On periodic alternate base expansions.

Emilie Charlier, Célia Cisternino, Savinien Kreczman Department of Mahtematics, University of Liège

5 September 2022

Representations in base β

Definition

To a sequence $(a_i)_{i \in \mathbb{N}}$, associate the number

$$\mathit{val}_eta((a_i)_{i\in\mathbb{N}}) = \sum_{i=1}^\infty rac{a_i}{eta^i}.$$

This sequence is called a β -representation of α if $val_{\beta}((a_i)) = \alpha$.

Representations in base β

Definition

To a sequence $(a_i)_{i \in \mathbb{N}}$, associate the number

$$\operatorname{val}_{eta}((a_i)_{i\in\mathbb{N}})=\sum_{i=1}^{\infty}rac{a_i}{eta^i}.$$

This sequence is called a β -representation of α if $val_{\beta}((a_i)) = \alpha$.

This is not injective.

Definition

The sequence $(a_i)_{i \in \mathbb{N}}$ is called the β -expansion of α if furthermore $\frac{1}{\beta^j} > \sum_{i=j+1}^{\infty} \frac{a_i}{\beta^i} \forall j$.

Some basic properties

A way to obtain the β -expansion of α : define

$$a_0 = 0, \rho^{(0)} = \alpha, a_{i+1} = \lfloor \beta \rho^{(i)} \rfloor, \rho^{(i+1)} = \{ \beta \rho^{(i)} \} = T_{\beta}(\rho^{(i)}).$$

Proposition

The sequence $(a_i)_{i \in \mathbb{N}}$ is indeed a representation of α . The sequence $(a_i)_{i \in \mathbb{N}}$ is periodic if and only if the sequence $(\rho^{(i)})_{i \in \mathbb{N}}$ is periodic. Further, we have

$$\beta^{n} \alpha = \beta^{n-1} a_{1} + \dots + \beta a_{n-1} + a_{n} + \rho^{(n)}$$
$$\rho^{(n)} = \beta^{n} (\alpha - \sum_{i=1}^{n} \frac{a_{i}}{\beta^{i}})$$
$$\rho^{(n)} = \mathbf{val}_{\beta}((a_{i+n})_{i \in \mathbb{N}})$$
$$\rho^{(n+1)} = \beta \rho^{(n)} - a_{n+1}.$$

First example

Take
$$\beta = \sqrt{2}, \alpha = 2/3$$
. We have

hence the $\sqrt{2}$ -expansion of 2/3 is $(0100)^{\omega}$.

Second example

Still with $\beta = \sqrt{2}$, take now $\alpha = 4/5$. We have

i	$\sqrt{2} ho^{(i-1)}$	ai	$ ho^{(i)}$
0			4/5
1	$4\sqrt{2}/5pprox 1.13$	1	$4\sqrt{2}/5 - 1$
2	$8/5-\sqrt{2}pprox 0.18$	0	$8/5-\sqrt{2}$
3	$8\sqrt{2}/5-2pprox 0.26$	0	$8\sqrt{2}/5 - 2$
4	$16/5-2\sqrt{2}\approx 0.37$	0	$16/5 - 2\sqrt{2}$
5	$16\sqrt{2}/5-4\approx 0.53$	0	$16\sqrt{2}/5 - 4$
6	$32/5-4\sqrt{2}\approx 0.74$	0	$32/5 - 4\sqrt{2}$
7	$32\sqrt{2}/5-8\approx 1.05$	1	$32\sqrt{2}/5-9$

and here we can prove that the $\sqrt{2}$ -expansion of 4/5 is not periodic.

Periodicity?

The following propositions hold:

Proposition (Folklore)

If β is an integer, all rational numbers have a periodic expansion.

Proposition

If α has a periodic expansion, then $\alpha \in \mathbb{Q}(\beta)$.

Proposition (Schmidt, 1980)

If 1/q has a periodic expansion for any $q \in \mathbb{N}$, then β is an algebraic integer.

Can we give necessary and sufficient conditions on β for all rational numbers to have a periodic expansion?

Schmidt's result

Can we give necessary and sufficient conditions on β for all rational numbers to have a periodic expansion?

Schmidt's result

Can we give necessary and sufficient conditions on β for all rational numbers to have a periodic expansion?

Definition

A Pisot number is an algebraic integer whose Galois conjugates all have modulus < 1, and a Salem number is an algebraic integer whose Galois conjugates all have modulus ≤ 1 , with equality in at least one case.

