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ABSTRACT

Linear stability analyses are performed to study the dynamics of linear convective instability mechanisms in a laminar shock-wave/
boundary-layer interaction at Mach 1.7. In order to account for all two-dimensional gradients elliptically, we introduce perturbations into an
initial-value problem that are found as solutions to an eigenvalue problem formulated in a moving frame of reference. We demonstrate that
this methodology provides results that are independent of the numerical setup, frame speed, and type of eigensolutions used as initial condi-
tions. The obtained time-integrated wave packets are then Fourier-transformed to recover individual-frequency amplification curves. This
allows us to determine the dominant spanwise wavenumber and frequency yielding the largest amplification of perturbations in the shock-
induced recirculation bubble. By decomposing the temporal wave-packet growth rate into the physical energy-production processes, we pro-
vide an in-depth characterization of the convective instability mechanisms in the shock-wave/boundary-layer interaction. For the particular
case studied, the largest growth rate is achieved in the near-vicinity of the bubble apex due to the wall-normal (productive) and streamwise
(destructive) Reynolds-stress energy-production terms. We also observe that the Reynolds heat-flux effects are similar but contribute to a
smaller extent.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0135590

I. INTRODUCTION
Shock-wave/boundary-layer interaction (SWBLI) is a ubiquitous

phenomenon in high-speed aerodynamics that significantly impacts
aircraft performance by, for instance, promoting laminar–turbulent
transition, causing excessive heating of aerodynamic surfaces, and cre-
ating pressure losses in engine intakes or even local fatigue of the solid
structures.1 SWBLI is present in applications ranging from the tran-
sonic to hypersonic regime, and a comprehensive understanding of its
physics is required to devise effective and efficient high-speed vehicles.

The first observations of SWBLI were made on airfoils by Ferri2

and, shortly later, thorough experimental studies have been published
with normal,3 compression-ramp,4,5 and near-normal/oblique6 shock
waves. Since then, SWBLI has been extensively studied over numerous
flow configurations; the progress accomplished over the past decades
has been reviewed by, for example, D!elery et al.,7 Dolling,8 Babinsky
and Harvey,9 and Gaitonde.10 Considerable efforts have been invested
to reveal the mechanisms governing the unsteadiness of the SWBLI,

such as breathing of the recirculation bubble, oscillations of the shock
system, or laminar–turbulent transition, but comprehensive research
is still required to understand these phenomena.

The unsteadiness of the SWBLI often refers to low-frequency
oscillations of the interaction region.8 Numerous computational and
numerical investigations have been conducted to determine the physi-
cal mechanisms at the origin of this unsteadiness and have led to a
classification of the mechanisms into two main categories. On the one
hand, Beresh et al.,11 Ganapathisubramani et al.,12,13 and Wu and
Mart!ın14 suggested that the SWBLI acts as an amplifier of upstream
incoming disturbances that enter the shock-induced separated bound-
ary layer. Recent studies have also demonstrated the importance of
what is referred to as an upstream-influence shock,15–18 an oscillating
shock that is located far upstream of the interaction and whose fre-
quency content could be correlated with the unsteadiness of the
shock-induced bubble. The related studies rely on the statistical corre-
lation of the incoming perturbations and the low-frequency response
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of the interaction region. However, this approach does not seem appli-
cable for all cases as, for example, Wu and Mart!ın14 did not find a sig-
nificant correlation in one of their configurations. On the other hand,
Touber and Sandham,19,20 Pirozzoli and Grasso,21 Dussauge et al.,22

Piponniau et al.,23 Grilli et al.,24 Sansica et al.,25 Pasquariello et al.,26

Adler and Gaitonde,27 and Sasaki et al.28 showed evidence of mecha-
nisms that have a more intrinsic character. In fact, this second theory
indicates that a feedback mechanism can cause downstream distur-
bances, present in the aft-shock region, to be entrained and amplified
within the recirculation bubble. In turbulent SWBLI, Clemens and
Narayanaswamy29 have suggested that the two types of mechanisms
are always present together, with the intrinsic one becoming more
dominant as the separation region increases. In laminar/transitional
SWBLI, Sansica et al.,25 Dwivedi et al.,30 Bonne et al.,31 and Bugeat
et al.32 suggest that the low-frequency unsteadiness is not a self-
sustained mechanism and thus needs to be forced. However, since the
interaction region acts as a low-pass spatial amplification filter,25,32 the
low-frequency oscillations do not need to be forced necessarily at a
low frequency. Furthermore, Sansica et al.25 and Bonne et al.31 argued
that the low-frequency oscillations can originate from upstream travel-
ing waves that are triggered by instability mechanisms or a laminar–
turbulent transition process taking place in the downstream portion of
the interaction region. Ultimately, although remarkable progress has
been made during the past decade, no consensus has been reached
regarding the origin of this unsteadiness. With the present paper, we
address the origin of unsteady instability mechanisms that are sup-
ported by laminar SWBLI by considering an advanced linear instabil-
ity approach that does not restrict the analysis to a particular
instability mechanism.

Several instability mechanisms in laminar and turbulent SWBLI
have been investigated in past studies. Among all of them, global
mechanisms are of particular interest because they represent localized
modes that are intrinsic to the interaction region. Oscillatory global
modes at the origin of the low-frequency breathing and the down-
stream vortex shedding were found by Nichols et al.33 and Pirozzoli
et al.34 in turbulent SWBLI. However, in laminar (shock-induced) sep-
aration bubbles, only a global stationary mode has been found so
far,35–37 that is responsible for a two (2D)-to-three-dimensional (3D)
topological change of the separation bubble. Although Robinet35 sug-
gested that a three-dimensional bubble is a prerequisite for the low-
frequency oscillations in laminar SWBLI, the non-oscillatory global
instability mechanism cannot be held responsible for sustaining the
unsteadiness. In this sense, Guiho et al.38 concluded that laminar
SWBLIs in a broad range of conditions are globally stable, and thus,
convective instability mechanisms should be considered. Such mecha-
nisms propagate the perturbations away from the initial location of
the disturbance and have been found by Sansica et al.,25 Dwivedi
et al.,30 Hildebrand et al.,36 Guiho et al.,38 Yao et al.,39 Sansica et al.,40

and Bugeat et al.32 with different computational approaches.
Convective instabilities in laminar SWBLI were considered by

Yao et al.39 and Sansica et al.40 through the response of the flow to
external forcing with direct numerical simulations (DNS) and/or
large-eddy simulations (LES). However, these methods require judi-
cious initial conditions or forcing to perturb the (convectively unsta-
ble) flow and their relatively high computational cost restricts the
study of the perturbation dynamics to a limited range of forcing con-
figurations. This limitation is circumvented when considering linear

stability methods that are less expensive and, due to their linearity,
yield results that do not depend on the magnitude of the initial condi-
tion or forcing. Hence, Yao et al.39 and Sansica et al.25 relied on linear
stability theory (LST) and parabolized stability equation (PSE)
approaches to examine the growth of perturbations through convec-
tive instability mechanisms in laminar SWBLI. While the stability
results are in good agreement with DNS for weak oblique shocks, these
studies also highlight the limitations of LST and PSE in the case of a
strong interaction. The parallel and slow-evolution assumptions, on
which the LST and PSE methods, respectively, rely, do not allow accu-
rately capturing instability information in flows with rapid streamwise
variations. Furthermore, although streamwise variations are better
captured by PSE, the parabolized formulation of the equations in the
streamwise direction prevents capturing the upstream response to
downstream forcing. Hence, to account for all effects in the
plane-parallel to the streamwise direction, that is, in the plane where
the separation bubble is highly two-dimensional, a formulation of the
stability equations that allows a fully elliptic representation of the con-
vective instabilities is needed.

The eigenvalue-problem formulation of the two-dimensional lin-
ear stability equations allows obtaining a fully elliptic representation of
the perturbations without restricting the dynamics to a particular forc-
ing or initial condition. When applied to streamwise developing flows,
the method is referred to as the streamwise BiGlobal stability prob-
lem.41,42 This approach is particularly suitable to identify instability
mechanisms in SWBLI and yielded different outcomes in the past. On
the one hand, Pirozzoli et al.,34 Robinet,35 and Nichols et al.33 have
highlighted the presence of the previously described global instability
mechanisms that are localized in the shock-induced separation bubble.
On the other hand, Guiho et al.38 have identified convective instability
mechanisms that can be activated by external perturbations entering
the bubble before being swept away by the flow. However, when these
convective instabilities are sought in a stationary frame of reference,
the corresponding results suffer from a notorious numerical sensitiv-
ity,43–45 especially with respect to the streamwise truncation bound-
aries, that is, domain length, boundary conditions, and streamwise
discretization. Hence, having not found unstable global modes, Guiho
et al.38 only concluded that their laminar SWBLI is globally stable and
that the stationary-frame eigensolutions corresponding to convective
instabilities are tainted by the sensitivity with respect to the truncation
boundaries, which introduces a bias in the characterization of the
physical mechanisms.46

The present study aims to improve the characterization of the
three-dimensional convective instability mechanisms in a two-
dimensional laminar SWBLI flow. To this end, we disturb an initial-
value problem with initial conditions that are solutions of the elliptic,
linear stability equations formulated in a moving frame of reference.
The methodology was used in the past by Mittal and Kumar,47 Mittal
et al.,48 and Kumar and Mittal49 to study convective instability mecha-
nisms in a cylinder wake and accounts for all in-plane gradients with-
out restricting the perturbation dynamics to a particular forcing or
initial condition. Furthermore, we observe that this computational
approach eliminates the sensitivity issues related to the streamwise
truncation boundaries. For the present work, this method allows us
to identify the frequencies and spanwise wavenumbers yielding
the largest spatial amplification across the shock-induced bubble.
Furthermore, by having setup-independent solutions, we can
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characterize the physical mechanisms governing the convective insta-
bilities in the laminar SWBLI flow in detail.

The paper is structured as follows. In Sec. II, the governing equa-
tions and the flow configuration are presented along with the selective
frequency damping (SFD) method that is used to obtain the base flow.
As part of the SFD and stability results, we demonstrate that no 2D
and 3D global instability mechanisms are supported by the present
flow, respectively. Hence, we focus on convective instability mecha-
nisms. The methodology to study this type of instabilities is introduced
in Sec. III. Different tools to characterize the spatiotemporal evolution
of the perturbations are also presented in this section. Finally, the
results of the stability analyses are discussed in Sec. IV. In particular,
the mechanisms yielding the largest amplification of perturbations in
the present SWBLI are identified and then characterized by decompos-
ing the material derivative of the perturbation energy into the individ-
ual physical mechanisms.

