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Abstract: The use of natural substances with antiviral properties might reduce foodborne viral
diseases. In this study, we evaluated the virucidal effect of Citrus limon and Thymus serpyllum essential
oils (EOs) and of Citrus Limon, Thymus serpyllum and Thymus vulgaris hydrolates on murine norovirus
(MNV), a human norovirus surrogate. To assess the virucidal effect of these natural substances,
the reduction in viral infectivity was estimated by comparing the TCID50/mL of untreated viral
suspension and the viral suspension treated with hydrolates and EOs at different concentrations. The
results showed a natural loss of infectivity of the untreated virus after 24 h of approx. 1 log. The EO
(1%) of T. serpyllum, and hydrolates (1% and 2%) of T. serpyllum and T. vulgaris immediately caused a
reduction in MNV infectivity of about 2 log but did not provide a further significant decrease after
24 h. Instead, the EO (1%) and hydrolate (1% and 2%) of C. limon exerted an immediate reduction
in the viral infectivity of about 1.3 log and 1 log, respectively, followed by a further reduction in
infectivity of 1 log after 24 h for the hydrolate. These results will allow for the implementation of a
depuration treatment based on the use of these natural compounds.

Keywords: Citrus limon; Thymus serpyllum; Thymus vulgaris; natural compounds; virucidal activity;
norovirus

1. Introduction

Essential oils (EOs) and hydrolates are natural products of plants that can be extracted
from the leaves, petals, stems, seeds or roots of plants through hydro-distillation or steam
distillation [1]. EOs are the principal products obtained during this process; they are a
complex mixture of many different lipophilic, low molecular, aromatic, highly volatile
substances which belong to several different chemical classes, including alcohols, ethers,
aldehydes, ketones, esters, amines, amides, phenols, heterocycles, and terpenes [1,2]. Hy-
drolates are a mixture containing a variable quantity of EO (usually less than 1 g/L) and
volatile, water-soluble, secondary metabolites [3]. The aromatic profile of hydrosols can
significantly differ from the respective EOs because of their lack of hydrophobic, water-
insoluble isoprenoid compounds (hydrocarbons) [4]. In the past, hydrosols have been
defined as waste products of steam distillation. Recently, many researchers have recon-
sidered them, analyzing their antimicrobial antifungal and antioxidant capacity [5]. EOs
are widely reported as possessing antimicrobial, antimycotic, antiparasitic and insecticidal
properties against human pathogens [6–11]. The antiviral efficacy of EOs has also been
evaluated [12]. In recent years, EOs have more often been investigated against enveloped
viruses [13–15], while to date, only limited research has looked at the efficacy of EOs
against non-enveloped viruses [16–18]. While the scientific literature on essential oils is
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relatively abundant, much less is known about hydrosols [3] and to date, the antiviral effect
of hydrosols against human enteric viruses has scarcely been studied [19]. Enteric viruses
have been recognized as an important cause of foodborne disease in developed countries.
Noroviruses (NoV) have been one of the major responsible agents of viral gastroenteritis
worldwide and the main cause of foodborne illness in Europe and US associated with
the consumption of oysters [20]. Shellfish depuration as currently applied is not effective
for reducing NoV. It is therefore important to identify different post-harvest intervention
strategies to reduce this pathogen in oysters and to increase the safety of this food.

NoV is a small (30–35 nm) non-segmented and non-enveloped RNA virus belonging to
the Caliciviridae family [20]. NoV does not multiply in vitro in cell cultures; consequently, in
laboratory tests, the evaluation of the inactivation efficiency of NoV through any substance
or treatments continues to rely largely on the use of easily cultured surrogates with relatively
close structural and genetic similarities to NoV, such as feline calicivirus (FCV), murine
norovirus (MNV) and Tulane virus (TV) [21–24]. MNV is considered as the best surrogate
for human NoV as it is transmitted via the fecal-oral route, and it can mimic the survival and
inactivation of NoV [25]. EOs and hydrolates might offer the possibility of preventing and
controlling foodborne diseases and it is worth evaluating their use as a possible additive
during the purification treatment of shellfish.

