Introduction

Alternate bases where all rational numbers have periodic expansions.

Savinien Kreczman

8 June 2022

Introduction

Schmidt's work

Alternate bases

Representations in base β

For a number $\alpha \in [0, 1[$, a sequence $(a_i)_{i \in \mathbb{N}}$ such that $val_{\beta}((a_i)_{i \in \mathbb{N}}) = \sum_{i=1}^{\infty} \frac{a_i}{\beta^i} = \alpha$ is called a β -representation of α .

It is called the β -expansion of α if furthermore $\frac{1}{\beta^j} > \sum_{i=i+1}^{\infty} \frac{a_i}{\beta^i} \forall j$.

A way to obtain it : define

$$a_0 = 0, \rho^{(0)} = \alpha, a_{i+1} = \lfloor \beta \rho^{(i)} \rfloor, \rho^{(i+1)} = \{\beta \rho^{(i)}\} = T_{\beta}(\rho^{(i)}).$$

Some basic properties

We have

$$\beta \alpha = \lfloor \beta \alpha \rfloor + \{ \beta \alpha \} = a_1 + \rho^{(1)}$$

$$\beta^2 \alpha = \beta a_1 + \lfloor \beta \rho^{(1)} \rfloor + \{ \beta \rho^{(1)} \} = \beta a_1 + a_2 + \rho^{(2)}$$
...
$$\beta^n \alpha = \beta^{n-1} a_1 + ... + \beta a_{n-1} + a_n + \rho^{(n)}$$

Hence $(a_i)_{i\in\mathbb{N}}$ is indeed a representation of α . We have

$$\rho^{(n)} = \beta^n (\alpha - \sum_{i=1}^n \frac{a_i}{\beta^i}),$$

$$\rho^{(n)} = val_{\beta}((a_{i+n})_{i \in \mathbb{N}})$$

and

$$\rho^{(n+1)} = \beta \rho^{(n)} - a_{n+1}.$$

An example

Take $\beta = \sqrt{2}$ and $\alpha = 4/5$. We have

$$\begin{array}{c|ccccc} i & \sqrt{2}\rho^{(i-1)} & a_i & \rho^{(i)} \\ \hline 0 & & 4/5 \\ 1 & 4\sqrt{2}/5 \approx 1.13 & 1 & 4\sqrt{2}/5 - 1 \\ 2 & 8/5 - \sqrt{2} \approx 0.18 & 0 & 8/5 - \sqrt{2} \\ 3 & 8\sqrt{2}/5 - 2 \approx 0.26 & 0 & 8\sqrt{2}/5 - 2 \\ 4 & 16/5 - 2\sqrt{2} \approx 0.37 & 0 & 16/5 - 2\sqrt{2} \\ 5 & 16\sqrt{2}/5 - 4 \approx 0.53 & 0 & 16\sqrt{2}/5 - 4 \\ 6 & 32/5 - 4\sqrt{2} \approx 0.74 & 0 & 32/5 - 4\sqrt{2} \\ 7 & 32\sqrt{2}/5 - 8 \approx 1.05 & 1 & 32\sqrt{2}/5 - 9 \end{array}$$

and here we can prove that the $\sqrt{2}$ -expansion of 4/5 is not periodic.

Periodicity?

The following propositions hold:

Proposition

If β is an integer, all rational numbers have a periodic expansion.

Proposition

If α has a periodic expansion, then $\alpha \in \mathbb{Q}(\beta)$.

Proposition (1)

If 1/q has a periodic expansion for any $q \in \mathbb{N}$, then β is an algebraic integer.

Can we give necessary and sufficient conditions on β for all rational numbers to have a periodic expansion?

Necessary condition : decomposition of remainders in $\mathbb{Q}(\beta)$

Let β have minimal polynomial $x^d + \sum_{i=0}^{d-1} b_i x^i$. Any $\alpha \in \mathbb{Q}(\beta)$ can be written as $\alpha = \frac{1}{q} \sum_{i=0}^{d-1} p_i \beta^i$ with integers p_i . If q is fixed, there exists at most one such decomposition.

