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A B S T R A C T   

Electromyographic signals contaminated with noise during the acquisition process affect the results of follow-up 
applications such as disease diagnosis, motion recognition, gesture recognition, and human–computer interac
tion. This paper proposes a denoising technique based on the variational mode decomposition (VMD) for both 
surface electromyography signals (sEMG) and intramuscular electromyography signals (iEMG). sEMG and iEMG 
obtained from 5 healthy subjects were first decomposed using VMD into respective variational mode functions 
(VMFs), then thresholds were set to remove the noise, and finally, the denoised signal was reconstructed. The 
denoising efficacy of interval thresholding (IT) and iterative interval thresholding (IIT) techniques in combi
nation with SOFT, HARD, and smoothly clipped absolute deviation (SCAD) thresholding operators was quanti
tatively evaluated by using Signal to Noise Ratio (SNR) and further statistically validated by Friedman test. The 
results demonstrated that IIT provides better SNR values than IT at all noise levels (P-value < 0.05) for sEMG 
signals. For iEMG, IIT outperformed IT at 0db and 5db noise levels, but at a noise level of 10db and 15db, IT 
outperformed IIT. However, the results for the 10db noise level were statistically insignificant. The SOFT 
thresholding operator outperforms HARD and SCAD at all noise levels for sEMG, as well as iEMG (P-value <
0.05). The study demonstrates that the combination of the IIT thresholding technique with the VMD-based SOFT 
thresholding operator yields the best denoising results while retaining the original signal characteristics. The 
proposed method can be used in the fields of disease diagnosis, pattern recognition, and movement classification.   

1. Introduction 

The Electromyographic (EMG) signal is the electrical realization of a 
contracting muscle coupled with neuromuscular stimulation. The signal 
reflects the current produced by ionic movement through the membrane 
of the muscle tissue that perpetuates reaching the sensing area of a 
recording electrode located in the environment through the intervening 
tissues [1]. EMG signals recorded noninvasively from the skin surface 
are referred to as surface EMG (sEMG) signals, whereas the signals 
recorded invasively directly from the muscles are referred to as intra
muscular EMG (iEMG) signals. Both sEMG and iEMG signals are widely 
used in a range of clinical, diagnostic, and rehabilitative applications 
[2]. 

Due to differences in recording techniques for sEMG and iEMG sig
nals, their inherent characteristics differ. Based on these characteristic 
differences, their associated application area also differs [3]. The 

applications of iEMG signals remained obscured by the convenient use of 
sEMG signals. However, with technological advancements and the 
development of implantable electrode arrays, the use of iEMG signals is 
now being considered in a much greater way. Due to their noninvasive 
recordings, sEMG signals are widely used in rehabilitation engineering 
to design and control rehabilitative and assistive devices [4] as well as in 
applications such as gesture recognition [5]. iEMG signals are mostly 
used for detection and disease diagnosis in clinical applications [6]. The 
accuracy and performance of any EMG-based application are compro
mised and affected by the presence of unwanted noise. Various types of 
noise adversely affect the quality of the signal, making it difficult to use 
EMG signals for any application. Therefore, minimizing unwanted noise 
from EMG signals is a serious issue to be considered. Conventional filters 
are widely used to minimize the effect of unwanted noise embedded in 
the original signal such as low pass, high pass, adaptive, Wiener and 
Kalman filters, etc. [7]. Although traditional filters remove a significant 

* Corresponding author. 
E-mail address: asim.waris@smme.nust.edu.pk (A. Waris).  

Contents lists available at ScienceDirect 

Biomedical Signal Processing and Control 

journal homepage: www.elsevier.com/locate/bspc 

https://doi.org/10.1016/j.bspc.2022.104560 
Received 3 August 2022; Received in revised form 16 December 2022; Accepted 26 December 2022   

mailto:asim.waris@smme.nust.edu.pk
www.sciencedirect.com/science/journal/17468094
https://www.elsevier.com/locate/bspc
https://doi.org/10.1016/j.bspc.2022.104560
https://doi.org/10.1016/j.bspc.2022.104560
https://doi.org/10.1016/j.bspc.2022.104560
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bspc.2022.104560&domain=pdf


Biomedical Signal Processing and Control 82 (2023) 104560

2

portion of noise from the signal but do not preserve the original char
acteristics of the signal since the frequencies in-common with the noise 
are also removed. 

