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Preprint submitted to European Journal of Mechanics - A/Solids. (C) 2023; Licensed under the Creative
Commons (CC-BY-NC-ND); formal publication on: 10.1016/j.euromechsol.2023.104974

Abstract

Woven composites have a multiscale character, whose structural response is affected by
mechanisms on different lower scales. The predicted macroscopic response of a carbon
fiber reinforced woven composite is achieved by model order reduction and homogenization
techniques, taking into account the structures and mechanisms on both mesoscopic and
microscopic scales. Reduced order models based on piecewise uniform fields and mean field
homogenization are integrated for the micro-meso-macro upscaling to finally determine the
effective macroscopic response of a woven unit cell. A spatial decomposition for the woven
composite unit cell on the mesoscale is implemented, achieving the model order reduction by
taking into account the local microstructure of the yarns as well as inelastic fields emerging
under selected deformation conditions. Following, different numerical tests are performed
on the woven unit cell, containing complex and inelastic loading histories. Macroscopic
homogenized predictions following the reduced order models and full-field direct numerical
simulations are compared. Very high accuracies are achieved by the employed reduced order
models, allowing for great computational savings.

Keywords: Textile composites, Anisotropic materials, Multiscale analysis, Reduced order
model, Clustering

1. Introduction

The typical scale of interest in the computational mechanics of composite materials,
is the structural, or macroscopic, scale. Due to the complexity of non-linear composite
structures on their meso and microscales, no direct constitutive relations for the macroscopic
material behavior are available. With the lack of accurate macroscopic constitutive relations,
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the precise analysis of the macroscopic mechanical behavior requires the consideration of
mechanisms on the lower scales, where constitutive relations of the individual composite
constituents are often available.

Computational analyses linking the materials behavior on the macroscopic scale to the
mechanisms on the heterogeneous meso- or microscale, are known as multiscale simulations
and typically rely on a principle that is known as the mechanical homogenization (Kanouté
et al., 2009; Charalambakis, 2010; Geers et al., 2010; Saeb et al., 2016; Geers et al., 2017;
Yvonnet, 2019, e.g.). In homogenization-based multiscale methods, the deformation state
at one point of the macroscopic domain constitutes a new boundary value problem (BVP)
applied on a mesoscopic or microscopic domain, assumed to contain all structural features
and called representative volume element (RVE).

Analytical and semi-analytical approaches for the mechanical homogenization of com-
posite materials exist: While the analytically homogenized macroscopic behavior is derived
from certain upper and lower bounds (Voigt, 1889; Reuss, 1929; Hashin and Shtrikman,
1962, 1963; Talbot and Willis, 1985), semi-analytical mean field homogenization (MFH)
approaches rely on estimated interaction functions between the single constituting material
phases of the composite, with assumed per-phase uniform fields. The variational approach
pioneered by Ponte Castañeda (1991) builds the foundation for many subsequent homoge-
nization schemes by introducing a linear comparison composite (LCC) with linear properties
being equivalent to the linearized effective properties of the actual non-linear composite. Re-
cent MFH approaches for predictions of the non-linear responses of composite materials, are
formulated on the basis of the LCC (Doghri et al., 2011; Wu et al., 2013a, 2017). MFH
approaches have the ability to deliver homogenized composite estimations, in particular for
composites with fully random structues, with very low computational requirements. The
compromise of MFH is the inability to provide reliable predictions for complex composite
structures, as woven composites in particular.

Increasing computational capabilities nowadays allow the use of direct numerical simu-
lations (DNS), and therefore an accurate consideration of the micromechanics, for the me-
chanical homogenization, as FE2 (Feyel, 1999; Kouznetsova et al., 2001, e.g.) or Fast Fourier
transformation (FFT) based approaches (Moulinec and Suquet, 1994, 1998). However, com-
plex heterogeneous microstructures can require extremely fine discretizations, implying the
requirement of immense computational power or time for the macroscopic numerical solu-
tion.

Remedy for the issue of extreme computational efforts, and nonetheless the capabil-
ity to accomplish accurate predictions for composite materials with complex microstruc-
tures, is achieved by surrogate models with a computationally much lighter solution stages.
These surrogate models can be either so-called reduced order models (ROMs) achieved by
mathematical model order reduction (MOR) techniques, data-driven models making use
of machine learning methods like deep material networks, or approximations of underlying
analytical micromechanical algorithms, providing a scale-coupling between global and local
fields. These analytical micromechanical formulations are built by particular influence func-
tions, quantifying interactions due to local fields, and spatial convolution theorems. Using
the micromechanical algorithms as light surrogate models, they are used in combination
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with spatial subdivision techniques into subdomains and approximated by the assumption
of piecewise uniform, or average, fields (Dvorak, 1990) and effective interaction operators
between the subdomains. Practically, the decomposition of a material domain into subdo-
mains may be achieved by means of statistical divisions, so-called clustering techniques. For
physically sensible decompositions of the microstructural domain, the clustering algorithm
can be fed by several micromechanical fields under specific boundary conditions, gathered
through full-field DNS of the composite structure in the offline stage (Liu et al., 2016; Wulf-
inghoff et al., 2018; Spilker et al., 2022). The consideration of piecewise uniform fields has
similarities to MFH approaches. However, the spatial decompositions and the estimation of
interaction functions in the actual composite structure through DNS in the so-called offline
stage, allow to circumvent microstructural preassumptions. With the achieved reduction of
both the integration domain and the degrees of freedom, the spatial division will be referred
to as the MOR step and the methods relying on piecewise uniform fields as ROMs.

The pioneering approach for the piecewise uniform field homogenization is the transfor-
mation field analysis (TFA) by Dvorak (1992). The analytical TFA algorithm is based on
the definition of the separation of elastic and inelastic fields (referred to as eigenfields) and
elastic eigenstrain interaction functions inside the heterogeneous medium. The TFA leads
to traditionally overstiff modeled inelastic responses of the composite material when rea-
sonable numbers of subdomains are used, explained with a loss of physics due to piecewise
uniform approximations of spatially heterogeneous inelastic fields and consequently under-
estimated interaction effects. Spilker et al. (2022) extended the spatial decomposition from
the consideration of purely elastic deformation fields towards the integration of dominant
inelastic fields under typical deformation conditions of the particular composite structure,
and achieved improved convergence of the TFA predictions towards DNS results under in-
creasing numbers of subdomains. The reason for improved inelastic approximations of the
composite are improved captures of the inelastic field interactions through the enhanced
spatial decomposition. No increasing prediction errors were encountered when the stiff-
ness contrast between the phases or the structural anisotropy increases. Furthermore was
shown that very accurate results are achieved for composite systems consisting of an inelas-
tic inclusion phase in an inelastic matrix. Using clustering techniques, too high amounts of
inelastic field information may lead to diffuse subdomain identifications or the requirement
of unreasonably large numbers of subdomains. Therefore, in order to guarantee accurate
coverage of the computed inelastic fields by the subdomains without too large number of de-
grees of freedom, the number of possibly considered deformation modes in the offline stage
is limited. With a spatial decomposition that bases on a limited number of deformation
modes, even when representing the most typical deformation modes, a loss of the physics
of the inelastic problem may still occur under arbitrary inelastic deformation conditions or
extended loading histories, leading to inelastic fields that strongly deviate from the ones
encountered in the offline stage. A recent strategy for the improved account for localized
effects during inelastic loading histories was provided by Ferreira et al. (2022), proposing an
adaptive re-clustering procedure during the solution stage. The TFA, even when relying on
an inelasticity based spatial decomposition, may still lead to too stiff inelastic predictions
of composites that consist of elevated volume fractions of elastic inclusions inside an inelas-
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tic matrix phase due to underestimated eigenstrain interactions (Spilker et al., 2022). For
better estimates of the composites behavior, Chaboche et al. (2001) developed a correction
for the eigenstrains based on a consideration of the asymptotic tangent strain concentra-
tion tensors of the subdomains. Building on the piecewise uniform approximation of the
local fields, several approaches explicitly take into account the local microscopic inelastic
fields. Fish et al. (1997) considered a serial expansion of stresses and eigenstrains based
on the contributions on the different scales. In the non-uniform TFA (NTFA) by Michel
and Suquet (2003), localized inelastic mechanisms are accounted for by the integration of
fully non-uniform eigenstrain fields, composed by a finite set of a-priori determined inelastic
strain modes. Michel and Suquet (2016) have applied a tangent second-order (TSO) expan-
sion of the dissipation potential, which corresponds to a reduction of the evolution equations
related to the reduced internal variables. Alternatively, the NTFA was extended by Fritzen
and Leuschner (2013) towards a potential-based formulation (pRBMOR), where the evolu-
tion laws for the internal variables are derived from variational principles. The pRBMOR
allows for the modeling of any kind of material behavior controlled by a dissipation potential,
referred to as Generalized Standard Material (GSM) classes.

Alternative descriptions of the micromechanics in heterogeneous composite media, as,
e.g., Kröner (1977, 1978), make use of the Lippmann-Schwinger equation (Lippmann and
Schwinger, 1950), relying on a homogeneous reference medium and interactions due to local
polarization stress fields (Eshelby, 1957; Hashin and Shtrikman, 1962, 1963). The inter-
actions are expressed through the Green’s influence function of the homogeneous reference
medium. The first piecewise uniform field ROM approach based on the Lippmann-Schwinger
equation is the self-consistent clustering analysis (SCCA) by Liu et al. (2016, 2018). In
the SCCA approach, the homogeneous reference medium is assumed to be isotropic. The
isotropic stiffness operator represents the isotropized homogenized response of the composite
and can be adapted during nonlinear responses by computing the instantaneous homoge-
nized Lamé parameters. The Green’s interaction tensors, in the SCCA algorithm computed
analytically, are updated during the solution stage accordingly to the updated stiffness of
the reference medium. An approach similar to the SCCA is the Hashin-Shtrikman (HS)
type analysis (Wulfinghoff et al., 2018; Cavaliere et al., 2020), relying on an isotropic secant
stiffness operator. In this method, elastic influence functions are determined numerically
by pre-simulations. With an assumed constant Poisson ratio of the reference medium, the
stiffness tensor and the Green’s interaction tensors of the reference medium can be easily
adapted during nonlinearities purely by scaling with the updated secant shear modulus of the
composite. Originally implemented for the modeling of nonlinear elastic materials behavior
without the evolution of internal state variables, the HS type analysis was later applied to
elasto-plastic materials by Castrogiovanni et al. (2021). The validity of the TFA and the
HS type homogenization techniques for the responses of various composite material systems
was evaluated in detail by Spilker (2022).

This work focuses on the clustering based ROM of woven composite structures. The
mesoscale woven composite unit cell consists of yarns, spanning the so-called ply-plane, sur-
rounded by a pure matrix material phase. The yarns are composite materials themselves,
consisting of long fibers embedded in the same matrix material. Consequently, a woven
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Figure 1: Schematic demonstration of a mechanical full-field problem of a woven structure considering the
associated scales. The deformation state ε(X) at a certain macroscopic material point X inside a structural
woven composite states the boundary problem for the unit cell, representing the woven mesostructure. The
mesoscopic material points χ of the yarns in the mesoscale unit cell are locally represented by a UD fibrous
microstructure. Following from the mesoscopic deformation state ε(χ) at the material points χ in the yarns,
the MFH is used for the computation of the homogenized response σ(χ) of the equivalent microstructural
RVE, where the fibrous phase is represented by one inclusion/fiber in the matrix phase (Section 2.2.1). The
macroscopic stress response of the woven unit cell σ(X) follows from the consideration of the complete local
field χ.

composite can be classified as a three-scale material, where the evaluation of the structural
behavior is affected by mechanisms on the mesoscopic and microscopic scales (Fig. 1). The
non-uniform microstructural configuration of the yarns due to locally varying yarn orienta-
tions needs to be respected by the spatial division into subdomains, in order to gather only
material points with similar responses in the same subdomain and guarantee valid predic-
tions of the unit cell using piecewise uniform approximations. For this sake, an adapted
clustering of the mesoscale material domain was implemented, taking into account the non-
uniform microstructure of the yarns. In the work by Han et al. (2020), the macroscopic
response of the unit cell was modeled by the SCCA scale coupling, with mesoscopic defor-
mation fields approximated by piecewise uniform fields. Since the heterogeneous character
of the yarns microstructure was not explicitly respected during the solution stage, homog-
enized elastic properties of the yarns were determined offline by microscale DNS, and the
nonlinear behavior of the woven unit cell was modeled based on the a-priori evaluation of
a yield criterion for the particular unit cell. In summary, the clustering based ROM of wo-
ven composites was effectively implemented as a mesoscale-macroscale two-scale coupling in
combination with a macroscopic yield criterion.

The present paper introduces a three-scale bridging approach, in which the macroscale
response of a woven unit cell is obtained by clustering analyses and the mesoscopic responses
of the yarn materials follow from a microstructural homogenization procedure. As the result,
the prediction of the macroscopic response of woven composites follows from a microscale-
mesoscale-macroscale bridging, accomplished by a two-step homogenization. Good captures
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of the nonlinear behavior of woven composites are targeted by exploiting the strengths of
two different homogenization techniques:

• The yarns microstructure can locally be treated as a UD fibrous composite. Consider-
ing the rather simple microstructure, the microscale-mesoscale transition of the yarn
materials is achieved by the MFH with an incremental-secant formalism (Wu et al.,
2013a).

• Piecewise uniform field ROM approaches based on micromechanical formulations allow
to account for complex and anisotropic structures. Therefore, it is made use of either
the TFA or a modified tangent HS for the homogenization of the complex unit cell
mesostructure and the determination of the macroscopic response.

The novel three-scale bridging technique introduced in this work is built on the following
ingredients:

• A mesoscale to macroscale upscaling using a clustering that bases on the varying
orientation of a non-uniform, fibrous microstructure. Here, it is used as a first decom-
position step of the yarns. As visible in the achieved results, this division step ensures
exact elastic predictions.

