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 25 

Abstract 26 
To improve the sustainability of agricultural systems, an efficient use of resources such as phosphorus (P) nutrients 27 

is necessary. To reach this goal, the development of more resilient crop varieties able to cope with heterogeneous 28 

soil conditions in space and time is a promising strategy. Plants face many stresses in their natural environment 29 

and can respond to them by adjusting their phenotype (phenotypic plasticity). Integrating plastic root system traits 30 

into breeding strategies may help reach acceptable yields in low-input systems by enhancing water and nutrient 31 

uptake, thus reducing resource inputs in conventional farming systems. Bacterial bioinoculants, also considered to 32 

be a class of biostimulants, have shown great potential to increase the nutrient use efficiency of plants through 33 

diverse strategies including the modulation of root system plasticity. However, the study of plant plasticity can be 34 

challenging, particularly regarding the root system. This paper aims to encourage the integration of bioinoculants 35 

into the study of root system plasticity in response to P deficiency. We first focus on the plasticity of root 36 

architectural traits in a P-limiting context and on how bioinoculants can modulate root system plasticity and 37 
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enhance P use efficiency. Then, important methodological points of attention to consider for the study of root 38 

system plasticity are highlighted.  39 
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 60 

Abbreviations 61 
ACC 1-aminocyclopropane-1-carboxylic acid 62 

AMF arbuscular mycorrhizal fungi 63 

IAA indole-3-acetic acid 64 

MAMP microbe-associated molecular pattern 65 

P phosphorus 66 

PGPR plant growth-promoting rhizobacteria 67 

PSB phosphate-solubilizing bacteria 68 

PSM phosphate-solubilizing microorganisms 69 

PUE phosphorus-use efficiency 70 

Introduction 71 
In the context of global change, crop production systems are evolving towards strategies that promote the 72 

sustainable management of soil resources. This is particularly important for plant P nutrition, in view of the poor 73 

availability of P resources to crops in arable soils (Simpson et al. 2011) and uncertainties regarding the limited 74 

mineral P reserves that can be used to produce mineral fertilizers in an economically viable way (Cordell et al. 75 

2009).  76 
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In order to develop strategies that allow better exploitation of soil resources in variable growing conditions, 77 

research on plant root systems and their high plasticity is becoming increasingly important (Bardhan et al. 2021; 78 

Lobet et al. 2019). The plant genotype influences the physical, chemical and biological properties of the 79 

rhizosphere (i.e., the root vicinity, ‘soil influenced by roots’ as originally defined by Hiltner (1904)) through root 80 

growth and rhizodeposition. The rhizosphere could therefore be considered as an ‘extended phenotype’ (result of 81 

the effects of plant genes outside the organism; defined by Dawkins (1982)) and a determinant for plant fitness (de 82 

la Fuente Cantó et al. 2020).  83 

Rhizospheric traits, considering the root-soil-microorganisms tripartite interaction, are not yet integrated into 84 

breeding programmes (de la Fuente Cantó et al. 2020; Trivedi et al. 2020). However, they are determinants of 85 

improved P-acquisition efficiency, one of the highlighted strategies to obtain P-efficient genotypes (Cong et al. 86 

2020). The interaction of plants with their microbiome and beneficial rhizospheric microorganisms is gaining more 87 

interest (Compant et al. 2019; Wei and Jousset 2017) and should be seen as a way to obtain new phenotypes with 88 

increased fitness (Trivedi et al. 2020). The use of ‘microbial biostimulants’ may help to reduce the input required 89 

to achieve an acceptable yield by increasing the bioavailability of nutrients in the soil and/or improving the plant 90 

nutrient use efficiency (Box 1) (du Jardin 2015). Bacteria are known to affect plant P nutrition through various 91 

mechanisms including improvement of P availability and modulation of plant growth (Pii et al. 2015), and 92 

constitute the focus of this paper.  93 

The study of the impact of bacterial inoculants on plant plasticity in a P-limiting context deserves consideration. 94 

In this paper, we first focus on the plasticity of plant root systems, the traits of interest in P nutrition and the role 95 

of bacterial biostimulants in triggering root system plasticity. Then, the article focuses on growing conditions and 96 

methods of plasticity analysis that could be considered and eventually implemented in research.  97 