Thymus and Citrus species plants constitute two of the main sources of essential oil,
which are extensively studied for their potential uses in the food industry [26,27]. Thymus
vulgaris L. and Thymus serpyllum L. or wild thyme of the family Lamiaceae are aromatic
flowering plants originating from the Mediterranean region which contain high amounts
of EOs rich in polyphenolic compounds—phenolic acids or flavonoids [28,29]. T. serpyllum
and T. vulgaris extracts possess antibacterial, antimicrobial, antifungal, and insecticidal
effects [30–33]. T. serpyllum EO also has an inhibitory effect against biofilm-forming microor-
ganisms, but less is known regarding its antiviral properties [34,35]. Regarding hydrosols,
only the antiviral activity of Thymus vulgaris against porcine reproductive and respiratory
syndrome virus (PRRS) was indicated [36]. Citrus limon (L.) Osbeck (Lemon) is among the
most important species of genus Citrus belonging to the Rutaceae family, which includes
about 140 genera and 1300 species [37]. Essential oils were composed of 85–99% of volatile
components, including monoterpene (limonene), sesquiterpenes, and hydrocarbons; their
oxygenated products include aldehydes (citral), ketones, acids, alcohols (linalool), and
esters [38]. Limonene (1-methyl-4-(1-methylethenyl)), which is the main ingredient of
lemon essential oil, is one of the most common terpenes in nature and is widely found
in the volatile oils of various plants [39]. Limonene has broad application prospects in
antibacterial and food preservation due to its broad-spectrum bactericidal activity, safety,
and low toxicity [40]. Limonene d-limonene and lemon essential oil were found to have
antimicrobial activities against foodborne bacterial and fungal pathogens [41–44]. However,
few studies have investigated the antiviral properties of limonene and lemon essential
oil [14,18,45,46].

In this study we investigated in vitro the virucidal efficacy of Thymus serpyllum, Thymus
vulgaris and Citrus limon hydrolates and Thymus serpyllum and Citrus limon EOs against
murine norovirus. The results obtained will be used to implement a depuration treatment
of shellfish based on the use of these natural compounds.

2. Materials and Methods
2.1. Virus Strain and Cell Line

The MNV-1 strain was replicated in RAW 264.7 cells, cultured in Dulbecco’s Modified
Eagle’s Medium (DMEM) supplemented with 1% glutamine, 1% non-essential amino acids
and 2% fetal bovine serum (FBS) incubated in 5% CO2 at 37 ◦C. EuroClone (Milan, Italy)
provided all cell culture media. The viral suspension was prepared via freeze and thaw lysis
(1 cycle) of infected monolayers, clarified using low speed centrifugation (800× g) to remove
residual debris, and then divided in aliquots and stored at −80 ◦C until use. The obtained
viral stock suspension had a final concentration of 5.4 ± 0.1 log TCID50/mL, calculated by
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determining the 50% tissue culture infectious dose using the Reed and Muench method [47]
using tenfold serial dilutions in 24-well plates.

2.2. Hydrolates and Essential Oils (EOs)

Commercially available essential oils from Citrus limon, Thymus serpyllum (Flora Srl,
Pisa, Italy) and hydrolates from Citrus limon, Thymus serpyllum and Thymus vulgaris (I
Segreti delle Erbe, Netro, Bl, Italy) were used in this study.

The composition of the EOs were analyzed through gas chromatography/mass spec-
trometry (GC-MS) using an Agilent GC system 7890B (Agilent, Santa Clara, CA, USA)
fitted with a split-splitless injector and coupled to an Agilent MSD 5977B detector. The EOs
were diluted in analysis grade hexane (10 µL /10 mL) and one microliter of EOs solution
was injected. The analytical conditions were fixed as follows: injection mode: splitless
at 280 ◦C; HP-5MS capillary column (Agilent, Santa Clara, CA, USA) (30 m × 0.25 mm,
df = 0.25 µm); temperature program: from 40 ◦C (2 min) to 300 ◦C (5 min) at a rate of
6 ◦C/min. The carrier gas was helium at a flow rate of 1.2 mL/min. The mass spectra
were recorded in electron ionization mode at 70 eV (scanned mass range: 35–400 m/z). The
source and quadrupole temperatures were fixed at 230 ◦C and 150 ◦C, respectively. The
identification was performed on the basis of chromatographic retention indices (RI) and
through comparison of the recorded spectra with a computed data library (Pal 600K®).
Experimental retention index (RI) of the compounds were calculated following the injection
of a mixture of n-alkanes C8-C20 (Sigma Aldrich, Darmstadt, Germany). Results were
reported as a percentage of the total chromatographic area.