To address the issue of preservation of the original characteristics of 
the EMG signal, wavelet denoising methods based on the wavelet 
transform of the signal were introduced [8,9]. In the case of iEMG sig
nals, the wavelet transforms along with ICA decomposition have been 
utilized for denoising [10]. Advanced denoising technique such as 
Multiscale principal component analysis that also operates based on 
wavelet transform has also been used for denoising of iEMG signals [11]. 
The performance of the wavelet transform is much better compared to 
that of conventional filtering techniques. However, the selection of a 
predefined mother wavelet function greatly influences the results [9]. 
Huang et al. (1994) proposed a data-focused and entirely adaptive signal 
decomposition method, ‘empirical mode decomposition (EMD)’ [12]. 
The advantage of EMD is that it does not make any assumptions about 
the data and the signal remains in the time domain throughout the 
decomposition method [13]. Whereas in wavelet-based denoising 
techniques, the signal is converted to frequency domain for the analysis 
of the signal, and most of these techniques assume that the data are 
stationary. EMG signals are stochastic and non-stationary in nature. 
EMD-based signal denoising techniques have been proposed to denoise 
the input signal. EMD decomposes the input signal into its Intrinsic 
Mode Functions (IMF), by recursively detecting local extrema values 
which are then used, using interpolation, to find upper and lower en
velopes in the signal [14]. It isolates the high-frequency components or 
oscillations by averaging envelopes as the low-pass centerline. The only 
drawback of EMD-based denoising techniques is the mode mixing of 
IMFs and the dependence of decomposition on different techniques of 
interpolation and extrema finding [13]. Due to these limitations, the 
EMD has a high sensitivity to sampling and noise. To address the issue of 
mode mixing, various versions of EMD have been proposed, such as 
ensemble empirical mode decomposition (EEMD) [15], complete 
ensemble empirical mode decomposition (CEEMD) [16], and complete 
ensemble empirical mode decomposition with additive noise (CEEM
DAN). However, these decomposition methods do not completely solve 
the mode-mixing problem and are computationally expensive [15,16]. 

Dragomiretskiy et al. (2014) introduced the variational mode 
decomposition (VMD) by generalizing the Wiener filter into various 
adaptive bands [17]. VMD is a fully adaptive intrinsic signal decompo
sition method whose minimization governs the decomposition of a given 
signal into its variational mode functions (VMF). Each obtained VMF is 
smooth after demodulation and has its unique central frequency. To 
avoid mode mixing in VMD, the components of each VMF are obtained 
concerning the frequency domain of the signal. VMD-based denoising 
has been successfully applied for seismic time–frequency analysis, for 
the detection of gearbox fault diagnosis [18], wind speed forecasting 
[19], bearing fault diagnosis [20], denoising of biomedical images [21], 
ECG and EMG signal denoising [22,23]. Xiao et al. (2019) proposed a 
new SOFT iterative thresholding-based VMD (SIT-VMD) to denoise 
sEMG signals in comparison with wavelet and EMD-based denoising 
methods [23]. Ma et al. (2020) utilized VMD with a wavelet sub-band 
thresholding technique to effectively denoise the sEMG signals [24]. 
The authors first introduced the artificial white gaussian noise (WGN) 
into experimentally recorded EMG signal, and then by using a wavelet- 
based SOFT thresholding operator the denoising of the signals was 
performed using VMD. The authors reported that the VMD-based 
denoising technique outperforms wavelet, EMD, and EEMD-based 
denoising methods to denoise sEMG signals. Research by Xiao et al. 
(2019) and Ma et al. (2020) shows that VMD has great potential to 
denoise EMG signals. However, both studies were conducted on sEMG 
signals and the potential of both EMD and VMD-based denoising 
methods for iEMG signals is yet to be explored. 

Power line interference (PLI), white gaussian noise (WGN), and 
baseline wandering (BW) are the most common types of noise that 
contaminate the EMG signals [25–27]. Most of the current 

time–frequency domain literature regarding the denoising of EMG sig
nals focuses only on sEMG signals and the removal of WGN [23]. In this 
study, for the first time, the potential of time–frequency domain 
decomposition-based denoising techniques has been explored for both 
iEMG and sEMG signals. Furthermore, a novel VMD-based signal 
denoising framework that is equally effective for sEMG and iEMG signals 
to eliminate PLI, WGN, and BW has been proposed. The proposed 
method utilized VMD to decompose the input signal into its subsequent 
VMF, and then iterative interval thresholding is applied to each VMF. 
The proposed method is termed iterative interval variational mode 
decomposition (IIT-VMD). To demonstrate the capabilities of the pro
posed method, 15 sEMG and 15 iEMG recordings were used. The dataset 
is made up of both sEMG and iEMG signals recorded from 5 healthy 
subjects in which the data for each subject were recorded in three ses
sions, making the total number of recordings 30. 

The rest of the paper is structured as follows: Section II outlines the 
origins of the dataset, the suggested denoising process, the measurement 
criteria, and the parameter selection. The findings of both sEMG and 
iEMG cases are explained in Section 3. The output of four denoising 
methods is evaluated in Section 4, and the conclusions are given in 
Section 5. 

2. Methodology 

A. Dataset 
Data from 5 healthy male participants with no injury or disability 

were collected. All subjects were between the age of 20 and 56 years 
(mean ± std = 31 ± 4 years). The data comprise both sEMG and iEMG 
signals. Before carrying out the experimental procedure, written consent 
was obtained from the subjects. Approval no.: ref#NUST/SMME-BME/ 
REC/000129/20012019 was granted by the local ethical committee of 
the National University of Science and Technology, Islamabad, Pakistan 
for data recording. 