Schmidt's result

Can we give necessary and sufficient conditions on β for all rational numbers to have a periodic expansion?

Definition

A Pisot number is an algebraic integer whose Galois conjugates all have modulus < 1, and a Salem number is an algebraic integer whose Galois conjugates all have modulus ≤ 1 , with equality in at least one case.

Theorem (Schmidt, 1980)

If $\beta > 1$ is a real number such that $\mathbb{Q} \cap [0, 1[\subset \operatorname{Per}(\beta), \text{ then } \beta \text{ is either a Pisot number or a Salem number.}$ If β is a Pisot number, then $\operatorname{Per}(\beta) = \mathbb{Q}(\beta) \cap [0, 1[$.

Necessary condition: decomposition of remainders in $\mathbb{Q}(\beta)$

Let β have minimal polynomial $x^d + \sum_{i=0}^{d-1} b_i x^i$. Any $\alpha \in \mathbb{Q}(\beta)$ can be written as $\alpha = \frac{1}{q} \sum_{i=0}^{d-1} p_i \beta^i$ with integers p_i . If q is fixed, there exists at most one such decomposition.

Lemma (Schmidt, 1980)

With the notations above, for every $n \in \mathbb{N}$ there exists a unique *d*-uple of integers $(r_1^{(n)}, ..., r_d^{(n)})$ such that

$$\rho^{(n)}(\alpha) = \frac{1}{q} \sum_{i=1}^{d} r_k^{(n)} \beta^{-k}.$$

Necessary condition: link to Galois conjugates

Let $\beta = \beta_1, ..., \beta_d$ be the roots of the minimal polynomial of β . Let $Per(\beta)$ be the set of real numbers in [0, 1[with ultimately periodic β -expansion.

Lemma (Schmidt, 1980)

For every $n \in \mathbb{N}$, $m \in \{1, ..., d\}$, we have

$$\beta_m^n \left(\frac{1}{q} \sum_{i=0}^{d-1} p_i \beta_m^i - \sum_{k=0}^n a_k \beta_m^{-k} \right) = \frac{1}{q} \sum_{k=1}^d r_k^{(n)} \beta_m^{-k}.$$

In particular, if $\alpha \in \mathbb{Q} \cap \text{Per}(\beta)$ and $|\beta_m| > 1$, we have

$$\alpha = \sum_{k=0}^{\infty} a_k \beta_m^{-k}.$$

Necessary condition: wrapping up

Theorem (Schmidt, 1980)

If $\beta > 1$ is a real number such that $\mathbb{Q} \cap [0, 1[\subset Per(\beta), then \beta]$ is either a Pisot number or a Salem number.

Proceed by contradiction and consider a periodic rational number whose representation is of the form $0.10^{l} w$ with w a word. Applying lemma 2 would give

$$\beta^{-1} + \sum_{k=l+2}^{\infty} a_k \beta^{-k} = \beta_m^{-1} + \sum_{k=l+2}^{\infty} a_k \beta_m^{-k}$$

Alternate bases

Expansions in an alternate base $(\beta_0, ..., \beta_{p-1})$ are obtained by alternating the transformations $T_{\beta_0}, ..., T_{\beta_{p-1}}$ rather than iterating T_{β} :

$$\boldsymbol{a}_{-1} = \boldsymbol{0}, \boldsymbol{\varrho}^{(0)} = \boldsymbol{\alpha}, \boldsymbol{a}_{i} = \lfloor \beta_{i\%\rho} \boldsymbol{\varrho}^{(i)} \rfloor, \boldsymbol{\varrho}^{(i+1)} = \{\beta_{i\%\rho} \boldsymbol{\varrho}^{(i)}\}$$

where *i*%*p* denotes *i* modulo *p*.

Alternate bases

Expansions in an alternate base $(\beta_0, ..., \beta_{p-1})$ are obtained by alternating the transformations $T_{\beta_0}, ..., T_{\beta_{p-1}}$ rather than iterating T_{β} :

$$\boldsymbol{a}_{-1} = \boldsymbol{0}, \boldsymbol{\varrho}^{(0)} = \boldsymbol{\alpha}, \boldsymbol{a}_{i} = \lfloor \beta_{i\%\rho} \boldsymbol{\varrho}^{(i)} \rfloor, \boldsymbol{\varrho}^{(i+1)} = \{\beta_{i\%\rho} \boldsymbol{\varrho}^{(i)}\}$$

where i%p denotes *i* modulo *p*. The value of a sequence of digits $(a_i)_{i \in \mathbb{N}}$ is

$$\sum_{i=0}^{\infty} \frac{a_i}{\beta_0\beta_1....\beta_{p-1}\beta_0...\beta_{i\%p}},$$

with i + 1 factors in the denominator.

