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Representations in base β

For a number α ∈ [0,1[, a sequence (ai)i∈N such that

valβ((ai)i∈N) =
∞∑

i=1

ai

β i = α is called a β-representation of α.

It is called the β-expansion of α if furthermore
1
β j >

∞∑
i=j+1

ai

β i ∀j .

A way to obtain it : define

a0 = 0, ρ(0) = α,ai+1 = ⌊βρ(i)⌋, ρ(i+1) = {βρ(i)} = Tβ(ρ
(i)).
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Some basic properties

We have

βα = ⌊βα⌋+ {βα} = a1 + ρ(1)

β2α = βa1 + ⌊βρ(1)⌋+ {βρ(1)} = βa1 + a2 + ρ(2)

...

βnα = βn−1a1 + ...+ βan−1 + an + ρ(n)

Hence (ai)i∈N is indeed a representation of α . We have

ρ(n) = βn(α−
n∑

i=1

ai

β i ),

ρ(n) = valβ((ai+n)i∈N)

and
ρ(n+1) = βρ(n) − an+1.
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An example

Take β =
√

2 and α = 4/5. We have

i
√

2ρ(i−1) ai ρ(i)

0 4/5
1 4

√
2/5 ≈ 1.13 1 4

√
2/5 − 1

2 8/5 −
√

2 ≈ 0.18 0 8/5 −
√

2
3 8

√
2/5 − 2 ≈ 0.26 0 8

√
2/5 − 2

4 16/5 − 2
√

2 ≈ 0.37 0 16/5 − 2
√

2
5 16

√
2/5 − 4 ≈ 0.53 0 16

√
2/5 − 4

6 32/5 − 4
√

2 ≈ 0.74 0 32/5 − 4
√

2
7 32

√
2/5 − 8 ≈ 1.05 1 32

√
2/5 − 9

and here we can prove that the
√

2-expansion of 4/5 is not
periodic.
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Periodicity?

The following propositions hold :

Proposition
If β is an integer, all rational numbers have a periodic
expansion.

Proposition

If α has a periodic expansion, then α ∈ Q(β).

Proposition (1)

If 1/q has a periodic expansion for any q ∈ N, then β is an
algebraic integer.

Can we give necessary and sufficient conditions on β for all
rational numbers to have a periodic expansion?
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Necessary condition : decomposition of remainders in
Q(β)

Let β have minimal polynomial xd +
∑d−1

i=0 bix i . Any α ∈ Q(β)

can be written as α =
1
q

d−1∑
i=0

piβ
i with integers pi . If q is fixed,

there exists at most one such decomposition.

Lemma (1)
With the notations above, for every n ∈ N there exists a unique
d-uple of integers (r (n)1 , ..., r (n)d ) such that

ρ(n)(α) =
1
q

d∑
i=1

r (n)k β−k .
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Necessary condition : link to Galois conjugates

Let β = β1, ..., βd be the roots of the minimal polynomial of β.
Let Per(β) be the set of real numbers in [0,1[ with ultimately
periodic β-expansion.

Lemma (2)

For every n ∈ N,m ∈ {1, ...,d}, we have

βn
m

(
1
q

d−1∑
i=0

piβ
i
m −

n∑
k=0

akβ
−k
m

)
=

1
q

d∑
k=1

r (n)k β−k
m .

In particular, if α ∈ Q ∩ Per(β) and |βm| > 1, we have

α =
∞∑

k=0

akβ
−k
m .
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Necessary condition

Recall that a Pisot number is an algebraic integer whose Galois
conjugates all have modulus < 1, and a Salem number is an
algebraic integer whose Galois conjugates all have modulus
≤ 1, with equality in at least one case.

Theorem (1)

If β > 1 is a real number such that Q ∩ [0,1[⊂ Per(β), then β is
either a Pisot number or a Salem number.
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Sufficient condition

Theorem (2)

If β is a Pisot number, then Per(β) = Q(β) ∩ [0,1[.
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Alternate bases

Expansions in an alternate base (β0, ..., βp−1) are obtained by
alternating the transformations Tβ0 , ...,Tβp−1 rather than
iterating Tβ :

a−1 = 0, ϱ(0) = α,ai = ⌊βi%pϱ
(i)⌋, ϱ(i+1) = {βi%pϱ

(i)}

where i%p denotes i modulo p.
The value of a sequence of digits (ai)i∈N is

∞∑
i=0

ai

β0β1....βp−1β0...βi%p
,

with i + 1 factors in the denominator.
We wish to find necessary and sufficient conditions on
β0, ..., βp−1 for all rational numbers to have a periodic
expansion, and we wish to adapt Schmidt’s work if possible.
We let δ =