B. Experimental setup 
Six bipolar Ag/AgCl electrodes (Ambu WhiteSensor 0415M) were 

used for the recording of sEMG data concurrently with six Teflon-coated 
stainless steel electrodes (A-M Systems, Carlsborg WA diameter 50 µm) 
for iEMG data as shown in Fig. 1. The data were collected from the 
dominant upper limb of the subjects. The forearm muscles used are the 
following: Extensor Carpi Radialis, Extensor Digitorum Muscle, Extensor 
Carpi Ulnaris, Flexor Carpi Radialis, Palmaris Longus, and Flexor Dig
itorum Superficialis. 

The area of interest was prepared by cleaning with an alcohol swab 
and shaving off the excessive hair. sEMG electrodes were placed on the 
skin surface above the belly of the muscle, perpendicular to the muscle 
fiber. Just underneath the sEMG electrode pairs, sterile intramuscular 
wire electrodes, with an exposed tip up to 3 mm [28], were inserted into 
the muscle using a hypodermic needle by penetrating the skin up to 
10–15 mm. The needle was then removed, with the wire electrodes left 
in the muscle. Precautionary measures were taken to prevent electrode 
contamination. The insertion sites were covered with bandages to 
restrict unnecessary movement, leaving the tips of the electrodes outside 
for communication between the electrodes and the amplifiers. EMG 
signals were amplified (AnEMG12, OT Bioelectronica, Torino, Italy), 
filtered analog bandpass (10–500 Hz for sEMG and 100–1900 Hz for 
iEMG), and sampled at 8 kHz (16-bit NI-DAQ PCI-6221). 

C. Preprocessing 
Six EMG signals were recorded from each subject. Five-second con

tractions were repeated four times in each session. The subject went 
from rest to a medium-level contraction, holding it for a period of three 
seconds. An open-source software i.e. BioPatRec (Oritz-Catalan, 2014), 
prompted the subject for each motion by displaying a selection of im
ages. Each contraction was followed by a rest period at the same time to 
avoid muscle fatigue. The recorded data were first passed through a 
third-order Butterworth bandpass filter. The bandpass filter for the 
sEMG signal had a lower and upper cutoff frequency of 4 Hz and 500 Hz. 
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The bandpass filter implemented on iEMG had a lower cut-off frequency 
of 10 Hz and a higher cut-off frequency of 1500 Hz. To reduce the power- 
line interference, the filtered sEMG and iEMG signals were passed 
through a notch filter at 60 Hz. The magnitude response of the notch 
filter is shown in Fig. 2. 

Fig. 3 depicts examples of original sEMG and iEMG signals along 
with their respective frequency spectrums. After removing the power
line interference the signals are introduced to artificial white Gaussian 
noise as governed by (1) 

f = f + σ • n(t) (1)  

where f is the original signal and f is the resultant noisy signal due to the 
addition of noise σ(t). 

The overall methodology is shown in Fig. 4. 
D. Variational Mode Decomposition. 
The VMD method can separate harmonic signals of close frequency 

range without any effect from the sampling frequency, thus avoiding 
mode mixing. VMD is a generalized form of the wiener filter into mul
tiple adaptive bands [14]. The estimated model and the corresponding 
center frequency are updated consistently, making the model estimation 
variational. After each estimation, the model is translated into the time 
domain by the use of the inverse Fourier transform. 

VMD decomposes the original signal into a discrete number of sub- 
signals called VMFs given by: 

f =
∑M

k=1
μk (2)  

where μk is the sub-signal of the original signal f, M is the number of 
modes and μk(t) is defined as: 

μk(t) = ak(t) • cos
(
φk(t)

)
(3)  

where ak(t) represents the envelope of the signals,and φk(t) is the phase 

of the signal. In addition to the noise, (2) becomes: 

f = f +Δ =
∑M

k=1
μk + rn (4)  

here μk, rn, f , and Δ represent sub-signals obtained from f , the remainder 
term, the original signal, and the added noise respectively. According to 
Equation (4), the summation of VMFs will result in the input signal. A 
central frequency ωk with limited bandwidth is associated with each 
VMF. It can be determined by decomposition and using (4). To deter
mine the bandwidth, an analytic signal representation is computed that 
exhibits a unilateral frequency. Then the resultant unilateral spectrum is 
shifted via harmonic mixing with complex frequency exponential. 
Finally, the squared norm of the gradient of the resulting signal is 
acquired. 

Considering these steps, the associated optimization problem be
comes: 

min{uk},{wk}

⃒
⃒

{
∑

k

⃦
⃦
⃦
⃦∂t

[(

δ(t) +
j

πt

)

*uk(t)
]

e− jwk t
⃦
⃦
⃦
⃦

2

2

}

s.t.
∑

k
uk = f (5) 

The operator is L2 is the squared norm of the expression and the 
expression 

(
δ(t)+ j

πt

)
*uk(t) is the Hilbert transform of uk(t), transforming 

uk(t) into the analytic signal. This is done to achieve a one-sided fre
quency spectrum with only positive frequencies. 

The use of a quadratic penalty factor and the exponential Lagrangian 
multiplier changes the constraint variation problem to a non-constraint 
variation problem given by (6). 

Fig. 1. An illustration of the experimental setup.  

Fig. 2. Magnitude response of the notch filter (cut-off frequency: 60 Hz).  