• Subdomain refinements during the mesoscale to macroscale upscaling based on par-
ticular typical inelastic deformation fields in the woven unit cell. As the number of
possible mesoscopic deformation fields in the woven composite unit cell, even under
non-proportional loading histories, is rather low, the expected deformation fields can
be well reproduced by a low number of offline stage deformation modes, provided a
sensible choice of the modes. With a low number of required modes, a good represen-
tation of the emerging mesoscopic inelastic deformation patterns can be accomplished
without large numbers of subdomains. Consequently, as the inelastic fields under
various loading conditions can reliably be captured by limited numbers of degrees of
freedom, clustering-based ROM of the mesoscale problem appears to be a suitable
homogenization technique for woven composites.

• The modification of the total-secant HS type analysis (Wulfinghoff et al., 2018) towards
a tangent formulation. This allows the modeling of loading histories that include
loading and unloading stages.

• A re-defined concept for the mesoscopic nonlinear behavior of the subdomains of the
woven unit cell, in particular of the eigenstrains required to formulate the clustering-
based ROM of the mesoscale problem. Constitutive relations of the subdomains are
replaced by a homogenization of the underlying microstructure using the MFH. The
use of the MFH for the microscale to mesoscale upscaling allows a pre-defined yield
criterion of the unit cell to be waived and enables the consideration of arbitrary inelastic
loading conditions. The eigenstrains are thus redefined from a virtual unloading of the
yarn response at the local mesoscale material points.
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This paper is structured as follows: Section 2 outlines the analytical scale-coupling relations
considered for the woven unit cell. The TFA and the Lippmann-Schwinger equation based
approaches and their reduced forms used for the mesoscale to macroscale homogenization,
and the yarns microstructural description and homogenization using the MFH are presented.
Section 3 contains the model order reduction procedure adapted for the woven composite
unit cell, through a spatial decomposition based on the local yarn orientation and inelastic
fields. Moreover, details about the implementation of the modified tangent HS type analysis
approach are given. Section 4 presents results from various numerical tests performed on the
woven unit cell. Results of the TFA and HS ROM approaches are displayed and compared
to DNS. In Section 5, concluding remarks of this work and possible future extensions of this
subject, with an emphasis on the modeling of damage, are pointed out.

2. Constitutive multiscale relations in inelastic composite media

The macroscopic material domain is defined by the macroscopic material points X.
Since the material has an underlying heterogeneous structure, the macroscopic stress-strain
response at the material point X follows from the non-uniform local responses, on the lower
length scales in the material. For this sake, the macroscopic material point X is considered
as the center of a bounded domain V , representative of the macroscopic material domain,
with the volume

|V | =
∫
V

dχ , (1)

where χ are the local material points. In this work about the homogenization of a woven
composite, V is referred to as the mesoscopic unit cell of the woven composite, and χ are the
mesoscopic material points. The volume V consists of the material domains of the yarns,
VY , comprising the weft yarn VWeft and the warp yarn VWarp, and of the pure matrix material
domain VM. The macroscopic, or homogenized, strain ε(X) is the volume average of the
mesoscopic strains ε(χ) over the mesoscopic domain V :

ε(X) = ε =
1

|V |

∫
V

ε(χ)dχ . (2)

The homogenized, macroscopic stress response σ(X) of the heterogeneous material body V
at the macroscopic point X is equivalently expressed as

σ(X) = σ =
1

|V |

∫
V

σ(χ)dχ , (3)

where σ(χ) are the mesoscopic stresses. In this work, this scales transition is achieved
considering clustering approaches (Section 2.1).

In linear elasticity, the mesoscopic stress field σ(χ) in Eq. (3) is given as

σ(χ) = Cel(χ) : ε(χ), χ ∈ V, (4)
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with the mesoscopic elastic stiffness tensor Cel(χ) = ∂σ(χ)/∂ε(χ). In general, possibly
nonlinear, solid media, the local (here mesoscopic) stress field σ(χ, t) at the time t follows
from a constitutive model

σ(χ, t) = f
(
ε(χ, t), z(χ, t′),∀t′ ≤ t

)
, (5)

with the local strain field ε(χ, t) and the internal state variables z(χ, t′), where the depen-
dence on the history is expressed through t′ with t′ ≤ t. The nonlinear constitutive relation
in Eq. (5) can be explicit, as in the case of, e.g., elasto-plasticity. In cases of underlying
heterogeneous microstructures at the mesoscopic material points χ, as the case for the yarns
of a woven composite, the relation in Eq. (5) can be implicit, following from a microstruc-
tural homogenization procedure. The nonlinear mechanical behavior of inelastic materials is
typically accounted for by a consideration of a local eigenstrain field ε∗(χ), or equivalently
an eigenstress field σ∗(χ) = −Cel(χ) : ε∗(χ), in an elastic medium. The local strain field
reads

ε(χ) = εel(χ) + ε∗(χ), (6)

composed of an elastic portion εel(χ) and the eigenstrain field ε∗(χ). The constitutive
relation in Eq. (5) is alternatively stated under the form

σ(χ) = Cel(χ) :
(
ε(χ)− ε∗(χ)

)
= Cel(χ) : ε(χ) + σ∗(χ) ,

(7)

implying that the eigenstrains belong to the internal state variables z(χ) in Eq. (5).
The yarns of the woven composite are composed of elastic fibers in the same matrix

material as the pure matrix phase. Therefore, in this work, the effective mesoscopic stresses
σ(χ) in Eq. (5), at the mesoscopic material points χ located in the yarn domains VY

(Y = Weft,Warp), are determined from a microstructural homogenization procedure of the
yarn material (Section 2.2). The response of the inelastic matrix material of the yarns is
governed by the J2-plasticity model (Section 2.3). The eigenstrains ε∗(χ) in the yarns VY

follow from an elastic unloading procedure as

ε∗(χ) = ε(χ)−
(
Cel(χ)

)−1
: σ(χ) , ∀χ ∈ VY . (8)

In the pure matrix phase domain VM of the woven composite unit cell, surrounding the
yarns, the eigenstrains ε∗(χ), computed directly as plastic strains, and the stresses σ(χ)
follow from the J2-plasticity model (Section 2.3).

2.1. Scale-couplings in heterogeneous continua

According to Eq. (2), the macroscopic strain of the domain V is the volume average
over the whole domain V . If the macroscopic deformation of the domain V is prescribed,
a relationship between the macroscopic strain ε and the local field ε(χ) is required. Using
computational methods like the FE, the deformation field is numerically solved over the
whole domain by the computation of the local constitutive relations. The solution of the
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distribution of the local strains ε(χ) can as well be expressed by different analytical mi-
cromechanical models. In the following, two different approaches for the modeling of strain
distributions inside general multi-phase media are presented: The transformation field anal-
ysis (TFA), taking into account the real underlying structure of the heterogeneous material,
and the Hashin-Shtrikman (HS) type analysis, relying on the assumption of a homogeneous
and isotropic reference medium. These models here provide a relationship between the
macroscopic scale X and the mesoscopic fields at χ.

2.1.1. Polarization field analysis

The local strain field ε(χ) in the domain V under homogeneous loading conditions ε
may be computed using the Lippmann-Schwinger equation

ε(χ) = ε+

∫
V

Γ(χ,χ′) : τ (χ′)dχ′, χ,χ′ ∈ V , (9)

with the polarization stress field

τ (χ) = σ(χ)− C : ε(χ), (10)

where C is the stiffness of a homogeneous reference medium, and the product C : ε(χ)
represents the stress that would exist locally in the reference medium under the same local
strain ε(χ) (Kröner, 1977).

The influence of a local polarization stress field on the local strain field is expressed by
means of the classical Green’s operator

Γijkl =
1

2

[
∂2Gik

∂χj∂χl

+
∂2Gjk

∂χi∂χl

]
, (11)

derived from the Green’s function of the homogeneous reference medium G(χ,χ′), satisfying

Cijkl
∂2Gkp

∂χl∂χj

(χ,χ′) + δip δ(χ− χ′) = 0 . (12)

As the reference medium is homogeneous, the Green’s interaction operator Γ is only depen-
dent, and inversely proportional, to the stiffness of the medium:

Γ(χ,χ′) ∝ C−1 . (13)

In approaches by Liu et al. (2016), referred to as the Self-Consistent Clustering Analysis
(SCCA), and Wulfinghoff et al. (2018), referred to as the Hashin-Shtrikman (HS) type
analysis, the reference stiffness C is replaced by an isotropic (isotropized) reference stiffness

C = Ciso = 3κ Ivol + 2G Idev , (14)

with the bulk modulus κ and the shear modulus G of the reference medium, and where

Ivol =
1

3
I ⊗ I, (15)
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Idev = I− Ivol (16)

and I and I are the second and fourth order unity tensors. During elasticity, the reference
medium is assumed to have the stiffness C0,iso. Once inelastic effects occur, the instantaneous
response of the composite is expressed by the instantaneous isotropic stiffness Ciso (Liu et al.,
2016; Wulfinghoff et al., 2018). In this work, the HS type analysis by Wulfinghoff et al.
(2018); Cavaliere et al. (2020) was adopted.

2.1.2. Transformation field analysis

The Transformation Field Analysis (TFA) builds on the separation of elastic fields and so-
called eigenstrain (transformation strain) fields ε∗(χ). In this work, mesoscopic eigenstrains
represent the inelastic strains, following from the mesoscopic constitutive relations. Local
mesoscopic strains decomposed in their elastic and inelastic contributions are formulated by
Eq. (6).

If the state of the material domain V is elastic without any inelastic loading history, such
that ε∗(χ) = 0, ∀χ ∈ V , the local strain field ε(χ) inside the body can be expressed as

ε(χ) = Ael(χ) : ε, χ ∈ V (17)

with the local elastic strain concentration tensor Ael(χ) = ∂ε(χ)/∂ε (only if ε∗(χ) =
const.,∀χ ∈ V ), and the local stress field is given by Eq. (4). The expression of the
overall strain and stress in Eqs. (2) and (3) can be reformulated to

ε =

[
1

|V |

∫
V

Ael(χ) dχ

]
: ε (18)

and

σ =

[
1

|V |

∫
V

Cel(χ) : Ael(χ) dχ

]
: ε, (19)

the latter leading to the expression for the overall elastic stiffness

Cel
=

∂σ

∂ε
, at ε∗(χ) = const., ∀χ ∈ V

=
1

|V |

∫
V

Cel(χ) : Ael(χ)dχ.
(20)

In the case of an eigenstrain field ε∗(χ) and a vanishing overall strain ε = 0, the local
strain field can be expressed as

ε(χ) = D(χ,χ′) : ε∗(χ′) χ,χ′ ∈ V , (21)

with the interaction function D(χ,χ′), estimating the effect of an eigenstrain field ε∗(χ′) on
the strain at χ (Dvorak, 1992). The superposition of the two Eqs. (17) and (21) provides
the TFA two-scale coupling relation

ε(χ) = Ael(χ) : ε+ D(χ,χ′) : ε∗(χ′), χ,χ′ ∈ V. (22)
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2.1.3. Discretized consideration of subdomains

The scale-coupling formulations presented in Sections 2.1.1 and 2.1.2 can be reduced
considering a division of the domain V into subdomains Vr. Average quantities over the
subdomains with the volumes

|Vr| =
∫
Vr

dχ (23)

are considered instead of local quantities and a uniform distribution of all internal state
variables is assumed inside theK subdomains denoted by the index r. The piecewise uniform
fields of local variables β(χ), where β = ε, ε∗,σ, are expressed by

β(χ) =
K∑
r=1

βrξr(χ) (24)

with the per-subdomain Vr constant value βr and the spatial distribution function

ξr(χ) =

{
1 , if χ ∈ Vr

0 , otherwise.
(25)

It follows

βr =
1

|Vr|

∫
Vr

β(χ)dχ , (26)

meaning that the uniform quantities of a subdomain equal the quantities averaged over the
subdomain. The homogenized macroscopic strain and stress can now be expressed as

ε =
K∑
r=1

υrεr, (27)

and

σ =
K∑
r=1

υrσr, (28)

where υr = |Vr|/|V | is the volume fraction of the subdomain Vr. The subdomain stresses
σr, the algorithmic tangent operator

Calg
r =

∂∆σr

∂εr
, (29)

the eigenstrain ε∗r and its derivative ∂∆ε∗r/∂εr, are all assumed uniform per-subdomain.
If the subdomain Vr is located in the pure matrix phase domain VM, the quantities σr,
Calg

r , ε∗r follow from the J2-plasticity model (Section 2.3). If the domain Vr is located
in one of the yarn domains VY , possessing an underlying composite microstructure, σr

and Calg
r are computed from a homogenization procedure of the associated microstructure

with the effective microstructural configuration (Section 2.2). The eigenstrains of the yarn
subdomains, ε∗r, follow from the elastic unloading as

ε∗r = εr − (Cel
r )

−1 : σr . (30)
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In the following, the TFA and HS algorithms are formulated incrementally, with the
rates of the quantities β integrated over a discrete time interval denoted as increments ∆β.
The TFA formulation in Eq. (22) is stated in its reduced form as

∆εr = Ael
r : ∆ε+

K∑
s=1

Drs : ∆ε∗s , (31)

with the subdomains average strain concentration tensors Ael
r and the interaction tensors

Drs between two subdomains. The reduced incremental form of the HS algorithm in Eq. (9)
using subdomains is expressed as

∆εr = ∆ε+
K∑
s=1

Γrs : ∆τs = ∆ε+
K∑
s=1

Γrs :
(
∆σs − Ciso : ∆εs

)
(32)

with the Green’s interaction tensors between two subdomains Γrs.