Root system plasticity  98 

The interest of plasticity for breeding programmes  99 
For decades, breeding programmes have selected high-yielding varieties under constant optimal or targeted stress 100 

conditions. This strategy has resulted in reduced plasticity (Box 2) in crop species compared to wild ones (1.8-fold 101 

difference, among 11 species and a diversity of traits) (Des Marais et al. 2013). Cultivated genotypes, exhibiting 102 

more stable traits, may have greater susceptibility to varying or suboptimal conditions compared to more flexible 103 

wild-type genotypes (Dalal et al. 2017). Past selection also likely led to smaller root systems, enabling a reduction 104 

of the competition between crop root systems and consequently yield increases (Fradgley et al. 2020). However, 105 

in the current context, the need for crop cultivars that have sufficient productivity in low-input systems and reduced 106 

input requirements in high-input systems is emphasized (Lynch and Brown 2012). Phenotypic plasticity is an 107 

important component of plant root systems that needs to be further considered in order to achieve acceptable yields 108 

under varying conditions (Lobet et al. 2019; Reynolds et al. 2021). Root architectural plasticity was shown to be 109 

related to yield stability in response to drought and low phosphorus stress (Sandhu et al. 2016). It is also relevant 110 

for plant performance in the context of plant intra- and interspecific interactions (Yu et al. 2020; Zhang et al. 2020). 111 

Therefore, plant breeding strategies should seek ‘robust’ cultivars performing optimally in a broad range of 112 

suboptimal conditions.  113 

Root system plasticity for enhanced P-use efficiency (PUE) 114 
Root traits can be linked to their functional utility, i.e., resource acquisition or utilization (York et al. 2013), which 115 
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are components of P-use efficiency (PUE) (du Jardin 2020). Resource acquisition may be further explored by 116 

classifying the traits into two categories according to the foraging strategy: exploration of new soil domains and 117 

exploitation of the existing domains (York et al. 2013). A root strategy to enhance P acquisition comprises better 118 

exploration of soil P-rich domains and exploitation of these domains through P solubilization and uptake (Lynch 119 

2019). Among the trait categories defined by McCormack et al. (2017), root dynamics, root system architecture, 120 

physiology, morphology, anatomy and microbial associations present interesting P-responsive traits (Fig. 1). 121 

Examples of the influence of the P context on root traits are given in Table 1. Due to the poor mobility of P, it can 122 

be argued that traits favouring soil exploration are probably of first importance in low input systems by enabling 123 

P interception by roots and locating plant exudates as well as microbial interactions in P-rich domains (Lynch 124 

2019).  125 

Bacterial inoculants and modulation of root system plasticity 126 

Modulation of root system development by beneficial bacteria 127 
The influence of rhizospheric microorganisms on root traits that are determinant for the plant PUE is described in 128 

Table 1. Numerous bacterial strains produce phytohormones, including auxins and cytokinins, as well as secondary 129 

metabolites that affect the auxin/cytokinin ratio and the ethylene level in planta. The auxin/cytokinin ratio is an 130 

important regulator of root system development (Vacheron et al. 2013). The stimulation of root development and 131 

branching by bacterial auxins increases the available root surface and the carbon supply for colonization by 132 

bacteria (Talboys et al. 2014). Bacteria-produced cyclodipeptides were shown to impact the root system 133 

architecture of A. thaliana through modulating auxin-responsive gene expression in roots (Ortiz-Castro et al. 134 

2019). Volatile organic compounds emitted by rhizobacteria were also found to alter root system morphology in 135 

different plant species (Delaplace et al. 2015; Sharifi and Ryu 2018). Most beneficial rhizobacteria produce the 136 

enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, which degrades the precursor of ethylene 137 

ACC in plants. By lowering the ethylene level in plants, the bacterial ACC deaminase impacts the root system 138 

architecture (Vacheron et al. 2013) as ethylene level in plants modulate the formation and elongation of lateral 139 

roots as well as root hairs (Neumann 2016). The modulation of plant growth rate and phenology by bacteria 140 

(Delaplace et al. 2015; Poupin et al. 2013; Zaheer et al. 2019) also impacts the root system development and plant 141 

nutrition (Vacheron et al. 2013). Stimulating root growth rate can improve soil exploration through increased root 142 

surface area, which can lead to increased acquisition of soil resources (Poupin et al. 2013). Ion uptake kinetics 143 

were shown to be modulated by bacteria-released auxin. Despite increased root production, expression of P 144 

transporters per unit root surface was reduced in inoculated plants under low P conditions, which resulted in lower 145 