II. BASE-FLOW CONFIGURATION AND GOVERNING
EQUATIONS
A. Compressible Navier–Stokes equations

The physical problem is governed by the three-dimensional com-
pressible Navier–Stokes equations

@q
@tf
þ
@quj
@xf ;j

¼ 0; (1a)

@qui
@tf
þ
@qujui
@xf ;j

¼ # @p
@xf ;i
þ 1
Re

@sij
@xf ;j

; (1b)

@E
@tf
þ @

@xf ;j
ðE þ pÞuj
! "

¼ 1
Re

@

@xf ;j
sijui #

j
Pr Ec

@T
@xf ;j

" #
; (1c)

with q the density, p the pressure, ui the three velocity components,
and E the total energy. The subscript “f” refers to a stationary frame of
reference. Equation (1) is written in a non-dimensional form. The
Mach (M), Reynolds (Re), Prandtl (Pr), and Eckert (Ec) numbers are
defined as

M¼ðaÞ ueffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cRTe;static

p ; ReL ¼
ðbÞqeueL

le
;

Pr¼ðcÞ
cple

je
; Ec ¼ðdÞ u2e

cpTe;static
;

(2)

based on freestream quantities (indicated by subscript e). The length
L, which is specified as a subscript of Re, denotes a generic characteris-
tic length scale. We introduce ‘ ¼ le=qeue as our global length scale,
so that Re ¼ Re‘ ¼ qeue‘=le ¼ 1 in Eqs. (1b) and (1c). We consider
a perfect gas with the specific gas constant of air R ¼ 287 ½J=ðkg KÞ'
and c ¼ cp=cv ¼ 1:4, where cp and cv ¼ cp # R are the isobaric and
isochoric heat capacities. The heat transfer in the energy Eq. (1c) is
modeled with Fourier’s law and, thus, relies only on thermal conduc-
tivity j and temperature T. Furthermore, we assume that the fluid is
Newtonian (with Stokes’ hypothesis). This allows writing the shear-
stress tensor sij, the total energy E, and the ideal-gas equation as

sij ¼ l
@ui
@xf ;j
þ
@uj
@xf ;i

 !
# 2
3
l
@uk
@xk

dij; (3a)

E ¼ q
T

c ðc# 1ÞM2 þ
1
2
uiui

$ %
; (3b)

p ¼ qRT: (3c)

The dynamic viscosity l and the thermal conductivity j are assumed
to depend exclusively on the temperature and are modeled by
Sutherland’s law

l ¼ lðTÞ ¼ lref
T
Tref

$ %3
2 Tref þ S
T þ S

; (4a)

j ¼
cp
Pr

l; (4b)

with constant parameters lref ¼ 1:716( 10#5 ½kg=ðmsÞ'; S¼ 110:4K;
Tref ¼ 273:15K, and Pr¼ 0:72.

B. Flow configuration
The flow considered in the present study consists of an incident

shock that impinges on a laminar flat-plate boundary layer (Fig. 1).
Experimental measurements of a similar flow (differences will be
detailed shortly) have been conducted by Giepman50 for various
shock-wave angles, impinging locations and regimes of the incoming
boundary layers. For the present numerical analyses, we selected one
flow configuration for which the laminar–turbulent transition occurs
downstream of the incident shock. The main setup parameters are
summarized in Table I. The incoming laminar boundary layer enters
the numerical domain at xf ;0=‘ ¼ Rexf ;0 ¼ 7( 105 with displacement
thickness d0=‘ ¼ Red0 ¼ 5073. The freestream Mach and unit
Reynolds numbers are M ¼ 1:7 and Ree ¼ 1=‘ ¼ 3:5( 107 m#1,
respectively. The incident shock is generated in the freestream with a
2) wedge, has an angle hincident ¼ 37:93), and impinges on the laminar
boundary layer at ximping:=‘ ¼ Reximping: ¼ 1:785( 106. The measure-
ments by Giepman50 indicate that the laminar–turbulent transition
takes place as a consequence of the perturbation development in the
SWBLI. When using a computational approach to simulate the flow
field without an artificial/numerical stabilization technique, this partic-
ular unsteadiness prevents the simulation from reaching a laminar
steady state. The specific experimental conditions feature a wall-
temperature distribution that varies in time. To avoid complications
introduced by such a boundary condition, and because no further
information about perturbations is provided by the experiment any-
way, a close but more canonical case is considered here, in which the
wall is assumed to be adiabatic.

FIG. 1. Schematic of shock-wave/boundary-layer interaction with laminar separa-
tion bubble.
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C. Numerical setup
The flow is obtained by solving the compressible Navier–Stokes

equations via finite-volume direct numerical simulations.51 The time-
integration is achieved with an explicit fourth-order Runge–Kutta
scheme and the temporal resolution is fixed by a global time step such
that the Courant–Friedrichs–Lewy condition CFL < 1 is satisfied for
each grid point in the domain. We use a Cartesian structured grid that
is uniform in the streamwise direction x with Nx points and the
domain length for the base flow is L=‘ ¼ 2:5365( 106. In the wall-
normal direction y, the grid is stretched with a hyperbolic function in
order to cluster grid points near the wall in the shear-layer region
(Dyþ < 1) and around the shock-impingement location. The domain
height is H=‘ ¼ 0:760 95( 106, that is, 150 times the boundary-layer
height at the inlet. The convective fluxes are evaluated with a third-
order weighted essentially non-oscillatory (WENO) scheme coupled
with the Harten–Lax–van Leer contact (HLLC) Riemann solver. The
viscous fluxes are computed with a second-order central difference
scheme. The effectiveness of the present flux-reconstruction method
in obtaining non-oscillatory SWBLI flows has been assessed by
Niessen.52

The boundary conditions are imposed as follows. A compressible
flat-plate boundary-layer profile is prescribed at the inlet and the inci-
dent oblique shock, emanating from the upper boundary, is imposed
by a Rankine–Hugoniot condition. The solid wall (y¼ 0) is an adia-
batic surface on which the no-slip condition for the velocities is
enforced (i.e., ui ¼ 0). At the outflow, a homogeneous Neumann con-
dition in the streamwise direction governs all variables. To avoid
reflections on the domain borders, we use Riemann-invariant-based
non-reflective conditions at all truncation boundaries.

D. Steady-state solution: Selective frequency damping
method

Stability analysis relies on the evolution of perturbations around
a laminar equilibrium solution of the governing equations that needs
to be determined beforehand. This so-called base-flow solution, given
by the flow variable "Q, satisfies the steady Navier–Stokes equations,
that is,

@ "Q
@tf
¼ N ð"QÞ ¼ 0; (5)

with N the nonlinear, steady Navier–Stokes operator. In order to
drive the unsteady flow field q toward "Q, we presently rely on the
selective frequency damping (SFD) method.53–55 The SFD approach
contrasts with past stability analyses carried out on laminar
SWBLI,25,35,36,38–40,56 which used long-time nonlinear saturation of
two-dimensional DNS to obtain stable steady-state base-flow solu-
tions. This latter approach to obtain the laminar base flow is effective
solely when the considered laminar flow is stable to all two-
dimensional perturbations. For the present case, the flow configuration

contains a strong shock-induced separation region with laminar–
turbulent transition downstream of the separation-bubble apex, which
thus prevents reaching a steady-state naturally. By considering the
SFD approach, the instability mechanisms triggering the transition
can be damped out, and thus, upon achieving a negligible residual, we
obtain an accurate steady-state base-flow solution that is inherently
unstable.

In the SFD approach, a source term is introduced into the
Navier–Stokes equations (1) that is proportional to the high-frequency
content ðq# qlf Þ of the flow. The field qlf represents a low-pass fil-
tered version of the flow field q and serves as an approximation of the
unknown base-flow solution "Q. Following Åkervik et al.,53 an expo-
nential filter is chosen to calculate qlf and the modified Navier–Stokes
equations are therefore given by

@q
@tf
¼ N ðqÞ # vsðq# qlf Þ; (6a)

@qlf

@tf
¼ q# qlf

Ds
(6b)

with the positive real-valued parameters Ds and vs representing the
bandwidth of the filter and the feedback control parameter, respec-
tively. In the present case, vsd0=ue ¼ 0:65 and Dsue=d0 ¼ 1:64 are
used. The effectiveness of the SFD in driving q toward qlf is assessed
by monitoring the L2-norm of the unsteady residual !s ¼ jjq# qlf jjL2 .
Upon driving the residual to zero, the low-pass filtered variable qlf sat-
isfies the steady Navier–Stokes equations and the steady-state base-
flow "Q is thus given by qlf . For the present case, the residual saturates
atOð10#9Þ as depicted in Fig. 2(a).

As thoroughly demonstrated by Casacuberta et al.,55 the SFD
method relies on a strategical choice of the two parameters Ds and vs
to effectively and efficiently converge to low residual levels. In particu-
lar, in the presence of an unsteady, two-dimensional global mode,
Casacuberta et al.55 proposed the unleash technique to determine opti-
mal coefficients that maximize the convergence rate. First, in applying
this technique, we evaluate the least stable steady mode that rules the
convergence rate when controlling the time-integration with the SFD
forcing term (vs 6¼ 0). In the present case, this steady mode corre-
sponds to an expansion of the separation bubble [Figs. 2(b)–2(e)] with
a growth ratexi‘=ue ¼ #2:434( 10#8. Since the growth rate is nega-
tive, the flow is effectively driven toward a steady-state solution for
which the bubble expansion becomes less and less dominant. Second,
a white-noise perturbation of magnitude !s is superimposed to the
base flow "Q ¼ qlf that has been obtained at a certain low residual !s.
The time-integration is then pursued with vs ¼ 0, that is, without the
SFD forcing term. In this uncontrolled time-integration (with vs ¼ 0),
the most unstable, two-dimensional global mode must establish with
an exponential growth rate that corresponds to the slope of the tempo-
ral evolution of jjq# "QjjL2 . In using this technique, Casacuberta
et al.55 indicated that the exponential growth could be preceded by an
algebraic growth that rapidly becomes overwhelmed by the

TABLE I. Flow parameters of laminar shock-wave/boundary-layer interaction.

M ue [m/s] Ec Te;total [K] pe;static [Pa] Ree [1/m] Rex0 Red0 Reximping: hincident

1.7 452.12 1.156 277.73 2:3( 105 3:5( 107 7( 105 5073 1:785( 106 37:93)

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 35, 024101 (2023); doi: 10.1063/5.0135590 35, 024101-4

VC Author(s) 2023

https://scitation.org/journal/phf


exponential growth of the most unstable global mode, if it exists. In
the present case, the unleash technique, however, reveals only an alge-
braic growth that is not followed by any exponential growth. This thus
indicates that the present SWBLI does not support any unstable, two-
dimensional global mode. Accordingly, we could not optimize the
SFD coefficients with the unleash technique. Even if the parameters
could not be optimized, however, the aforementioned parameters did
prove to be effective.