2.2. Mesoscopic constitutive relations: homogenization of the yarn material

The yarn material consists of longitudinal fibers in the yarn direction embedded in the
matrix material. Accordingly, each mesoscopic material point χ or each mesoscopic sub-
domain Vr located inside one of the yarns, is constituted by a microstructural two-phase
composite medium, consisting of an inclusion (fiber) phase (subscript II) embedded in a ma-
trix (subscript I). The mesoscopic material point χ and the mesoscopic subdomains Vr are
represented by associated microstructural RVEs, which represent the local, or subdomains,
underlying microstructure. The microstructural RVE contains the two material phases with
the phase volume ratios υI(χ) and υII(χ), or υIr and υIIr , where

υI + υII = 1 , (33)

and where, in all generalities the local volume fractions of the material phases can be non-
uniform and thus depend on the mesoscale material point χ or on the mesoscopic subdo-
main Vr. Homogenized responses at the mesoscopic material point χ, or of the mesoscopic
subdomain Vr with uniform fields of variables, are computed from a microstructural homog-
enization procedure using the Mean Field Homogenization (MFH) technique.

2.2.1. Microstructural definition

In MFH approaches, the microstructural two-phase composite medium is represented
by an RVE that contains an equivalent two-phase medium, consisting of one equivalent
inclusion embedded in the matrix, or host, phase. The equivalent inclusion in the RVE
is representative of the actual microstructural configuration of the inclusion phase. The
matrix (host) phase and the inclusion phase are represented by uniform fields of variables
with average quantities. The homogenized response of the microstructural RVE depends
on the geometry information of the two-phase system in the RVE. With an isotropic host
phase, the local geometrical information is expressed by gII(χ), containing the aspect ratio
and spatial orientation of the local equivalent inclusion at χ.
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Figure 2: Schematic representation of the mesoscopic woven unit cell, built by the weft (blue) and warp
(green) yarns, and of the yarns microstructure. A simplified representation of the yarns fibrous microstruc-
ture is provided by the microscale RVEs, locally consisting of one equivalent UD fiber in the matrix (Section
2.2.1). The inclination of the yarns leads to locally varying fiber orientations. The varying yarn/fiber ori-
entations imply the consideration of different microscale RVEs, as displayed, where the fiber has different
inclination angles. The yarn/fiber inclinations at three different locations χi in the weft yarn are indicated
by the corresponding second Euler angles θi2(χ

i), and fiber directions are denoted by the vector v⃗i(χi) (Eq.
(35)).

Here, the local equivalent elliptical inclusion represents uni-directional fibers, and so the
ellipse aspect ratio is very large and considered uniform in the yarn material. The local ori-
entation of the fibers, however, varies according to the local yarn inclination. Consequently,
the mesoscopic material points χ in the yarns are represented by microstructural RVEs with
varying inclusion orientations, corresponding to the local yarn/fiber orientation at χ (Fig.
2). The non-uniform orientation of the RVE inclusion is characterized by the local Euler
angles θ(χ) =

(
θ1(χ), θ2(χ), θ3(χ)

)
, describing the orientation of the local rotated coor-

dinate system χ1, χ2, χ3 spanned by the rotated eigenvectors e⃗′′1, e⃗
′′
2, e⃗

′′
3, with respect to the

global coordinate system χ1, χ2, χ3, spanned by the global eigenvectors e⃗1, e⃗2, e⃗3 of the unit
cell reference system. If θ(χ) = (0◦, 0◦, 0◦), the rotated system equals the global system.
Before the rotation, the fibers align with the global χ3-axis, with the orientation expressed
by the unit vector e⃗3. After the full rotation, they align with the locally rotated χ′′

3-axis,
expressed by the unit vector e⃗′′3.

With the fibers following the weft and warp yarns oriented in the global χ1- and χ2-axis
directions, respectively, the first Euler angle (rotation Q1

(
θ1(χ)

)
) around the global χ3-axis)

is given as

θ1(χ) =

{
90◦ , χ ∈ VWeft

0◦ , χ ∈ VWarp .
(34)

The second Euler angle (rotation Q2

(
θ2(χ)

)
around rotated χ′

1-axis) represents the local
vertical inclination of the yarn in which χ is located, where θ2(χ) = 90◦ means a perfectly
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horizontal alignment (see in Fig. 2). In the locations of upwards and downwards inclination
of the yarns, the second Euler takes the values θ2(χ) = 76◦ and θ2(χ) = 104◦, respectively,
see Section 4, meaning that 76◦ ≤ θ2(χ) ≤ 104◦. The third euler angle (rotation around
rotated χ′′

3-axis) is of no importance for the local fiber orientation. In conclusion, the local
fiber orientation at the location χ may be expressed by

v⃗(χ) = e⃗′′3 = Q2

(
θ2(χ)

)
·Q1

(
θ1(χ)

)
· e⃗3 = Q(χ) · e⃗3 , (35)

where Q(χ) = Q
(
θ1(χ), θ2(χ)

)
is the total local rotation from the global eigenvector e⃗3

towards the local fiber orientation at χ. Details on the rotations are given in Appendix A.
Considering the spatial subdomain decomposition (Section 2.1.3), the subdomains Vr,

composed by the mesoscopic material points χ ∈ Vr, are represented by an associated
effective microstructural RVE. The effective geometry of the equivalent inclusion gIIr of
the subdomain Vr is characterized by the homogenized euler angles θr =

(
θ1r , θ2r

)
. The

homogenized Euler angles, representing the effective inclusion orientation for the subdomain
Vr, are computed as the circular mean following

θr =
1

2
arctan(A/B) , (36)

where

A =
1

|Vr|

∫
Vr

sin
(
2θ(χ)

)
dχ (37)

and

B =
1

|Vr|

∫
Vr

cos
(
2θ(χ)

)
dχ , (38)

and the factor two is required for the correct computation of the mean orientation. The
Eqs. (36), (37) and (38) are applied for the homogenization of each component of θr. The
subdomain fiber orientation is expressed as

v⃗r = Q2

(
θ2r

)
·Q1

(
θ1r

)
· e⃗3 = Q(θ1r , θ2r) · e⃗3 . (39)

As already mentioned, each mesoscopic material point χ and each subdomain Vr are
constituted by a microstructural composite medium of the two phases I, II. In the following
equations and subsections Sections 2.2.2 and 2.2.3, the material point denoted by χ and
the subscript r referring to the subdomain are omitted. The homogenized strains at the
mesoscopic material points χ, ε(χ), or the strains of the mesoscopic subdomains, εr, are
expressed as

ε = υIεI + υIIεII , (40)

where εI and εII are the strains of the two phases in the microstructural RVE.
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2.2.2. Incremental-secant Mori-Tanaka MFH scheme

The distribution of the strains in Eq. (40) using MFH approaches is governed by certain
localization rules. In this paper, the strain localization tensor introduced by Mori and
Tanaka (1973) is considered, linking the strain distribution in both microstructural phases.
The incremental strain distribution, using the Mori-Tanaka (MT) MFH scheme, is expressed
by the strain localization tensor

BII = f(gII,CLCC
I ,CLCC

II ) , (41)

where CLCC
I and CLCC

II (gII) are the so-called linear comparison operators of the phases. The
strain localization tensor BII provides the link between the occurring strains in each of the
two material phases and is expressed as

BII = {I+ S : [(CLCC
I )−1 : CLCC

II − I]}−1 , (42)

with the fourth order unity tensor I, the Eshelby tensor S(gII,CLCC
I ), depending on the

inclusion geometry gII and the stiffness operator of the host phase CLCC
I . During linear

elastic deformation of the composite, the linear comparison stiffnesses of the phases are
given as the constant elastic stiffnesses of the phases: CLCC

I = Cel
I , CLCC

II = Cel
II. The strains

in the two phases during linear elastic deformation are linked by the expression

εII = Bel
II : εI , (43)

with the constant elastic localization tensor

Bel
II = {I+ S : [(Cel

I )
−1 : Cel

II − I]}−1 . (44)

During inelastic loading, the instantaneous stiffnesses of the phase deviate from their
elastic stiffnesses, and therefore, BII ̸= Bel

II. In this work, the incremental-secant MFH for-
mulation is chosen (Wu et al., 2013a), where the strain distribution in the two phases is
controlled by the incremental secant stiffnesses of the phases Csec

I and Csec
II . The choice for

the incremental-secant formalism stems from the observation that the prediction of inelastic
material behaviors under non-proportional loading conditions could be clearly improved with
respect to, e.g., the tangent MFH formalism (Wu et al., 2013a). Subject of the incremental
secant formulation are so-called strain reloading increments ∆εreI and ∆εreII , describing the
loading from a computed residual state towards the new state (Section 2.2.3, Fig. 3), and
linked by the incremental-secant strain localization tensor Bsec

II = f(gII,Csec
I ,Csec

II ). The rela-
tion between the matrix and the inclusion strain reloading increments is expressed following

∆εreII = Bsec
II : ∆εreI , (45)

with
Bsec

II = {I+ S : [(Csec
I )−1 : Csec

II − I]}−1 (46)

and the Eshelby tensor S(gII,Csec
I ). The homogenization of the reloading strain is expressed

as
∆εre = υI∆εreI + υII∆εreII . (47)
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Figure 3: MFH procedure under an applied strain increment ∆ε schematically for a two-phase compos-
ite, consisting of an elastic inclusion in an inelastic matrix: The (a) unloading-reloading procedure of the
composite towards a zero-stress state (dotted) and to the new homogenized state (dashed), and (b) the
unloading-reloading step translated to the two separate composite phases.

2.2.3. Incremental-secant MFH procedure: constituents and homogenized response

The homogenized mesoscopic stresses σ and eigenstrains ε∗ follow from the virtual
unloading-reloading procedure of the two-phase medium, performed at every time step (Fig.
3). First, the medium is virtually unloaded to a homogenized zero-stress state σres = 0 (Fig.
3(a)). The elastic unloading step is expressed as

(εn,σn)
(∆εu,∆σu)−−−−−−→ (εres, 0) , (48)

where the superscript ”n” denotes the previous time-step, ∆εu and ∆σu are the homogenized
strain and stress unloading increments, and εres is the composite strain at the virtually
unloaded state. As visible in Eq. (48), the composite unloading stress increment is given by
∆σu = −σn, and since an elastic unloading is considered, the composite unloading strain
increment follows as

∆εu = (Cel)−1 : ∆σu = −(Cel)−1 : σn , (49)

with the homogenized elastic stiffness Cel (more details given in Appendix B), leading to
the composite residual strain

εres = εn − (Cel)−1 : σn . (50)

As the composite is virtually unloaded, the material phases, denoted by the subscript
ω ∈ I, II, experience the virtual elastic unloading step

(εnω,σ
n
ω)

(∆εuω ,∆σu
ω)−−−−−−→ (εresω ,σres

ω ) , (51)
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with the unloading strain and stress increments ∆εuω and ∆σu
ω = Cel

ω : ∆εuω towards the
residual strains and stresses εresω = εnω+∆εuω and σres

ω = σn
ω+∆σu

ω (Fig. 3(b)). Unlike in the
homogenized consideration of the composite, the residual stress states of the single phases
σres

ω do not necessarily equal a zero stress state. The phases unloading strain increments are
solved using the elastic mean field localization rule in Eq. (43) as

∆εuII = Bel
II : ∆εuI , (52)

together with the conditions ∆εu = υI∆εuI + υII∆εuII and σres = υIσ
res
I + υIIσ

res
II = 0. The

reloading increment towards the new state of the composite at the time step ”n + 1” is
represented by

(εres, 0)
(∆εre,∆σre)−−−−−−−→ (εn+1,σn+1) , (53)

where ∆εre is the strain and ∆σre the stress reloading increment (Fig. 3(a)). The composite
constituents are, as the composite is reloaded according to Eq. (53), reloaded simultaneously
(Fig. 3(b)) following

(εresω ,σres
ω )

(∆εreω ,∆σre
ω )−−−−−−−→ (εn+1

ω ,σn+1
ω ) . (54)

Phase strains and stresses at the time step ”n+ 1” are given as

εω = εresω +∆εreω (55a)

σω = σres
ω +∆σre

ω . (55b)

For the matrix subdomains, the zero-residual incremental-secant approach was adopted (Wu
et al., 2013a), meaning that the residual stress in Eqs. (54) and (55) is neglected: σres

I = 0.
The reloading step is then performed from the zero stress state towards the new stress state.
The distribution of the phases reloading strains ∆εreω is solved by the MFH algorithm in
Eqs. (45) and (46) based on the incremental secant phase stiffnesses Csec

ω together with the
condition in Eq. (47). The matrix and inclusions phases secant operators and reloading
stresses

σI = ∆σre
I = Csec

I : ∆εreI and σII = σres
II +∆σre

II = σres
II + Csec

II : ∆εreII (56)

are computed from the phases constitutive relations (Section 2.3). The detailed resolution
of the incremental-secant algorithm is presented by (Wu et al., 2013a).

The homogenized mesoscopic stress in Eq. (53) follows from the microstructural phase
stresses in Eq. (55b) as

σ = υIσI + υIIσII . (57)

The homogenized mesoscopic eigenstrain results, as visible in Fig. 3(a), in

ε∗ = ε− (Cel)−1 : σ . (58)

A comparison of Eqs. (50) and (58) shows that the homogenized residual strain at the
following time step is equal to the homogenized eigenstrain at the current time step. The
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homogenized algorithmic tangent stiffness Calg = ∂σ/∂ε, following from Eq. (57), is ex-
pressed as

Calg = υI
∂σI

∂εI
:
∂εI
∂ε

+ υII
∂σII

∂εII
:
∂εII
∂ε

. (59)

Computation details are presented in Appendix C.