P uptake per unit of root surface area (Talboys et al. 2014). These examples show how beneficial bacteria modulate 146 

root traits and trigger the plant responses to P limitation. The role of bacteria in the timing of the triggering of plant 147 

P responses is a point that could be investigated.   148 

Beneficial bacteria also improve plant growth by impacting plant nutrition. This can be achieved by increasing 149 

nutrient availability in the root vicinity (P solubilization and mineralization) or enhancing the plant’s nutrient 150 

acquisition processes (rhizosphere acidification, changes in root exudation) (Vacheron et al. 2013). There is little 151 

evidence to suggest that phosphate-solubilizing microorganisms (PSM; bacteria and fungi, arbuscular mycorrhizal 152 

fungi excluded) solubilize sufficient P to meet plants’ needs under field conditions. PSM can however show 153 

positive effects on the plant’s response to P-limiting conditions through other mechanisms that impact root system 154 

development. The turnover of P in microbial biomass is more likely to provide P to plants over a long time 155 
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(Raymond et al. 2020) yet the recently discovered plant-fungus symbiosis referred to as ‘feremycorrhiza’ (non-156 

root-colonizing fungi benefitting plant growth through rhizosphere modification and nutrients mobilization) offers 157 

promise for more efficient P solubilization (Kariman et al. 2020). Although mycorrhizal fungi are outside the scope 158 

of this paper, they make an important contribution to plant P nutrition by solubilizing P and enhancing soil 159 

exploration through their hyphae (Chippano et al. 2021; Richardson et al. 2011).  160 

Bacterial biostimulants  161 
As the root system exhibits plasticity in response to its biotic environment, modulation of the plant microbiome is 162 

of great interest to optimize plant production systems (Compant et al. 2019). Modulation of the plant microbiome 163 

can be achieved by inoculation of single strains or consortia as well as by agricultural management and plant 164 

selection (Compant et al. 2019; Hartman et al. 2018). The development of single strain inoculants usually starts 165 

with the screening of strain collections for beneficial functions like P solubilization, N fixation, plant hormones 166 

and ACC deaminase production. Promising strains are then tested in (semi-)controlled conditions and finally in 167 

the field. Using this bottom-up approach, many performant strains in the lab fail to reproduce this success in the 168 

field (Compant et al. 2019). Limited success of inoculants in the field and low reproducibility can be explained by 169 

competition between well-adapted microorganisms of the receiving environment and the introduced bacteria. The 170 

extent to which such priority effects and their associated mechanisms (niche pre-emption and niche modification) 171 

modulate the assembly of soil microbial communities and determine the success of plant inoculation in the field 172 

certainly deserves more attention in future research (Debray et al. 2022; Fukami 2015). The ability of the strain to 173 

colonize the targeted plant species and to exhibit the desired function in the environment is also important 174 

(Compant et al. 2019). The establishment of a lasting relationship between the host and the inoculated bacteria 175 

will depend on the ability of the bacteria to persist in the environment, to colonize the host and to be metabolically 176 

active (Charron-Lamoureux et al. 2020). Short exposure of plants to bacterial biostimulants might also result in 177 

positive outcomes through a priming effect (Cordovez et al. 2018). The assessment of bacterial population 178 

dynamics can be challenging, but it is essential to determine how to efficiently use bacterial inoculants in various 179 

environmental conditions. The presence of desired taxa and reactions can be assessed by using high-resolution 180 

tools (e.g. in situ sensors and omics analyses) measuring diagnostic molecules (e.g. exudates and volatiles) or 181 

microorganisms (Trivedi et al. 2020, supplementary information). Quantitative PCR can be used with specific 182 

primers to assess inoculant survival in the rhizosphere (Renoud et al. 2022), while next-generation sequencing 183 

techniques allow an in-depth characterization of the root-associated microbial diversity (Azarbad et al. 2022; 184 

Renoud et al. 2022). Soil-plant-bacteria interactions are complex and the beneficial properties of the strains may 185 

be specific to plant species and soil properties. Therefore, isolating and characterizing native bacterial strains living 186 

in the rhizosphere of plants growing in a target environment constitutes an alternative to the use of non-native 187 

consortia to obtain competitive strains which are well adapted to local biotic and abiotic conditions (Majeed et al. 188 