Fig. 3. (a) Original sEMG signal with its frequency spectrum, and (b) Original 
iEMG signal with its frequency spectrum. 
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L({uk}, {wk}, λ ) = α
∑

k

⃦
⃦
⃦
⃦∂t

[(

δ(t) +
i

πt

)

*uk(t)
]

eijwk t
⃦
⃦
⃦
⃦

2

2  

+‖f (t) −
∑

k
uk(r)‖2

2 +

〈

λ(t), f (t) −
∑

k
uk

〉

(6)  

Here α is the regularization term. The quadratic penalty factor guaran
tees the accuracy of the reconstructed signal. The Lagrangian multiplier 
keeps the constraint condition strict. The complete optimization prob
lem is solved using the alternate direction method of multipliers 
(ADMM) in which the problem is solved as a sequence of iterative sub- 
optimization problems as expressed in (7). The purpose of these sub- 
problems is to minimize the cost function iteratively for the parameter 
of interest [29,30]. 

un+1
k = argminuk∈X

{

α‖∂t

[(

δ(t) +
j

πt

)

*ukt
]

eijwk t‖
2
2 +‖f (t) −

∑

i
ui(t)

+
λ(t)

2
‖

2
2

}

(7) 

This is solved by using the Parseval/Plancherel Fourier Isometry 
method that transforms (7) from the time domain to the frequency 
domain: 

ûn+1
k (w) =

f (w) −
∑

i∕=k ûi(w) + λ̂(w)
2

1 + 2α(w − wk)
2 (8)  

wn+1
k =

∫∞
0 w|ûk(w) |2dw
∫∞

0 |ûk(w) |2dw
(9)  

λ̂
n+1

(w)←λ̂
n
(w)+ τ

(
f̂ (w) −

∑
ûn+1

k (w)
)

(10)  

Here τ represents noise tolerance. 
A criterion needs to be established to stop the iterations. Iterations 

stop if (11) is satisfied for a given discrimination accuracy. As a result, 
we can acquire K narrow-band VMF components. The distinctive VMD 
procedure is highlighted in Fig. 5. 
∑

k

⃦
⃦ûn+1

k − ûn
k

⃦
⃦ 2

2

‖ûn
k‖

2
2

< ε (11) 

After the signal decomposition, several corresponding VMFs are used 
to reconstruct the required signal. To select these VMFs, the Hilbert 
transformation can be used to calculate the frequency of each VMF 
based on the center frequency and the limited bandwidth frequency as 
given in (12). The required VMFs for the reconstruction of each signal 
are then selected based on the frequencies. 

H(f , t) = Re
∑n

i=1
ai(t)ej2π

∫
uit)dt (12) 

E. Thresholding Techniques and Operators. 
Time-frequency denoising techniques are inspired by wavelet 

domain denoising techniques. Due to the resemblance of the decom
posed VMFs with Amplitude-Modulated or Frequency-Modulated sig
nals, the mean of each VMF is zero. Thus, direct application of wavelet- 
like thresholding, SOFT or HARD will give inaccurate results. The 
denoising of each VMF is carried out by a combination of wavelet 
domain thresholding operators HARD, SOFT, and smoothly clipped 
absolute deviation (SCAD) along with different thresholding techniques. 

HARD thresholding sets the coefficients with values lower than a 
predefined threshold (T) to zero. In HARD thresholding, the coefficients 
above T remain unchanged. The reconstructed signal after HARD 
thresholding exhibits discontinuities [27]. To overcome this disadvan
tage, SOFT thresholding is used. SOFT thresholding uses the absolute 
values of the coefficients. Coefficients with absolute values lower than T 
are set to zero. The remaining non-zero values are shifted towards zero 
by an amount T, thus, introducing a bias in the reconstructed signal. To 
avoid unnecessary bias, the SCAD penalty sets the smaller coefficients to 

Fig. 4. Block diagram for the proposed method for signal denoising.  

Fig. 5. Flowchart for Variational Mode Decomposition Algorithm.  
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zero, shrinks a few coefficients towards zero, and keeps the larger co
efficients as they are. Mathematically SOFT, HARD and SCAD can be 
represented as (13), (14), and (15) respectively. 

f (uk) =

{
sgn(uk)(|uk| − T ), |uk|〉T

0, |uk| ≤ T (13)  

f (uk) =

{
uk, |uk|〉T

0, |uk| ≤ T (14)  

f (uk) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

sgn(y)max(0, |uk| − T ), |uk| ≤ 2T

(z − 1)uk − zT(sgn(uk))

z − 2
, 2T < |uk| ≤ zT

uk, |uk| > zT

(15)  

where uk is the obtained VMF from the VMD process explained in the 
previous section. The value of z is recommended to be 3.7 according to 
the Bayesian argument [31]. 

The value of T is kept more than the maximum noise level present in 
the noisy signal [32,33]. The value of T is selected by: 

T = σ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2logeN

√
(16)  

where N gives the corresponding signal length and σ represents the level 
of noise. σ can be calculated by (17). 