2.3. Microscopic constitutive relations: J2-plasticity model

The inclusion phase ω = II in this work is represented by elastic fibers, meaning that
Csec

II = Calg
II = Cel

II and therefore σII = Cel
II : εII, where Cel

II is the anisotropic elastic stiffness
of the fibers. The local non-linear stress-strain response of the inelastic matrix phase ω = I
during the incremental secant reloading procedure Eq. (56), given by

εI = εresI +∆εreI (60a)

σI = ∆σre
I , (60b)

is governed by the J2-plasticity model. The matrix phase is isotropic and therefore, its
stiffness can be expressed as

Cel
I = 3κel

I Ivol + 2Gel
I Idev , (61)

with the materials elastic bulk modulus κel
I and shear modulus Gel

I . In the following, the
common convention for equivalent strains and von Mises equivalent stresses is used for the
strain and stress tensors, respectively:

εeq =

√
2

3
dev(ε) : dev(ε) (62a)

σeq =

√
3

2
dev(σ) : dev(σ) . (62b)

A radial return mapping algorithm corrects the elastic trial stress state back towards the
current yield surface by computing the occurring plastic flow, so that the yield function for
isotropic hardening fY(σI, pI) satisfies

fY(σI, pI) = σeq
I − σY0

I −R(pI) ≤ 0 , (63)

with the equivalent stress σeq
I , the initial yield stress σY0

I , the hardening stress R(pI), and
the equivalent accumulated plastic strain pI, as the time integral of its rate ṗI, following
from the purely deviatoric plastic strain rate tensor ε̇pI as

ṗI =

√
2

3
ε̇pI : ε̇pI . (64)

The purely deviatoric plastic flow, as the time integral of ε̇pI over the current reloading
increment Eq. (60) and expressed as

∆εpI = ∆pINI , (65)
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provides the current stress state correction, pointing back from the elastic trial reloading
stress ∆σre,tr

I = Cel
I : ∆εreI towards the actual reloading stress ∆σre

I . Therefore, the flow
direction is given as

NI =
3

2

dev(∆σre
I )

∆σre,eq
I

=
3

2

dev(∆σre,tr
I )

∆σre,tr,eq
I

, (66)

and the stress state (Eq. (60b)) follows

∆σre
I = ∆σre,tr

I − 2Gel
I ∆pINI . (67)

Following the elastic isotropy in Eq. (61), the incremental secant stiffness can be expressed
as an isotropic tensor

Csec
I = 3κel

I Ivol + 2Gsec
I Idev , (68)

where the incremental shear modulus is given as

Gsec
I =

∆σre,eq
I

3∆εre,eqI

= Gel
I − 3(Gel

I )
2∆pI

∆σre,tr,eq
I

. (69)

3. Multiscale modeling of the woven composite

The macroscopic response of the woven unit cell is predicted by a mesoscopic model
order reduction, achieved through a spatial subdivision, and the use of either the TFA or
the HS algorithm (Section 2.1.3). These reduced order models rely on an underlying spatial
decomposition and numerically determined interaction tensors inside the actual composite
material, and are therefore reasonable approaches for the modeling of complex structures,
as the woven geometry. The homogenized mesoscopic response of the yarns, consisting of
randomly distributed elastic fibers, occupying a volume fraction of 80 %, inside an elasto-
plastic matrix material, is achieved using the MFH (Section 2.2).

3.1. Boundary conditions for the woven composite unit cell

Periodic boundary conditions (PBC) are typically applied for the modeling of material
RVEs or unit cells. However, fully applied PBCs on all surfaces of the unit cell may provide
mechanical responses that deviate strongly from experimental results on laminates of woven
composites. It was shown that simulation results using modified PBCs, where the surfaces
with the ouf-of-plane normals (normals in vertical χ3-direction) are kept flat without any
distortion (without a fixation of the vertical motion of the faces), deliver results that mirror
the experimental results much more closely (Wu et al., 2021a). The modified PBCs are
referred to as mixed boundary conditions (MBC). The better results of using the MBC are
explained by the fact that the use of flat upper and lower ply surfaces corresponds more
accurately to the actual deformation modes of a woven composite laminate. The MBC are
applied for all loading cases in the offline stage and during the non-linear analyses of the
woven composite.
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3.2. Offline stage: mesostructure and mesomechanics based model order reduction

The model order reduction step consists of a spatial division of the fully discretized mate-
rial domain, in this work the mesoscale woven composite unit cell, into several subdomains.
An optimized subdomain decomposition is achieved using the k-means clustering technique.
The k-means clustering partitions a number of local data points into subpartitions based on
the similarity of the local data. The final partition is achieved by solving an optimization
problem iteratively, minimizing the deviations between all local data points and the subpar-
tition mean values. In the context of mechanical fields, the k-means clustering divides the
considered domain based on the similarity of the local mechanical behavior.

As shown by Spilker et al. (2022), respecting inelastic deformation patterns within a
material allows an improved subdomain decomposition in comparison to the decomposition
based on purely elastic deformation. In this work, the three inelastic deformation boundary
modes

εin
(1)

= Ein(e⃗1 ⊗ e⃗1 − e⃗2 ⊗ e⃗2) (70a)

εin
(2)

= Ein(e⃗2 ⊗ e⃗2 − e⃗1 ⊗ e⃗1) (70b)

εin
(3)

= Ein(e⃗1 ⊗ e⃗2 + e⃗2 ⊗ e⃗1) , (70c)

with the overall deformation factor Ein = 3% and the canonical unit vectors e⃗1, e⃗2, e⃗3
in the 3D reference coordinate system χ1, χ2, χ3, were selected and applied on the woven
composite unit cell. The three chosen deformation modes inside the ply plane (χ1−χ2-plane)
represent typical deformation conditions for the woven composite structure. The mesoscopic

eigenstrain fields ε*
(l)

(χ) emerging under each of the boundary conditions l = 1, 2, 3 are
computed.

Performed in this work is the clustering of the homogenized yarns of a mesoscopic unit
cell. To accomplish a physically reasonable spatial division of a material with an underlying
non-uniform microstructure into subdomains on the mesoscale, it is necessary to account
for the microstructural distribution. In the particular case of the woven composite unit cell,
the yarns have locally different orientations, leading to locally varying material properties
and mechanical responses. However, the yarns are divided into subdomains which, in the
solution stage of the clustering based ROMs, are considered to possess uniform effective fiber
orientations and thus uniform elastic and inelastic material properties. As will be presented
in Section 4.1, for good piecewise uniform approximations of the woven unit cell on the
mesoscale, it is not sufficient to consider only mesoscopic mechanical fields for the spatial
decomposition. An effective fiber orientation of a subdomain, computed as the homogenized
fiber orientation of the mesoscopic material points contained in the subdomain, implies
that mesoscopic material points with very deviating fiber orientations gathered in the same
subdomain would lead to ill-representative effective fiber orientations of the subdomain.
The result would be unreliable elastic and inelastic mechanical responses of the subdomain
computed by the MFH algorithm. Therefore, the division of the mesoscopic yarns based
on the microstructural yarn/fiber orientation (Han et al., 2020) is the necessary condition
for valid responses of the yarns and of the unit cell. Consequently, additionally to the
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mesoscopic inelastic strain distributions under the loading modes in Eq. (70), the local
yarn/fiber orientation needs to be taken into account for the mesoscale spatial division.
Therefore, in this work, each yarn domain VY (Y = Weft,Warp) is spatially divided in two
steps:

1. First, the necessary division based on the fiber orientation at the mesoscopic material
points (described in Section 2.2.1) is performed. Each yarn domain VY is decomposed
into Kθ

Y subdomains VR, R ∈ 1, ..., Kθ
Y . A sufficiently high Kθ

Y ensures that only meso-
scopic material points with similar fiber orientation are gathered in one subdomain and
therefore reasonable homogenized fiber orientations of the subdomain. For a general
orientation-based subdivision, the function

Jθ
Y [θ(χ)] =

Kθ
Y∑

R=1

NR∑
i=1

|v⃗(χi)× v⃗R|2, χ ∈ VY , χi ∈ VR ⊂ VY , R ∈ 1, ..., Kθ
Y , (71)

can be chosen to be minimized, where NR is the number of mesoscopic material points
inside the subdomain R, v⃗(χi) and v⃗R are the local and subdomain fiber orientations
given by Eqs. (35) and (39). The operation ”× ” denotes the cross product between

two vectors a⃗ and b⃗, defined as

a⃗× b⃗ = |a| |b| sin(∆θ) , (72)

where ∆θ is the angle between the two vectors in the plane they are located in. The
cross product between the local fiber orientation v⃗(χi) and the subdomain mean ori-
entation v⃗R in above Eq. (71) represents the deviation of v⃗(χi) from v⃗R. In the case
of the woven structure, the first euler rotation is uniform per yarn, meaning that all
local fiber orientations in one yarn are distinguished only by the second euler angle
θ2(χ). Since each yarn is subdivided separately, and considering Eq. (72), the k-means
clustering is applied to minimize the simplified function

Jθ
Y [θ(χ)] =

Kθ
Y∑

R=1

NR∑
i=1

(
sin(θ2(χi)− θ2R)

)2
, χ ∈ VY , χi ∈ VR ⊂ VY , R ∈ 1, ..., Kθ

Y ,

(73)
where the subdomain mean orientation θ2R follows Eq. (36). It is noted that in this
spatial division step, the yarns are clustered purely based on the local yarn orientation.
Since the yarns have equal/similar inclinations in more than one region along the yarns
longitudinal direction, the subdivision may lead to subdomains that are non-coherent
volumes.

2. As the second spatial division step, the subdomain decomposition of the mesoscopic
unit cell domain can be optimized by taking into account the mechanical behavior
of the mesoscopic material points. The mechanical behavior is accounted for by the

computation of mesoscopic eigenstrain fields ε*
(l)

(χ) occurring under the applied in-
elastic boundary modes in Eq. (70). Each orientation-based subdomain VR is divided
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into a number Kp
Y subdomains Vr, r ∈ 1, ..., Kp

Y based on the inelastic strain distribu-

tions. For the inelasticity-based subdomain refinement, the eigenstrain fields ε*
(l)

(χ)
under each of the boundary conditions l = 1, 2, 3 are normalized by the equivalent
(scalar) per-phase averaged eigenstrain and arranged in local 6 × 1 vectors q(l)(χ).
The normalized eigenstrain fields are then assembled in local 1× 18 vectors

q(χ) =
((
q(1)(χ)

)T
,
(
q(2)(χ)

)T
,
(
q(3)(χ)

)T)T
, (74)

representing the entire set of the gathered mesoscopic eigenstrain field information.
The k-means clustering technique is then applied on the eigenstrain field information
in each orientation-based subdomain R, minimizing the corresponding function

Jp
R[q(χ)] =

Kp
Y∑

r=1

Nr∑
i=1

|q(χi)− qr|2, χ ∈ VR, χi ∈ Vr ⊂ VR ⊂ VY ,

r ∈ 1, ..., Kp
Y , R ∈ 1, ..., Kθ

Y ,

(75)

where
|z| =

√
z · z (76)

and the subdomain means qr =
((
q
(1)
r

)T
,
(
q
(2)
r

)T
,
(
q
(3)
r

)T)T
follow from Eq. (26).

After both subdivision steps, the total number of subdomains per yarn is KY = Kp
Y Kθ

Y . It
is noted that the isotropic matrix phase (subscript ”I”) is divided into a number KI based
on the local eigenstrain field distribution only. The total number of subdomains is therefore
K = KI +KWarp +KWeft.

3.3. Transformation Field Analysis

After the division of all local points inside the mesoscopic unit cell domain into subdo-
mains based inelastic fields and the local yarn orientation, the strain concentration tensors
Ael

r of the subdomains Vr are determined. The local elastic strain concentration tensor field
Ael(χ) can be fully characterized by the computation of purely elastic strain fields ε(χ)
under the application of six orthogonal boundary condition modes ε. The average strain
concentration tensors Ael

r are then calculated as the average over the corresponding subdo-
main using Eq. (26). The interaction tensors Drs, representing elastic influence factors of
a uniform eigenstrain in the subdomain Vs on the average strain in the subdomain Vr, are
characterized by applying six orthogonal uniform eigenstrain modes ε∗s in each subdomain
Vs one by one in the purely elastic unit cell under a vanishing overall strain ε = 0 (Eq.
(21)), and the computation of the average reaction strain field εr in every subdomain Vr.

After both the subdomain strain concentration tensors for and the interaction tensors
between all subdomains are computed, the TFA formulation

∆εr − Ael
r : ∆ε−

K∑
s=1

Drs : ∆ε∗s = 0 , (77)

can be solved incrementally. Details on the offline and online solution stages are given by
Spilker et al. (2022).
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3.4. Hashin-Shtrikman type approach

As an alternative approach to the TFA, the HS type analysis is deployed for the prediction
of the response of nonlinear composites. The reduced incremental HS scale coupling relation
(Eq. (32)) is recalled:

∆εr = ∆ε+
K∑
s=1

Γrs :
(
∆σs − Ciso : ∆εs

)
, (78)

relying on the isotropic stiffness operator Ciso of the reference medium and the Green’s
interaction tensors in the reference medium

Γrs = f
(
(Ciso)−1

)
∝ (Ciso)−1 . (79)

Details on the construction of the HS type analysis in Eq. (78) will be given subsequently.
The definition of the nonlinear reference medium with the stiffness Ciso, accounting for
nonlinear homogenized responses, and the determination of the Green’s tensors Γrs in the
nonlinear medium, will be presented.

