PAN 000000000

Retrievals of trichlorofluoromethane (CFC-11) and peroxyacetyl nitrate (PAN) from FTIR ground-based solar spectra and analysis of their long-time series above NDACC stations

> Irene Pardo Cantos PhD Student

Supervisor: Emmanuel Mahieu

GIRPAS Research Unit SPHERES University of Liège (Belgium)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Active instruments

160

IRWG objective: Record long-term high-quality spectra to provide trends of atmospheric constituents

70

Research

stations

NDACC

FTIR spectrometers

20

80°S

80⁰N

NDACC Infrared Working Group

Jungfraujoch station (Swiss Alps)

Latitude: 46.55°N Longitude: 7.98°E Elevation: 3580 m a.m.s.l.

FTIR spectrometers

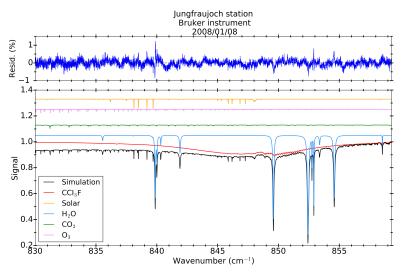
- 1984 2008: Homemade instrument
- 1994 present: Commercial Bruker IFS-120HR improved by the team

Retrievals of trichlorofluoromethane (CFC-11) and peroxyacetyl nitrate (PAN) from FTIR ground-based solar spectra and analysis of their long-time series above NDACC stations

Irene Pardo Cantos PhD Student

Supervisor: Emmanuel Mahieu

GIRPAS Research Unit SPHERES University of Liège (Belgium)


◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Introduction-Motivation

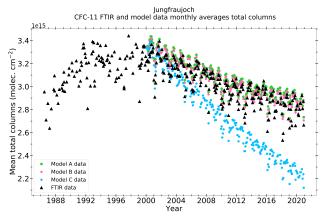
- Trichlorofluoromethane ($CC\ell_3F$, CFC-11)
- Destruction of the stratospheric O₃
- Anthropogenic origin → Aerosol spray propellants, refrigerants, inflating agents, and solvents
- Montreal Protocol on Substances that Deplete the Ozone Layer (1987)
- CFC-11 concentration has declined since the late 1990s
- Slowing decline after 2012 (Montzka et al., 2018 Nature)
- Delay in ozone recovery and in reduction of its contribution to radiative forcing
- Requested contribution for the UNEP report to investigate the CFC-11 trend and evolution

IR Spectra

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Instruments harmonisation

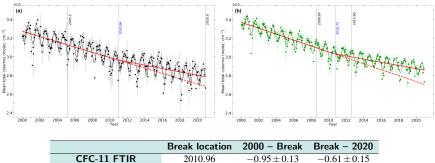

Jungfraujoch

- Detector change \rightarrow JJB multiplied by 0.9692 from 12/02/1999 to 09/10/2001
- Instrument change \rightarrow JJL multiplied by 0.9467
- Change of one spectrometer mirror \rightarrow 2016 2019 period data multiplied by 1.01812985
- Harmonised series from June 1986 to Dec 2020

3

Instruments harmonisation

Jungfraujoch

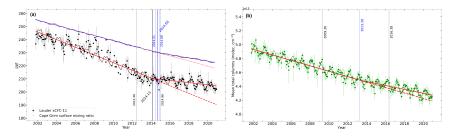


Model tracers:

(A) Best estimate of emissions and some realistic distribution
(B) Same total emissions as (A), but equal emissions at all lat/lon
(C) Zero emissions since 2000 - Simple decay

Model and FTIR data comparison

Northern Hemisphere



CFC-11 FTIR	2010.96	-0.95 ± 0.13	-0.61 ± 0.15
CFC-11 TOMCAT	2010.75	-1.03 ± 0.08	-0.55 ± 0.09
CFC-11 ACE (global)*	2012.0	-0.8	-0.5

* Report on the Unexpected Emissions of CFC-11, 2021

Model and FTIR data comparison

Southern Hemisphere

	Break location	2001 – Break	Break – 2020
In situ CG	2014.69	-0.82 ± 0.01	-0.52 ± 0.01
xCFC-11 FTIR	2014.13	-1.34 ± 0.08	-0.39 ± 0.10
CFC-11 TOMCAT	2013.28	-0.86 ± 0.05	-0.61 ± 0.07
CFC-11 ACE (global)*	2012.0	-0.8	-0.5