Lemma (1)

With the notations above, for every $n \in \mathbb{N}$ there exists a unique d-uple of integers $(r_1^{(n)}, ..., r_d^{(n)})$ such that

$$\rho^{(n)}(\alpha) = \frac{1}{q} \sum_{i=1}^{d} r_k^{(n)} \beta^{-k}.$$

Necessary condition: link to Galois conjugates

Let $\beta = \beta_1, ..., \beta_d$ be the roots of the minimal polynomial of β . Let $Per(\beta)$ be the set of real numbers in [0, 1] with ultimately periodic β -expansion.

Lemma (2)

For every $n \in \mathbb{N}$, $m \in \{1, ..., d\}$, we have

$$\beta_m^n \left(\frac{1}{q} \sum_{i=0}^{d-1} p_i \beta_m^i - \sum_{k=0}^n a_k \beta_m^{-k} \right) = \frac{1}{q} \sum_{k=1}^d r_k^{(n)} \beta_m^{-k}.$$

In particular, if $\alpha \in \mathbb{Q} \cap \operatorname{Per}(\beta)$ and $|\beta_m| > 1$, we have

$$\alpha = \sum_{k=0}^{\infty} a_k \beta_m^{-k}.$$

Recall that a Pisot number is an algebraic integer whose Galois conjugates all have modulus < 1, and a Salem number is an algebraic integer whose Galois conjugates all have modulus \le 1, with equality in at least one case.

Theorem (1)

If $\beta > 1$ is a real number such that $\mathbb{Q} \cap [0, 1[\subset \operatorname{Per}(\beta), \text{ then } \beta \text{ is either a Pisot number or a Salem number.}$

Sufficient condition

Theorem (2)

If β is a Pisot number, then $Per(\beta) = \mathbb{Q}(\beta) \cap [0, 1[$.

Alternate bases

Expansions in an alternate base $(\beta_0,...,\beta_{p-1})$ are obtained by alternating the transformations $T_{\beta_0},...,T_{\beta_{p-1}}$ rather than iterating T_{β} :

$$\mathbf{a}_{-1} = \mathbf{0}, \varrho^{(0)} = \alpha, \mathbf{a}_{i} = \lfloor \beta_{i\%p} \varrho^{(i)} \rfloor, \varrho^{(i+1)} = \{\beta_{i\%p} \varrho^{(i)}\}$$

where i%p denotes i modulo p.

The value of a sequence of digits $(a_i)_{i\in\mathbb{N}}$ is

$$\sum_{i=0}^{\infty} \frac{a_i}{\beta_0 \beta_1 \dots \beta_{p-1} \beta_0 \dots \beta_{i\%p}},$$

with i + 1 factors in the denominator.

We wish to find necessary and sufficient conditions on $\beta_0, ..., \beta_{p-1}$ for all rational numbers to have a periodic expansion, and we wish to adapt Schmidt's work if possible.

We let $\delta = \prod_{i=0}^{p-1} \beta_i$ and $\beta^{(i)}$ denotes the alternate base $(\beta_i, ..., \beta_{p-1}, \beta_0, ..., \beta_{i-1})$.

Example

Adapting Schmidt: First steps

Proving that δ is an algebraic integer is substantially harder than in the p=1 case.

Proposition (a twist on Charlier, Cisternino, Masáková, and Pelantová)

If for all $i \in \{0,...,p-1\}$ there exists $q_i \in \mathbb{Z}$ and an ultimately periodic sequence $a^{(i)} \in \mathbb{Z}^{\mathbb{N}}$ that evaluates to $\frac{1}{q_i}$ in $\beta^{(i)}$, then δ is an algebraic integer. If furthermore, for all $i \in \{0,...,p-1\}$, $a^{(i)}$ is in $\mathbb{N}^{\mathbb{N}}$ and $a^{(i)}_{np} \geq 1$ for some $n \geq 0$, then $\beta_i \in \mathbb{Q}(\delta) \forall i \in \{0,...,p-1\}$.