Example

Let us consider
$$p = 2$$
, $\beta_0 = \frac{1 + \sqrt{13}}{2}$, $\beta_1 = \frac{5 + \sqrt{13}}{6}$ and
 $\alpha = 1$.
 $\frac{i}{2} \qquad \beta_{i\%2}\rho^{(i)} | a_i \qquad \rho^{(i+1)}$
 $1 \qquad 1 \qquad 1$
 $0 \qquad \frac{1 + \sqrt{13}}{2} \approx 2.30$
 $1 \qquad (\frac{1 + \sqrt{13}}{2} - 2) * \frac{5 + \sqrt{13}}{6} \approx 0.43$
 $2 \qquad \frac{1 + \sqrt{13}}{2} - 2) * \frac{5 + \sqrt{13}}{6} \approx 0.43$
 $2 \qquad (\frac{1 + \sqrt{13}}{2} - 2) * \frac{5 + \sqrt{13}}{6}$
 $3 \qquad 0 \qquad 0$

We wish to find necessary and sufficient conditions on $\beta_0, ..., \beta_{p-1}$ for all rational numbers to have a periodic expansion, and we wish to adapt Schmidt's work if possible. We let $\delta = \prod_{i=0}^{p-1} \beta_i$ and $\beta^{(i)}$ denotes the alternate base $(\beta_i, ..., \beta_{p-1}, \beta_0, ..., \beta_{i-1})$.

We wish to find necessary and sufficient conditions on $\beta_0, ..., \beta_{p-1}$ for all rational numbers to have a periodic expansion, and we wish to adapt Schmidt's work if possible. We let $\delta = \prod_{i=0}^{p-1} \beta_i$ and $\beta^{(i)}$ denotes the alternate base $(\beta_i, ..., \beta_{p-1}, \beta_0, ..., \beta_{i-1})$.

Recall

Proposition (Schmidt, 1980)

If 1/q has a periodic expansion for any $q \in \mathbb{N}$, then β is an algebraic integer.

Proving that δ is an algebraic integer is substantially harder than in the p = 1 case.

Proving that δ is an algebraic integer is substantially harder than in the p = 1 case.

Proposition (a twist on Charlier, Cisternino, Masáková, and Pelantová)

If for all $i \in \{0, ..., p-1\}$ there exists $q_i \in \mathbb{Z}$ and an ultimately periodic sequence $a^{(i)} \in \mathbb{Z}^{\mathbb{N}}$ that evaluates to $\frac{1}{q_i}$ in $\beta^{(i)}$, then δ is an algebraic integer. If furthermore, for all $i \in \{0, ..., p-1\}$, $a^{(i)}$ is in $\mathbb{N}^{\mathbb{N}}$ and $a_{np}^{(i)} \ge 1$ for some $n \ge 0$, then $\beta_i \in \mathbb{Q}(\delta) \forall i \in \{0, ..., p-1\}$.

In the following, we assume that δ is an algebraic integer and that $\beta_i \in \mathbb{Q}(\delta) \forall i \in \{0, ..., p-1\}$.

Adapting Schmidt: grouping digits

Recall that

Lemma (Schmidt, 1980)

With the notations above, for every $n \in \mathbb{N}$ there exists a unique *d*-uple of integers $(r_1^{(n)}, ..., r_d^{(n)})$ such that

$$\rho^{(n)}(\alpha) = \frac{1}{q} \sum_{i=1}^d r_k^{(n)} \beta^{-k}.$$

Transposing this lemma directly will not work.

Adapting Schmidt: grouping digits

Recall that

Lemma (Schmidt, 1980)

With the notations above, for every $n \in \mathbb{N}$ there exists a unique *d*-uple of integers $(r_1^{(n)}, ..., r_d^{(n)})$ such that

$$\rho^{(n)}(\alpha) = \frac{1}{q} \sum_{i=1}^d r_k^{(n)} \beta^{-k}.$$

Transposing this lemma directly will not work. Let

$$\begin{split} f_{\underline{\beta}}(a_0, ..., a_{p-1}) &= a_0 \beta_1 ... \beta_{p-1} + a_1 \beta_2 ... \beta_{p-1} + ... + a_{p-1} \\ \eta_k(\alpha) &= f(a_{kp}(\alpha), ..., a_{kp+p-1}(\alpha)) \\ \rho^{(n)}(\alpha) &= (T_{\beta_{p-1}} \circ ... \circ T_{\beta_0})^n(\alpha) \end{split}$$