* Report on the Unexpected Emissions of CFC-11, 2021

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のの⊙

Conclusions

- Harmonised JFJ data set from June 1986 to December 2020 \rightarrow NEW!
- Lauder CFC-11 time series \rightarrow NEW!
- Comparison to in situ observations and model simulations
- Model JFJ data: break point in \approx 2011
- Model LAU data: break point in \approx 2014
- Concordance with ACE global trends
- Unreported emissions (ex. from eastern China (Rigby et. al, 2019))
- Decrease in global CFC-11 emissions since 2018 (Montzka et al., 2021 & Park et al., 2021)
- FTIR: complementary monitoring to surface-measurement networks

Pardo Cantos et al., 2022 (doi: 10.1039/d2ea00060a)

Retrievals of trichlorofluoromethane (CFC-11) and peroxyacetyl nitrate (PAN) from FTIR ground-based solar spectra and analysis of their long-time series above NDACC stations

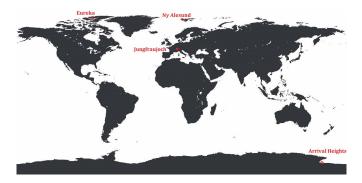
> Irene Pardo Cantos PhD Student

Supervisor: Emmanuel Mahieu

GIRPAS Research Unit SPHERES University of Liège (Belgium)

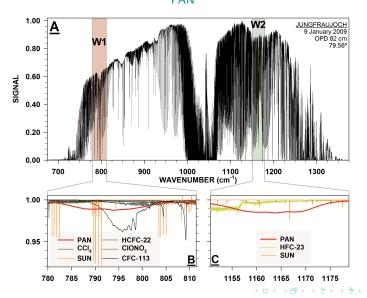
◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@


Introduction PAN

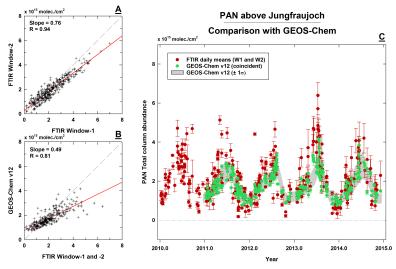
- Peroxyacetyl nitrate (*CH*₃*COO*₂*NO*₂, PAN)
- Main tropospheric reservoir of NO_x ($NO + NO_2$)
- Anthropogenic and natural sources \rightarrow fossil fuel combustion, biomass burning, lightning, NMVOCs emissions
- NO_x can travel far from the regions of emission → Formation of tropospheric ozone → Damages air quality
- FTIR total columns compared with a GEOS-Chem simulation and with total columns from IASI satellite observations

PAN 000000000


NDACC stations

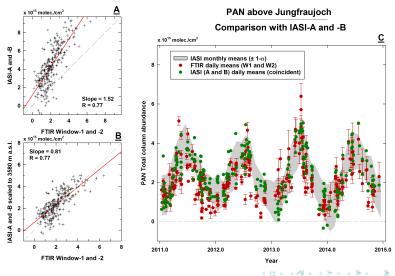
FTIR observations

Site	Latitude	Longitude	Altitude (m a.s.l.)	Team and Reference
Eureka (Canada)	80.05°N	86.42°W	610	University of Toronto (Batchelor et al., 2009)
Ny Ålesund (Norway)	$78.92^{\circ}N$	11.93°E	24	University of Bremen (Notholt et al., 1997)
Jungfraujoch (Switzerland)	46.55°N	$7.98^{\circ}E$	3,580	University of Liège (Zander et al., 2008)
Arrival Heights (Antarctica)	77.83°S	$166.67^{\circ}E$	184	NIWA (Wood et al., 2002)


IR Spectra

996

Model and FTIR data comparison


Jungfraujoch Station

(日)


Satellite and FTIR data comparison

Jungfraujoch Station

Trend analysis

Jungfraujoch Station

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Conclusions

- First retrievals of PAN from ground-based FTIR solar spectra
- Absorption features are broad, unstructured, and weak
- Total columns: essentially troposphere
- Seasonal modulation: minimun in winter and maximum in summer
- Consistent with global GEOS-Chem simulation and IASI observations
- Prospects for the production of global multidecadal time series of PAN

Mahieu et al., 2021 (doi: 10.1525/elementa.2021.00027)

Retrievals of trichlorofluoromethane (CFC-11) and peroxyacetyl nitrate (PAN) from FTIR ground-based solar spectra and analysis of their long-time series above NDACC stations

> Irene Pardo Cantos PhD Student

Supervisor: Emmanuel Mahieu

GIRPAS Research Unit SPHERES University of Liège (Belgium)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@