2015; Santoro et al. 2015; Zahid et al. 2015).  189 

By inoculating bacterial consortia, different mechanisms and desired traits can be combined. Strains with the same 190 

mode of action but tolerating different environmental conditions can also be co-inoculated (Compant et al. 2019). 191 

Based on plant-bacteria binary-association assays, Herrera Paredes et al. (2018) found that functional stacking 192 

within a bacterial consortium gives information on the effects of the consortium on the plant phenotypic response. 193 

The expression of phosphate starvation responsive genes and immune system-related genes was modulated by the 194 

bacterial synthetic communities and the effects of the bacteria were dependent on the nutritional status of the plant 195 



6 
 

(Herrera Paredes et al. 2018). The construction of synthetic microbial communities (through culture and screening 196 

for beneficial traits or synthetic biology) and their use to increase plant fitness and productivity can now be 197 

translated into practice but have not yet been integrated into crop breeding (Trivedi et al. 2020).   198 

These elements suggest that desired combinations of plant traits can be reached by microbial-induced shifts of 199 

phenotype. Plant breeding could modify both genomic information and plant-associated microbiota to obtain new 200 

phenotypes (Wei and Jousset 2017). However, transmission of the plant microbiome and of microbiome-directed 201 

traits to the next generation is challenging (Wei and Jousset 2017). An inheritable assemblage of plant and 202 

microbes could be achieved by inoculating flowers with specific microbes that will then be vertically transmitted 203 

to the next plant generation (Mitter et al. 2017) and will play an important role in determining the structure of the 204 

root-associated microbiota, particularly at the early stages of plant development (Yang et al. 2017). Shao et al. 205 

(2021) observed that the assembly of the rhizosphere microbiome in maize is dominated by the soil microbiome 206 

but the seeds contained beneficial bacteria that promote phosphate acquisition of the plants when parents were 207 

cultivated in nutrient-deficient soil. The seed microbiome may serve as a functional compensation reservoir in the 208 

assembly of the root microbiome. 209 

Studying root system plasticity  210 

Challenges of root system phenotyping 211 
Plant phenotyping can be challenging, especially when focusing on the root system which is not easily accessible. 212 

Considering that soil is a complex and heterogeneous matrix where many interactions occur, it is useful to work 213 

with simplified systems to improve our understanding of rhizosphere processes (Baudson et al. 2021; Rich and 214 

Watt 2013). However, the transposability of results from the lab to the field depends on the realism of the growing 215 

conditions used to perform the experiments. Arguments for a reversed lab-to-field pipeline arise as discrepancies 216 

between lab and field studies are often reported, as well as poor predictability of the outcome of field studies from 217 

greenhouse studies (Schmidt and Gaudin 2018).  218 

Field-grown plants deliver valuable information about the root system architecture in real conditions but root 219 

phenotyping in the field is more challenging than under controlled conditions, and the environmental variability 220 

associated with field experiments makes it harder to identify the mechanisms underlying plasticity (Freschet et al. 221 

(2021) provides an extensive guide to field phenotyping methods). Therefore, the identification of seedling root 222 

traits that can be associated with mature root traits or performance of field-grown plants is a determinant for 223 

breeding programme strategies (Salungyu et al. 2020; Watt et al. 2013).  224 

High-throughput phenotyping techniques generate a large volume of data that is needed to advance breeding and 225 

selection. However, the processing and analysis of this data is often a major bottleneck in root phenotyping studies, 226 

which is one of the reasons why machine learning approaches have gained popularity in recent years. For instance, 227 

deep learning now allows the fast and accurate segmentation of roots embedded in soil (Han et al. 2021; Smith et 228 

al. 2022), which is a prerequisite to quantify root plasticity under realistic conditions. The development of high 229 

performance and free image analysis software tools has greatly facilitated the standardization and increased speed 230 

of image analysis tasks, which is an important step towards integrating root phenotyping into plant breeding 231 

programmes. Examples of such root image analysis tools include RootPainter for image segmentation using deep 232 

learning (Smith et al. 2022), RhizoVision Explorer for the automated analysis of root crowns and scanned root 233 

images (Seethepalli et al. 2020, 2021), or Root-o-Mat for the analysis and mapping of enzyme activity at the soil-234 
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root interface (Tegtmeier et al. 2021). Machine learning algorithms such as random forests have also proved useful 235 