3.4.1. Numerical determination of the Green’s tensors in the elastic medium

The homogenized elastic stiffness Cel
of the material body V is, following Eq. (20),

computed as

Cel
=

1

|V |

∫
V

Cel(χ) : Ael(χ)dχ . (80)

The approach proposed by Moakher and Norris (2006), yielding the closest isotropic stiffness
tensor to an anisotropic one based on the minimal Euclidean distance, is used to determine
the isotropic elastic reference stiffness

C0,iso = 3κ0 Ivol + 2G0 Idev . (81)

The equivalent homogenized bulk modulus κ0 and shear modulus G0 are determined as

κ0 =
1

3
Tr(Cel

: Ivol) (82)

and

G0 =
1

10
Tr(Cel

: Idev) , (83)

where the trace of a fourth order tensor is computed as

Tr(Z) = Zijij (84)

using the Einstein convention.
The influence function Γ0(χ,χ′) is computed inside the homogeneous medium with the

isotropic stiffness C0,iso. In a domain with the homogeneous stiffness C0,iso, the polarization
stress field τ (χ) in Eq. (10) equals the externally applied eigenstress field σ∗(χ). With a
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vanishing overall strain ε = 0, and a uniform eigenstress σ∗
s inside one subdomain Vs, the

average strain in a subdomain Vr is given as

εr = Γ0
rs : σ

∗
s . (85)

The influence tensors between the subdomains,

Γ0
rs ∝ (C0,iso)−1 , (86)

can be fully characterized by applying the uniform eigenstress modes

σ∗(χ′) = σ∗
s , χ

′ ∈ Vs , s = 1, ...K (87)

in each subdomain Vs one at a time, simultaneously to the fixed zero overall strain ε = 0, and
computing the average strain in the subdomain Vr. The eigenstrain modes in 3D analyses
are

σ∗(1)
s = S∗e⃗1 ⊗ e⃗1 (88a)

σ∗(2)
s = S∗e⃗2 ⊗ e⃗2 (88b)

σ∗(3)
s = S∗e⃗3 ⊗ e⃗3 (88c)

σ∗(4)
s =

1

2
S∗(e⃗1 ⊗ e⃗2 + e⃗2 ⊗ e⃗1) (88d)

σ∗(5)
s =

1

2
S∗(e⃗1 ⊗ e⃗3 + e⃗3 ⊗ e⃗1) (88e)

σ∗(6)
s =

1

2
S∗(e⃗2 ⊗ e⃗3 + e⃗3 ⊗ e⃗2), (88f)

with the eigenstress factor S∗.

3.4.2. Adaptation of the reference stiffness and the Green’s operator

The isotropic reference stiffness of the material Ciso in Eq. (14),

Ciso = 3κ Ivol + 2G Idev , (89)

can as well be formulated as a function of the shear modulus G and the Poisson ratio

ν =
3κ− 2G

2 (3κ+G)
(90)

of the reference medium, such that

Ciso
kkkk = 2G

1− ν

1− 2 ν

Ciso
jjkk = 2G

ν

1− 2 ν

Ciso
jkjk = G ,

(91)
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Algorithm 1: Numerical incremental HS type analysis procedure using the tangent

shear modulus G
tan

at a glance: Newton-Raphson scheme at one load step for a
given overall strain increment ∆ε.

initialize: ∆εr = ∆ε (r = 1, ..., K)
iterative procedure:
repeat

for r = 1, K do
call constitutive relations for subdomain Vr to compute σr and Calg

r from the
MFH unloading-reloading procedure in Section 2.2.3 for the yarns and
following Section 2.3 for the matrix phase

end
compute ∆σeq, ∆εeq from the incremental stress ∆σ and strain ∆ε with Eq.

(62) and G = G
tan

following Eq. (98)
for r = 1, K do

initialize residual Fr = ∆εr −∆ε
for s = 1, K do

add polarization influence contribution to residual:
Fr = Fr − Γ0

rs :
[
(G0/G)∆σs − C0 : ∆εs

]
compute Jacobian matrix Jrs (Eq. (103))

end

end
solve δ[ε] = {J}−1 : [F ]
update [∆ε] = [∆ε]− δ[ε]

until |[F ]| < tol;
after convergence:

compute σ and Calg
, following Eq. (109) and Eq. (112), respectively.

with no sum on k or j intended. Following Eq. (91), the stiffness of the elastic reference
medium C0,iso has the entries

C0,iso
kkkk = 2G0 1− ν0

1− 2 ν0

C0,iso
jjkk = 2G0 ν0

1− 2 ν0

C0,iso
jkjk = G0 ,

(92)

with the shear modulus G0 and the Poisson ratio ν0 of the elastic reference medium.
For an accurate modeling of the nonlinear responses of composite materials, the reference

medium needs to be adapted to the instantaneous response of the composite (Liu et al., 2016;
Wulfinghoff et al., 2018). Wulfinghoff et al. (2018) suggested the assumption of a constant
Poisson ratio of the nonlinear reference medium

ν = ν0 , (93)
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such that
Ciso(G, ν) → Ciso(G) . (94)

Following the expressions Eqs. (91) and (92), and with the (non-physical) assumption of
a constant Poisson ratio of the reference medium during inelastic deformation (Eq. (93)),
the current isotropic reference stiffness Ciso and the influence tensors Γrs during inelastic
deformation of the material can be achieved solely by an adaption of the instantaneous
reference shear modulus G:

Ciso(G) =
G

G0
C0,iso , (95)

and

Γrs = Γ0
rs : C0,iso : (Ciso)−1 =

G0

G
Γ0
rs . (96)

3.4.3. Expression of the instantaneous shear modulus

As proposed by Wulfinghoff et al. (2018); Cavaliere et al. (2020), the reference shear
modulus is computed as

G = G
sec

=
σeq

3 εeq
, (97)

where G
sec

is the total secant shear modulus of the composite. The equivalent homogenized
strain εeq and stress σeq are computed from ε and σ, respectively, with Eq. (62). The use
of the total secant shear modulus Eq. (97) has two clear disadvantages:

• If the material is being elastically deformed after a previous inelastic loading history, as
the case during an unloading stage, the physical instantaneous homogenized stiffness
of the composite material equals the elastic stiffness of the composite. However, the
isotropic reference stiffness and the Green’s tensors do not equal the elastic isotropized
stiffness of the material.

• During unloading stages after previous inelastic deformation, the states of a total
equivalent strain εeq = 0 or stress σeq = 0 (e.g., in a uniaxial stress test) can occur
in the material. These cases imply singularities of the reference stiffness or of the
Green’s operators in the vicinity of these points, prohibiting reasonable predictions for
the mechanical response of the composite material.

For this sake, the reference shear modulus in this paper is computed as the incrementally
computed secant shear modulus of the material

G = G
tan

=
∆σeq

3∆εeq
, (98)

with the incremental equivalent homogenized stresses and strains, following from ∆ε and
∆σ with Eq. (62). Since this incremental secant formulation represents an approximated

tangential shear modulus, the instantaneous shear modulus is denoted as G
tan

. In contrast
to the secant formulation in Eq. (97), the elastic response of the reference material dur-
ing instantaneous elastic loading is recovered, unaffected by any previous inelastic loading
history.
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3.4.4. Solution procedure using the HS algorithm

In the following, the equations required to solve a mechanical problem using the HS
analysis algorithm are derived. A schematic overview of the numerical HS solution procedure
is demonstrated in Algorithm 1. The incremental HS analysis algorithm is expressed by Eq.
(78). Considering the two Eqs. (95) and (96), the HS algorithm in Eq. (78) can as well be
formulated as

∆εr = ∆ε+
K∑
s=1

G0

G
Γ0
rs :

(
∆σs −

G

G0
C0,iso : ∆εs

)

= ∆ε+
K∑
s=1

Γ0
rs :

(
G0

G
∆σs − C0,iso : ∆εs

)
,

(99)

where the instantaneous shear modulus G is computed as presented in Eq. (98). The
numerical solution of this system under a prescribed overall strain ε̄ is found using a Newton-
Raphson procedure with the subdomain residuals

Fr = ∆εr −∆ε−
K∑
s=1

Γ0
rs :

(
G0

G
∆σs − C0,iso : ∆εs

)
, (100)

iteratively solving the problem Fr = 0 by the linearization

Fr → Fr + δFr = 0. (101)

Expressed as an assembled system using the K × 1 block column vectors denoted by ”[ ]”
and the square K ×K block matrices denoted by ”{ }”, the variational term δ[F ] follows
as

δ[F ] =

{
∂F

∂ε

}
: δ[ε] +

∂[F ]

∂ε
: δε = {J} : δ[ε] +

∂[F ]

∂ε
: δε . (102)

The full Jacobian system {J} consists of the single matrices (no sum on s intended)

Jrs =
∂Fr

∂εs
= δrsI− Γ0

rs :

(
G0

G
Calg

s − C0,iso

)
+

G0

G2

[ K∑
p=1

Γ0
rp : ∆σp

]
⊗ ∂G

∂εs
, (103)

with the instantaneous stiffness of the subdomains ∂∆σs/∂εs = Calg
s (Eq. (59)). The

derivative ∂G/∂εs = ∂G
tan

/∂εs is, following Eq. (98), computed as

∂G
tan

∂εs
=

1

3∆εeq
∂∆σeq

∂εs
− ∆σeq

3 (∆εeq)2
∂∆εeq

∂εs
(104)

with
∂∆σeq

∂εs
=

3

2
υs
dev(∆σ)

∆σeq : Calg
s (105)
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and
∂∆εeq

∂εs
=

2

3
υs
dev(∆ε)

∆εeq
. (106)

Assuming a constant homogenized strain, implying δε = 0, the result

δ[ε] = −{J}−1 : [F ] (107)

is used to correct the strain increments in the subdomains by

[ε] = [ε] + δ[ε] (108)

per iteration. Once the computed strain increments of the subdomains have converged, the
homogenized stress response is given by

σ =
K∑
r=1

υrσr . (109)

The homogenized instantaneous stiffness is computed as

Calg
=

∂σ

∂ε
=

K∑
r=1

υr
∂∆σr

∂εr

∂εr
∂ε

, (110)

where ∂∆σr/∂εr corresponds to the tangent operator of the subdomain (Eq. (59)). The sec-
ond term ∂εr/∂ε, representing the subdomains instantaneous strain concentrations, follows
after the solution in Eq. (102) as

∂[ε]

∂ε
= −{J}−1 :

∂[F ]

∂∆ε
= {J}−1 : [I] . (111)

The resulting full expression of Eq. (110) amounts to

Calg
=

K∑
r=1

υrCalg
r :

[ K∑
s=1

{J}−1
rs

]
. (112)

4. Numerical Applications

The presented combined scale bridging techniques are used for nonlinear analyses of a
woven composite unit cell (Fig. 4). The unit cell V geometry is the one used in Wu et al.
(2021c), and is built following the methodology:

• The yarns cross-section is an ellipse of semi-axes a0 and b0;

• The size of the unit cell is L× L× t;
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Figure 4: Cross-section geometry of the woven unit-cell following Wu et al. (2021c).

Table 1: Geometrical description of the woven unit cell.

Geometrical relationships Value

Cell length L = 4a0 + 2e1 [mm] 3.294

Cell thickness t = 4b+ 2e2 [mm] 0.2245

Yarn axis location b = ξb0 [mm] 0.053625

Vertical distance between yarns α = 2

(
1

1+exp (− l L
4 )

− 1
2

)
[-] 0.99889

Yarn cross-section area A0 [mm2] 0.12

Yarn small semi-axis b0 [mm] 0.04875

Yarn large semi-axis a0 =
A0
πb0

[mm] 0.78353

Yarns horizontal gap e1 [mm] 0.08

Yarns vertical gap e2 [mm] 0.005

Yarn eccentricity ξ [-] 1.1

Asymptoticy l L [-] 30

• The central axis vertical location of a yarn along ζ = χ1 or ζ = χ2 reads

χ3 = b

[
2

1 + exp
(
− l

2

(
2ζ − L

2

)) − 1

]
for ζ ∈ [0;

L

2
] , (113)

where b governs the waviness of the yarn and l its asymptotic behaviour such that the

yarn reaches the location αb with α =
χ3(L

2 )
b

;

• In order to avoid contact between yarns, the condition b > b0 is enforced by constrain-
ing b = ξb0 with the eccentricity ξ > 1.

• The distances between the yarns in the cross-section is governed by e1 and e2, see Fig.
4;

The parameters are reported in Table 1. The total volume fraction of the yarns in the
unit cell is 64.56 %. The yarns consist of the same matrix material, reinforced by fibers
locally considered uni-directional (Fig. 2) with a orientation characterised by the Euler
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Table 2: Material properties for the nonlinear analyses.

Matrix (M10.1 epoxy) Fiber (UD300 HS(R) carbon fiber)

Property Value Property Value
Young’s modulus EI [GPa] 3.2 Young’s modulus EL

II [GPa] 230
Poisson ratio νI [-] 0.3 Young’s modulus ET

II [GPa] 40
Initial yield stress σY0

I [MPa] 30 Poisson ratio νTT
II [-] 0.2

Hardening modulus HI [MPa] (offline) 130 (50) Poisson ratio νLT
II [-] 0.256

Hardening exponent mI [-] 300 Shear modulus µLT
II [GPa] 24

angle 76◦ ≤ θ2(χ) ≤ 104◦. In this work, the local volume fraction of the fiber material in
the yarns is assumed uniform, and therefore: υII(χ) = υII = 80% and υI(χ) = υI = 20% .

The mechanical properties of the isotropic elasto-plastic matrix material (index I) and
of the transverse isotropic elastic fiber material (index II) are given in Table 2, where the
longitudinal-transversal Poisson ratio of the elastic fibers is denoted as νLT

II . The behavior
of the matrix material is governed by the J2-plasticity law with the hardening stress RI

following
RI = HI (1− e−mI pI) , (114)

where pI is the equivalent accumulated plastic strain (Eq. (64)).
This section is divided into three parts: First, spatial subdivisions following the offline

procedure described in Section 3.2 are displayed. The mesh for the DNS FE simulations,
used for the offline stage and for comparison purpose, is built by 74146 linear tetrahedra.
As the elements are linear, locking of the elements during elasto-plastic deformation is
prevented by using the deformation gradient averaged over the element (de Souza Neto
et al., 1996). Subsequently, elastic and inelastic responses of the woven composite unit cell
during non-linear analyses, computed by the ROM techniques based on either TFA or HS,
are investigated. The results achieved by the two ROM approaches are compared to each
other and the results following the DNS for the same MBC (Section 3.1), which are also
used throughout the offline stage. A discussion on the results then follows.