Hydrolates were analyzed via SPME-GC-MS using a 50/30 µm DVB/CAR/PDMS
(Supelco, Bellefonte, PA, USA) fiber that was preconditioned according to the instructions
of the manufacturer. Extraction was performed for 1 min at 30 ◦C and the injection was
realized at 280 ◦C, while the chromatographic conditions were the same as for essential oils.

2.3. Cytotoxicity Determination of Hydrolates and EOs on Cells

Preliminary tests were performed on cell cultures to identify the EO and hydrolate
concentrations that did not produce a cytotoxic effect. Hydrolate solutions were prepared
in serum-free DMEM, while EOs, due to their hydrophobicity, were emulsified in 33% sun-
flower oil, 0.1% tween 80 physiological saline solution. Solutions of the natural compounds
at different concentrations (0.0125%, 0.025%, 0.05%, 0.25%, 0.5%, 1%, 2% v/v) were treated
overnight at 4 ◦C with antibiotic/antimycotic solution (Euroclone) and 1 mL of each con-
centration was assayed on 24–48 h cell monolayers in a 25 cm2 flask. The monolayers were
incubated for 1 h in 5% CO2 at 37 ◦C. Thereafter, cells were washed twice with Dulbecco’s
phosphate buffer solution (DPBS, EuroClone) and maintained with DMEM supplemented
with 2% of FBS for 4 days in 5% CO2 at 37 ◦C. A cytotoxicity effect was qualitatively
determined via visual inspection under optical invertoscope. No morphological changes
of monolayer, such as lyses, granulation, condensation, vacuolization in the cytoplasm,
darkening of cell boundaries and cell detachment, were to be shown.

2.4. Virucidal Effect of Hydrolates and EOs

The highest EO concentration (1% v/v) and hydrolate concentrations (2% v/v) that did
not exert a cytotoxic effect were used to treat the MNV-1 suspension to evaluate the virucidal
effect. Furthermore, to assess if lower concentrations allowed comparable or proportionate
reductions in viral infectivity, EOs and hydrolates were also tested using 0.5% and 1% v/v
concentrations, respectively. In detail, virus aliquots (titre of 5.4 ± 0.1 log TCID50/mL)
were treated and analyzed immediately (t = 0) and after 24 h (t = 24) of incubation at
20 ± 2 ◦C [48] with each of the EOs or hydrolates. Untreated viral suspensions, incubated
for the same time and at the same temperature, were used as positive controls, while
hydrolates solutions and EOs emulsions were used as negative controls. Each treatment
condition was assayed in triplicate. Viral titrations were performed by determining the
TCID50/mL. Briefly, 100 µL of serial tenfold dilutions of each sample was assayed in 24-well
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tissue culture plates containing 24–48 h monolayers of RAW cells, and incubated for 1 h in
5% CO2 at 37 ◦C. After that, the wells were washed twice with 200 µL of PBS and 500 µL of
DMEM, supplemented with 2% of FBS, were added to each well; incubation was carried
out for up to 6 days in 5% CO2 at 37 ◦C with daily visual inspection. The reduction in viral
infectivity was estimated as log reduction value (LRV) by calculating the log10 N0/ N1,
where N0 is the titre for untreated viral suspension and N1 is the titre for treated viral
suspension.

2.5. Statistical Analysis

For each treatment, the average and standard deviation of the triplicate analysis were
calculated. The statistical significance of differences between treated and untreated samples
was determined through one-way analysis of variance (ANOVA) with Bonferroni post hoc
comparisons, with a significance level of p < 0.05 (GraphPad Prism v9.5.0, software San
Diego, CA, USA).

3. Results
3.1. Chemical Composition of the Hydrolates and EOs

Tables 1–3 reports the percentage of each component of the EOs and hydrolates, identi-
fied using GC/MS and SPME-GC-MS analysis. In T. serpyllum EO, a total of 31 compounds
were identified, while 10 were found in T. serpyllum hydrolate. The two main compounds
identified were carvacrol and linalool with respective percentages of 53.96% and 11.88%
in EO and 58.67% and 17.11% in the hydrolate. In EO, thymol (5.74%) and terpinene
(4.42%) were also abundant compounds, while cymene (11.23%) and terpinene (6.04%)
were abundant in the hydrolate (Table 1). In T. vulgaris hydrolate, 12 compounds were
identified, with thymol (84.01%) and carvacrol (7.55%) being the most abundant ones. In
Citrus limon, the EO and the hydrolate were, respectively, composed of 25 and 12 identi-
fied compounds, with the main compounds being very similar: limonene (53.37–53.45%),
beta-pinene (18.09–20.60%) and gamma-terpinene (12.55–14.03%) (Table 3).