E. Base-flow results
The density field "q of the base flow is presented in Fig. 3(a) in

which the dashed black and dash-dotted white lines indicate the
boundary-layer thickness [d90 ¼ dð"U ¼ 0:9ueÞ] and the zero-velocity
("U ¼ 0) isoline, respectively. A zoom-in representation of the separa-
tion bubble is shown in Fig. 3(b) along with the velocity profiles at sev-
eral streamwise locations. The dividing streamline (dotted red line)
and the zero-velocity isocontour (dash-dotted black line) show that
the separation region is relatively long (Lsep=‘ * 6:50( 105) com-
pared to the boundary-layer thickness. The separation bubble has the
typical triangular shape of laminar SWBLI, and no secondary recircu-
lation was found for the present case. Finally, for the same flow config-
uration, Niessen52 showed very good agreement with free-interaction
theory.57

We verified that the inflow and outflow boundaries do not inter-
act with the long separation bubble and thus do not influence the
results. The Riemann boundary conditions effectively avoid reflections
that would impact the interior of the domain. Finally, grid conver-
gence of the results is demonstrated in Fig. 3(c) by means of @ "U=@y
evaluated at the wall for three different mesh sizes. The coarsest grid

consists of Nx ( Ny ¼ 500( 250 points, with Nx and Ny the number
of points in the streamwise and wall-normal directions, respectively.
The intermediate grid is two times denser, and the finest grid is four
times denser than the coarsest grid in both directions. The length of
the separation bubble, that is, the distance between the two x-locations
where @ "U=@yjy¼0 ¼ 0, is Lsep=‘( 10#5 ¼ 6:36, 6.48, and 6.50 from
the least dense to the densest grid. This shows that the solution con-
verges and that, with a further resolution increase, the difference in the
separation length would be negligible. For the stability analyses, the
base-flow solution on the densest grid will be used.

In the stability approach proposed in Sec. III, we will focus our
attention on convective instabilities, because global instabilities are not
supported by the present base flow, see Sec. IID. Two-dimensional,
unsteady global modes are found not to exist by using the unleash
technique of the SFD method. Three-dimensional, global modes,
steady or unsteady, are neither expected nor recovered in the present
computational effort; the latter will be commented on in Sec. IVA. By
investigating specific characteristics of the base flow, we can synthesize
expectations about three-dimensional, steady global modes based on
the existing literature. According to Robinet,35 the three-dimensional,
steady global mode, associated with the spanwise modulation of the
bubble, is unstable only if a secondary recirculation exists within the
two-dimensional separation bubble. Since there is no secondary recir-
culation for the present configuration, we anticipate that the flow is
globally stable. Furthermore, Avanci et al.58 proposed a geometrical
criterion to determine whether the separation bubble is convectively
or absolutely unstable. This criterion is based on the relative position
between the dividing streamline (i.e., zero-mass flux isoline) and the
locus of inflection points of the streamwise velocity profile in the wall-

FIG. 2. (a) SFD residual !s ¼ jjq# qlf jjL2=
ffiffiffiffi
S
p

as a function of the physical time. Perturbation shape in space when !s ¼ 10#8 [indicated by ( in (a)]: (b)
ðu# "UÞ=maxðju# "U jÞ; (c) ðv# "V Þ=maxðjv# "V jÞ; (d) ðq# "qÞ=maxðjq# "qjÞ; and (e) ðp# "PÞ=maxðjp# "P jÞ [colored lines, 20 contours from minimum (#1, gray) to
maximum (1, red)]. (b)–(e) Boundary-layer edge (d90, dashed); "U ¼ 0 (dash-dotted).
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normal direction. In particular, they showed that, for incompressible
flows, upstream propagation of disturbances is expected if the inflec-
tion points yI lie below the zero-mass-flux isoline yD (i.e., in the region
where the streamwise mass flux is negative). If this is the case, an abso-
lute instability mechanism is expected in the separation region. For
compressible flows, these locations can be defined as

@

@y
"q
@ "U
@y

 !&&&&
yI

¼ðaÞ 0 ;
ðyD

0
"q "Udy ¼ðbÞ 0; (7)

and are shown in Fig. 3(b). We observe that the wall-normal coordi-
nate of the dividing streamline yD (dotted red line) is located below
the generalized inflection point yI (dashed red line) for the present
case. Hence, upon extrapolating the criterion to the compressible
regime, we expect that the flow is not absolutely unstable but rather
solely exhibits convective instability mechanisms.

III. METHODOLOGY FOR INSTABILITY ANALYSIS
In order to accurately describe the convective instability mecha-

nisms supported by the present steady-state base flow, we will analyze

the spatiotemporal evolution of perturbations across the shock-
induced bubble. To this end, we use the linear perturbation equations
formulated in the stationary frame of reference.

A. Linear perturbation equations
Stability analysis relies on examining the evolution of disturban-

ces that are superimposed on the laminar base-flow field. The instanta-
neous field q is defined as the sum of the base flow "Q, satisfying the
steady Navier–Stokes equations N ð"QÞ ¼ 0, and an infinitesimally
small disturbance q0f ,

qf ðxf ; y; z; tf Þ ¼ "Qðxf ; yÞ þ q0f ;rðxf ; y; z; tf Þ; (8)

where the subscript r indicates taking the real part of a complex-
valued variable. The need for a disturbance q0f that is a complex-valued
variable is inherited from the initial conditions that we establish in
Sec. IIIB. The subscript f is not used for y and z, because the frame
will only be moved in the streamwise direction. Note that the base
flow presently considered is two-dimensional and has thus no depen-
dency on the z direction. The perturbations are, however, allowed to

FIG. 3. (a) Isocontours of "q=qe. (b) "U=ue-velocity profiles, magnified by a factor 30 Red0 , at streamwise locations x=‘( 10#6 ¼ 1; 1:25; 1:5; 1:75; 2; 2:25. Locus of general-
ized inflection points (dashed red line) and dividing streamline (dotted red line). (a) and (b) d90 ¼ dð"U ¼ 0:90ueÞ in dashed black line and "U ¼ 0 in dash-dotted line.
(c) @"U=@y evaluated at the wall for grids Nx ( Ny ¼ 500( 250 (solid black), 1000( 500 (dashed red), and 2000( 1000 (solid blue).
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depend on z. The vector q0f contains the perturbation variables corre-
sponding to each individual component of the base flow, that is,
q0f ¼ ½u0; v0;w0;T 0;q0'

T. Introducing the decomposition (8) into the
Navier–Stokes equations (1) and retaining only the first-order terms
in q0f yields the governing equations of the linear perturbations

Bð"QÞ @q0f
@tf
¼ Azð"QÞq0f : (9)

The operators Az and B are obtained from the linearized version of
the Navier–Stokes operatorN and, in their discrete form, are matrices
with coefficients containing base-flow variables "Q and discretized spa-
tial derivative operators. The perturbation equations (9) form an
initial-value problem that can be integrated in time for any initial con-
dition. In order to resolve the perturbation evolution accurately in
time, a four-step Runge–Kutta scheme is considered in this work.

The challenging aspect of solving the initial-value problem lies in
the appropriate choice of initial conditions/forcing that will activate the
most critical instability mechanisms. In this regard, different approaches
can be found in the literature. Using singular value decomposition
(SVD) would allow us to seek the continuous/initial forcing that maxi-
mizes the perturbation growth, at the cost of revealing only specific opti-
mal instability mechanisms. Accordingly, the related optimal growth
scenarios are particular and not likely to be reproducible in an experi-
mental context. This aspect led White59 to highlight the importance of
considering non-optimal perturbation growth and, for this reason, we
avoid SVD methods in this work. Alternatively, the flow could be forced
at the inlet by following the recently devised harmonic linearized
Navier–Stokes (HLNS) approach.60–64 This method accounts for all
elliptic effects in the description of convective instabilities without
restricting the perturbation growth to the optimal-growth scenario.
However, there is no guarantee that the response is not conditioned by
the forcing itself and aspects of the inherent dynamics may be occulted
by the particular choice of forcing. This choice could prevent the mani-
festation of the inherent perturbation dynamics of the flow that is specif-
ically targeted by the present work. Alternatively, relying on an arbitrary
choice of initial conditions is practically intractable due to the infinite
choice of parameters and does not ensure that the (relevant) instability
mechanisms are ultimately activated. For these reasons, we prefer to ini-
tialize the linear perturbation equations with initial conditions that sat-
isfy the linear perturbation equations in a moving frame of reference, as
cast in an eigenvalue problem. The resulting eigensolutions represent
the relevant, inherent dynamics of the laminar flow and, as shown later,
are ideal candidates for the initial conditions.

B. Initial conditions
We initialize equations (9) with initial conditions of the form:

q0f ðxf ; y; z; tf Þ ¼ ~qðxf # cf tf ; yÞeiðbz#xtf Þ as tf ! 0: (10)

That is, a function:

1. whose shape ~q is invariant in a plane that is spanned by the
streamwise and wall-normal coordinates and that moves in the
streamwise direction with a constant frame speed cf ;

2. that is otherwise a complex exponential in time tf and the homoge-
neous spatial direction, that is, the spanwise z direction in this paper.

In other words, the initial condition naturally resides in a moving
frame with coordinates:

x ¼ xf # cf tf ; t ¼ tf : (11)

In this moving frame, the real part of x, xr, represents the frequency
of oscillations, while its imaginary part, xi, is the temporal growth rate
(xi > 0 for growth). The real-valued b represents the wavenumber in
the spanwise z direction; kz ¼ 2p=b is the related wavelength.

Substituting Eqs. (10) and (11) into (9) yields

Ab "Qðx þ cf t; yÞ
( )

þ cfB
@

@x

$ %
~qðx; yÞ ¼ #ixB~qðx; yÞ; (12)

where Ab is the Fourier transform of Az in z. For the present
approach, the time t is treated as a fixed parameter to find the initial
condition. Upon setting t¼ 0 in Eq. (12) and specifying cf , b, and
appropriate boundary conditions, it forms a (direct) eigenvalue prob-
lem for x and ~q. The component-wise form of Eq. (12) is converted
from the stationary-frame equations65 to the moving frame by replac-
ing xf~q by x~q þ icf@~q=@x and @~q=@xf by @~q=@x, where xf repre-
sents the angular frequency in the stationary frame of reference and ~q
is any component of ~q.

Now consider q0f ðxf ; y; z; tf Þ, as obtained by integrating Eq. (9)
while providing an initial condition satisfying Eq. (12) with t¼ 0. It
immediately follows from Eq. (12) that the time-integrated q0f will start
to deviate from the function on the right-hand side of Eq. (10) for
non-zero tðfÞ, because, although "Q is independent of tf in the fixed
frame, it does depend on t in the moving frame. Taylor-expanding the
base-flow quantities in t with respect to t¼ 0,

"Qðx þ cf t; yÞ ¼ "Qðx; yÞ þ cf t
@ "Q
@xf
ðx; yÞ þO ðcf tÞ2

2!

@2 "Q
@x2f
ðx; yÞ

 !