4.1. Effects of the spatial decomposition approaches

As described in Section 3.2, the spatial decomposition of the yarns of the woven composite
unit cell has two contributions:

• The orientation based clustering, guaranteeing that only material points with simi-
lar local yarn/fiber orientations and thus mechanical responses are gathered in the
same subdomain. The purely orientation based spatial decomposition of the yarns is
displayed in Fig. 5.

• The consideration of inelastic fields for an improved account of the developing defor-
mation patterns during inelastic loading conditions, shown to deliver improved results
using the clustering based ROMs (Spilker et al., 2022; Spilker, 2022).
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Figure 5: Spatial decompositions of the (a) weft yarn and (b) warp yarn of the mesoscale woven composite
unit cell into eight subdomains each, solely based on the local yarn orientation.

The goal of the inelastic simulations conducted in the offline stage is the production
of inelastic fields that exhibit detailed inelastic deformation patterns. This allows for an
accurate capturing and representation of the essential features of inelastic deformation pat-
terns by the spatial subdivision procedure using the k-means clustering technique. Lower
hardening characteristics lead to more localized plasticity. More localized fields of inelastic
deformation allow for an improved recognition of the inelastic deformation patterns, and in
turn to improved inelasticity-based spatial divisions using the k-means clustering technique.
For a better identification of the inelastic fields by the subdomains, the matrix hardening
modulus in the offline stage DNS was reduced with respect to the real value, used during
the actual non-linear analyses. It is noted that this manipulation of the inelastic material
properties during the inelastic offline DNS has implications on the validity of the a-priori
determined tensors neither for the TFA nor for the HS type analysis, all being evaluated
from the elastic offline stage DNS only.

As visible when analysing the inelastic fields within the weft yarn (Figs. 6(a), 6(d) and
6(f)) and the warp yarn (Figs. 6(b), 6(e) and 6(g)), the inelastic deformation is represented
by two major inelastic patterns:

• Transversally to the yarns main direction, localized in the regions of yarn inclination.

• Parallel to the yarns main direction, localized at the yarn edges.
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Figure 6: Equivalent plastic strain fields in the (a,d,f) weft and (b,e,g) warp yarns and the (c,h) pure matrix
of the woven composite mesostructure during the application of the three inelastic boundary modes in the
offline stage, (a,b,c) isochoric deformation with tension in χ1-direction (weft yarn direction), (d,e) isochoric
deformation with tension in χ2-direction (warp yarn direction), (f,g,h) pure shearing in the ply-plane.
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Figure 7: Spatial decompositions of the (a) weft yarn and (b) warp yarn of the mesoscale woven composite
unit cell into eight subdomains each and of the (c) pure matrix phase into four subdomains, all based solely

on eigenstrain tensor fields ε*
(l)

(χ) under the loading modes l in Eq. (70) (equivalent plastic strain fields
are displayed in Fig. 6)

The resulting spatial decompositions of the yarns and the matrix purely based on the con-
sideration of plastic strain fields are depicted in Fig. 7.

The inelastic deformation localized transversally to the yarns direction is accurately
captured by the necessary spatial division step alone, taking into account the local yarn
inclination. This can be recognized by a consideration of the purely orientation based
decomposition, displayed in Figs. 5(a) and 5(b). The second major inelastic localization
pattern, stretched out in the yarns main direction, is fully ignored by the clustering purely
based on the yarns inclination. Therefore, the account for inelastic strains occurring during
the application of the selected boundary modes provides adaptations of the spatial division,
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Figure 8: Spatial decompositions of the (a) weft yarn and (b) warp yarn of the mesoscale woven composite
unit cell based on the local yarn orientation as the first division step, with refinements based on plastic
strain fields.
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Figure 9: Computed homogenized (a) axial stress-strain response, (b) evolution of the incremental stress-
strain ratio during a uniaxial tension test, with various underlying spatial decompositions: Purely based on
the local yarn/fiber orientation (TFA-O, Fig. 5), purely based on plastic deformation fields (TFA-P, Fig.
7), and the division first based on the local orientation, refined in a second step by accounting for plastic
fields (TFA-OP, Fig. 8).

refining the orientation-based subdomains by additionally respecting the inelastic patterns
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in the yarns directions (Figs. 8(a) and 8(b)).
In the following, homogenized responses during a uniaxial tension test using the TFA with

different underlying subdomain decompositions will be presented, allowing an evaluation of
the effects of the various possible spatial decompositions. The matrix is always divided
into KI = 4 subdomains based on plastic strain fields, as depicted in Fig. 7(c). The TFA
relying on a decomposition of the yarns based on the yarn orientation alone will be referred
to as TFA-O, the division based on mesoscopic plastic strains (eigenstrains) alone will be
referred to as TFA-P, and the combined decomposition, consisting of a first orientation
based clustering step and refinements based on plastic strain fields, as TFA-OP. The spatial
decomposition is described as follows:

• TFA-O: A division of each yarn with Kθ
Y = 8, Kp

Y = 1. It means that each yarn is
divided intoKY = Kθ

Y = 8 subdomains purely based on the local yarn/fiber orientation
(Figs. 5(a) and 5(b)). In total, the unit cell is subdivided into K = 20 subdomains.

• TFA-P: A division of each yarn with Kθ
Y = 1, Kp

Y = 8. It means that each yarn is
divided into KY = Kθ

Y = 8 subdomains purely based on the plastic strain fields (Figs.
7(a) and 7(b)) under the offline loading modes. In total, the unit cell is subdivided
into K = 20 subdomains.

• TFA-OP: A refinement of the orientation-based division into Kθ
Y = 8 subdomains

based on plastic deformation patterns with Kp
Y = 4. Therefore, each yarn consists of

KY = 32 subdomains after both spatial decomposition steps (Figs. 8(a) and 8(b)).
The total subdomain number amounts to K = 68.

The results of the uniaxial tension test are presented in Fig. 9. It is visible that the TFA-P
leads to too stiff results during elastic and inelastic deformation, while the TFA-O allows
exact elastic and clearly improved inelastic predictions. The TFA-OP, due to the plastic
field based refinements, leads to an improved capture of the yield onset, marked by the
earlier drop of the incremental stress-strain ratio (Fig. 9(b)).

As already stated in Section 3.2, and proven above, the clustering based on the local
yarn/fiber orientation is the necessary spatial decomposition step for woven composites.
Consequently, only the purely orientation based and the combined spatial decompositions
are used to produce the results in the following. The ROMs relying on a yarn subdivision
purely based on the local orientation are referred to by the suffix “-O”. Additionally to
the orientation-based decomposition, the yarns subdomains were refined by means of the
two-step clustering with a consideration of emerging inelastic fields (Kp

Y > 1 in Section 3.2).
The cases of a spatial division with an additional account of the inelastic deformation fields
are referred to by the suffix “-OP”.

4.2. Homogenized elastic behavior

The issue of a spatial decomposition of a material domain with non-uniform microstruc-
tural properties into subdomains with uniform effective microstructures and properties was
treated in Section 3.2. Here, the prediction quality of the homogenized elastic behavior
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Table 3: Elastic properties computed following Eqs. (115) and (116) using DNS and the TFA or HS
algorithms.

method DNS TFA-O TFA-P TFA-OP HS-O HS-OP

E
el

1 (GPa) 63.9 63.9 65.5 63.9 64.6 64.6
νel
12 (-) 4.11e-2 4.12e-2 4.45e-2 4.12e-2 4.10e-2 4.11e-2

νel
13 (-) 4e-1 3.99e-1 3.41e-1 3.99e-1 3.85e-1 3.85e-1

of the woven unit cell modeled by the clustering based ROMs using uniform subdomains,
relying on the different spatial decompositions in Section 4.1, is investigated. To this end,

the elastic Young’s modulus E
el

1 and the elastic Poisson ratios in the ply plane νel
12 and out

of the ply plane νel
13 were identified as the instantaneous mechanical properties in the elastic

regime as

E
el

1 =
∆σ11

∆ε11
at ε11 = 0 (115)

and

νel
1j =

∆εjj
∆ε11

j = 2, 3 at ε11 = 0 . (116)

All elastic properties are predicted almost exactly by the TFA-O and the TFA-OP, with
deviations below 0.1 % from the elastic properties computed using DNS Table 3. The
purely plasticity based spatial decomposition (TFA-P) leads to an overstiff prediction of

the Young’s modulus E
el

1 , with an error of 2 %. The Poisson ratio is overestimated in the
ply-plane (νel

12) by 8 % and underestimated by 14 % out of the ply-plane (νel
13).

The HS method provides good agreements of the elastic properties as well, however the
error level is higher than the one achieved by the TFA. In particular, estimations slightly

too stiff are provided for the longitudinal Young’s modulus E
el

1 .

4.3. Nonlinear analyses

Inelastic loading conditions ε(t), t = [0, T ], T = 1.0 s, were applied on the woven
composite unit cell, described by the following loading histories:

• Overall axial cyclic loading up to 6% strain in χ1-axis orientation, see Fig. 10(a), with
free motion in the orthogonal orientations, corresponding to overall uniaxial tension
boundary conditions

ε11(0) = 0 → ε11(T/4) = 0.03 → ε11(T/2) = −0.03

→ ε11(3T/4) = 0.06 → ε11(T ) = 0

σ22 = σ33 = 0

(117)

• Applied overall cyclic pure shearing loading up to 6%, see Fig. 10(a), with ε33 = ε13 =
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Figure 10: (a) Applied axial and shear deformation during the two separate uniaxial tension (Eq. (117))
and pure shear (Eq. (118)) tests. Uniaxial tension: evolution of the homogenized (b) axial stress and strain
components perpendicular to the direction of tension (c) in plane and (d) out of plane. Pure-shear: evolution
of the (e) homogenized shear stress.

ε23 = 0:

ε(0) =

(
0 0
0 0

)
→ ε(T/4) =

(
0.03 0
0 0.03

)
→ ε(T/2) =

(
−0.03 0

0 −0.03

)
→ ε(3T/4) =

(
0 0.06

0.06 0

)
→ ε(T ) =

(
0 0
0 0

)
.

(118)
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• Non-proportional loading, consisting of three different stages of uniaxial and shear
deformation and a stage of simultaneous unloading towards the zero-strain state (Fig.
15(a)), represented by the overall strain evolution ε(t), with ε33 = ε13 = ε23 = 0:

ε(0) =

(
0 0
0 0

)
→ ε(T/4) =

(
0.04 0
0 0

)
→ ε(T/2) =

(
0.04 0
0 0.04

)
→ ε(3T/4) =

(
0.04 0.04
0.04 0.04

)
→ ε(T ) =

(
0 0
0 0

)
.

(119)

• Non-proportional loading, consisting of different loading stages consisting of simulta-
neous bi- and uniaxial and shear deformation (Fig. 16(a)), represented by the overall
strain evolution ε(t), with ε33 = ε13 = ε23 = 0:

ε(0) =

(
0 0
0 0

)
→ ε(T/4) =

(
0.01 0.02
0.02 −0.02

)
→ ε(T/2) =

(
0.02 0
0 −0.02

)
→ ε(3T/4) =

(
0.03 −0.02
−0.02 −0.04

)
→ ε(T ) =

(
0.04 0
0 −0.04

)
.

(120)

It is noted that the applied macroscopic deformation of up to 6 % goes far beyond the degree
of deformation that the carbon fibers can sustain in reality. In the numerical applications in
this work, where the fibers are assumed to deform purely elastic, this amount of deformation
was applied to point out prediction differences of the nonlinear elasto-plastic behavior of the
unit cell using the different models.

The predictions of the axial stress and the transverse strains in and out of the ply plane
during the uniaxial tension test (Eq. (117)) and the shear stress response during the pure
shear test (Eq. (118)) are compared in Fig. 10. The TFA allows a very high accuracy of
the axial stress, while the HS approach leads to a slightly stiffer prediction (Fig. 10(b)).
Considering the transverse strains in-plane (Fig. 10(c)) and out-of-plane (Fig. 10(d)), both
TFA and HS methods deliver accurate results. The HS approach shows slight advantages
over the TFA for the predictions of the in- and out-of-plane deformations. In particular,
the HS type approach leads to less divergence from the DNS results of the out-of-plane
deformation under the progression of the loading cycles. While both methods perform very
well considering the in-plane and out-of-plane deformation during the first loading cycle,
the HS approach delivers more accuracy during and at the end of the second loading cycle.
Emphasized are the good predictions of the inelastic transverse deformation using the HS
approach, in spite of the assumption of the constant Poisson ratio of the reference medium.
Both methods perform very well and allow equivalently high accuracies of the shear stress
evolution during the pure-shear test (Fig. 10(e)).

Besides the investigation of the homogenized macroscopic responses of the unit cell in Fig.
10, the strain evolutions and homogenized stress-strain responses of the yarns subdomains,
following from the microstructural MFH, are evaluated during the first loading stage of the
uniaxial tension test in t = [0, 0.25]. The reference results for the particular subdomains
are provided by mesoscopic material points of the full-field FE solution, each located close
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Figure 11: Locations of the selected subdomains VrWeft/Warp and mesoscopic material points χWeft/Warp in
the (a) weft and (b) warp yarns for the investigation of the local yarn responses, computed by the MFH.
Displayed are the equivalent plastic strain fields under the uniaxial tension test (Eq. (117)) in weft yarn
direction at the end of the first loading stage t = [0, 0.25], ε11 = 0 → 3%.

to the center of one of the considered subdomains. The two considered subdomains, VrWeft

and VrWarp , as well as the two associated mesoscopic reference material points, χWeft and
χWarp, are located in the inclined region of the weft yarn and in the planar region of the
warp yarn, respectively. The specific locations of the considered mesoscopic material points
and subdomains are indicated in Fig. 11. The mechanical behaviors of the subdomains,
computed by the reduced models, and of the material points of the full-field solution, are
displayed in Fig. 12. It is visible that the axial strain localization in the inclined region
of the weft yarn, represented by the subdomain VrWeft , is slightly underestimated by both
reduced models in comparison to the strain accumulated at the point χWeft of the full-field
solution. The stress-strain response of the same material point χWeft of the full-field solution
shows slightly nonlinear behavior towards the end of the loading stage. In comparison, the
prediction of the subdomain VrWeft by the HS type analysis is overstiff and appears elastic,
while the prediction by the TFA shows overestimated inelastic effects and an underpredicted
stress response of the same subdomain. The strain accumulation as well as the stress-strain
response of the subdomain VrWarp , predicted by the HS type analysis, is in a high agreement
with the behavior of the material point χWarp of the full-field solution. Compared to that,
the TFA leads to a clear overestimation of the strain accumulation in this region of the
warp yarn. Furthermore, the axial stress decrease, observed in the full-field solution and
reproduced by the HS type analysis, could not be modeled by the TFA.