Table 1. Phytochemical composition (%) of essential oil (EO) and hydrolate (H) of Thymus serpyllum
(Ts) used in this study, via GC-MS. RI exp: retention index calculated with our experimental results;
RI ref: retention index found in the literature for the same compound (source: Pherobase).

No. Peak Compound Name RI Exp. RI Ref. EO (Ts) H (Ts)

1 Butanoic acid. 2-methyl-. methl ester 0.16 -
2 Beta-thujene 930 931 0.42 -
3 Alpha-pinene 937 939 1.02 1.25
4 Camphene 952 953 0.24 0.31
5 Beta-pinene 979 975 0.18 0.26
6 1-octen-3-ol 982 979 0.32 -
7 Beta-myrcene 992 991 1.59 2.02
8 3-octanol 996 993 0.16 -
9 Alpha-phellandrene 1005 1005 0.28 0.39
10 3-carene 1011 1011 0.12 -
11 4-carene 1019 1013 1.86 -
12 Cymene 1028 1026 8.3 11.23
13 Limonene 1032 1031 0.82 -
14 Eucalyptol 1035 1035 0.63 -
15 Gamma-terpinene 1063 1062 4.42 6.04
16 Sabinene hydrate 1071 1067 0.51 -
17 Terpinolene 1090 1089 0.39 -
18 Linalool 1103 1101 11.88 17.11
19 Endo-borneol 1171 1171 0.89 -
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Table 1. Cont.

No. Peak Compound Name RI Exp. RI Ref. EO (Ts) H (Ts)

20 Terpinen-4-ol 1181 1178 1.41 -
21 Alpha-terpineol 1200 1189 0.89 -
22 D-carvone 1263 1243 0.19 -
23 Thymol 1294 1297 5.74 -
24 Carvacrol 1315 1317 53.96 58.67
25 Caryophyllene 1428 1418 1.94 -
26 Aromandendrene 1448 1439 0.56 -
27 Humulene 1462 1455 0.11 -
28 Alloaromadendrene 1502 1478 0.41 -
29 Delta-cadinene 1530 1524 0.18 -
30 Spathulenol 1586 1578 0.2 -
31 Caryophyllene oxide 1593 1583 0.24 2.73

Table 2. Phytochemical composition (%) of hydrolate (H) of Thymus vulgaris (Tv) used in this study,
via GC-MS. RI exp: retention index calculated with our experimental results; RI ref: retention index
found in the literature for the same compound (source: Pherobase).

No. Peak Compound Name RI Exp. RI Ref. H (Tv)

1 1-octen-3-ol 951 979 1.71
2 Dimethylstyrene 1061 1096 0.08
3 Delta-3-carene 1071 1011 0.82
4 Camphor 1144 1143 1.54
5 Borneol 1156 1165 2.65
6 Gamma-terpinene 1168 1062 0.85
7 Allyltoluene 1176 1151 0.18
8 p-Menth-1-en-8-ol 1184 1189 0.49
9 Thymoquinone 1255 1252 0.09
10 Thymol 1287 1297 84.01
11 Carvacrol 1290 1317 7.55
12 Alpha-cedrene 1410 1399 0.02

Table 3. Phytochemical composition (%) of essential oil (EO) and hydrolate (H) of Citrus limon (Cl)
used in this study, via GC-MS. RI exp: retention index calculated with our experimental results; RI
ref: Retention index found in the literature for the same compound (source: Pherobase).

No. Peak Compound Name RI Exp. RI Ref. EO (Cl) H (Cl)

1 Beta-thujene 930 931 0.77 -
2 Alpha-pinene 937 939 3.31 3.12
3 Camphene 952 953 0.11 -
4 Beta-pinene 981 975 18.09 20.60
5 Beta-myrcene 992 991 2.35 2.72
6 Alpha-phellandrene 1005 1005 0.15 -
7 4-carene 1019 1013 0.34 -
8 Cymene 1028 1026 0.74 -
9 Limonene 1039 1031 53.37 53.45
10 Beta-ocimene 1052 1050 0.19 -
11 Gamma-terpinene 1065 1062 12.55 14.03
12 Terpinolene 1090 1089 0.67 0.70
13 Linalool 1100 1101 0.26 0.30
14 Nonanal 1105 1102 0.11 -
15 Citronellal 1156 1158 0.13 -
16 Terpinen-4-ol 1181 1178 0.09 0.10
17 Alpha-terpineol 1193 1189 0.30 0.35
18 Neral 1245 1242 1.15 1.28
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Table 3. Cont.