;

(13)

where t is to be interpreted as an elapsed time. This indicates that
the base flow can be assumed to be constant in t when permitting an
error of Oðcf t @ "Q=@xf Þ, which can be made negligibly small when
considering small enough t. Similarly, for a small enough t,
Abð"Qðx þ cf t; yÞÞ ¼ Abð"Qðx; yÞÞ þOðtÞ, even if Ab ¼ Abð"QÞ is
nonlinear. For this reason, the initial conditions, satisfying Eq. (12)
with t¼ 0, are exact solutions of the linearized Navier–Stokes equa-
tions for the single time instant t¼ 0.

The fact that the solutions are exact at t¼ 0 contrasts with LST
and PSE for which the model error exists for all times (and streamwise
locations). Although the model error for the present method also
relates to the streamwise derivative of the base flow, it is important to
note that the model error for the present method in no way corre-
sponds to a Wentzel–Kramers–Brillouin (WKB) approximation that
underlies the LST and PSE approaches.66–69 The present approach is
fully elliptic in space, while making use of the inherent parabolic
nature of the general, linearized Navier–Stokes equations in time.

The main motivation for such specific initial conditions is to sim-
ulate wave packets that do not depend on our truncation boundaries;
these boundaries could otherwise artificially force the solution. This
implies that our initial conditions should not be dominant at any of
these boundaries. In other words, the eigensolutions to Eq. (12) should
have eigenfunctions that are localized in the domain. More precisely,
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we are looking for eigenfunctions, ~q, with a negligibly small amplitude
at the truncation boundaries compared to their maximum amplitude
in space. In our experience,46 eigenfunctions of eigensolutions that are
representative of convective instabilities can be localized only when
considering a moving frame of reference, that is, using non-zero cf .
Essentially, we argue that convective instability mechanisms are better
represented as localized wave packets with a shape-invariant function
that moves downstream (and grows in time) rather than as a shape-
invariant function that is stationary in the streamwise direction (and
grows in time). By setting cf ¼ 0, one reverts Eq. (10) to the regular
ansatz underlying global-mode instability analysis. If no unstable and
localized global mode is found, which is determined to be the case for
the presently considered base-flow configuration by a computational
exploration, the classical ansatz does neither provide direct insight nor
suitable, setup-independent initial conditions relevant for studying
convectively unstable mechanisms.

In order to assess the sensitivity of the initial conditions with
respect to the numerical setup, we also consider the adjoint eigensolu-
tions q†, which solve

AH
b

"Qð x þ cf t ; y Þ
( )

~q†ðx; yÞ # cf
@

@x
BT~q†ðx; yÞ
( )

¼ ix+BT~q†ðx; yÞ

(14)

upon setting t¼ 0. This is referred to as the adjoint eigenvalue problem
and is also formulated in the moving frame of reference. The super-
scripts “+” and “H” stand for the complex conjugate and Hermitian
transpose operators, respectively. The adjoint problem (14) is based on
the definition of the inner product hq1; q2i ¼

Ð Ð
qH
1 q2 dx dy.

The computational domain for stability analysis is truncated in
the up- and downstream directions, at x ¼ xin and x ¼ xout, and far
from the flat plate at y ¼ ymax (x¼ 0 corresponds to the leading edge
and y¼ 0 to the wall). The truncation boundaries at x ¼ xin and
x ¼ xout are, respectively, referred to as the in- and outflow bound-
aries. The streamwise domain length is denoted by L ¼ xout # xin. We
use homogeneous Neumann conditions at the in- and outflow bound-
aries for all perturbation variables in order to allow perturbations to be
large at the boundaries if the dynamics in the interior of the domain
demand it. At y ¼ ymax, velocity and temperature perturbations are
required to vanish and the y-momentum equation is used to close the
problem. The direct and adjoint eigenvalue problems are discretized
with a fourth-order central finite-difference scheme in x and
Chebyshev collocation70 in y. The grid incorporates Nx andNy discrete
points in the streamwise and wall-normal directions, respectively. In
the wall-normal direction y, the mapping proposed by Malik71 is used
in order to place one-half of the collocation points in ½0; yi;1'
and the other in ½yi;1; ymax' for two-dimensional perturbation solutions
(b ¼ 0). Since eigenfunctions have a slower decay and a smaller

wavenumber in the wall-normal direction for two-dimensional than
for three-dimensional perturbations, the Malik mapping is not suitable
for solutions corresponding to non-zero b. Hence, for the three-
dimensional (b 6¼ 0) perturbations, the collocation points in the y
direction are instead mapped with the biquadratic mapping of Groot
et al.72 into three distinct regions ½0; yi;1'; ½yi;1; yi;2', and ½yi;2; ymax',
each having one-third of the collocation points. Furthermore, the
domain height for non-zero b can also be reduced because of a much
faster decay of the solutions of interest in the freestream compared to
the two-dimensional case. Table II summarizes the parameters used
for the selected reference cases. The specific values for cf and b pre-
sented in Table II follow from a careful exploration of the parameter
space, which is discussed in Sec. IVA. Since the base-flow and stability
grids are different, the base-flow solution is spline interpolated onto
the grids specifically designed for the stability analysis. We verified
that the solutions of the eigenvalue problem do not depend on the
base-flow resolution; refining the grid by a factor two in each direction
yields a relative change of orderOð10#3Þ in the growth rate of the sol-
utions of interest.

The solutions to eigenvalue problems (12) and (14) are obtained
numerically with the Arnoldi algorithm that finds the eigensolutions
of the discretized problem around a prescribed guess. The specific
choice of this guess followed a thorough analysis of the spectrum to
ensure that we capture the eigensolutions with the largest growth rate;
that is, solutions representing the largest instantaneous growth rate
supported in the considered region of the flow.

C. Global measure of time-evolving wave packets
When solving the initial-value problem (9) for time-evolving

wave-packet solutions, a norm is needed to quantify the magnitude of
the complex-valued disturbance as a function of time. The global mea-
sure that we will use for the general, time-dependent wave packets is
the total perturbation energy

Eðtf Þ ¼
1
2

ð ð
q0Hf Mq0f dxf dy; (15)

where we evaluate q0f ¼ ½u0; v0;w0;T 0;q0'
T at z¼ 0 and M is a

Hermitian weight matrix. For compressible flows, Chu73 suggests to
useM of the form

M ¼Mðxf ; yÞ ¼ diag "q; "q; "q;
"q

cðc# 1ÞM2 "T
;

"T
cM2"q

 !

; (16)

where the dependency on xf and y is inherited by using the xfy-depen-
dent base-flow variables.

TABLE II. Stability analysis reference parameters representative of the most unstable 2D and 3D cases.

cf=ue b‘ Nx xin=‘ xout=‘ Ny yi;1=‘ yi;2=‘ ymax=‘

#1 0.628 0 1900 0:8( 106 2:6( 106 160 50( 103 — 3( 105

#2 0.557 9:06( 10#5 2400 0:8( 106 3:0( 106 120 12( 103 3( 104 1( 105

#3 0.587 9:06( 10#5 2400 0:8( 106 3:0( 106 120 12( 103 3( 104 1( 105

#4 0.615 25:5( 10#5 2400 0:8( 106 3:0( 106 120 12( 103 3( 104 1( 105
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Based on the definition of the perturbation energy, the position
of the wave packet can also be determined through the integral values

xEðtf Þ ¼
1
2E

ð ð
xf q0Hf Mq0f dxf dy; (17a)

yEðtf Þ ¼
1
2E

ð ð
y q0Hf Mq0f dxf dy; (17b)

which are the xf - and y-coordinates of the energy centroid of the wave
packet, in the fixed frame of reference. In order to determine whether
a perturbation reaches the streamwise truncation boundaries, we
define the streamwise extrema of the perturbations as the locations
where the local perturbation energy has decayed by a factor 10#3 away
from the maximum. Specifically, this corresponds to the upstream xu
and downstream xd locations where the criterion

ð
q0Hf Mq0f dy

max
xf

ð
q0Hf Mq0f dy

$ % ¼ 10#3 (18)

is satisfied.
Taking the logarithmic derivative of the energy (15) with respect

to time provides (twice) the temporal growth rate of the wave-packet
perturbation rðtÞ. The initial perturbation energy growth rate, that is,
when t ! 0, can be compared to the eigengrowth rate xi as follows:

rðtf ¼ 0Þ ¼ 1
2E

dE
dtf
ðtf ¼ 0Þ

¼ xi þ
cf
4E

ð ð
~qH @M

@xf
~q dxf dy

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Corrected eigengrowthxi;c

# cf
4E

ð

y
~qHM~q dy

&&&&
xout

xin|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Boundary term

: (19)

If all eigenfunctions are small at the in-/outflow boundaries, that is, if
eigenfunctions are localized in the streamwise direction, the boundary
term vanishes and the growth of the eigensolutions obtained in the
moving frame of reference corresponds to the instantaneous growth of
the perturbation in the fixed frame of reference, up to a corrective fac-
tor induced by the x dependency of theM-matrix. Furthermore, the
instantaneous velocity with which the wave packets propagate in the
streamwise direction, that is, the group speed, is obtained as

cgðtf Þ ¼
dxE
dtf

: (20)

If the eigenfunctions corresponding to a given eigensolution are local-
ized, then we observe that cgðtf Þ! cf as tf ! 0. We detail this further
in Sec. IVB and Appendix A.

While the perturbation energy and its spatial centroid provide
information regarding the global evolution of the wave packet, each
single frequency constituting the wave packet can possibly be ampli-
fied differently in space and time, especially in flows that act as a selec-
tive amplifier like SWBLI.25 Therefore, when it comes to identifying
the most amplified (range of) frequencies, it is relevant to decompose
the wave packet into its individual frequency components. To

this end, we define the perturbation energy per individual frequency
Xf as

Êðxf ; Xf Þ ¼
1
2

ð
q̂ðxf ; y; Xf ÞHMðxf ; yÞ q̂ðxf ; y; Xf Þ dy; (21)

where the variables with hats, q̂, correspond to the Fourier transform
of the fully reconstructed perturbation variables, q0f ,

q̂ðxf ; y; Xf Þ ¼
ðTs

0
q0f ðxf ; y; z ¼ 0; tf Þ eþiXf tf dtf ; Xf 2 R (22)

with the sampling period Ts. The real-valued angular frequency Xf is
introduced in order to distinguish the Fourier-transform frequency
from the eigenvalues in Eqs. (12) and (14). Based on Êðxf ; Xf Þ, the
spatial evolution of the Fourier coefficients can be assessed by recon-
structing the individual spatial amplification curves

DNðxf ;Xf Þ ¼
1
2
ln

Êðxf ; Xf Þ
Ê0ðxf ;0; Xf Þ

; (23)

as well as the streamwise wavenumber

aðxf ;Xf Þ ¼ #
i
2
@ ln Êðxf ; Xf Þ

@xf
; (24)

with xf ;0ðXf Þ being a streamwise reference location. In order to deter-
mine the maximum amplification at each streamwise location, we
then evaluate the envelope

DNmax ¼ max
Xf

DNðxf ;Xf Þð Þ; (25)

which is a useful engineering tool in the prediction of laminar–turbulent
transition.