∏p−1
i=0 βi and β(i) denotes the alternate base

(βi , ..., βp−1, β0, ..., βi−1).
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Example

Let us consider p = 2, β0 =
1 +

√
13

2
, β1 =

5 +
√

13
6

and
α = 1.

i βi%2ρ
(i) ai ρ(i+1)

−1 1
0 1+

√
13

2 ≈ 2.30 2 1+
√

13
2 − 2

1 (1+
√

13
2 − 2) ∗ 5+

√
13

6 ≈ 0.43 0 (1+
√

13
2 − 2) ∗ 5+

√
13

6
2 (1+

√
13

2 − 2) ∗ (5+
√

13
6 ) ∗ (1+

√
13

2 ) = 1 1 0
3 0 0 0
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Adapting Schmidt : First steps

Proving that δ is an algebraic integer is substantially harder
than in the p = 1 case.

Proposition (a twist on Charlier, Cisternino, Masáková, and
Pelantová)

If for all i ∈ {0, ...,p − 1} there exists qi ∈ Z and an ultimately
periodic sequence a(i) ∈ ZN that evaluates to 1

qi
in β(i), then δ is

an algebraic integer. If furthermore, for all i ∈ {0, ...,p − 1}, a(i)

is in NN and a(i)
np ≥ 1 for some n ≥ 0, then

βi ∈ Q(δ)∀i ∈ {0, ...,p − 1}.

In the following, we assume that δ is an algebraic integer and
that βi ∈ Q(δ)∀i ∈ {0, ...,p − 1}.
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Adapting Schmidt : grouping digits

Let fβ(a0, ...,ap−1) = a0β1...βp−1 + a1β2...βp−1 + ...+ ap−1.
Then, let ηk (α) = f (akp(α), ...,akp+p−1(α)). We have

α =
∞∑

i=0

ηk (α)

δk+1 .

We have ηk (α) ∈ Digits(β), where this last set is
fβ({0, ..., ⌊β0⌋} × ...× {0, ..., ⌊βp−1⌋})
Additionally, let ρ(n)(α) = (Tβp−1 ◦ ... ◦ Tβ0)

n(α). We get

ρ(n)(α) = δn(α−
n−1∑
i=0

ηk (α)

δk+1 ) and ρ(n+1) = δρ(n) − ηn(α).

Finally, let the minimal polynomial of δ be xd +
∑d−1

i=0 bix i .
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Necessary condition

Every number γ in Q(δ) can be decomposed as

γ =
1
q
∑d−1

i=0 piδ
i . This decomposition is unique when q is fixed.

For a given α, we consider this decomposition, choosing q to
be the least common multiple of all the minimal q for α and the
members of Digits(β).

Lemma

For all n ∈ N, there exists a unique d-uple (r (n)1 , ..., r (n)d ) of
integers such that

ρ(n)(α) =
1
q

d∑
i=1

r (n)k δ−k .
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Necessary condition

Let δ, ..., δd be the roots of the minimal polynomial of δ, and let
ψk be the isomorphism from Q(δ) to Q(δk ) that fixes Q and
maps δ to δk .

Lemma
For all α ∈ Q and m ∈ {1, ...,d}, we have

δn
m

(
1
q

d−1∑
i=0

piδ
i
m −

n−1∑
k=0

ψm(ηk (α))δ
−k−1
m

)
=

1
q

d∑
k=1

r (n)k δ−k
m .

In particular, if α ∈ Q ∩ Per(β) and |δm| > 1,

α =
∞∑

k=0

ψm(ηk (α))δ
−k−1
m .
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Necessary condition

Theorem
If for all i ∈ {0, ...,p − 1} there exists qi ∈ Z and an ultimately
periodic sequence a(i) ∈ ZN that evaluates to 1

qi
in β(i), and for

all i ∈ {0, ...,p − 1}, a(i) is in NN and a(i)
np ≥ 1 for some n ≥ 0,

and if additionally we have Q ∩ [0,1[⊂ Per(β), then δ is a Pisot
number or a Salem number and βi ∈ Q(δ)∀i ∈ {1, ...,d}.
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Sufficient condition

Lemma
The representation (ai)i∈N is periodic if and only if the
representation (ηk )k∈N is periodic.

Theorem
If δ is a Pisot number and βi ∈ Q(δ)∀i ∈ {0, ...,p − 1}, then

Q(δ) ∩ [0,1[⊂ ∩p−1
i=0 Per(β(i)).
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Remarks and open questions

Schmidt’s method is not the fastest way to prove the
results cited here.
The case where β is a Salem number is still not well
understood, even when p = 1.
Is there any way to only use β rather than all the β(i)?



Introduction Schmidt’s work Alternate bases

Thank you for your attention!
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