0, 1}ω : ∀i ≥ 1, wi wi+1 · · · ≤lex (10)ω}.



Bertrand-Mathis’s statement

In 1989, Bertrand-Mathis stated that

U is Bertrand if and only if ∃β > 1 such that NU = Fac(Sβ).

In this case, the following hold:

a. There is a unique such β.

b. The alphabet AU equals {0, . . . , ⌈β⌉ − 1}.

c. We have

∀i ≥ 0, U(i) = d1U(i − 1) + d2U(i − 2) + · · · + di U(0) + 1

and
lim

i→∞

U(i)
β i = β

(β − 1)
∑∞

i=1 idiβ−i

where (di )i≥1 = d∗
β(1).

d. The system U has the dominant root β, i.e., limi→∞
U(i+1)

U(i) = β.



Bertrand-Mathis’s statement

In 1989, Bertrand-Mathis stated that

U is Bertrand if and only if ∃β > 1 such that NU = Fac(Sβ).

In this case, the following hold:

a. There is a unique such β.

b. The alphabet AU equals {0, . . . , ⌈β⌉ − 1}.

c. We have

∀i ≥ 0, U(i) = d1U(i − 1) + d2U(i − 2) + · · · + di U(0) + 1

and
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i→∞

U(i)
β i = β

(β − 1)
∑∞

i=1 idiβ−i

where (di )i≥1 = d∗
β(1).

d. The system U has the dominant root β, i.e., limi→∞
U(i+1)

U(i) = β.



Full characterization of Bertrand numeration systems

For a real number β > 1, define

S ′
β = {w ∈ {0, . . . , ⌊β⌋}ω : ∀i ≥ 1, wi wi+1 · · · ≤lex dβ(1)}.

Theorem (Charlier, Cisternino & Stipulanti 2022)
A positional numeration system U is Bertrand if and only if one of the following
occurs.

1. For all i ≥ 0, U(i) = i + 1.

2. There exists a real number β > 1 such that NU = Fac(Sβ).

3. There exists a real number β > 1 such that NU = Fac(S ′
β).



Moreover, in Case 2 (resp. Case 3), the following hold:

a. There is a unique such β.

b. The alphabet AU equals {0, . . . , ⌈β⌉ − 1} (resp. {0, . . . , ⌊β⌋}).

c. We have

∀i ≥ 0, U(i) = a1U(i − 1) + a2U(i − 2) + · · · + ai U(0) + 1

and
lim

i→∞

U(i)
β i = β

(β − 1)
∑∞

i=1 iaiβ−i

where (ai )i≥1 is d∗
β(1) (resp. dβ(1)).

d. The system U has the dominant root β, i.e., limi→∞
U(i+1)

U(i) = β.



Non-canonical Bertrand systems and non-canonical β-shifts

Let β be a simple Parry number, i.e., such that dβ(1) ends with a tail of zeroes.
In this case, d∗

β(1) ̸= dβ(1), and hence there are two Bertrand numeration systems
associated with β.

▶ The canonical Bertrand system is built from the digits of d∗
β(1).

▶ The non-canonical Bertrand system is built from the digits of dβ(1).

Similarly,

▶ The set Sβ = {w ∈ {0, . . . , ⌈β⌉ − 1}ω : ∀i ≥ 1, wi wi+1 · · · ≤lex d∗
β(1)} is called

the canonical β-shift

▶ The set S ′
β = {w ∈ {0, . . . , ⌊β⌋}ω : ∀i ≥ 1, wi wi+1 · · · ≤lex dβ(1)} is called the

non-canonical β-shift.



The canonical Bertrand numeration system associated with 3

Since d∗
β(1) = 2ω, the canonical Bertrand system associated with 3 is given by

∀i ≥ 0, U(i) = 2U(i − 1) + 2U(i − 2) + · · · + 2U(0) + 1.

Thus, U(0) = 1 and for all i ≥ 0, one has

U(i + 1) − U(i) = (2U(i) + 2U(i − 1) + · · · + 2U(0) + 1)

− (2U(i − 1) + 2U(i − 2) + · · · + 2U(0) + 1)

= 2U(i).

Hence U(i + 1) = 3U(i) for all i ≥ 0.

We see that this is precisely the integer base 3 numeration system U = (3i )i≥0.



The non-canonical Bertrand system associated with 3

Since d3(1) = 30ω, the non-canonical Bertrand system associated with 3 is given by

∀i ≥ 0, U(i) = 3U(i − 1) + 1.

We have U = (1, 4, 13, 40, 121, . . .).

The corresponding numeration language NU is equal to Fac(S ′
3) where the

non-canonical 3-shift is

S ′
3 = {w ∈ {0, 1, 2, 3}ω : ∀i ≥ 1, wi wi+1 · · · ≤lex 30ω}.

It is accepted by the DFA
0, 1, 2 0

3

From this DFA, we can see that U is Bertrand, i.e., that NU is prefix-closed and
prolongable.