σi =
median(|ui(t)|)

0.6745
(17) 

Interval thresholding (IT) is applied on an interval of zero crossings 
between uk and uk+1, in combination with HARD, SOFT, and SCAD 
operator can be mathematically represented as (18), (19) and (20) 
respectively. 

p̃i
j =

⎧
⎪⎨

⎪⎩

p(i)
j ,

⃒
⃒
⃒q(i)

j

⃒
⃒
⃒

〉
Ti

0,
⃒
⃒
⃒q(i)

j

⃒
⃒
⃒

〉
Ti

(18)  

p̃i
j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p(i)
j

⃒
⃒
⃒q(i)

j

⃒
⃒
⃒ − Ti

|q(i)
j |

,

⃒
⃒
⃒q(i)

j

⃒
⃒
⃒ > Ti

0,
⃒
⃒
⃒q(i)

j

⃒
⃒
⃒ ≤ Ti

(19)  

p̃i
j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(i)
j

max
(

0,
⃒
⃒
⃒q(i)

j

⃒
⃒
⃒ − Ti

)

|q(i)
j |

,

⃒
⃒
⃒q(i)

j

⃒
⃒
⃒ > Ti

p(i)
j

(z − 1)
(

0,
⃒
⃒
⃒q(i)

j

⃒
⃒
⃒ − zTi

)

|q(i)
j |

, 2Ti <

⃒
⃒
⃒q(i)

j

⃒
⃒
⃒ ≤ zTi

1,
⃒
⃒
⃒q(i)

j

⃒
⃒
⃒

〉
zTi

(20)  

Here j = 1, 2… Nzi, where Nzi is the Nth zero crossing in ith IMF. p(i)j , p i
j 

and q(i)
j represent noisy signal, thresholded values and maximum values 

of noisy signal respectively, between instants uj (i) to uj+1(i) of the ith 

IMF. 
The drawback of IT is its sensitivity to noise, which can be overcome 

by using IIT. IIT achieves several approximations of the denoised signal 
iteratively using IT and averages them, resulting in higher noise toler
ance [31]. These versions are produced by the decomposition of various 
noisy versions of the input VMF. The coefficients of the first VMF are 
randomly shuffled in the next approximation of the noisy signal. The 
unchanged decomposed VMFs and shuffled VMFs are added together to 
get a new approximation of the signal. This method is carried out iter
atively to get the required number of approximations. Each approxi
mation is denoised using IT. The denoised versions are averaged to get 

the final denoised signal with higher noise tolerance. 
F. Performance Evaluation. 
The selected evaluation metrics for the evaluation of the perfor

mance of the implemented method were the signal-to-noise ratio (SNR) 
and the root mean squared error (RMSE) which are widely used to 
evaluate the performance of the signal filtering techniques. To make a 
fair comparison, the SNR value and RMSE value were calculated for the 
original signal and the noisy signal after the introduction of artificial 
noise. SNR and RMSE values were calculated using (21) and (22) 
respectively. 

SNR = 10 • log10

( ∑(
f (t)2)

∑(
(f (t) − f (t))2 )

)

(21)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
L

∑
(f (t) − f (t))2

√

(22)  

where f(t) is the original signal and f(t) is the denoised signal. The re
sults obtained were validated by comparing mean ranks between all the 
groups collectively and between the related groups for multiple com
parisons using Friedman’s nonparametric test. 

3. Results 

EMG data from 5 participants are used to test the efficacy of the 
denoising performance. After the decomposition of EMG signal thresh
olding techniques, IT, IIT, and three thresholding operators SOFT, 
HARD, and SCAD are applied for denoising. EMG signals are non- 
stationary and stochastic in nature, thus the noise was introduced at 
various noise levels of 0db, 5db, 10db, and 15db as shown in Fig. 6. 

G. VMD Denoising 
VMD is used to divide the signal into subsequent VMFs. Fig. 7 shows 

an example of sEMG and iEMG signal decomposed into their corre
sponding VMFs represented by VMF1-VMFn where n is the total number 
of VMFs. Each VMF contains a range of frequencies present in the 
original signal. Fig. 8 shows the corresponding frequency spectrum of 
the VMFs with a center frequency and a narrow frequency band for each 
VMF. As evident from Fig. 8, VMF1 contains the highest frequency range 
thus comprising the highest amount of noise. The lower frequencies can 
be observed in the higher VMFs depicting a lower amount of noise. 

It can be seen from Fig. 8 that frequency bands are converging as the 
order of VMFs increases. The narrower frequency band of the VMFs is 
beneficial in the subsequent signal-filtering process. These decomposed 
models can be used to reconstruct the original signal. 

H. Comparison of VMD Denoising Performance. 
A lot of denoising methods have been proposed by different re

searchers based on EMD and VMD for sEMG signals but no literature has 
been found for denoising iEMG signals using those methods. Before 
VMD, EMD with IT and SOFT thresholding operators had been proposed 
as the optimal method to eliminate various types of noise for sEMG 

Fig. 6. (a) Original EMG signal, (b) signal with 5 dB noise, (c) Signal with 10 
dB noise, (d) Signal with 15 dB noise. 
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signals [32]. However, it was shown by Xiao et al. (2019) that VMD with 
IT and SOFT thresholding operator yields the best performance in 
eliminating noise from sEMG signals [23]. Tables 1 and 2 show the 
denoising performance of wavelet based denoising, non-local means 
filter, wiener filter, EMD using IT and SOFT thresholding operator along 
with VMD using IT (VMD-IT) and IIT (VMD-IIT) with the thresholding 
operators SOFT (SIIT-VMD), HARD (HIIT-VMD), and SCAD for sEMG 
and iEMG, respectively. 