No. Peak Compound Name RI Exp. RI Ref. EO (Cl) H (Cl)

19 Citral 1274 1271 1.95 2.24
20 (−) -Lavandulyl acetate 1366 1288 0.85 -
21 (+) -Lavandulyl acetate 1385 1298 0.49 -
22 Caryophyllene 1427 1418 0.33 -
23 Alpha-bergamotene 1441 1486 0.66 -
24 Valencene 1499 1495 0.10 -
25 Beta-bisabolene 1512 1509 0.94 1.02

3.2. Virucidal Effects of Hydrolates and EOs

The results of the inactivation assays are summarized in Table 4. The untreated MNV-
1 viral stock (titre of 5.4 ± 0.1 log TCID50/mL) displayed a natural decay of infectivity
during the 24 h incubation at 20 ± 2 ◦C, with a reduction in the infectious titre of 1.2 log
TCID50/mL. The MNV-1 aliquot treated with 1% Citrus limon hydrolate solution showed
an immediate reduction (t = 0) in MNV-1 infectivity of 0.9 log TCID50/mL; the same
reduction of 0.9 log TCID50/ml was observed after 24 h. A similar decrease was also
obtained with 2% Citrus limon hydrolate (1.1 log TCID50/mL inactivation immediately
and a reduction of 1.1 log after 24 h). Conversely, the treatments with Thymus vulgaris
and Thymus serpyllum hydrolates provided the highest instantaneous reduction in viral
infectivity: 1.9 and 2.0 log TCID50/mL reduction was achieved with 1% and 2% Thymus
vulgaris hydrolate, respectively, while the corresponding Thymus serpyllum concentrations
obtained a 2.0 and 1.8 log TCID50/mL reduction in infectious MNV-1. After 24 h of
treatment, the obtained viral titres of MNV-1 were almost identical. A comparable behavior
was observed in the treatment with EOs. The virus aliquots treated with 1% C. limon
showed an immediate reduction (t = 0) of MNV-1 infectivity of about 1.3 log TCID50/mL
and a reduction of 0.8 log after 24 h. In contrast, 1% Thymus serpyllum induced a loss
of infectivity of 1.9 log TCID50/mL immediately, and the viral titre was unaffected after
24 h of treatment. A lower concentration of both EOs (0.5% v/v) showed no effect either
immediately or after 24 h of treatment.

Table 4. In vitro effect of C. limon, T. vulgaris, T. serpyllum hydrolates (H), and of C. limon, T. serpyllum
EOs on MNV-1 infectivity immediately after treatment and after 24 h of incubation at 20 ± 2 ◦C by
calculating log reduction value (LRV).

Treatment Viral Titre at t = 0
(log TCDI50/mL ± SD)

LRV Immediately
after Treatment (t = 0)

(log TCDI50/mL ± SD)

Viral Titre at t = 24 h
(log TCDI50/mL ± SD)

LRV
after 24 h of Treatment
(log TCDI50/mL ± SD)

Untreated MNV-1 5.4 ± 0.1 - 4.2 ± 0.3
H-C. limon 1% 4.5 ± 0.2 0.9 ± 0.3 3.3 ± 0.3 0.9 ± 0.6
H-C. limon 2% 4.3 ± 0.2 1.1 ± 0.3 3.1 ± 0.2 1.1 ± 0.5
H-T. vulgaris 1% 3.5 ± 0.1 1.9 ± 0.2 3.5 ± 0.2 0.7 ± 0.5
H-T. vulgaris 2% 3.4 ± 0.1 2.0 ± 0.2 3.4 ± 0.1 0.8 ± 0.4
H-T. serpyllum 1% 3.4 ± 0.1 2.0 ± 0.2 3.3 ± 0.2 0.9 ± 0.5
H-T. serpyllum 2% 3.6 ± 0.1 1.8 ± 0.2 3.2 ± 0.2 1.0 ± 0.5
EO-C. limon 0.5% 5.3 ± 0.3 0.1 ± 0.4 4.4 ± 0.1 0
EO-C. limon 1% 4.1 ± 0.2 1.3 ± 0.3 3.4 ± 0.1 0.8 ± 0.4
EO-T. serpyllum 0.5% 5.2 ± 0.2 0.2 ± 0.3 4.3 ± 0.3 0
EO-T. serpyllum 1% 3.5 ± 0.1 1.9 ± 0.2 3.5 ± 0.2 0.7 ± 0.5