The above approach allowed us to reconstruct the traditional
N-factor and neutral curves of the Blasius boundary layer (see
Appendix B) and is presently considered for SWBLI in order to iden-
tify frequencies and wavenumbers related to the most amplified insta-
bility mechanisms in the shock-induced bubble.

IV. RESULTS
In what follows, the initialization of the initial-value problem (9)

is discussed in Sec. IVA, the most amplified disturbance in Sec. IVB,
and the underlying physical mechanisms leading to the selection of
the most amplified wavelength in Sec. IVC.

A. Initial conditions: Eigensolutions
For the overarching approach to be effective, it is key to consider

eigensolutions that do not depend on the truncation boundaries, that
is, eigensolutions that have both localized direct and adjoint eigenfunc-
tions. In this paper, an eigenfunction is deemed localized in the
domain when (at least) an Oð1Þ-relative change in the domain length
yields less than anOð10#4Þ-relative change in both the real and imagi-
nary parts of the eigenvalue. It is furthermore demanded that the
eigenvalue converges when increasing the domain length. Based on
these requirements, we identified three different types of modes. We
classify these types according to their relative location with respect to
the bubble apex when they achieve their maximum temporal growth
rate. As depicted in Fig. 4, upstream- and downstream-type modes
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were found dominant upstream and downstream of the bubble apex,
respectively, while the apex-type modes are mostly dominant in the
bubble-apex region. Most notably, the adjoint eigenfunctions of all
observed, localized, and unstable upstream-type modes are located
downstream of the direct eigenfunctions; the adjoint functions reach
past the dividing streamline into the bubble. This represents an
upstream-influence effect in the sense that the eigensolution is sensi-
tive to the region occupied by the adjoint eigenfunctions, which for
this case is located downstream of the direct eigenfunctions. A broad
exploration of the ðcf ; bÞ-space reveals that upstream- and
downstream-type solutions reach their maximum growth rate for
b‘ * bud‘ ¼ 9:06( 10#5 and cf=ue ¼ 0:557 (upstream) and 0.587
(downstream), while the apex-type mode reaches its maximum growth
rate at ba‘ ¼ 25:5( 10#5 and cf=ue ¼ 0:615. These values of b and
cf are used throughout the paper as reference cases in order to estab-
lish typical results obtained in the moving frame of reference (see
Table II in Sec. III B for the complete set of simulation parameters
alongside their definition). The spanwise wavenumbers are compara-
ble to the findings in the literature30,32,35 for laminar SWBLI. In partic-
ular, Dwivedi et al.30 found b‘ ¼ bd+0=Red+0 ¼ 2:6=9660 ¼ 26:9
(10#5, where d+0 is the inlet displacement thickness, with transient
growth analysis of a hypersonic SWBLI. This b-value corresponds
closely to our value of ba‘ ¼ 25:5( 10#5. Our frame speed also
appears to be of a similar magnitude to the group speeds that are
found to be relevant by Dwivedi et al.30

We carefully verified that the most unstable eigensolutions are inde-
pendent of the computational setup, that is, domain size and resolution.
On the one hand, at cf=ue ¼ 0:58 and bud‘ ¼ 9:06( 10#5, an
Oð10#5Þ-relative change in the most unstable up- and downstream-type

eigenvalue is observed when displacing the domain outlet by 20%, while
maintaining the same streamwise grid density, and when decreasing the
streamwise resolution by 25%, for the same domain. An Oð10#4Þ-
change in the most unstable upstream and downstream-type eigenval-
ues is observed when increasing the domain height or decreasing the
wall-normal resolution by 50%. The apex-type mode is less sensitive to
the domain size, as a consequence of its smaller spatial support. A 50%
increase in the domain height or a 20% change in the outlet locations
yields at most an Oð10#5Þ-relative change in the most unstable apex-
type eigenvalue. Having shorter wavelengths in both directions, the
apex-type modes are more sensitive to the grid resolution than the other
modes. This is demonstrated by decreasing either the streamwise or
wall-normal resolution by 25%, which induces at most an Oð10#4Þ-
relative variation in the most unstable apex-type eigenvalues. In conclu-
sion, the convergence of the solutions could be verified for all above
parameters. In particular, it was observed that anyOð1Þ-relative change
in the setup parameters yields a negligible variation in the eigensolu-
tions. This aspect significantly improves upon theOð1Þ variation of the
eigenvalues with respect to the setup parameters observed in past
SWBLI studies based on a stationary-frame eigenvalue problem.

The overall eigensolution behavior upon varying the spanwise
wavenumber, b, is briefly described as follows. For large enough
b > bud, the upstream- and downstream-type modes become stable,
while the apex-type mode becomes most unstable at b ¼ ba. The fact
that ba > bud is not surprising due to the smaller streamwise extent of
the apex-type modes. The behavior of the eigensolutions is very
similar for other b-values. Hence, in this subsection, we focus on single
b-values. In Sec. IVB, considering the solutions to the initial-value
problem, the b-variation will be studied in more detail.

FIG. 4. Initial conditions corresponding to the most unstable eigensolution for upstream-type (cf=ue ¼ 0:557) and downstream-type (cf=ue ¼ 0:587) modes at bud and for
apex-type mode (cf=ue ¼ 0:615) at ba. Colored lines from minimum (gray) to maximum (red) with D ¼ 2=9 for isocontours of (a)–(c) Rð~uÞ=j~ujmax (direct solution) and
(d)–(f) Rð~u†Þ=j~u†jmax (adjoint solution). (a)–(f) Isocontour of j~uj=j~ujmax (solid black, level: 1/9), "U ¼ 0:9ue-isocontour (dashed black), dividing streamline (dotted black), and
"U ¼ 0-isocontour (dash-dotted).
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The variation of the eigensolutions with cf yields important
insight. Figure 5 illustrates the frame-speed dependency of the instan-
taneous growth rate and the streamwise location/extent of representa-
tive, localized eigenfunctions for both bud and ba. Increasing cf
generally causes the eigenfunctions to displace upstream. This is
recorded in terms of the streamwise locations xE, xu, and xd of the
eigenfunctions, as defined by Eqs. (17a) and (18) for t¼ 0. A similar
behavior is observed for the Blasius flow (Appendix A) and the cylin-
der wake by Kumar and Mittal.49 The largest temporal growth rate is
achieved as the eigenfunctions move past the bubble apex. For a single
combination of cf and b, several unstable eigensolutions of the same
type can exist that share similar characteristics (frequency, spanwise
wavenumber, spatial extent, and location). For instance, at bud, the
upstream- and downstream-type families each contain three unstable,
localized solutions (see Fig. 5), while only one unstable apex-type
mode could be found for the present domain size. Furthermore, at ba,
Fig. 5 shows that, on the one hand, the apex-type family now contains
three unstable, localized solutions and, on the other hand, no unstable
upstream- and downstream-type modes could be found.

For the present flow case, no two- or three-dimensional localized
eigensolutions were found when decreasing the frame speed to zero,
that is, when the eigenvalue problem is solved in the stationary frame
of reference. This indicates that the present SWBLI case does not sup-
port a global instability mechanism. Hence, it is necessary to consider
eigensolutions for a non-zero frame speed in order to describe the per-
tinent instability mechanisms. More specifically, from now on, we
want to consider frame speeds that yield sufficiently upstream, setup-
independent eigenfunctions, so that they can be used as the initial

condition for solving the initial-value problem (9) and yield converged
Fourier coefficients (22) for streamwise locations of interest.

Although the apex-type mode at ba reaches the largest eigen-
growth of the entire ðcf ;bÞ-parameter space, its very localized charac-
ter in space implies that the mechanism only takes hold in a very
limited spatial region around the bubble. In contrast, while the
upstream- and downstream-type modes have a much smaller tempo-
ral growth rate, their effect is distributed over a much longer stream-
wise extent. It can be expected that these characteristics of the
eigensolutions will impact their time evolution in the initial-value
problem, as discussed in Sec. IVB.

B. Finite-time evolution
In the following, we determine the most amplified perturbation

content, that is, spanwise wavelength and frequency, in SWBLI. The
eigensolutions only reveal the largest instantaneous growth rate; their
relation to the most amplified disturbance is yet to be identified. Hence,
to characterize the spatial evolution of the convective instabilities, we
disturb the flow with eigensolutions and assess the finite-time evolution
of wave-packet perturbations by solving the initial-value problem (9) in
the stationary frame of reference. In order to represent the perturbation
evolution as individual-frequency amplification curves, as traditionally
provided by the LST and PSE approaches, we convert the wave-packet
signal into the monochromatic wave-train representation using the
Fourier-transform approach detailed in Sec. IIIC.

First, we disturbed the flow with the apex- and upstream-type
eigenfunctions at ba and bud, respectively. The particular initial

FIG. 5. Variation of the initial-condition characteristics (t¼ 0 only) with respect to the frame speed cf . (a) and (b) Upstream-, (c) and (d) downstream-, and (e) and (f) apex-
type modes for bud‘ ¼ 9:06( 10#5 (a)–(d) and ba‘ ¼ 25:5( 10#5 (e)–(f). Crosses, pluses, and stars rank modes from most unstable to third-most unstable. Dotted line for
unique apex-type mode at bud. (a), (c), and (e) Temporal growth rate xi and (b), (d), and (f) streamwise energy centroid xE (black), upstream xu (blue), and downstream xd
(red) extrema of the eigenfunctions. (b), (d), and (f) Gray lines indicate streamwise coordinates of separation (xsep:), bubble apex (xapex), and reattachment (xatt:).
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conditions are chosen based on the b-values maximizing the instanta-
neous growth rate (for all b- and cf -values). Later, we will study the
effect of varying b while using both initial conditions. Since amplifica-
tion curves over the largest streamwise extent of the shock-induced
bubble are sought, we use the most upstream initial condition, per
mode type, in order to obtain converged Fourier coefficients in the
region of interest. The highest frame speed for which localized solu-
tions are found is cf ¼ 0:73ue. Note that the initial condition must be
localized in space to ensure that the resulting temporal solution is not
a boundary-dependent wave-train solution but is instead a wave
packet containing a broad range of frequencies. All the solutions con-
sidered to initialize the temporal problem are independent of the
numerical setup. Using these initial conditions, we verify Eq. (19) for
small elapsed times in the sense that the corrected eigengrowth rate
xi;c and the instantaneous energy growth rate rðtf Þ are equal up to
Oð10#6Þ and Oð10#5Þ relative errors for upstream- and apex-type
modes, respectively. A similar result holds when comparing the instan-
taneous group speed cgðtf Þ against the frame speed cf . In this frame-
work, eigensolutions are thus demonstrated to be representative of the
instantaneous perturbation dynamics. For longer-time dynamics, the
Fourier coefficients of the time-evolved wave packets are computed
and are presented in Fig. 6(a). All curves are normalized at
xf ;0=‘ ¼ xapex=‘ ¼ 1:77( 106, which corresponds to the most
upstream location where converged Fourier coefficients can be found
for the apex-type modes since no eigenfunction of this mode type can
be found far upstream of the bubble apex.