It is evident that SNR and RMSE values of wavelet based denoising, 

non-local means filter and wiener filter are poor as compared to other 
methods. It can be observed from Table 1 that SNR values of denoised 
sEMG signals with IIT and SOFT thresholding operators are higher than 
the SNR value corresponding to IT for all the added noise levels. 
Whereas for iEMG, in the case of noise levels of 10db and 15db SNR 
values of IT with SOFT thresholding operator are 12.6 and 15.6 which 
are higher than respective SNR values corresponding to IIT when used 
with the SOFT thresholding operator. It can also be seen that RMSE 
values are the lowest corresponding to denoising with IIT and SOFT 
thresholding operator at all noise levels. Table 3 shows that all of these 
results are significant. 

From Table 2, it is evident for a noise level of 10db, the performance 
of VMD-IT with an SNR value of 12.7 is better than that of VMD-IIT with 
an SNR value of 12.6. The same trend can be observed for the noise level 
of 15db corresponding to both SNR and RMSE. Although the noise levels 
of VMD-IT of 10db and 15db performed better than VMD-IIT, the SNR 
and RMSE of both methods are comparable. Table 3 demonstrates the 
significance of these results. 

Figs. 9 and 10 show the comparison of denoised sEMG and iEMG 
signals, respectively, resulting from IT and IIT. Fig. 9 shows the original 
sEMG signal, the noisy sEMG signal, and the filtered signals using VMD- 
IT and VMD-IIT, respectively. Fig. 10 shows the original sEMG signal, 
the noisy sEMG signal, and the filtered signals using VMD-IT and VMD- 
IIT respectively. It can be concluded from Figs. 9 and 10 that IIT provides 
a smoother and closer approximation of the original signal after 
denoising as it preserves its original characteristics. 

From Table 1, it can be observed that the SOFT operator yields the 
highest output SNR and lowest RMSE at all noise levels for sEMG signals. 
In the case of iEMG it can be seen from Table 2 that the SOFT operator 
yields the highest output SNR and lowest RMSE at 0db, 5db, and 10db 
levels but at a noise level of 15db HARD operator has the highest output 
SNR and lowest RMSE. Table 4 shows the significance of these obtained 
values. 

Figs. 11, and 12 show the comparison of denoised signals using 
SOFT, HARD, and SCAD as thresholding operators for sEMG and iEMG 
respectively. It can be seen that the signal reconstructed using SIIT-VMD 
is the smoothest approximation of the original signal. As it is evident 
from Figs. 11 and 12 that the reconstructed signal as a result of HIIT- 
VMD, contains abrupt changes. 

A comparison of the original sEMG and iEMG signal with the 
denoised EMG signals after adding 5db noise using the proposed method 
has been shown in Fig. 13 and Fig. 14 respectively. It can be seen that the 
reconstructed signal preserves the original characteristics of the original 
signal. 

4. Discussion 

The paper proposes an SIIT-VMD technique for both sEMG and iEMG 
referred to as the proposed method. Before this study, no literature has 
been found that applied VMD-based denoising methods to iEMG. The 
proposed method provides better results than previously proposed 
denoising methods based on EMD and VMD [23,32]. Data were collected 
from 5 healthy subjects simultaneously for sEMG and iEMG. The input 
signals were decomposed using VMD and introduced with noise at 
different levels. These noise-contaminated signals were then subjected 
to denoising using various denoising techniques and operators. VMD 
was applied in combination with two kinds of thresholding techniques i. 
e. IT and IIT along with three different thresholding operators (SOFT, 
HARD, and SCAD). 

It can be seen from Fig. 8 that each VMF has a center frequency and 
narrow bandwidth that becomes narrower in higher-order VMFs. The 
use of a quadratic penalty in (6) favors denoising and encourages the 
fidelity of the reconstruction [14], thus providing a higher SNR and a 
lower RMSE of the reconstructed signal. The obtained modes are 
searched for center frequencies that can reconstruct the input signal 
[14,34]. Due to the narrow frequency band and concentrated frequency, 

Fig. 7. (a) sEMG signal with respective VMD model functions with added noise 
of 5db (b) iEMG signal with respective model functions of VMD with added 
noise of 5db. 

Fig. 8. Frequency spectra of respective modal functions of VMD with added 
5db noise for a) sEMG and b) iEMG. 
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the elimination of noise becomes easier [14,35] making VMD better 
than EMD and wavelet decomposition for denoising. Furthermore, it was 
concluded by [36] that EMD is sensitive to noise, qualifying VMD for 
better denoising performance. The results in Tables 1 and 2 show that 

Table 1 
Mean signal-to-noise ratio corresponding to surface emg.   