4. Discussion

In this study, we evaluated the in vitro virucidal activity of C. limon, T. serpyllum and
T. vulgaris hydrolates and of C. limon and T. serpyllum EOs on non-enveloped human NoV
surrogate, MNV-1, to assess their potential use as a depuration treatment in the shellfish
industry for the reduction in NoV exposure risks in oysters. For this purpose, we have
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decided to keep the virus in contact with the EOs and hydrolates for up to 24 h, because
this is the time routinely used for the purification of shellfish.

The results obtained clearly showed greater and faster virucidal activity exerted by
T. vulgaris and T. serpyllum compared to C. limon. In fact, an immediate reduction of about
2 log was observed after treatment with hydrolates of T. vulgaris and T. serpyllum both 1%
and 2% and with T. serpyllum EO at 1%. Instead, the reduction exerted by C. limon hydrolate
(both 1% and 2%) and C. limon EO (1%) was of about 1 log both immediately and after
24 h of treatment. Considering the natural decay of MNV-1 infectivity after 24 h at 20 ◦C,
C. limon probably has a lower virucidal efficacy than thyme. In any case, the reduction in
the viral infectivity for all the compounds was >90% at t = 0, in detail it was about 99% for
the thyme and 92% for the lemon. Moreover, it is important to underline that most of the
virucidal effect of these natural compounds is exerted immediately after contact with the
virus; thus, longer times do not involve further significant reductions in viral infectivity.

These results refer to the virucidal activity on MNV-1 of the natural compounds
tested in this study in the adopted experimental conditions (24 h at 20 ◦C), considering the
possibility of using them in a shellfish purification system. Other authors have conducted
similar studies on MNV-1 using essential oils from other plants [49,50]. These authors have
shown that the antiviral activity of the EOs is closely linked to the experimental conditions
used and to the type of virus.

The antiviral activity of essential oils and hydrolates may be related to the pres-
ence of bioactive compounds. T. serpyllum and T. vulgaris contain significant amounts of
monoterpenes, such as thymol and carvacrol, while limonene is the ingredient found most
commonly in C. limon. From the analysis of the chemical profile of the two hydrolates
of thyme used in our study, it is interesting to note that despite the hydrolates having a
different concentration of thymol and carvacrol, they presented comparable results for the
inactivation of MNV. T. vulgaris hydrosol contains 84% thymol and 7.5% carvacrol, while
T. serpyllum hydrosol contains 58% carvacrol and does not contain thymol (Tables 1 and 2).
The chemical composition of hydrosols and EOs varies according to many factors, includ-
ing seasonal variations, plant maturity and genetics [2]. The chemical diversity of the
genus Thymus EO has been reported in several studies showing the existence of different
chemotypes on the basis of major oil components [30,51,52]. Thymol and carvacrol are two
of the most common chemotypes of the Thymus genus. These compounds are generally con-
sidered significant antimicrobial agents due to their richness in phenolic compounds [53].
They showed strong antimicrobial activity against a wide range of microorganisms [54–57],
with a strong synergistic effect when applied together [58]. Carvacrol has been shown to
inhibit viruses responsible for food-borne diseases, such as the human rotavirus, or non-
enveloped murine norovirus (used as a surrogate of the human norovirus) as well as others,
i.e., the human respiratory syncytial virus and acyclovir-resistant herpes simplex virus
type 1 [17,59]. However, thymol and carvacrol protect against HIV-target cell fusion [60]
but do not show antiviral activity against coxsackievirus B3 [61]; additionally, carvacrol
showed low antiviral properties against Phi6 virus, which has been considered a suitable
bacteriophage surrogate for coronaviruses.

Gilling et al. [17] determined the antiviral efficacy of carvacrol. Carvacrol was tested at
concentrations of 0.25% and 0.5%. Both concentrations resulted in a statistically significant
reduction in MNV within 15 min in comparison with the control sample.