The Fourier coefficients in Fig. 6(a) show that, although the
apex-type modes have the largest growth rate around the incident
shock, they do not yield the largest amplification-factor envelope over
the extent of the bubble. This behavior was expected from the apex-
type eigensolutions shown in Fig. 5: the large growth rate is achieved
only over a very small streamwise extent of the bubble. In contrast, the
upstream-type wave packet at bud covers a much longer extent of the
shock-induced bubble in the streamwise direction and, despite a rela-
tively smaller growth rate as suggested by the eigensolutions, yields the

largest spatial amplification in the SWBLI. Following this reasoning,
downstream-type modes can only cover a shorter streamwise extent of
the bubble than that of upstream modes. Since their corresponding
temporal growth rate is smaller than or equal to that of upstream-type
modes, downstream-type modes could only reveal a smaller overall
amplification and thus are omitted for sake of conciseness.

A parametric study on the spanwise wavenumber is performed
in order to identify the critical b-values yielding the largest perturba-
tion amplification. We cover b=bud-values over the range from 0 to
1.5 for the upstream-type mode and b=ba-values from 0.25 to 1.5 for
the apex-type mode, both with uniform steps of 0.25. The frame speed
used to obtain the initial conditions is kept at cf ¼ 0:73ue for all cases.
The resulting amplification envelopes are given in Fig. 6(b) for
upstream-type (solid) and apex-type (dashed) modes. These results
indicate that, for the present SWBLI conditions, the most critical
three-dimensional convective instabilities are characterized by a span-
wise wavelength kz=‘ * 2p=ðbud‘Þ ¼ 6:9( 104, which is approxi-
mately 10.7 times smaller than the length of the bubble
(Lsep=‘ * 6:5( 105), and a frequency of about f ¼ 9:3ð60:58Þ kHz
at the reattachment point. Due to the present selection of discrete
b-values used for the parametric study, the uncertainty on the most-
amplified spanwise wavenumber reasonably scales to about 62:7% of
the bubble length.

Considering the bubble length as a reference length, the character-
istic frequency of the present convective mechanisms corresponds to a
Strouhal number St ¼ fLsep=ue ¼ 0:38 that is in the medium-
frequency range (St ¼ 0:3# 0:5) of the frequencies that can be found
in SWBLIs.25,26,31–33,38,74While Bonne et al.31 associated these medium
frequencies with large-scale breathing motions of the bubble in transi-
tional SWBLIs, Sasaki et al.,28 Nichols et al.33 (turbulent), and Bugeat
et al.32 (laminar) suggest instead that medium frequencies represent
convective instability mechanisms of the shear-layer and that the bub-
ble breathing occurs in the low-frequency range (St < 0:1). In this
range, the breathing motion would be associated with a low-frequency
global mode encompassing the entire recirculation region.32,33,35 Since

FIG. 6. (a) Amplification curves and (b) envelope of amplification factor curves normalized at xf;0=‘ ¼ 1:77( 106. (a) Apex mode at ba (dashed) and upstream mode at bud
(solid) for frequencies Xr ‘=ue ( 105 ranging from 2.077 (light red) to 4.845 (dark red) with step 0.23. Envelopes of individual amplification curves indicated by blue lines and
filled circles. (b) Envelope for upstream- (solid) and apex-type (dashed) modes at different b (colored lines). Filled circles for envelopes at bud and ba of panel (a). Vertical
dash-dotted lines: streamwise location of the bubble apex and reattachment.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 35, 024101 (2023); doi: 10.1063/5.0135590 35, 024101-12

VC Author(s) 2023

https://scitation.org/journal/phf


the wave packets observed in our flow configuration are dominant in
the shear layer, we expect that the present linear convective mecha-
nisms cannot be representative of a self-sustained large-scale breathing
of the bubble.

The b-parameter study reveals that the spanwise wavenumber
b ¼ bud yields the largest amplification when using the upstream-
type initial condition. Remarkably, it also maximizes the amplifica-
tion of the apex-type initial condition, as observed for the case
with the b-value closest to bud, that is, b ¼ 0:5ba * bud. Hence,
although ba yields the maximum growth rate of the apex-type
mode, it does not lead to the maximum amplification. The
solutions initialized with the upstream- and apex-type modes with
b * bud are found to display similar characteristics. For example,
we observe that the most amplified frequency at the reattachment
point is similar (9:36 0:58 kHz) and, also that the mechanisms
underlying the growth are very similar (this is quantified in Fig. 8,
presented in Sec. IV C). This shows that the most amplified distur-
bance can be identified with more than one type of initial condi-
tion and thus that bud effectively yields the largest amplification.
Note that disturbing the flow with the upstream-type solutions is
preferred over downstream- or apex-type modes in the sense that
the region of converged Fourier coefficients reaches farther
upstream of the shock-induced bubble and spans a much larger
streamwise extent of the perturbation growth in the flow.

To further ensure that the most critical dynamics are effectively
captured by one initial condition, we performed a sensitivity study by
disturbing the flow with, on the one hand, upstream-type eigenfunctions
obtained at cf=ue ¼ 0:67, 0.70, and 0.73, and, on the other hand, the
three most unstable solutions of the upstream-type family at
cf=ue ¼ 0:73. The amplification curves are shown in Fig. 7 at three dif-
ferent frequencies and are indistinguishable from one initial condition to

another. The only difference is observed in the spatial extent of the region
within which converged Fourier coefficients could be obtained; the more
upstream the initial condition, the longer the spatial extent. Hence, when
using the present methodology, we advise considering the most upstream
and localized initial condition by means of changing (usually increasing)
the frame speed. Since amplification curves are independent of the frame
speed and eigenfunctions, a single localized initial condition is sufficient
to reveal the most-amplified perturbation dynamics.

In order to be effective, the present method requires using initial
conditions that are located upstream of the region where perturbation
growth is expected. Although the complexity in meeting this require-
ment depends on the flow configuration, we argue that this is the
main limitation of our approach. In the present study, it is possible to
find such upstream solutions, but it may be more difficult, if not
impossible, in other cases (SWBLIs or much broader classes of flows).
We find that the eigenfunctions rapidly move into the upstream
boundary layer as we increase the frame speed to large enough values
while fixing all other parameters. It is very difficult to track and appro-
priately spatially resolve the eigenfunctions whenever this happens
(with a grid focused on the interaction region), because the streamwise
extent of the eigenfunctions increases immensely upstream with a
small increase in the frame speed. As a solution, we recommend using
the wave-packet tracking strategy described by Browne et al.75 to pro-
vide increased flexibility in tracking the eigenfunctions as b and cf , or
other parameters, are varied.

C. Physical mechanisms
The mechanisms that contribute to the three-dimensional insta-

bilities are discussed after decomposing the temporal growth rate into
its different contributions. To do this, we factor the temporal growth
rðtÞ, as defined in Eq. (19), from the wave-packet perturbation
q0f ðx; y; tÞ, such that q0f ðx; y; tÞ ¼ #qðx; y; tÞerðtÞt at each time instant
and then use the Reynolds–Orr decomposition76 based on Chu’s
norm [see Eq. (16)] for the measurement of the perturbation energy.77

Among the many terms of the perturbation equations, only a few have
a significant contribution to the energy growth. A careful inspection,
that included all terms, showed that terms contributing more than 5%
to the temporal growth rate dictate its overall trends across all consid-
ered cases. Hence, we focus the present analyses on those terms. All
other terms individually contributing less than 5% to the energy
growth are included in a remainder that itself, that is, the sum of the
neglected terms, represents less than 10% of the growth rate. Hence,
the decomposition of the growth rate can be written as

r ¼ R
u^
+
v^
þ Rju^j2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Reynolds stresses

þ R
s^
+
v^
þ R

s^
+
u^|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Reynolds heat fluxes

þD
u^
þ D

w^
þ D

T
^

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Dissipation

þremainder (26)

with

R
u^
+
v^
¼ #R

ð ð
u^
+
v^ "q

@ "U
@y

dx dy
E

( )

; (27a)

Rju^j2 ¼ #R
ð ð
ju^ j2"q @

"U
@x

dx dy
E

, -
; (27b)

FIG. 7. Spatial amplification of upstream-type wave packets for b ¼ bud.
Individual-frequency amplification curves obtained from initialization with (a) the
three most unstable eigenfunctions of the upstream-type family (from most unstable
to least unstable: squares, crosses, and pluses) at cf=ue ¼ 0:73 and (b) the most
unstable eigenfunction at cf=ue ¼ 0:67 (pluses), 0.70 (crosses), and 0.73
(squares). Colored lines for frequencies Xf‘=ue ( 105 ¼ 0:2307, 0.3461, and
0.3922 (light to dark red).
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R
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v^
¼ #R

ð ð
s
+̂
v^ "q

@"T
@y

dx dy
E

( )

; (27c)

R
s^
+
u^
¼ #R

ð ð
s
+̂
u^ "q

@"T
@x

dx dy
E

, -
; (27d)

D
u^
¼ 1

Re
R

ð ð
"lu^
+ @2u^

@y2
dx dy
E
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; (27e)

D
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¼ 1

Re
R
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"lw^
+ @2w^
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dx dy
E

( )

; (27f)

D
T
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Ec Re Pr

R
ð ð
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"T
T
^+ @2T

^

@y2
dx dy
E

( )

: (27g)

In the above expressions, q^ ¼ ½u^ ; v^ ;w^ ;T
^

;q^ 'T; Rf,g denotes the
real part, and the specific disturbance entropy, s^ , is defined as

cM2 s^ ¼ c
c# 1

T
^

"T
# p

^

"P
¼ 1

c# 1
T
^

"T
# q^

"q
: (28)

We verified that obtaining r from the energy budget, Eq. (26), or from
the temporal derivative of the perturbation energy, Eq. (19), is equiva-
lent up to machine precision.

