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Abstract  

Detailed information about building footprints is required for most urban analyses and modelling. Our 

study aims at comparing the quality of outputs produced by deep learning to detect buildings footprints 

from Planetscope images (3m per pixel) and compare these to cadastral parcel data published by Belgian 

Land registry (here considered as ground truth). The building footprint detection is based on a 

combination of a CNN-based segmentation network with a GAN-based upsampling network for 

generating realistic building footprints. Our experiments show that our combined CNN-GAN model 

detects effectively building units in urban core areas of Brussels with a completeness of 36%, which 

shows a fair agreement with our cadastral data. As our training set is based on high density areas, the 

model tends to underestimate the number and cumulated area of buildings in peri-urban areas such as 

Leuven and Nivelles. Landscape metrics and statistical assessment are carried out at class and landscape 

level to measure the correlation and deviation between the output from deep learning and the original 

cadastral data. These results shows that the use of such system(deep learning ) to detect building 

footprint automatically over multiple years can be used to evaluate the changes in building footprints 

with accessibilities to amenities and green areas. 

1. Introduction 

Buildings are the basic "building block" of 

civilization in today's world. Building 

footprints are one of the major methods of 

analyzing the buildings. A building footprint 

captures the geofence of a building excluding 

the adjacent properties like parking lots and 

landscaping. For urban studies, building heights 

and footprints are of critical importance. For the 

past few decades, there has been many studies 

in order to find a method for automated building 

footprint extraction. Recent advances in remote 

sensing, such as airborne LiDAR, high-spatial 

resolution aerial photography, and object-based 

image analysis (OBIA) techniques(Zięba-

Kulawik et al.,2020), have made it possible to 

extract building footprint and height 

information accurately and quickly at a low cost 

(Zhang et al., 2020).  

Accurately identifying building footprints is 

one of the most difficult and important tasks in 

remote sensing imagery analysis (Schuegraf 

and Bittner, 2019). Dense, pixel-wise 

classification of images is now possible due to 

recent advances in repurposing 

CNNs(Convolution Neural Network)for 

semantic image segmentation.(Shelhamer et 

al.,2017) This study aims to extract structured 

building information from satellite imagery due 

to its availability and applicability to various 

other applications and to make it available for 

countries or cities where there is a lack of 

plausible data.  
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2. Materials and Methods 

 

2.1 Study Area   

The study area comprises of the regions of 

Brussels, Vlaams Brabant and Walloon Brabant 

of Belgium (Figure 1). This study area occupies 

3376 sq. km, which is approximately 11% of 

the total area covered by Belgium. In order to 

decrease the computational time taken for the 

automated extraction, three test areas were 

taken into consideration. With regards to better 

model efficiency and accuracy assessment, the 

test areas includes urban core like Brussels 

capital Region and Peri-urban areas like Leuven 

and Nivelles. 

2.2 Methodology   

Three inputs were selected for training the 

model in order to extract the building 

footprints. A medium resolution 

Planetscope image was acquired for 2019 

from Planetscope with a resolution of 3m. 

Normalized vegetation Index (NDVI) were 

calculated for corresponding images using 

python code . The other associated data 

includes landscan population data and Also 

DEM was prepared and resampled at the 

same scale of Planetscope image in order to 

gain a efficient results. Once the data were 

prepared, a DL algorithm based on CNN-

GAN was developed taking 10% of 

brussels dataset and considering 100% area 

as urban. In order to avoid the disparity in 

results, especially in peri-urban areas, 

multiple runs were simulated in various 

combination of training and testing dataset. 

With course of several runs, the final output 

were made which could detect the building 

footprints in both urban and rural area better 

than the initial runs. 

3. Result and discussion: 

A CNN-GAN based segmentation was 

performed taking 10% of Brussels as the 

training sets. The main objective of the 

work was to establish a realistic automation 

process for building footprint extraction 

which will facilitate cities across the world 

with user ready data and help them for 

further studies. The first run, however 

showed a very low level of kappa 

agreement for peri urban areas. This was 

due to the selection of training set which 

only considered a 500 by 500 pixel patches 

with only buildings inside it .The rural areas 

Figure 1. Study Area with test areas of Brussels , Leuven and Nivelles 



were mostly not been taken as it could lead 

perfectly showed zero prediction for rural 

patches. However, with multiple runs and 

consideration of 50% urban and 50% rural 

areas , the final result shows a fair 

agreement level based on Kappa coefficient 

on both urban and peri urban areas. The 

output were rescaled into multiple scale 

level (100,200,400,800m). 

To further amplify the validation between 

the simulated output with ground truth, we 

cross checked the result using two others 

methods. The Jaccard index, also known as 

the Jaccard similarity coefficient is a 

statistic used for gauging the similarity and 

diversity of sample sets. This index again 

shows a better level of similarity between 

the initial run (11%) and final run (35%). 

The R-squared values is a measure of 

goodness of fit and indicates the percentage 

of variance in the dependent variable to the 

independent variable. The R-squared shows 

a significant variation at each level of 

scaling as shown in (Table 1). It mostly 

conclude that it is at 800m level that the 

model fits the best while omitting the zero 

values and setting a minimum threshold for 

each scale level to consider each footprints 

as built-up.   

Table 1. R-squared values for different cell size 

Scale(in 

meters) 

R-Squared value 

Brussels Leuven Nivelles 

100 0,71 0,62 0,65 

200 0,95 0,94 0,94 

400 0,99 0,99 0,99 

800 0,99 0,99 0,99 

4. Conclusion 

We conclude from the various analysis and 

validation that has been made through this 

automation result that the parameters of 

every segmentation process shall vary with 

their geographical area of interest. Places 

such as Brussels act differently than 

Chicago and California. Availability of 

proper ground truth data that can be used for 

validation of the model is also imperative to 

study. The transposability of such models 

over time and across space can vary with 

their parameters and lack efficient ground 

truth. So training and testing data based on 

such parameters might not be sufficient for 

creating automated building extraction. 

That is why even after multiple runs, the 

result could be slightly better but still not 

sufficient. Such anomaly can be avoided if 

intense research can be done through 

different case studies and thus deciding 

upon a set of optimized parameters and 

efficient selection of training and testing 

sets. 

Figure 2. Methodology for automated building footprint extraction 
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