Thymol was also effective in reducing the titer of norovirus surrogates in a dose-
dependent manner. Thymol at concentrations of 1 and 2% reduced MNV titers by 1.66 and
2.45 log TCID50/mL, respectively [50].

The phytochemical composition of T. serpyllum EO and hydrolate used in this study
also showed a high concentration of linalool (11.88% and 17.11%) and cymene (8.3% and
11.23%). Linalool (2,6-dimethyl-2,7-octadien-6-ol) is an aromatic monoterpene alcohol that
is widely found in thyme [62]. Several studies have shown an important anticarcinogenic,
anti-inflammatory and antibacterial activity [63,64]; however, there are no studies on its
possible antiviral activity.
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Cymene is considered the most important monoterpene compound occurring in aro-
matic plants, such as thyme and oregano. This compound shows a variety of biological
activities which include antioxidant, antinociceptive, anti-inflammatory, anxiolytic, anti-
cancer and antimicrobial activities [65]. To date, few studies have investigated the antiviral
activity of cymene and none against MNV [66–68].

Both the EO and the hydrolate of C. limon used in this study contained a high concen-
tration of limonene of about 53%. Limonene is the ingredient found most commonly in both
lemon essential oil and hydrosol, and it has antimicrobial and antifungal activity against
many foodborne pathogens. However, to date, there are still few studies investigating the
antiviral properties of limonene, none of which involve enteric viruses [14,45,46]. In one
study, the effect of C. limon at 0.5% against hepatitis A virus (HAV) infectivity showed a
statistically significant reduction of 2.84 log TCID50/mL in HAV titer [18]. This is the first
study to evaluate the effectiveness of hydrosols of T. serpyllum, T. vulgaris and C. limon
against MNV infectivity. To date, only T. vulgaris hydrosol has been evaluated on porcine
reproductive and respiratory syndrome virus (PRRS) [36], where the results showed a
significative reduction in PRRSV load in vitro (p < 0.05).

There are not many studies investigating how EOs and their active compounds act on
viruses; some show they have an action on the viral capsid, but it is difficult to determine
whether the reductions in virus infectivity are due to actual damage to the viral particles or
to a simple inhibition of virus uptake in host cells. For example, in many cases, viral RNA
was not damaged although the virus was no longer infectious [69].

Plant metabolites may exhibit various mechanisms of antiviral activity; they can cause
a direct virucidal effect against non-enveloped virus ssRNA by degrading the capsid or
viral nucleic acid. Plant-derived compounds can also bind to the surface of the virus
without destroying the proteins in the capsid, thus, interfering with its adsorption to host
cells [70,71].

In non-enveloped viruses, the capsid protects the integrity of the viral nucleic acid.
Viral RNA may remain intact, while changes in the structure of the capsid may deactivate
the virus [72,73]. Modification of the virus capsid is one of the mechanisms that can lead
to the inhibition of the virus adsorption process, which is associated with its deactivation.
In the case of MNV, the results obtained by Gilling et al. [17] indicate that oregano oil
containing a high concentration of carvacrol and carvacrol itself affect the complete loss of
the integrity of the capsid [17].

Therefore, further studies are needed to understand the molecular mechanism of
action of these natural compounds.

Our results show that the EOs and hydrolates of lemon and thyme were able to signifi-
cantly decrease MNV infectivity during the in vitro experiments within 24 h. Therefore, the
use of these substances in the shellfish purification to reduce the risk of exposure to NoV
looks promising and worth investigating. Between the EOs and hydrolates, the latter are
the most suitable for this purpose as they are easily miscible in water. In vivo application,
however, may have many problems to solve, such as the toxicity of hydrosols to oysters
and the ability to reduce viral infectivity even when the virus is inside the oyster. It must
also be considered that hydrosols have an intense taste and smell, which could modify
the taste and aroma of the oysters. Studies will therefore also be needed to evaluate the
organoleptic impact of these treatments on mollusks.

5. Conclusions

Among the natural compounds, EOs obtained from plants have more often been
investigated for their antimicrobial and antifungal activity. In recent years, antiviral activity
has also been studied both with regard to EOs and hydrolates. Even if the hydrolates are
the secondary products of the distillation process for the EOs extraction from plants, they
maintain those compounds that have antiviral activity. Considering that hydrolates are in
an aqueous solution, their use can be advantageous swhere essential oils cannot be used
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due to their hydrophobicity. The results of this study improve the knowledge about the
antiviral activity of EOs and hydrolates and their potential use in food sanitation.
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