in helping to identify important traits (Atkinson et al. 2017). The characterization of root physiological processes 236 

such as enzyme exudation and rhizosphere acidification has been facilitated by the development of 2D imaging 237 

techniques such as zymography and planar optodes (Blossfeld 2013; Ma et al. 2021). Although root exudation is 238 

a particularly challenging process to quantify in situ (Oburger and Jones 2018), leaf manganese concentration has 239 

been shown to be an interesting proxy for the exudation of carboxylates (Lambers et al. 2021). All the afore-240 

mentioned phenotyping techniques can be implemented into co-cultivation systems to study the effects of bacteria 241 

on root system plasticity.  242 

Studying the genetic control of plasticity and plant-bacteria interactions 243 
The genetic control of root system plasticity is still poorly understood. The plasticity of a specific trait being a 244 

quantitative trait by itself, quantifying the plasticity as a trait would enable the identification of the genes involved 245 

in this plasticity (Laitinen and Nikoloski 2019). Using recombinant inbred lines, intraspecific variability in the 246 

plastic response of root traits was highlighted (Zhu et al. 2010) and plasticity-related regions in the context of P 247 

nutrition have already been reported (Zhu et al. 2005b, 2005a).  248 

Regarding plant-bacteria interactions, the factors and mechanisms underlying recognition and interaction in plant 249 

symbiosis with rhizobia have been thoroughly investigated (Trivedi et al. 2020). The establishment of beneficial 250 

plant-bacteria interactions requires the modulation of plant immune responses by the bacteria. The plant immune 251 

system can recognize microbe-associated molecular patterns (MAMPs, such as flagellin, lipopolysaccharides, 252 

chitin) (Trivedi et al. 2020). Some beneficial plant-associated bacteria are able to escape the plant immune response 253 

to achieve an efficient plant-microbe symbiosis by avoiding receptor recognition through modification of the 254 

MAMP epitope, inhibition of the synthesis of MAMP-containing molecules or alteration of the bacterial cell wall 255 

composition (Hacquard et al. 2017). Microorganisms can also overcome plant defences by secreting effector 256 

proteins mimicking plant proteins, a strategy to elude MAMP-triggered immunity (Trivedi et al. 2020). On another 257 

side, the transcription factor PHR1 (PHOSPHATE STARVATION RESPONSE 1) is the major regulator of the 258 

phosphate starvation response and contributes to transcriptional regulation of the plant immune system, 259 

contributing to the assembly of the root microbiome (Castrillo et al. 2017). The signalling of the phytohormones 260 

salicylic acid, jasmonic acid and ethylene is essential in the defensive response action and in shaping the structure 261 

of microbial communities (Hacquard et al. 2017; Vishwakarma et al. 2020). In a review paper, Sharifi and Ryu 262 

(2018) discussed how bacterial volatile compounds might be perceived by plants, possibly sharing regulatory 263 

systems with green leaf volatiles. Indole produced by bacteria impacted indole-3-acetic acid (IAA) and jasmonate 264 

signalling in plants (Erb 2018). Tzipilevich et al. (2021) highlighted the role of bacterial auxin in bacterial survival 265 

and colonization of the root system through a feedback loop between bacteria and the plant immune system. The 266 

use of plant genotypes that are unable to detect bacterial signals would be of great interest to assess the impact of 267 

bacterial modulation of plasticity on plant performance.  268 

Can modulation of root plasticity confer enhanced PUE and plant performance or fitness? 269 
From an agronomic point of view, plasticity and performance (yield or biomass production per unit surface area) 270 

under stressful conditions should be considered together. The responsiveness to environmental constraints should 271 

not jeopardize the economic profitability of the crop (see the cost of plasticity, Box 2). The plasticity related to 272 

PUE should also be studied in order to assess the extent to which the response has a functional utility and confers 273 

an advantage regarding P stress (Hammond et al. 2009; Neto et al. 2016). This would make it possible to quantify 274 
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the benefits of the application of bioinoculants. Bacterial inoculants and traits conferring improved PUE may then 275 

be further explored and considered in breeding programmes (Hammond et al. 2009; Neto et al. 2016).  276 