The canonical Bertrand system associated with φ

Since d∗
φ(1) = (10)ω, the canonical Bertrand system associated with φ is given by

∀i ≥ 0, U(i) =

{
U(i − 1) + U(i − 3) + · · · + U(1) + 1, if i is even;
U(i − 1) + U(i − 3) + · · · + U(0) + 1, if i is odd.

Thus, U(0) = 1, U(1) = U(0) + 1 = 2 and for all i ≥ 0, one has

U(i + 2) − U(i) = U(i + 1).

Hence U(i + 2) = U(i + 1) + U(i) for all i ≥ 0.

We see that this is precisely the Zeckendorf system F = (1, 2, 3, 5, 8, 13, . . .).



The non-canonical Bertrand system associated with φ
Since dφ(1) = 110ω, the non-canonical Bertrand system associated with φ is given by

∀i ≥ 0, U(i) = U(i − 1) + U(i − 2) + 1,

i.e.,

U(0) = 1, U(1) = U(0) + 1 = 2, and ∀i ≥ 0, U(i + 2) = U(i + 1) + U(i) + 1.

We have U = (1, 2, 4, 7, 12, 20, 33, 54, . . .).

The corresponding numeration language NU is equal to Fac(S ′
φ) where the

non-canonical φ-shift is

S ′
φ = {w ∈ {0, 1}ω : ∀i ≥ 1, wi wi+1 · · · ≤lex 110ω}.

It is accepted by the DFA

0

0

1 1

0

From this DFA, we can check that U is indeed a Bertrand numeration system.



Intermediate β-representations of 1

At first, our guess was that there could be other kinds of Bertrand numeration
systems, namely any U defined by

∀i ≥ 0, U(i) = a1U(i − 1) + a2U(i − 2) + · · · + ai U(0) + 1

with the sequence of coefficients given by

(ai )i≥1 = (t1 · · · tn−1(tn − 1))kt1 · · · tn0ω

for any k ∈ N ∪ {∞}.

In fact, what we get is that only the cases k = 0 or k = ∞ are possible.



Intermediates are not Bertrand

Let (ai )i≥1 = 230ω. We have 2
3 + 3

32 = 1.

Define U by

U(0) = 1,

U(1) = 2U(0) + 1 = 3,

U(i) = 2U(i − 1) + 3U(i − 2) + 1, i ≥ 2.

We get U = (1, 3, 10, 30, 91, . . .).

This system is not Bertrand since for example, 30 ∈ NU but 3, 300 /∈ NU , showing that
NU is neither prefix-closed nor prolongable.

In fact, we have

U(i + 1) =

{
3U(i), if i is odd;
3U(i) + 1, if i is even.



Intermediates are not Bertrand
Let (ai )i≥1 = 10110ω. We have 1

φ
+ 1

φ3 + 1
φ4 = 1.

Define U by

U(0) = 1,

U(1) = U(0) + 1 = 2,

U(2) = U(1) + 1 = 3,

U(3) = U(2) + U(0) + 1 = 5,

U(i) = U(i − 1) + U(i − 3) + U(i − 4) + 1, i ≥ 4.

We get U = (1, 2, 3, 5, 9, 15, 24, 39, . . .).

This system is not Bertrand since for example, 1100, 11000 ∈ NU but
11, 110, 110000 /∈ NU , showing that NU is neither prefix-closed nor prolongable.

In fact, we have

U(i + 2) =

{
U(i + 1) + U(i), if i ≡ 2, 3 (mod 4);
U(i + 1) + U(i) + 1, if i ≡ 0, 1 (mod 4).



Proposition (Hollander 1998)
Let U be a positional numeration system such that lim

i→∞

U(i+1)
U(i) = β > 1.

▶ If β is not a simple Parry number, then

lim
i→∞

repU(U(i) − 1) = dβ(1).

▶ If dβ(1) = t1 · · · tn with tn ̸= 0, then for all ℓ ≥ 0, there exists I ≥ 0 such that for
all i ≥ I, there exists k ≥ 0 such that

Prefℓ(repU(U(i) − 1)) = Prefℓ((t1 · · · tn−1(tn − 1))kt1 · · · tn0ω).

Proposition (Charlier, Cisternino & Stipulanti 2022)
Let U be a positional numeration system such that lim

i→∞

U(i+1)
U(i) = β > 1.

If lim
i→∞

repU(U(i) − 1) exists, then it is either d∗
β(1) or dβ(1).



Another characterization of Bertrand numeration systems

Theorem (Charlier, Cisternino & Stipulanti 2022)
A positional numeration system U is Bertrand if and only if one of the following
conditions is satisfied.