0db 0db 5db 5db 10db 10db 15db 15db  

SNR RMSE SNR RMSE SNR RMSE SNR RMSE 

Wavelet 
Denoising 

0.6 1.2 1.3 0.9 1.7 0.8 2.0 0.8 

Non-Local Means 1.3 1.0 2.0 0.7 2.2 0.6 2.2 0.6 
Weiner Filter − 1.3 1.5 1.4 0.9 2.4 0.6 4.1 0.5 
EMD 

IT 
SOFT 

3.2 0.6 5.9 0.5 8.9 0.3 11.0 0.3 

VMD 
IT 
SOFT 

3.2 0.6 8.5 0.3 14.0 0.2 19.4 0.1 

EMD 
IIT 
SOFT 

3.4 0.6 6.2 0.4 9.2 0.3 11.3 0.3 

VMD 
IIT 
SOFT 

3.9 0.6 9.2 0.3 14.6 0.2 19.8 0.1 

VMD 
IIT 
HARD 

1.7 0.7 6.9 0.41 12.2 0.2 17.4 0.1 

VMD 
IIT 
SCAD 

2.8 0.7 8.1 0.36 13.6 0.2 19.0 0.1  

Table 2 
Mean signal-to-noise ratio corresponding to intramuscular emg.   

0db 0db 5db 5db 10db 10db 15db 15db  

SNR RMSE SNR RMSE SNR RMSE SNR RMSE 

Wavelet Denoising 0.5 0.7 1.4 0.5 2.1 0.5 2.4 0.4 
Non-Local Means − 0.3 0.9 − 1.1 0.7 − 1.8 0.7 − 2.1 0.7 
Weiner Filter − 0.01 1.0 1.1 0.8 1.4 0.6 1.5 0.5 
EMD 

IT 
SOFT 

1.4 0.5 2.2 0.4 2.6 0.4 2.6 0.4 

VMD 
IT 
SOFT 

3.1 0.4 8.3 0.2 12.7 0.1 15.7 0.1 

EMD 
IIT 
SOFT 

1.5 0.5 2.2 0.4 2.7 0.4 2.9 0.4 

VMD 
IIT 
SOFT 

3.7 0.4 8.7 0.2 12.7 0.1 15.1 0.1 

VMD 
IIT 
HARD 

1.7 0.5 6.9 0.2 11.6 0.1 15.3 0.1 

VMD 
IIT 
SCAD 

2.7 0.4 8.0 0.2 12.3 0.1 15.2 0.1 

Both tables contain mean SNR values calculated from 5 subjects. The bold cells have the highest SNR values. 

Table 3 
statistical results of the denoising performance for vmd-it and vmd-iit.  

Noise Level sEMG iEMG 

0 dB   ≤0.05  ≤0.05 

5 dB   ≤0.05  ≤0.05 

10 dB   ≤0.05  ≥0.05 

15 dB  ≤0.05  ≤0.05  

Fig. 9. Comparison between original sEMG, noisy sEMG, and denoised signals 
using VMD-IT and VMD-IIT. (a) Original signal; (b) Signal with noise, (c) 
Denoised signal using VMD-IT (d) Denoised signal using VMD-IIT. 
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VMD outperforms EMD for both thresholding techniques. 
Invasive recording of the iEMG signal results in the recording of 

other spontaneous activities that occur around the muscles such as 
fibrillation occurring due to denervation. The recording of such activ
ities affects the iEMG signal causing rapid fluctuations in the signal. 
EMD is an empirical method lacking any mathematical basis and has the 
disadvantage of mode mixing due to intermittency signals and noise 
[36]. Due to the highly non-stationary iEMG signal, mode mixing be
comes more dominant and EMD fails to preserve the original charac
teristics of the signal. As VMD has a mathematical basis and is not 
entirely dependent on the data, the issue of mode mixing is resolved 
[13]. Thus, the proposed method is prevalent and has the flexibility to be 
used for both sEMG and iEMG. 

The thresholding techniques IT and IIT, used in this study, are 
inspired and developed from translation-invariant wavelet thresholding. 
Both IT and IIT were used after decomposing the input signal using VMD 
into its respective VMFs. The IIT thresholding technique averages the 
different versions of the denoised signal produced iteratively thus 
providing better tolerance against noise [34]. The values obtained cor
responding to VMD-IIT for SNR are higher and for RMSE are lower in the 
case of all added noise levels for sEMG as shown in Table 1. Statistical 
analysis also shows that the two techniques exhibit a significant differ
ence (P-value < 0.05). Although VMD-IIT proved to provide better re
sults for sEMG at noise levels 0db, 5db, 10db, and 15db, SNR and RMSE 
obtained at different noise levels showed a varied trend for iEMG. The 
results obtained at 0db and 5db show the same trend as sEMG, but at 
10db and 15db, the SNR value for VMD-IT was higher than VMD-IIT as 
depicted in Table 2. The statistical analysis does not show any significant 
difference between the two techniques for iEMG at 10db, as shown in 
Table 3. 