Considering the relationship between the variability of a trait and the yield (or a proxy) gives an insight into the 277 

impact of variation in the trait on plant performance (Neto et al. 2016). This can be achieved in an integrative 278 

manner by mapping the fitness landscape of specific root phenotypes, i.e., depicting the crop performance against 279 

a multi-dimensional set of external and internal factors (for instance, contrasting nutrient supplies or co-occurring 280 

stresses, trait plasticity and interaction with other traits). This approach becomes increasingly difficult as the 281 

cropping system becomes more complex (from high-input monoculture systems to low-input stressing 282 

environments) (Lynch and Brown 2012) and no examples of mapping of the fitness landscape in the context of 283 

biostimulant treatments under varying P conditions were reported at this time. This is a major challenge in the field 284 

of root phenomics. 285 

Conclusion 286 
Plants have developed adaptive strategies to cope with nutritional stresses including plasticity of the root system, 287 

enhancing soil exploration and exploitation. Bacterial inoculants are being considered in strategies for more 288 

sustainable crop production, notably due to their ability to modulate root system development at early stages. The 289 

inoculation of plants with bacterial biostimulants, as single strains or consortia, is a promising way to reach robust, 290 

P-responsive phenotypes. The plant microbiota could therefore be considered in crop breeding, together with the 291 

plant genome, to obtain new phenotypes. It is noteworthy that many challenges exist to study the root system 292 

plasticity in response to nutritional stress and inoculation with beneficial microorganisms, but important progress 293 

has been made in developing root system phenotyping techniques that could be implemented into co-cultivation 294 

systems. Key elements for the integration of bacterial inoculants into root phenotyping studies are given in Box 3, 295 

along with an example of experimental setup to study explorative root traits. The ability of bacteria to induce 296 

plasticity in traits that are important for the plant PUE is depicted by many examples. However, the impact of the 297 

bacteria-induced plasticity on plant PUE and performance should be quantified to be implemented into breeding 298 

programmes. The role of beneficial bacteria in the timing of the triggering of plant responses to P limitation and 299 

shift in plant phenology that could modulate the fitness landscape also deserves to be investigated.   300 

 301 

Figure captions 302 

Fig. 1 Root system traits enhancing P use efficiency. Root traits were classified according to McCormack et al. 303 

2017 304 

 305 

Table captions 306 

Table 1 Influence of P starvation and microbial context on root system traits enhancing PUE, classified 307 
according to their foraging strategy  308 

 309 

Box 1: Biostimulants 310 
A plant biostimulant is defined in Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 311 

June 2019 based on claims that it is ‘a fertilizing product the function of which is to stimulate plant nutrition 312 
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processes independently of the product’s nutrient content with the sole aim of improving one or more of the 313 

following characteristics of the plant or the plant rhizosphere: nutrient use efficiency, tolerance to abiotic stress, 314 

quality traits or availability of confined nutrients in the soil or the rhizosphere’ (EU 2019). Biostimulant products 315 

are composed of substances or microorganisms: humic and fulvic acids, protein hydrolysates, seaweed and plant 316 

extracts, biopolymers (e.g., chitosan), inorganic compounds (e.g., aluminium, cobalt, sodium, selenium and 317 

silicon), beneficial fungi and bacteria (i.e., microbial biostimulants, bioinoculants) (reviewed by du Jardin 2015). 318 

Biostimulants aim to affect the plant’s physiology rather than supplying nutrients or protecting the plants against 319 

pathogens or pests. They should be considered in the context of ‘high-output low-input’ agriculture (du Jardin 320 

2015, 2020).  321 

 322 

Box 2: Phenotypic plasticity 323 
Plants respond to variations in environmental conditions by modifying their phenotype (Nicotra et al. 2010). This 324 

response capacity is called phenotypic plasticity and can take place at different levels such as physiology, anatomy 325 

and morphology. The plastic response of plants to varying environmental conditions may eventually result in 326 

enhanced plant survival and fitness (Lobet et al. 2019). However, under favourable environmental conditions, the 327 

costs for the construction and maintenance of sensory and regulatory mechanisms underlying plasticity can have 328 

a negative impact on plant performance (Dalal et al. 2017; Schneider and Lynch 2020). The cost of plasticity is 329 

defined as ‘the reduction in the fitness of a genotype due to its phenotypic plasticity, as compared to fixed patterns 330 

of development that maintain homeostasis under stable conditions’ (Dalal et al. 2017). Phenotypic plasticity may 331 

also be maladaptive when environmental conditions fluctuate and there is a time lag between environmental cues 332 

and the expression of the plastic response (Schneider and Lynch 2020). 333 

Trade-offs among plastic responses exist under multiple stress conditions and may impair the plant’s fitness as 334 

well. P has low mobility in soils and is present mainly in the topsoil due to the deposition of plant organic matter. 335 