Adapting Schmidt: grouping digits

We have $\eta_k(\alpha) \in \text{Digits}(\beta)$, where this last set is

$$f_{\underline{\beta}}(\{0,...,\lfloor\beta_0\rfloor\}\times ...\times \{0,...,\lfloor\beta_{p-1}\rfloor\})$$

Proposition

We have

$$\alpha = \sum_{i=0}^{\infty} \frac{\eta_k(\alpha)}{\delta^{k+1}}$$
$$\rho^{(n)}(\alpha) = \delta^n \left(\alpha - \sum_{i=0}^{n-1} \frac{\eta_k(\alpha)}{\delta^{k+1}}\right)$$
$$\rho^{(n+1)} = \delta\rho^{(n)} - \eta_n(\alpha)$$

Finally, let the minimal polynomial of δ be $x^d + \sum_{i=0}^{d-1} b_i x^i$.

Necessary condition

Every number γ in $\mathbb{Q}(\delta)$ can be decomposed as

 $\gamma = \frac{1}{q} \sum_{i=0}^{d-1} p_i \delta^i$. This decomposition is unique when q is fixed. For a given α , we consider this decomposition, choosing q to be the least common multiple of all the minimal q for α and the members of Digits(β).

Lemma (Charlier, Cisternino, K.)

For all $n \in \mathbb{N}$, there exists a unique d-uple $(r_1^{(n)}, ..., r_d^{(n)})$ of integers such that

$$\rho^{(n)}(\alpha) = \frac{1}{q} \sum_{i=1}^{d} r_k^{(n)} \delta^{-k}.$$

Necessary condition

Let $\delta, ..., \delta_d$ be the roots of the minimal polynomial of δ , and let ψ_k be the isomorphism from $\mathbb{Q}(\delta)$ to $\mathbb{Q}(\delta_k)$ that fixes \mathbb{Q} and maps δ to δ_k .

Lemma (Charlier, Cisternino, K.)

For all $\alpha \in \mathbb{Q}$ and $m \in \{1, ..., d\}$, we have

$$\delta_m^n\left(\frac{1}{q}\sum_{i=0}^{d-1}p_i\delta_m^i-\sum_{k=0}^{n-1}\psi_m(\eta_k(\alpha))\delta_m^{-k-1}\right)=\frac{1}{q}\sum_{k=1}^{d}r_k^{(n)}\delta_m^{-k}.$$

In particular, if $\alpha \in \mathbb{Q} \cap \text{Per}(\underline{\beta})$ and $|\delta_m| > 1$,

$$\alpha = \sum_{k=0}^{\infty} \psi_m(\eta_k(\alpha)) \delta_m^{-k-1}.$$

Necessary condition

Theorem (Charlier, Cisternino, K.)

If for all $i \in \{0, ..., p - 1\}$ there exists $q_i \in \mathbb{Z}$ and an ultimately periodic sequence $a^{(i)} \in \mathbb{Z}^{\mathbb{N}}$ that evaluates to $\frac{1}{q_i}$ in $\beta^{(i)}$, and for all $i \in \{0, ..., p - 1\}$, $a^{(i)}$ is in $\mathbb{N}^{\mathbb{N}}$ and $a_{np}^{(i)} \ge 1$ for some $n \ge 0$, and if additionally we have $\mathbb{Q} \cap [0, 1] \subset \operatorname{Per}(\beta)$, then δ is a Pisot number or a Salem number and $\beta_i \in \mathbb{Q}(\delta) \forall i \in \{1, ..., d\}$.

Sufficient condition

Lemma

The representation $(a_i)_{i \in \mathbb{N}}$ is periodic if and only if the representation $(\eta_k)_{k \in \mathbb{N}}$ is periodic.

Theorem (Charlier, Cisternino, K.)

If δ is a Pisot number and $\beta_i \in \mathbb{Q}(\delta) \forall i \in \{0, ..., p-1\}$, then

 $\mathbb{Q}(\delta) \cap [0,1[\subset \cap_{i=0}^{p-1}\operatorname{Per}(\beta^{(i)}).$

Remarks and open questions

- Schmidt's method is not the fastest way to prove the results cited here.
- The case where β is a Salem number is still not well understood, even when p = 1.
- Is there any way to only use β rather than all the $\beta^{(l)}$?

Thank you for your attention!