In order to evaluate the validity of the selected offline deformation modes for more
complex loading conditions, inelastic strain fields during and after the application of the two
non-proportional deformation histories are inspected (Figs. 13 and 14). It can be recognized
that the inelastic patterns in the yarns, even after the application of random loading paths,
still correspond to the spatial division achieved by the subdomain decomposition based on
the local yarn orientation and the plastic fields evolved during the selected static loading
modes of the offline stage, displayed in Fig. 6.
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Figure 12: Local mesoscopic responses in the (a,b) weft and (c,d) warp yarns of the woven unit cell of the
subdomains VrWeft/Warp and mesoscopic material points χWeft/Warp indicated in Fig. 11. Responses during
the uniaxial tension test (Eq. (117)) in weft yarn direction during the first loading stage t = [0, 0.25], ε11 =
0 → 3%: (a,c) strain evolutions and (b,d) stress-strain responses following from the microstructural MFH.

During the first non-proportional loading history given by Eq. (119), both the TFA and
the HS approaches deliver high accuracies for the evolution of all stress components (Fig.
15). While the TFA perfectly covers both axial stresses during the complete loading history,
the HS approach leads to very low stress over-estimations. The TFA captures the shear
stress during the shear deformation loading stage very accurately, while the HS approach
over-estimates the shear stress response. During the shear unloading stage, the TFA leads
to an underestimation of the stress drop, while the HS approach allows a nearly perfectly
matching final shear stress at the end of the applied loading. As recognized before, the TFA
perfectly predicts both axial stress responses during the full non-proportional loading history
given by Eq. (120) (Fig. 16). The HS approach leads to very light inaccuracies of the axial
stresses. During the shear deformation, the TFA allows a perfect capture of the shear stress
during the shear loading and unloading down to zero shear deformation. During the further
shearing with negative sign however, the shear stress does not further drop as predicted by
the FE and HS approach. Similarly, the shear stress increase predicted by the TFA during
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Figure 13: Equivalent plastic strain fields in the (a,b) weft yarn, (c,d) warp yarn and (e,f) matrix, (a,c,e)
at t = T/2 and (b,d,f) at the end of the applied non-proportional loading history described by Eq. (119).

the following shear unloading towards a zero shear strain state is underestimated. Unlike
the TFA, the HS approach allows very good agreements of the shear stress evolution during
the full loading history.

Table 4: CPU time speed-ups for the non-proportional loading program in Eq. (120) using the TFA and
HS algorithms.

method TFA-O (K=20) TFA-OP (K=68) HS-O (K=20) HS-OP (K=68)
speed-up 12e3 1.2e3 11e3 1.0e3
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Figure 14: Equivalent plastic strain fields in the (a,b) weft yarn, (c,d) warp yarn and (e,f) matrix, (a,c,e)
at t = T/2 and (b,d,f) at the end of the applied non-proportional loading history described by Eq. (120).

4.4. Discussion

It is shown that the selected static offline deformation modes for the woven unit cell
allow an inelasticity-based spatial division that supports inelastic fields emerging under
proportional and random loading conditions. The spatial decomposition based on the local
yarn inclination alone provides, using the TFA, exact results for the elastic properties of
the woven unit cell (Table 3), proving that the variation of the elastic properties are well
respected. Moreover, the yarn orientation based decomposition allows to capture many of
the inelastic localization zones in the woven structure. The subdomain refinement based on
inelastic fields leads to only small improvements of the mechanical predictions. The yield
points are captured more accurately, but the stiffness response during inelastic loading is
generally captured equally well without the inelasticity-based subdomain refinement.
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Figure 15: Applied loading history described by Eq. (119): evolution of the (a) applied strain path, normal
stress responses in (b) χ1-direction and (c) χ2-direction, and (d) in-ply plane shear stress response.

Following the high accuracy of the representation of inelastic fields by the spatial division,
the behaviors of the woven unit cell predicted by the ROM of inelastic loading show a very
good agreement with the results achieved by DNS for all proportional and non-proportional
inelastic loading histories. While the TFA provides slightly higher accuracies for axial stress
responses, the HS approach allows better predictions for the transverse strains. Supported by
well-covered inelastic localization zones during complex loading by the spatial decomposition,
both approaches are well-capable to model the stress evolution during the applied non-
proportional loading histories. Although both TFA and HS type analysis allow accurate
predictions of the unit cell stress responses, it must be noted that the strain accumulations
in the yarns, computed by the TFA, is not in accurate agreement with the DNS result.
Observed during the uniaxial tension test, particularly the warp yarn (transversal to the
loading direction) undergoes clearly too high deformation.

Comparing the computational efficiency of the ROM approach with respect to the DNS
(Table 4), it becomes clear that the ROMs allow high time savings. While the use of 20 sub-
domains allow a computation that is 10 thousand times faster, the use of 68 subdomains still
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Figure 16: Applied loading history described by Eq. (120): evolution of the (a) applied strain path, normal
stress responses in (b) χ1-direction and (c) χ2-direction, and (d) in-ply plane shear stress response.

allows an acceleration factor of 1 thousand. Additionally, the size of the numerical systems
to be solved is much smaller using the ROMs, meaning that the required computational
power is strongly reduced.

5. Conclusions

In this work, a two-step homogenization procedure for woven composites is employed,
based on piecewise uniform ROM on the mesoscale and the MFH on the microscale. It
allows for the efficient upscaling of the mechanical behavior from the microscale towards
the mesoscale and finally the prediction of a macroscopic material point in the macroscale,
represented by a woven unit cell.

Piecewise uniform field ROMs are used for the modeling of the macroscopic response
of a woven composite unit cell. Each curved yarn is considered as one mesoscopic mate-
rial phase, though the microstructure and the mechanical properties of the yarn materials
are inhomogeneous as a consequence of the local yarn inclination. Therefore, a spatial de-
composition into subdomains that takes into account the local orientation of the yarns is
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essential for an accurate modeling of the elastic and inelastic responses. To this end, a
spatial decomposition procedure is implemented, applicable for the mesoscopic model order
reduction of three-scale materials that contain microstructures with heterogeneous stiffness
fields due to non-uniform fiber/inclusion orientations. The predicted elastic responses of the
woven unit cell are nearly exact, which proves that the orientation based clustering provides
well-representative effective fiber orientations of the subdomains in the yarns.

Two ROM approaches were tested for the modeling of a woven composite unit cell.
The TFA, typically leading to clearly overstiff inelastic predictions of composites with high
volume fractions of stiff elastic inclusions in an elasto-plastic matrix phase, but allowing
accurate results if both phases deform inelastically, and the HS approach, relying on a
homogeneous and isotropic reference material. The elastic and inelastic responses of the
woven composite, predicted by the ROMs, are in a good agreement with the responses
modeled by DNS. The use of the MFH on the microscale means that a pre-determined
yield criterion for the RVE as in Han et al. (2020), is not required, and enables mechanical
predictions of the unit cell under arbitrary inelastic loading conditions. The high volume
fraction of the stiff yarn material does not lead to inaccuracies using the TFA approach.
As the TFA leads to typically overstiff responses for cases of stiff elastic fibers in an elasto-
plastic matrix (Spilker et al., 2022, e.g.), it is concluded that the TFA benefits from the
integration of the MFH for the yarn material, allowing the consideration of the yarn material
as homogenized inelastic material phases. It is noted that, in particular during the uniaxial
tension test, the elastic effective properties of the transverse yarn in the loading direction
are in the same order of magnitude as the matrix material. To further test the TFA for
cases where the yarns possess a higher elastic stiffness in the loading direction, and as glass
fibers have isotropic elastic properties, the ROM results of a uniaxial tension test and a
pure shearing test for the same woven composite unit cell with glass fiber reinforced yarns
are reported in Appendix E. As for the case of carbon fiber reinforced yarns, very good
homogenized predictions are accomplished when the carbon fibers are replaced by glass
fibers. The HS approach, modified towards a tangent formulation in this work in order to
remove inconsistencies of the homogenized response, is subject to only minor inaccuraries
of the elastic response of the strongly anisotropic woven structure, although it relies on a
virtual isotropic reference stiffness. It must be noted however, based on the results in Spilker
(2022), that the validity of the HS type analysis can not be verified for general (strongly)
anisotropic microstructures, where high errors of elastic and inelastic responses may occur.
The accurate predictions for the elastic and inelastic responses of the woven unit cell under
loading in the ply-plane can be explained by the orthotropic character of the unit cell with the
same material properties of the warp and weft yarns, leading to same mechanical responses
in both spatial directions in the ply-plane. Comparing the two implemented methods, it was
observed that the TFA leads to more accurate homogenized predictions during elasticity and
of the axial stress-strain responses, where the HS type analysis result is slightly overstiff. On
the other hand, the HS type analysis allows better predictions of the strain accumulations
in the yarns and of the homogenized transverse deformation.

In future works, the modeling capability for the mesoscale unit cell can be tested for
damage occurring in the pure matrix and the yarns. To this end, the damage model needs
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to be defined for the microscale and the mesoscale. The mesoscale unit cell is comprised
by the pure matrix and the yarns subdomains. The damage of the yarns, consisting of
fibers embedded in the matrix, would be modeled by the incremental-secant MFH on the
microscale. A non-local damage model of the matrix was proposed by Wu et al. (2013b).
A micromechanics-based extension for the incorporation of fiber breaking was developed by
Wu et al. (2021b,c). The damage of the pure matrix of the unit cell would follow from a
non-local damage law.

One main challenge for the ROMs originates from the high localization of damage. Com-
pared to the onset of plastic yielding, which can, even with rather low numbers of subdo-
mains, be well captured by the piecewise uniform approximations, the onset of damage occurs
in highly localized zones. As shown by Liu et al. (2018), the predicted failure point is highly
sensitive to the number of subdomains, and even elevated numbers of subdomains may not
allow an accurate capture. In ductile materials, damage typically occurs in the zones of
high plastic strain localizations. The inelasticity-based spatial decomposition (Spilker et al.,
2022) may partially improve the capture of damage and failure, provided that the offline
loading modes are well chosen. To alleviate the issue of the high dependence of the number of
subdomains, Liu et al. (2018) proposed an regularization technique based on the consumed
deformation energy until failure, for the calibration of damage parameters in dependence of
the fineness of the spatial decomposition, enabling a good capture of the point of failure.
The TFA and HS type analyses lead to similar predictions for the elasto-plastic response
of the woven unit cell. However, the similar quality of the homogenized predictions may
not apply for the case of damage. While the HS type analysis accurately represents the
strain localization in the different unit cell phases, errors were found when using the TFA,
implying the possibility of incorrect damage localizations and failure predictions. Further-
more, the reference medium of the HS type analysis represents the instantaneous response
of the composite, and can therefore, as in the case of elasto-plasticity, as well adapt accord-
ing to the response of the damaged composite with degraded elastic properties. Since the
Green’s interaction tensors are inversely proportional to the stiffness of the nonlinear refer-
ence medium (Eq. (13)), they can simply be scaled with respect to the reference stiffness, or
solely the reference shear modulus as in Eq. (96), that represents the damaged composite.
The concentration and interaction tensors of the TFA are functions of the composite medium
with phases that have their initial elastic properties. The adaptation of these tensors would
require to account for the changed elastic properties of the subdomains and of the composite
medium, and is therefore more complex compared to the HS type analysis. Approaches for
the damage modeling using the TFA were proposed by Kruch et al. (1996); Chaboche et al.
(1998) and Chaboche et al. (2001).