In comparison with P, mobile resources like nitrate and water have a more vertical distribution in soils as they can 336 

quickly move to deeper soil layers. Therefore, favouring traits that enable P acquisition may reduce the efficiency 337 

of plants in taking up nitrate and water (Lynch 2011). In case of multiple edaphic stresses, identifying a single 338 

phenotype that performs optimally across contrasting environments is unlikely (Rangarajan et al. 2018). However, 339 

suites of traits benefitting the acquisition of several nutrients (e.g., N, S, K, B and P) were identified and could be 340 

considered to obtain root ideotypes suitable for multiple environmental conditions (White et al. 2013).  341 

Trade-offs were also identified among functional traits related to P-uptake strategies (Fig. 1). Root diameter is 342 

positively correlated to the release of P-mobilizing exudates in the rhizosphere and colonization by arbuscular 343 

mycorrhizal fungi, but negatively correlated to root branching intensity and specific root length in herbaceous 344 

plant species (Wen et al. 2019). Han et al. (2022) recently provided a different picture by showing that the greatest 345 

root phosphatase activity in forest tree species was found in “do-it-yourself” species with a high specific root 346 

length and low mycorrhizal colonization rates.  347 

 348 

Box 3: Key points for the integration of bioinoculants into root phenotyping studies 349 
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Given the lack of reproducibility that is often observed between laboratory and field studies when screening for 350 

bacterial strains promoting plant growth under P-limited conditions, the ability of bacterial inoculants to modulate 351 

root system traits and plasticity and improve plant fitness should ideally be tested under field or semi-controlled 352 

conditions (e.g., using outdoor mesocosms or rhizoboxes filled with field-collected soil) (Dal Cortivo et al. 2018; 353 

Durand et al. 2016). As environmental conditions are highly variable in space and time, such trials should ideally 354 

be repeated in different locations and different years to draw robust conclusions. The number of strains (either 355 

alone or in combination) that is possible to test in the field being limited, the strains and/or consortia should be 356 

selected based on criteria such as ability to maintain and grow in the rhizosphere and P-mobilizing traits. The use 357 

of native strains is an interesting approach to modulate the natural microbial community and its functioning 358 

because these strains are well adapted to local environmental conditions. The traits of interest should be clearly 359 

defined a priori as they will condition the choice of the growing system and sampling technique. Compared to lab 360 

studies, field trials allow plants to reach more advanced developmental stages, but the range of easily measurable 361 

traits is often more limited than under more controlled conditions. Following field trials, in-depth mechanistic 362 

studies of how selected bacterial strains affect plant traits, PUE and fitness can be carried out under more controlled 363 

conditions such as in the lab, in a greenhouse or in an ecotron, provided that environmental conditions are carefully 364 

chosen to mimic situations experienced by plants and their associated microbes in the field.  365 

In table 1, a lack of data on the impact of bacterial inoculants on root growth angle was highlighted. Here we 366 

provide an example of an experimental approach that could be used to study the effects of bacterial inoculants on 367 

parameters that affect soil exploration by roots of a single crop under deficient P conditions, including root growth 368 

angles of main root axes and their plasticity. Field trials with coated seeds (either inoculated or not) should ideally 369 

be conducted in different locations (e.g., environmental gradient) and repeated in different years to measure plant 370 

performance (e.g. yield and yield stability) and root traits for which plasticity needs to be quantified. Root crown 371 

phenotyping methods (e.g., shovelomics) can be used to measure the growth angles of main root axes for crops 372 

such as maize, soybean and wheat (Fradgley et al. 2020; Seethepalli et al. 2020; Trachsel et al. 2011). Root growth 373 

angles and root growth rates can also be estimated in the field using root observation windows (i.e., rhizoboxes) 374 

(Alonso-Crespo et al. 2022; Freschet et al. 2021), and minirhizotrons can be used to provide additional information 375 

such as root length density and distribution in the soil (Freschet et al. 2021). Soil coring techniques can be used to 376 

collect roots to measure additional traits related to root anatomy, morphology and physiology shown in Figure 1 377 

(Freschet et al. 2021). 378 

 379 
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