1. We have repU(U(i) − 1) = Pref i (10ω) for all i ≥ 0.

2. There exists β > 1 such that repU(U(i) − 1) = Pref i (d∗
β(1)) for all i ≥ 0.

3. There exists β > 1 such that repU(U(i) − 1) = Pref i (dβ(1)) for all i ≥ 0.



Understanding the non-canonical β-shift

A subshift (i.e., a subset of Aω that is topologically closed and shift-invariant) is said
to be sofic if its factors form a language that is accepted by a finite automaton.

A Parry number is a real number β > 1 such that dβ(1) is ultimately periodic (or
equivalently, d∗

β(1) is ultimately periodic).

Theorem (Bertrand-Mathis 1986)
For β > 1, the subshift Sβ is sofic if and only if β is a Parry number.

We get the analogous result:

Proposition
For β > 1, the subshift S ′

β is sofic if and only if β is a Parry number.



Linear Bertrand numeration systems

We also get:

Proposition
Let U be a Bertrand numeration system such that there exists β > 1 such that
NU = Fac(Sβ) or NU = Fac(S ′

β). Then U is linear if and only if β is a Parry number.



The entropy of a subshift S of Aω is

lim
i→∞

1
i log(Card(Fac(S) ∩ Ai )).

Theorem
For all β > 1, the β-shift Sβ has entropy log(β).

We have the analogous result:

Proposition
For all β > 1, the subshift S ′

β has entropy log(β).



Some negative results

A subshift S is said to be of finite type if there exists a finite set X ⊂ A∗ such that
S = {w ∈ AN : Fac(w) ∩ X = ∅}.

Theorem
For all β > 1, the β-shift Sβ is of finite type if and only is β is a simple Parry number.

However:

Proposition
For any simple Parry number β > 1, the subshift S ′

β is not of finite type.



A subshift S is said to be coded if there exists a prefix code Y ⊂ A∗ such that
Fac(S) = Fac(Y ∗).

Theorem
For all β > 1, the canonical β-shift Sβ is coded.

In order to show that S ′
β is not coded, we prove the stronger statement that S ′

β is not
irreducible.

A subshift S is said to be irreducible if for all u, v ∈ Fac(S), there exists w ∈ Fac(S)
such that uwv ∈ Fac(S).

Proposition
For any simple Parry number β, the non-canonical β-shift S ′

β is not irreducible.



A relation between the number of words of length i in the
canonical and the non-canonical β-shifts.

Suppose that β > 1 is a real number such that dβ(1) = t1 · · · tn0ω with n ≥ 1 and
tn ̸= 0, and let U and U ′ respectively be the canonical and non-canonical Bertrand
numeration systems associated with β.

Thanks to our characterization of Bertrand systems, we know that for all i ≥ 0,

▶ the number of words of length i in Fac(Sβ) is U(i)

▶ the number of words of length i in Fac(S ′
β) is U ′(i).

Proposition
For all i ≥ 0, one has U ′(i + n) = U(i + n) + U ′(i).



U ′(i + n) = U(i + n) + U ′(i) for all i ≥ 0

For β = 3, we have d3(1) = 30ω, hence n = 1.

We have seen that
U(i) = 3i ∀i ≥ 0

and that
U ′(0) = 1, U ′(i + 1) = 3U ′(i) + 1 ∀i ≥ 0.

i 0 1 2 3 4 5 · · ·
U(i) 1 3 9 27 81 243
U ′(i) 1 4 13 40 121 364



U ′(i + n) = U(i + n) + U ′(i) for all i ≥ 0

For β = φ, we have dφ(1) = 110ω, hence n = 2.

We have seen that

U(0) = 1, U(1) = 2, U(i + 2) = U(i + 1) + U(i) ∀i ≥ 0

and that

U ′(0) = 1, U ′(1) = 2, U ′(i + 2) = U(i + 1) + U(i) + 1 ∀i ≥ 0.

i 0 1 2 3 4 5 6 7 8 · · ·
U(i) 1 2 3 5 8 13 21 34 55
U ′(i) 1 2 4 7 12 20 33 54 88



Superlinear factor complexity

For a positional numeration system U, an infinite word w = w1w2 · · · over an alphabet
B is said to be U-automatic if there is a DFAO (Q, q0,AU , δ,A, τ) such that
wk = τ(δ(q0, repU(k))) for all k ∈ N.

The factor complexity of an infinite word w = w1w2 · · · over an alphabet A is the
function pw : N → N that maps k to the number of length-k factors of w .

Proposition
Let β > 1 be such that dβ(1) = t1 · · · tn with n ≥ 1 and tn ̸= 0. Consider U ′ to be the
non-canonical Bertrand numeration system associated with β. Define the morphism
ψ : {0, 1, . . . , n + 1} → {0, 1, . . . , n + 1} by ψ(i) = 0ti (i + 1) for i ∈ {0, 1, . . . , n} and
ψ(n + 1) = n + 1. Then the fixed point ψω(0) is U ′-automatic with factor complexity
in Θ(k2).



Thank you!
Merci !