FIG. 8. Streamwise variation of the dominant contributions to the temporal growth rate [Eq. (26)] of the temporal wave packets: (a) and (e) R
u
^+

v^
(solid) and R

s
^+

v^
(dashed),

(b) and (f) Rj u^j2 (solid) and Rs
^+

u
^ (dashed), (c) and (g) D

u
^ (solid) and D

T
^ (dashed), and (d) and (h) temporal growth rate rðtÞ. (a)–(d) Upstream- and (e)–(h) apex-type modes

for relevant b-values. (a)–(h) Vertical dotted lines: streamwise location of the bubble apex and reattachment.
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With the decomposition of the growth rate given by Eq. (26), we
can distinguish several growth mechanisms of different nature. First,
the production terms induced by the Reynolds-stress (Reynolds-heat-
flux), denoted by R, produce a streamwise velocity (entropy) perturba-
tion through the effect of wall-normal advection of the base-flow
velocity (temperature) by the wall-normal velocity perturbations.
Since the perturbations are mostly confined in the shear-layer, which
has a much smaller characteristic length scale in the wall-normal
direction than in the streamwise direction, the quantities involving the
wall-normal derivatives are, even in this arguably strongly two-
dimensional flow field, much larger than the streamwise-derivative
terms. Hence, the Reynolds-stress R

u^
+
v^
and heat-flux R

s^
+
v^
terms that

involve the wall-normal derivative of the base-flow quantities likely
prevail over the terms involving the derivative in the other direction.
Since these wall-normal Reynolds-stress and heat-flux terms originate
in the linearization of the advection term of the Navier–Stokes equa-
tions, they involve the wall-normal velocity perturbation component,

which could be interpreted as moving the base-flow quantities (infini-
tesimally) upward away from the wall or downward to the wall.
Second, the energy growth can be attenuated through the dissipation
of the velocity or temperature perturbations. The responsible terms
are indicated by D. Although the dissipation of perturbations is gov-
erned by a significant number of terms (see the xi-decomposition of
Padilla Montero and Pinna77), Eqs. (27e)–(27g) are truncated to only
keep the terms that are at least 5% of xi, per perturbation component.
For all components, these terms correspond to second derivatives in
the wall-normal direction. The significant terms of Eq. (27) are com-
puted along xEðtÞ of the temporally evolving wave packets and are
shown in Fig. 8; panels 8(a), 8(b), 8(c), and 8(d) show the results for
the upstream-type mode and 8(e), 8(f), 8(g), and 8(h) for the apex-
type mode.

As a consequence of the large wall-normal gradient @ "U=@y > 0
and the substantial region where u^ and v^ are out-of-phase (i.e.,
Rfu^

+
v^ g < 0), the Reynolds stress R

u^
+
v^
is the largest contribution to

FIG. 9. Wall-normal Reynolds stress for different b [columns (a)–(d)] at several locations of the x-centroid [rows (i)-(v)] of the upstream-type wave packet. Isocontours of
Rfu^

+
v^ =Eg( qe‘

2 indicated by colored lines from #9( 10#10 (red) to #0:5( 10#10 (gray) with D ¼ 0:5( 10#10. Boundary-layer edge (d90, dashed) and dividing
streamline (dotted).
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the growth rate, for both the upstream- and apex-type wave packets.
Furthermore, R

u^
+
v^
is strongly activated in the region of the bubble

apex as the wave packets move downstream such that it reaches its
largest destabilizing contribution downstream of the bubble apex, in
close vicinity of the incident shock. In this region, the factor
"q@ "U=@y > 0 is relatively constant in the streamwise direction.
Consequently, as shown in Fig. 9, the large size of R

u^
+
v^
in the apex

region is caused by a significant growth ofRfu^
+
v^ =Eg downstream of

the shock.
A similar behavior is observed for the Reynolds heat-flux R

s^
+
v^
.

For the upstream-type wave packets, however, the contribution of
R

s^
+
v^
is an order of magnitude smaller than that of R

u^
+
v^
. This follows

from: (1) the smaller wall-normal gradient @"T=@y, (2) the reduced
unbalance between the out-of-phase and in-phase regions of s^ and v^ ,
and (3) the smaller relative size of T

^

compared to u^ . These last two
effects are, nonetheless, mitigated for apex-type wave packets such that
R

s^
+
v^
and R

u^
+
v^
together produce most of the perturbation energy,

especially in the immediate vicinity of the bubble apex.
Depending on the wave-packet location in the bubble, the

streamwise Reynolds-stress Rju^j2 and Reynolds-heat-flux R
s^
+
u^
terms

contribute to producing or destroying perturbation energy. The posi-
tive or negative contribution of these terms is set by the streamwise
gradient of the streamwise base-flow velocity, @ "U=@x, that has oppo-
site signs on the two sides of the bubble. Hence, when the incoming
perturbation crosses the bubble apex, Rju^j2 and R

s^
+
u^
rapidly become

stabilizing as the flow accelerates and eventually reach their maximum
stabilizing contribution in the aft-bubble region. Rju^j2 becomes as large
as 30% of R

u^
+
v^
in absolute value. Thereby, Rju^j2 prevents the maxi-

mum temporal growth to occur in the post-shock region [see Fig.
8(g)]. Instead, the temporal growth rate is maximum upstream of the
apex when Rju^j2 produces perturbation energy along R

u^
+
v^
. Hence,

while the Reynolds stress R
u^
+
v^
term is usually the largest contribution

to the growth rate in wall-bounded flows, we observe that Rju^j2 plays a
significant role in the present flow configuration in which the stream-
wise velocity rapidly varies in the streamwise direction.

The contribution of the streamwise Reynolds-stress Rju^j2 to the
perturbation energy becomes more significant as b increases. This is
further supported by the Pearson correlation coefficient, when com-
paring the streamwise variation of R

u^
+
v^
with the temporal growth

rate. This coefficient decreases from 0.99 (b ¼ 0) to 0.82 (b ¼ 1:5bud),
for the upstream-type wave packet, while the correlation between
R
u^
+
v^
þ Rju^j2 and the temporal growth rate remains constant. For the

apex-type wave packet, slightly weaker correlations are found, except
when additionally including the wall-normal Reynolds-heat-flux term
that produces significant perturbation energy alongside R

u^
+
v^
.

The dissipation terms for the upstream- and apex-type modes
are shown in Figs. 8(e) and 8(f), respectively. These terms present one
of the main differences between the aforementioned mode types,
which is explained by their high correlation with both the spatial
extent and wavenumber of the wave packet. Hence, the dissipation
terms of the apex-type wave packets, that have a short streamwise
extent and wavelength, are much stronger than that of upstream-type
wave packets. Furthermore, since the amplitude of T

^

and u^ are simi-
lar for the apex-type mode, D

T
^ and D

u^
dissipate a similar amount of

perturbation energy. In contrast, upstream-type wave packets have a
much larger ratio ju^j=jT

^

j, especially for increasing b, and are thus
mostly stabilized by D

u^
.

The Reynolds stress R
u^
+
v^
and heat-flux R

s^
+
v^
are both maxi-

mized over the span of the shock-induced bubble at bud, which also
maximizes the amplification envelope. This can be explained by con-
sidering the evolution of Rfu^

+
v^ =Eg as depicted in Fig. 9. For an

increasing spanwise wavenumber, we observe that Rfu^
+
v^ =Eg

increases in magnitude and, simultaneously, covers a smaller area in
space. These two variations have an antagonistic effect on the integral
value R

u^
+
v^
that thus attains a maximum for b ¼ bud. The Reynolds

heat-flux R
s^
+
v^
features a similar behavior, but to a lesser extent follow-

ing both its smaller magnitude and weaker dependency on b than that
of R

u^
+
v^
. Accordingly, we conclude that the wall-normal Reynolds

stress R
u^
+
v^
, being the most destabilizing contribution, arguably gov-

erns the amplification of convective perturbations across the SWBLI.

V. CONCLUSION
In the present paper, we performed linear stability analysis of a

laminar SWBLI to determine the most amplified convective disturbance
mechanisms. The laminar SWBLI base-flow field was obtained by using
the selective frequency damping approach, which, prior to linear stabil-
ity analyses, reveals that the flow does not support the temporal growth
of a disturbance in a fixed region of space. This means that no two-
dimensional global instabilities exist in the present configuration and,
thus, at least all two-dimensional instability mechanisms should be con-
vective. Furthermore, as part of the linear stability analyses, no three-
dimensional global modes were found. Since no eigensolutions that are
localized in the streamwise direction could be found in the stationary
frame of reference, an alternative approach that can represent convective
instability mechanisms is considered. According to the presence of large
gradients in the base flow, we devised our approach to appropriately
account for all elliptical effects in the streamwise-wall-normal plane in
order to represent any feedback mechanism that could be supported in
the region of reverse flow. To satisfy these criteria, the proposed meth-
odology consists in solving the initial-value problem for the linear per-
turbations while using special initial conditions that are eigenfunctions
obtained in amoving frame of reference.

In the moving frame, convective mechanisms are captured as
eigensolutions with eigenfunctions that are localized in the streamwise
direction; thereby, the solutions are independent of the computational
setup (truncation-boundary positions and conditions and grid resolu-
tion). For the present flow, we identified three types of unstable, local-
ized modes (upstream-, downstream-, or apex-type modes) for a wide
range of spanwise wavenumbers and frame speeds. The characteristic
frequency of these instability mechanisms is at least one order of mag-
nitude larger than what is usually observed for the low-frequency
breathing of the bubble and none of the linear mechanisms found
could be related to any low-frequency unsteadiness of the SWBLI.
Instead, the medium-frequency mechanisms that are presently found
represent convective instability mechanisms of the separated shear
layer and can enter the reverse-flow region.

By considering the finite-time evolution of the wave-packet per-
turbations obtained from the initial-value problem using the moving-
frame eigenfunctions as initial condition, we assess the spatial evolu-
tion of the convective instabilities. First, we quantify the perturbation
amplification by reconstructing the individual-frequency amplification
curves by Fourier transforming the signal. To the greatest extent, this
allows us to determine the most amplified perturbation content of
SWBLI, in particular in terms of the most amplified spanwise
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wavelength, which is found to be as large as about 10% of the bubble
length, and frequency, which is about 9 kHz at the streamwise location
of the reattachment. Second, we decompose the perturbation wave-
packet into the individual components that contribute to its growth.
We observe that the wall-normal Reynolds stress produces most of the
disturbance energy over the whole extent of the SWBLI. Nevertheless,
we find that, although the streamwise Reynolds stress has a smaller
magnitude, it can interfere either productively or destructively with
the wall-normal Reynolds stress depending on whether the wave-
packet is located upstream or downstream of the bubble apex. This
contribution of the streamwise Reynolds-stress results in an overall
upstream shift of the maximum temporal growth and intensifies when
increasing the spanwise wavenumber b. Finally, at a particular span-
wise wavenumber b ¼ bud, the (integral) wall-normal Reynolds-stress
and Reynolds-heat flux of the temporal wave-packet are maximized
along the complete spatial extent of the shock-induced bubble. By ana-
lyzing the variation of the spatial organization of the dominant factors
that appear in the integrand of the wall-normal Reynolds-stress term
as b increases, we find that its maximum magnitude increases, while
the area over which it is active shrinks so that it leads the integral value
to reach a maximum for b ¼ bud. In turn, the largest amplification in
the present flow configuration is achieved for this wavenumber, which
also corresponds to the spanwise wavenumber that displays the maxi-
mum growth rate of the moving-frame initial condition.