Out of the three thresholding operators used, SIIT-VMD provided the 
best SNR and RMSE of the reconstructed signal. SIIT-VMD overcomes 
the issue of signal discontinuity that occurs in the case of HIIT-VMD due 
to the use of a HARD thresholding operator [35]. As evident from 
Table 2, a SOFT operator at all noise levels for both iEMG and sEMG 
provides the best SNR and RMSE values. Statistical analysis shows a 
significant difference between the three operators for sEMG. For iEMG, 
statistical analysis shows that there is a significant difference between 
the three operators but at a noise level of 15db, a significant difference is 

Fig. 10. Comparison between original iEMG, noisy iEMG, and denoised signals 
using VMD-IT and VMD-IIT. (a) The original signal, (b)Signal with noise, (c) 
Denoised signal using VMD-IT, (d) Denoised signal using VMD-IIT. 

Table 4 
Statistical results of the denoising performance for soft, hard, and scad.  

Noise 
Level 

sEMG iEMG 

SOFT & 
HARD 

SOFT & 
SCAD 

HARD & 
SCAD 

SOFT & 
HARD 

SOFT & 
SCAD 

HARD & 
SCAD 

0 dB   ≤0.05  ≤0.05  ≤0.05  ≤0.05  ≤0.05  ≤0.05 

5 dB   ≤0.05  ≤0.05  ≤0.05  ≤0.05  ≤0.05  ≤0.05 

10 dB   ≤0.05  ≤0.05  ≤0.05  ≤0.05  ≤0.05  ≤0.05 

15 dB  ≤0.05  ≤0.05  ≤0.05  ≤0.05  ≤0.05  ≥0.05  

Fig. 11. Comparison between SOFT, HARD, and SCAD operators for sEMG. (a) 
The original signal, (b) Noisy signal, (c) Denoised signal using SOFT operator, 
(d) Denoised signal using HARD operator, (e) Denoised signal using 
SCAD operator. 

Fig. 12. Comparison between SOFT, HARD, and SCAD operators for iEMG. (a) 
The original signal, (b) Noisy signal, (c) Denoised signal using SOFT operator, 
(d) Denoised signal using HARD operator, (e) Denoised signal using 
SCAD operator. 

Fig. 13. Comparison between the original and denoised signal for sEMG.  

Fig. 14. Comparison between the original and denoised signal for iEMG.  
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not present between SCAD and HARD operator. However, the results 
show a significant difference between SOFT and the remaining two 
operators at all noise levels, as demonstrated in Table 4. Therefore, the 
SIIT-VMD method has the best denoising performance for sEMG and 
iEMG. 

Table 5 shows the comparison of the proposed denoising method 
with previously proposed methods [23,32]. The table shows the per
centage increase in the SNR value of denoised signals compared to the 
noisy signal at three different noise levels. It is evident from Table 5 that 
the percentage increase by the proposed denoising method is highest for 
10db and 15db while providing a lower increment in the SNR value at a 
noise level of 5db. The noise introduced at the 5db level introduces more 
noise components as compared to 10db and 15db thus providing a lower 
increment of SNR. This occurs due to higher non-stationarity thus 
resulting in lower SNR as compared to EMD-IT and SIT proposed by 
Ashraf et al. (2021) [32] and Xiao et al. (2019) [23], respectively. The 
method is general and flexible enough to be applied to both sEMG and 
iEMG but the previously proposed methods based on EMD and VMD 
[23,32] were not applied to iEMG. 

The proposed method can be used for the extraction of time
–frequency domain features in the future that will provide more useful 
information about electromyography data. These findings can be 
implemented in the initial stages of development of practical applica
tions such as disease diagnosis [37], multiday evaluation of iEMG [38], 
limb movement classification [39], motion intention identification [40], 
human–machine interaction [41] and motion detection. This SIIT-VMD 
denoising method can also be applied for applications such as the 
assessment of spasticity, checking the continuity of the signal, and 
gesture recognition. 

The disadvantages of VMD include the requirement of a predefined 
number of modes for decomposition [14]. Moreover, VMD is unable to 
separate the DC component in a signal and does not handle high levels of 
non-stationarity such as sudden signal onset [14]. The SOFT operator 
results in the shift of the signal by an amount of a predefined threshold 
value. Therefore, SIIT-VMD can cause an unnecessary bias in the 
resulting signal and can be more computationally complex as it is an 
iterative method [32]. In the future, a study should be carried out to 
compare the denoising performance of the proposed method for 
concentric and eccentric isotonic motions. 

5. Conclusion 

The study aimed to assess the performance of VMD for denoising of 
sEMG and iEMG. The study proposes a denoising technique with the best 
performance after decomposing the signals obtained from 5 healthy 
subjects, into respective VMFs using VMD. Two thresholding techniques, 
IT and IIT, were utilized in combination with three thresholding oper
ators (SOFT, HARD, and SCAD) to denoise the decomposed signal. The 
results proved that the SOFT thresholding operator with the IIT 
thresholding technique provides the best approximation of the original 
signal without altering the original characteristics of the signal. SIIT- 
VMD can be used for denoising sEMG as well as for iEMG preserving 
the original characteristics of the signals. 
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