The accurate predictions of the presented reduced three-scale bridging of the elasto-
plastic woven composite unit cell are promising for the performance of unit cell based mul-
tiscale simulations of structural woven composites, using FE on the macroscale, with one
macroscopic material point of the structure being represented by one woven unit cell. In
the case of damage however, regularization should span the different macroscopic material
points, introducing more complexity. Besides, for a realistic model on the structural scale,
the integration of laminate layering imperfections and therefore the consideration of larger
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RVEs instead of a unit cell may be required, particularly for the modeling of damage and
failure of the structure.
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Appendix A. Local yarn and fiber orientation in the woven composite

The yarn and fiber orientation at χ is expressed as

v⃗(χ) = Q2

(
θ2(χ)

)
·Q1

(
θ1(χ)

)
· e⃗3 , (A.1)

where e⃗3 is the eigenvector in χ3-axis direction of the unit cell reference system. The first
Euler angle θ1(χ) represents a rotation with respect to the global coordinate system around
the χ3-axis, meaning

Q1

(
θ1(χ)

)
=

cos(θ1) − sin(θ1) 0
sin(θ1) cos(θ1) 0

0 0 1

 . (A.2)

The second Euler angle represents a rotation of the once rotated coordinate system around
the χ′

1-axis. Inside the rotated system, the second euler angle is therefore expressed as

Q2

(
θ2(χ)

)
=

1 0 0
0 cos(θ2) − sin(θ2)
0 sin(θ2) cos(θ2)

 . (A.3)

The total local rotation matrix in Eq. (35) is given as

Q(χ) = Q2

(
θ2(χ)

)
·Q1

(
θ1(χ)

)
. (A.4)

Appendix B. MFH: Homogenized LCC operators

Using the Mori-Tanaka MFH formulation, the homogenized LCC stiffness can be com-
puted from the corresponding phases LCC stiffnesses CLCC

ω , ω = I, II and the strain concen-
tration tensor BII (Eq. (42)). The homogenized LCC operator reads

CLCC =
[
υIICLCC

II : BII + υICLCC
I

]
:
[
υIIBII + υII

]−1
, (B.1)

so that, e.g., the homogenized elastic operator in Eqs. (49) and (58) and Fig. 3(a) reads

Cel =
[
υIICel

II : Bel
II + υICel

I

]
:
[
υIIBel

II + υII
]−1

(B.2)

and the homogenized secant operator

Csec =
[
υIICsec

II : Bsec
II + υICsec

I

]
:
[
υIIBsec

II + υII
]−1

. (B.3)
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Appendix C. MFH: Homogenized tangent

The homogenized algorithmic tangent stiffness is computed as

Calg =
∂σ

∂ε
= υI

∂σI

∂εI
:
∂εI
∂ε

+ υII
∂σII

∂εII
:
∂εII
∂ε

. (C.1)

The algorithmic stiffnesses of the phases, ∂σω/∂εω, follow from the computation of the
stresses in Eqs. (55b) and (56), resulting in

∂σω

∂εω
= Csec

ω +
∂Csec

ω

∂εω
: ∆εreω . (C.2)

Here, the inclusion phase behaves elastic, meaning that ∂σII/∂εII = Cel
II. The computation

of the derivative of the matrix secant stiffness in Eq. (C.2), ∂Csec
I /∂εI, is presented in

Appendix D. The derivatives ∂εI/∂ε and ∂εII/∂ε follow from the MFH solution, presented
in details by Wu et al. (2013a).

Appendix D. J2-plasticity model: derivative of the incremental-secant operator
by the strain

The derivative of the incremental secant operator following Eq. (68) with a pressure-
independent plasticity, is given as

∂Csec
I

∂εI
= 2 Idev ⊗ ∂Gsec

I

∂εI
. (D.1)

Consequently, the derivative of the incremental secant shear modulus

Gsec
I =

∆σre,eq
I

3∆εre,eqI

(D.2)

is to be computed. With

∂∆σre,eq
I

∂εI
=

3

2

dev(∆σre
I )

∆σre,eq
I

: Calg
I =

dev(∆σre
I )

2Gsec
I ∆εre,eqI

: Calg
I (D.3)

and
∂∆εre,eqI

∂εI
=

2

3

dev(∆εreI )

∆εre,eqI

, (D.4)

the derivative of the incremental secant shear modulus results in

∂Gsec
I

∂εI
=

1

6Gsec
I (∆εre,eqI )2

dev(∆σre
I ) : C

alg
I − 2

3
Gsec

I

dev(∆εreI )

(∆εre,eqI )2
, (D.5)

with the algorithmic tangent

Calg
I = Cel

I −2Gel
I

∂∆εpI
∂εI

= Cel
I −

(2Gel
I )

2

hI

NI⊗NI−(2Gel
I )

2 ∆pI

∆σre,tr,eq
I

(
3

2
Idev−NI⊗NI

)
, (D.6)

where

hI = 3Gel
I +

dR

dpI
. (D.7)
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Appendix E. Mechanical predictions for a woven unit cell with glass fiber rein-
forced yarns

Table E.5: Material properties of the glass fiber reinforced woven composite unit cell.

Matrix (M10.1 epoxy) Glass fiber
Property Value Property Value
Young’s modulus EI [GPa] 3.2 Young’s modulus EII [GPa] 75
Poisson ratio νI [-] 0.3 Poisson ratio νII [-] 0.2
Initial yield stress σY0

I [MPa] 30
Hardening modulus HI [MPa] (offline) 130
Hardening exponent mI [-] 300
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Figure E.17: Homogenized unit cell predictions during the first loading stages t = [0, 0.25] of the (a-c)
uniaxial tension test (Eq. (117)), ε11 = 0 → 3% and the (d) pure shear test (Eq. (118)), ε12 = 0 → 2%:
(a) axial stress-strain response, transverse strains (b) in- and (c) out-of-plane and (d) shear stress-strain
response.

To further test the clustering based ROM methods, particularly the TFA, leading to
overstiff results in cases of stiff elastic inclusions, another yarn material system was tested.
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As the carbon fiber reinforced yarns have an effective transversal stiffness that is in the
same order of magnitude as the matrix stiffness, it was investigated if the quality of the
results is reduced when the stiffness contrast increases. For this matter, the carbon fibers
were replaced by glass fibers, while the matrix material and the fiber volume fraction in the
yarn material remain the same. Glass fibers have isotropic mechanical properties, leading
to higher yarn stiffness in the yarns transverse direction. The material properties of both
phases are reported in Table E.5. As visible in Fig. E.17, the results show high agreements
of the predicted responses under the uniaxial tension as well as the pure shearing test by
the ROM with the DNS.
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52

https://link.aps.org/doi/10.1103/PhysRev.79.469
http://dx.doi.org/10.1103/PhysRev.79.469
http://www.sciencedirect.com/science/article/pii/S0045782516301499
http://dx.doi.org/10.1016/j.cma.2016.04.004
http://dx.doi.org/10.1016/j.cma.2016.04.004
http://www.sciencedirect.com/science/article/pii/S0045782517307107
http://dx.doi.org/10.1016/j.cma.2017.11.005
http://www.sciencedirect.com/science/article/pii/S0020768303003469
http://www.sciencedirect.com/science/article/pii/S0020768303003469
http://dx.doi.org/10.1016/S0020-7683(03)00346-9
http://www.sciencedirect.com/science/article/pii/S0022509616300928
http://dx.doi.org/10.1016/j.jmps.2016.02.005
http://dx.doi.org/10.1016/j.jmps.2016.02.005
http://dx.doi.org/10.1007/s10659-006-9082-0
http://dx.doi.org/10.1007/s10659-006-9082-0
http://dx.doi.org/10.1007/s10659-006-9082-0
https://www.sciencedirect.com/science/article/pii/0001616073900643
https://www.sciencedirect.com/science/article/pii/0001616073900643
http://dx.doi.org/10.1016/0001-6160(73)90064-3
https://hal.archives-ouvertes.fr/hal-03019226
https://www.sciencedirect.com/science/article/pii/S0045782597002181
http://dx.doi.org/10.1016/S0045-7825(97)00218-1
http://dx.doi.org/10.1016/S0045-7825(97)00218-1
https://www.sciencedirect.com/science/article/pii/002250969190030R
https://www.sciencedirect.com/science/article/pii/002250969190030R
http://dx.doi.org/10.1016/0022-5096(91)90030-R
https://asmedigitalcollection.asme.org/appliedmechanicsreviews/article-abstract/68/5/050801/443653/Aspects-of-Computational-Homogenization-at-Finite?redirectedFrom=fulltext
https://asmedigitalcollection.asme.org/appliedmechanicsreviews/article-abstract/68/5/050801/443653/Aspects-of-Computational-Homogenization-at-Finite?redirectedFrom=fulltext
https://asmedigitalcollection.asme.org/appliedmechanicsreviews/article-abstract/68/5/050801/443653/Aspects-of-Computational-Homogenization-at-Finite?redirectedFrom=fulltext
http://dx.doi.org/10.1115/1.4034024
https://orbi.uliege.be/handle/2268/296400
https://orbi.uliege.be/handle/2268/296400
https://www.sciencedirect.com/science/article/pii/S0263822322006018
http://dx.doi.org/https://doi.org/10.1016/j.compstruct.2022.115836
https://doi.org/10.1093/imamat/35.1.39
http://dx.doi.org/10.1093/imamat/35.1.39
http://arxiv.org/abs/https://academic.oup.com/imamat/article-pdf/35/1/39/2037184/35-1-39.pdf


der Physik 274, 573–587.
Wu, L., Adam, L., Doghri, I., Noels, L., 2017. An incremental-secant mean-field homogenization method

with second statistical moments for elasto-visco-plastic composite materials. Mechanics of Materials 114,
180–200. URL: https://www.sciencedirect.com/science/article/pii/S0167663617300698, doi:10.
1016/j.mechmat.2017.08.006.

Wu, L., Adam, L., Noels, L., 2021a. Micro-mechanics and data-driven based reduced or-
der models for multi-scale analyses of woven composites. Composite Structures 270, 114058.
URL: https://www.sciencedirect.com/science/article/pii/S0263822321005183, doi:https://
doi.org/10.1016/j.compstruct.2021.114058.

Wu, L., Maillard, E., Noels, L., 2021b. Tensile failure model of carbon fibre in unidi-
rectionally reinforced epoxy composites with mean-field homogenisation. Composite Structures
273, 114270. URL: https://www.sciencedirect.com/science/article/pii/S0263822321007327,
doi:https://doi.org/10.1016/j.compstruct.2021.114270.

Wu, L., Noels, L., Adam, L., Doghri, I., 2013a. A combined incremental-secant mean-field homogenization
scheme with per-phase residual strains for elasto-plastic composites. International Journal of Plasticity 51,
80 – 102. URL: http://www.sciencedirect.com/science/article/pii/S0749641913001174, doi:10.
1016/j.ijplas.2013.06.006.

Wu, L., Noels, L., Adam, L., Doghri, I., 2013b. An implicit-gradient-enhanced incremental-secant
mean-field homogenization scheme for elasto-plastic composites with damage. International Journal of
Solids and Structures 50, 3843–3860. URL: https://www.sciencedirect.com/science/article/pii/
S0020768313003028, doi:https://doi.org/10.1016/j.ijsolstr.2013.07.022.

Wu, L., Zhang, T., Maillard, E., Adam, L., Martiny, P., Noels, L., 2021c. Per-phase spatial corre-
lated damage models of ud fibre reinforced composites using mean-field homogenisation; applications
to notched laminate failure and yarn failure of plain woven composites. Computers & Structures
257, 106650. URL: https://www.sciencedirect.com/science/article/pii/S0045794921001723,
doi:https://doi.org/10.1016/j.compstruc.2021.106650.

Wulfinghoff, S., Cavaliere, F., Reese, S., 2018. Model order reduction of nonlinear homogenization prob-
lems using a hashin–shtrikman type finite element method. Computer Methods in Applied Mechan-
ics and Engineering 330, 149 – 179. URL: http://www.sciencedirect.com/science/article/pii/
S0045782517306904, doi:10.1016/j.cma.2017.10.019.

Yvonnet, J., 2019. Computational Homogenization of Heterogeneous Materials with Finite Elements. Solid
Mechanics and Its Applications, Springer, Cham. URL: https://link.springer.com/book/10.1007/
978-3-030-18383-7, doi:10.1007/978-3-030-18383-7.

53

https://www.sciencedirect.com/science/article/pii/S0167663617300698
http://dx.doi.org/10.1016/j.mechmat.2017.08.006
http://dx.doi.org/10.1016/j.mechmat.2017.08.006
https://www.sciencedirect.com/science/article/pii/S0263822321005183
http://dx.doi.org/https://doi.org/10.1016/j.compstruct.2021.114058
http://dx.doi.org/https://doi.org/10.1016/j.compstruct.2021.114058
https://www.sciencedirect.com/science/article/pii/S0263822321007327
http://dx.doi.org/https://doi.org/10.1016/j.compstruct.2021.114270
http://www.sciencedirect.com/science/article/pii/S0749641913001174
http://dx.doi.org/10.1016/j.ijplas.2013.06.006
http://dx.doi.org/10.1016/j.ijplas.2013.06.006
https://www.sciencedirect.com/science/article/pii/S0020768313003028
https://www.sciencedirect.com/science/article/pii/S0020768313003028
http://dx.doi.org/https://doi.org/10.1016/j.ijsolstr.2013.07.022
https://www.sciencedirect.com/science/article/pii/S0045794921001723
http://dx.doi.org/https://doi.org/10.1016/j.compstruc.2021.106650
http://www.sciencedirect.com/science/article/pii/S0045782517306904
http://www.sciencedirect.com/science/article/pii/S0045782517306904
http://dx.doi.org/10.1016/j.cma.2017.10.019
https://link.springer.com/book/10.1007/978-3-030-18383-7
https://link.springer.com/book/10.1007/978-3-030-18383-7
http://dx.doi.org/10.1007/978-3-030-18383-7

	Introduction
	Constitutive multiscale relations in inelastic composite media
	Scale-couplings in heterogeneous continua
	Polarization field analysis
	Transformation field analysis
	Discretized consideration of subdomains

	Mesoscopic constitutive relations: homogenization of the yarn material
	Microstructural definition
	Incremental-secant Mori-Tanaka MFH scheme
	Incremental-secant MFH procedure: constituents and homogenized response

	Microscopic constitutive relations: J2-plasticity model

	Multiscale modeling of the woven composite
	Boundary conditions for the woven composite unit cell
	Offline stage: mesostructure and mesomechanics based model order reduction
	Transformation Field Analysis
	Hashin-Shtrikman type approach
	Numerical determination of the Green's tensors in the elastic medium
	Adaptation of the reference stiffness and the Green's operator
	Expression of the instantaneous shear modulus
	Solution procedure using the HS algorithm


	Numerical Applications
	Effects of the spatial decomposition approaches
	Homogenized elastic behavior
	Nonlinear analyses
	Discussion

	Conclusions
	Local yarn and fiber orientation in the woven composite
	MFH: Homogenized LCC operators
	MFH: Homogenized tangent
	J2-plasticity model: derivative of the incremental-secant operator by the strain
	Mechanical predictions for a woven unit cell with glass fiber reinforced yarns