We argue that the solutions of the eigenvalue problem solved in a
moving frame of reference are remarkably convenient to initialize the
perturbation problem for several reasons. First, the eigensolutions in the
moving frame are independent of the computational setup (truncation-
boundary positions and conditions and grid resolution). Second, the
eigensolutions indicate the main characteristics (wavelength and fre-
quency) of the instability mechanisms in an instantaneous sense, ahead
of solving the (initial-value) perturbation problem. When disturbing the
flow with the moving-frame solutions to obtain the finite-time behavior
of the instabilities, we show that the initial, short-time perturbation
dynamics coincide with the dynamics predicted by the moving-frame
eigensolutions. Hence, the time response of the flow to these initial condi-
tions is not polluted by any inadvertent transient behavior. Third, the
temporal evolution of the resulting wave packets is independent of the
frame speed and the mode chosen to initialize the problem. This aspect is
even more remarkable considering that the dynamics of the most ampli-
fied wave packet are independent of whether an upstream- or apex-type
eigensolution is used as the initial condition to disturb the flow.

In conclusion, we demonstrated that using moving-frame eigen-
functions as initial conditions of the perturbation problem allows the
elliptic representation of two-dimensional convective instabilities with-
out being limited by solutions that are dependent on the numerical
setup. In practice, this methodology allows us to characterize the most
amplified instabilities in the SWBLI. The adjoint eigensolutions and
adjoint initial-value problem can be used, in future studies, as a means
to study how the disturbances that are inherent to the separation bub-
ble are effectively forced (far) upstream of the bubble. An adjoint solu-
tion moving out of the boundary layer and toward the freestream, for
example, would indicate that the inherent disturbances are sensitive to
freestream turbulence and insensitive to forcing at the wall. Finally, we
emphasize that the present study reveals the linear mechanisms yield-
ing strong amplification of perturbations in a short streamwise extent
of the flow.

Without having applied our approach to other flow configura-
tions, we believe that it paves the way for the structured characteri-
zation of the laminar–turbulent transition of separation bubbles in
general (including the incompressible, transonic, and hypersonic
regimes), starting from the homogeneous, linear, convectively
unstable disturbance mechanisms. It is likely that separation bub-
bles will show similar, more, or fewer mode types and that modes
other than the upstream-type mode can dominate in particular
conditions. Future research efforts should be invested in thor-
oughly exploring the behavior of the newly found mechanisms for
other flow configurations (varying Mach number, Reynolds num-
ber, shock strength, etc.).

The present work proposes an insight into primary convective
instabilities in SWBLI through linear stability analyses and, at this
stage, we do not consider nonlinear effects that would take place when
the perturbation amplitude becomes significantly large. Assessing non-
linear mechanisms, however, requires a judicious choice of initial con-
ditions. By using the moving-frame solutions, our approach offers a
careful control of these initial conditions and, thus, provides a struc-
tured strategy that can be applied to study the route from linear per-
turbation growth to laminar–turbulent transition in SWBLI.
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APPENDIX A: INITIAL CONDITIONS AND SHORT-TIME
WAVE-PACKET EVOLUTION IN THE BLASIUS
BOUNDARY LAYER

In the following, we use the moving-frame approach to obtain sta-
bility results for the Blasius boundary layer, which can be reproduced up
to machine precision. By conducting stability analyses in moving frames,
we find that it is possible to obtain eigensolution families with localized
eigenfunctions for a range of frame speeds; the largest xi-value was
obtained for cf=ue ¼ 0:4156 0:005. The corresponding direct and
adjoint eigenfunctions are shown in Fig. 10. Since the eigenfunctions are
localized in the domain, the overall eigensolutions are negligibly
impacted by the numerical setup, as illustrated in Table III for the first
and fifth most unstable modes at cf=ue ¼ 0:415.

We can assess the impact of the frame speed on the eigensolu-
tions by measuring the streamwise characteristics of the eigenfunc-
tions (streamwise wavelength, centroid location, and up-/
downstream extrema) with respect to the frame speed. In particular,
Fig. 11 shows that reducing the frame speed increases the

streamwise span of the eigenfunctions. Remarkably, this evolution
occurs at a higher rate than the rate at which the streamwise wave-
length varies with the frame speed. Obtaining setup-independent
eigensolutions (i.e., solutions with localized eigenfunctions) for
lower frame speeds thus requires increasing both the domain length
and the amount of streamwise grid points. A direct consequence is

TABLE III. Mode properties and relative errors (! ¼ jxref # xj=jxref j) in the eigen-
value for the reference parameters: xout=‘ ¼ 8:0( 105; Nx ¼ 300; Neumann in-/
outflow boundary conditions; ymax=‘ ¼ 1:6( 105, with respect to the (one at a time)
parameter changes: xout=‘ ¼ 7:0( 105 (fixing the density Nx=L); Nx ¼ 260; the
use of Dirichlet in-/outflow boundary conditions; and ymax=‘ ¼ 1:4( 105 (fixing Ny
¼ 50 and yi;1=‘ ¼ 4:0( 103). First- and fifth-most unstable modes along the main
branch for cf=ue ¼ 0:415. The reported digits are truncated (not rounded) and those
that are tainted by the largest reported error are underlined.

cf=ue 0.415 0.415
Mode # 1 5
xr ‘=ue #1.54607445982( 10#5 #1.48826( 10#5

xi ‘=ue þ3.01443827834( 10#6 þ2.33523( 10#6

!L 1:4( 10#4 5:9( 10#4

!Nx 9:3( 10#11 2:5( 10#7

!BC 1:5( 10#10 2:0( 10#6

!ymax 2:3( 10#4 2:2( 10#4

FIG. 10. (a) and (b) Isocontour of j~uj=j~ujmax (dotted black, level: 1/9) and isocon-
tours [colored lines, from minimum (gray) to maximum (red) with D ¼ 2=9] of (a)
Rf~ug=j~ujmax and (b) Rf~u†g=j~u†jmax corresponding to the most unstable eigen-
solution at cf=ue ¼ 0:415. "U ¼ 0:9ue-isocontour (dashed black).

FIG. 11. For the most unstable ~u-eigenfunction: downstream extremum (xd=‘,
black), streamwise extent [ðxd # xuÞ=‘, red], and minimum wavelength
(10( kmin=‘, blue) vs cf . Measured values (symbols), power (solid lines), and
exponential (dashed) fits and outflow boundary xout=‘ (dash-dotted). (a) Trend-
extrapolation as cf ! 0 (minimum: 0:025ue) and (b) data and fits.

FIG. 12. (a) Temporal growth rate (measured with perturbation kinetic energy) in the
stationary reference frame and (b) measured speed of the wave packets, initialized
from most unstable eigenfunctions in moving frame of reference cf=ue ¼ 0:415.
Eigengrowth xi in (a) and frame speed cf in (b) indicated by dashed lines.
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that solving the moving-frame eigenvalue problem becomes more
and more computationally demanding when lowering the frame
speed. Extrapolation as cf ! 0 of an exponential and power fit of
the data given in Fig. 11(b) is illustrated in Fig. 11(a).

In order to carefully demonstrate that eigensolutions represent
the (exact) instantaneous dynamics of the wave-packet solution to
the initial-value problem at t¼ 0, without spurious transients, we
show the short-time evolution of the wave packet in Fig. 12. We can
thus verify that the moving-frame eigengrowth rate and the
imposed frame speed are equal to the instantaneous growth rate
and group speed of the temporal wave packet for t¼ 0, as indicated
by Eqs. (19) and (20), respectively, and then slowly deviate for t> 0.
This finding was confirmed for many different frame speeds and
different modes for the same frame speed.

APPENDIX B: RECOVERING N-FACTOR AND NEUTRAL
CURVES FOR THE BLASIUS BOUNDARY LAYER

As a verification, the present approach was also used to recover
the traditional N-factor and neutral stability curves for the Blasius
boundary layer for which accurate results can be obtained with PSE.

Since increasing the frame speed causes an upstream movement of
the eigenfunctions, we can find eigenfunctions at cf=ue ¼ 0:525 that
are located far enough upstream of the neutral points for all rele-
vant frequencies. By time-marching the most unstable eigensolution
for this frame speed and Fourier transforming the resulting wave
packet according to Eq. (21), the N-factor and neutral stability
curves are recovered. The verification against PSE is shown in
Fig. 13.

In addition to the aforementioned eigensolution, we further-
more time-marched other localized eigensolutions corresponding to
the same frame speed (cf=ue ¼ 0:525) and the most unstable solu-
tion for different frame speeds in order to verify that the N-factor
and neutral stability curves do not depend on this selection. Figure
13 illustrates this verification for the results corresponding to the
second-most unstable solution for cf=ue ¼ 0:525 (pluses) and the
most unstable solution for cf=ue ¼ 0:500 (squares). The eigenfunc-
tions for the latter solution are located farther downstream; hence,
the verification can only be established from a farther downstream
location onward.
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Crosses [and solid lines in (a)] and pluses: first- and second-most unstable modes
for cf=ue ¼ 0:525, respectively. Squares: most unstable mode for cf=ue ¼ 0:5. In
(a), angular frequencies are indicated by color level from Xf‘=ue ¼ 1:256( 10#4

(gray) to 2:885( 10#4 (red) with DXf‘=ue ¼ 1:16( 10#5.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 35, 024101 (2023); doi: 10.1063/5.0135590 35, 024101-19

VC Author(s) 2023

https://doi.org/10.1007/s00193-009-0220-z
https://doi.org/10.2514/8.11473
https://doi.org/10.1098/rspa.1947.0058
https://doi.org/10.2514/2.1476
https://doi.org/10.1016/j.paerosci.2014.09.002
https://doi.org/10.1016/j.paerosci.2014.09.002
https://doi.org/10.2514/2.1609
https://doi.org/10.1017/S0022112007006799
https://doi.org/10.1017/S0022112007006799
https://doi.org/10.1017/S0022112009007952
https://doi.org/10.1017/S0022112007009044
https://doi.org/10.1017/S0022112007009044
https://doi.org/10.2514/1.J059980
https://scitation.org/journal/phf


17N. F. Nutter, J. W. Cobourn, R. B. Bond, P. A. Kreth, J. D. Schmisseur, R. S.
Glasby, D. L. Stefanski, E. Hereth, and J. G. Coder, “Simulations of dynamic
shock wave/boundary layer interactions using HPCMP CREATETM-AV Kestrel
COFFE,” in AIAA Scitech 2021 Forum, 2021.

18J. J. Sebastian and F. K. Lu, “Upstream-influence scaling of fin-induced laminar
shockwave/boundary-layer interactions,” AIAA J. 59, 1861–1864 (2021).

19E. Touber and N. D. Sandham, “Oblique shock impinging on a turbulent
boundary layer: Low-frequency mechanisms,” in 38th AIAA Fluid Dynamics
Conference and Exhibit (University of Southampton, Southampton, UK, 2008).

20E. Touber and N. D. Sandham, “Large-eddy simulation of low-frequency
unsteadiness in a turbulent shock-induced separation bubble,” Theor. Comput.
Fluid Dyn. 23, 79–107 (2009).

21S. Pirozzoli and F. Grasso, “Direct numerical simulation of impinging shock
wave/turbulent boundary layer interaction at M ¼ 2.25,” Phys. Fluids 18,
065113 (2006).

22J.-P. Dussauge, P. Dupont, and J. F. Debiève, “Unsteadiness in shock wave
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