In the following, we assume that δ is an algebraic integer and that $\beta_i \in \mathbb{Q}(\delta) \forall i \in \{0,...,p-1\}.$

Adapting Schmidt: grouping digits

Let $f_{\underline{\beta}}(a_0,...,a_{p-1}) = a_0\beta_1...\beta_{p-1} + a_1\beta_2...\beta_{p-1} + ... + a_{p-1}$. Then, let $\eta_k(\alpha) = f(a_{kp}(\alpha),...,a_{kp+p-1}(\alpha))$. We have

$$\alpha = \sum_{k=0}^{\infty} \frac{\eta_k(\alpha)}{\delta^{k+1}}.$$

We have $\eta_k(\alpha) \in \text{Digits}(\beta)$, where this last set is

$$f_{\beta}(\{0,...,\lfloor\beta_0\rfloor\}\times...\times\{0,...,\lfloor\beta_{p-1}\rfloor\})$$

Additionally, let $\rho^{(n)}(\alpha) = (T_{\beta_{p-1}} \circ ... \circ T_{\beta_0})^n(\alpha)$. We get

$$\rho^{(n)}(\alpha) = \delta^n(\alpha - \sum_{i=0}^{n-1} \frac{\eta_k(\alpha)}{\delta^{k+1}}) \text{ and } \rho^{(n+1)} = \delta\rho^{(n)} - \eta_n(\alpha).$$

Finally, let the minimal polynomial of δ be $x^d + \sum_{i=0}^{d-1} b_i x^i$.

Every number γ in $\mathbb{Q}(\delta)$ can be decomposed as

$$\gamma = \frac{1}{q} \sum_{i=0}^{d-1} p_i \delta^i$$
. This decomposition is unique when q is fixed.

For a given α , we consider this decomposition, choosing q to be the least common multiple of all the minimal q for α and the members of $\operatorname{Digits}(\beta)$.

Lemma

For all $n \in \mathbb{N}$, there exists a unique d-uple $(r_1^{(n)}, ..., r_d^{(n)})$ of integers such that

$$\rho^{(n)}(\alpha) = \frac{1}{q} \sum_{i=1}^{d} r_k^{(n)} \delta^{-k}.$$

Let $\delta, ..., \delta_d$ be the roots of the minimal polynomial of δ , and let ψ_k be the isomorphism from $\mathbb{Q}(\delta)$ to $\mathbb{Q}(\delta_k)$ that fixes \mathbb{Q} and maps δ to δ_k .

Lemma

For all $\alpha \in \mathbb{Q}$ and $m \in \{1, ..., d\}$, we have

$$\delta_m^n \left(\frac{1}{q} \sum_{i=0}^{d-1} p_i \delta_m^i - \sum_{k=0}^{n-1} \psi_m(\eta_k(\alpha)) \delta_m^{-k-1} \right) = \frac{1}{q} \sum_{k=1}^d r_k^{(n)} \delta_m^{-k}.$$

In particular, if $\alpha \in \mathbb{Q} \cap \operatorname{Per}(\underline{\beta})$ and $|\delta_m| > 1$,

$$\alpha = \sum_{k=0}^{\infty} \psi_m(\eta_k(\alpha)) \delta_m^{-k-1}.$$

Theorem

If for all $i \in \{0,...,p-1\}$ there exists $q_i \in \mathbb{Z}$ and an ultimately periodic sequence $a^{(i)} \in \mathbb{Z}^{\mathbb{N}}$ that evaluates to $\frac{1}{q_i}$ in $\beta^{(i)}$, and for all $i \in \{0,...,p-1\}$, $a^{(i)}$ is in $\mathbb{N}^{\mathbb{N}}$ and $a^{(i)}_{np} \geq 1$ for some $n \geq 0$, and if additionally we have $\mathbb{Q} \cap [0,1[\subset \operatorname{Per}(\underline{\beta}), \text{ then } \delta \text{ is a Pisot number or a Salem number and } \beta_i \in \mathbb{Q}(\delta) \forall i \in \{1,...,d\}.$

Sufficient condition

Lemma

The representation $(a_i)_{i\in\mathbb{N}}$ is periodic if and only if the representation $(\eta_k)_{k\in\mathbb{N}}$ is periodic.

Theorem

If δ is a Pisot number and $\beta_i \in \mathbb{Q}(\delta) \forall i \in \{0,...,p-1\}$, then

$$\mathbb{Q}(\delta) \cap [0,1[\subset \cap_{i=0}^{p-1} \operatorname{Per}(\beta^{(i)}).$$

Remarks and open questions

- Schmidt's method is not the fastest way to prove the results cited here.
- The case where β is a Salem number is still not well understood, even when p = 1.
- Is there any way to only use β rather than all the $\beta^{(i)}$?

Thank you for your attention!