# Alternate bases where all rational numbers have periodic representations. 

Savinien Kreczman

March 2022
(2) Schmidt's work
(3) Alternate bases

## Representations in base $\beta$

For a number $\alpha \in\left[0,1\left[\right.\right.$, a sequence $\left(a_{i}\right)_{i \in \mathbb{N}}$ such that
$\operatorname{val}_{\beta}\left(\left(a_{i}\right)_{i \in \mathbb{N}}\right)=\sum_{i=1}^{\infty} \frac{a_{i}}{\beta^{i}}=\alpha$ is called a $\beta$-representation of $\alpha$.
It is called the $\beta$-expansion of $\alpha$ if furthermore $\frac{1}{\beta^{j}}>\sum_{i=j+1}^{\infty} \frac{a_{i}}{\beta^{i}} \forall j$.
A way to obtain it : define

$$
a_{0}=0, \rho^{(0)}=\alpha, a_{i+1}=\left\lfloor\beta \rho^{(i)}\right\rfloor, \rho^{(i+1)}=\left\{\beta \rho^{(i)}\right\}=T_{\beta}\left(\rho^{(i)}\right) .
$$

## Some basic properties

We have

$$
\begin{aligned}
\beta \alpha & =\lfloor\beta \alpha\rfloor+\{\beta \alpha\}=a_{1}+\rho^{(1)} \\
\beta^{2} \alpha & =\beta a_{1}+\left\lfloor\beta \rho^{(1)}\right\rfloor+\left\{\beta \rho^{(1)}\right\}=\beta a_{1}+a_{2}+\rho^{(2)} \\
\quad \ldots & \\
\beta^{n} \alpha & =\beta^{n-1} a_{1}+\ldots+\beta a_{n-1}+a_{n}+\rho^{(n)}
\end{aligned}
$$

Hence $\left(a_{i}\right)_{i \in \mathbb{N}}$ is indeed a representation of $\alpha$. We have

$$
\begin{aligned}
& \rho^{(n)}=\beta^{n}\left(\alpha-\sum_{i=1}^{n} \frac{a_{i}}{\beta^{i}}\right), \\
& \rho^{(n)}=\operatorname{val}_{\beta}\left(\left(a_{i+n}\right)_{i \in \mathbb{N}}\right)
\end{aligned}
$$

and

$$
\rho^{(n+1)}=\beta \rho^{(n)}-a_{n+1} .
$$

## An example

Take $\beta=\sqrt{2}, \alpha=2 / 3$. We have

| $i$ | $\sqrt{2} \rho^{(i-1)}$ | $a_{i}$ | $\rho^{(i)}$ |
| :--- | ---: | :---: | :---: |
| 0 |  |  | $2 / 3$ |
| 1 | $2 \sqrt{2} / 3 \approx 0.94$ | 0 | $2 \sqrt{2} / 3$ |
| 2 | $4 / 3$ | 1 | $1 / 3$ |
| 3 | $\sqrt{2} / 3$ | 0 | $\sqrt{(2) / 3}$ |
| 4 | $2 / 3$ | 0 | $2 / 3$ |

hence the $\sqrt{2}$-expansion of $2 / 3$ is $(0100)^{\omega}$.

## Another example

Take now $\alpha=4 / 5$. We have

| $i$ | $\sqrt{2} \rho^{(i-1)}$ | $a_{i}$ | $\rho^{(i)}$ |
| :--- | ---: | :---: | :---: |
| 0 |  |  | $4 / 5$ |
| 1 | $4 \sqrt{2} / 5 \approx 1.13$ | 1 | $4 \sqrt{2} / 5-1$ |
| 2 | $8 / 5-\sqrt{2} \approx 0.18$ | 0 | $8 / 5-\sqrt{2}$ |
| 3 | $8 \sqrt{2} / 5-2 \approx 0.26$ | 0 | $8 \sqrt{2} / 5-2$ |
| 4 | $16 / 5-2 \sqrt{2} \approx 0.37$ | 0 | $16 / 5-2 \sqrt{2}$ |
| 5 | $16 \sqrt{2} / 5-4 \approx 0.53$ | 0 | $16 \sqrt{2} / 5-4$ |
| 6 | $32 / 5-4 \sqrt{2} \approx 0.74$ | 0 | $32 / 5-4 \sqrt{2}$ |
| 7 | $32 \sqrt{2} / 5-8 \approx 1.05$ | 1 | $32 \sqrt{2} / 5-9$ |

and here we can prove that the $\sqrt{2}$-expansion of $4 / 5$ is not periodic

## Periodicity?

The following propositions hold :
Proposition
If $\beta$ is an integer, all rational numbers have a periodic expansion.

## Proposition

If $\alpha$ has a periodic expansion, then $\alpha \in \mathbb{Q}(\beta)$.

## Proposition (1)

If $1 / q$ has a periodic expansion for any $q \in \mathbb{N}$, then $\beta$ is an algebraic integer.

Can we give necessary and sufficient conditions on $\beta$ for all rational numbers to have a periodic expansion?

## Necessary condition : decomposition of remainders in

 $\mathbb{Q}(\beta)$Let $\beta$ have minimal polynomial $x^{d}+\sum_{i=0}^{d-1} b_{i} x^{i}$. Any $\alpha \in \mathbb{Q}(\beta)$
can be written as $\alpha=\frac{1}{q} \sum_{i=0}^{d-1} p_{i} \beta^{i}$ with integers $p_{i}$. If $q$ is fixed,
there exists at most one such decomposition.
Lemma (1)
With the notations above, for every $n \in \mathbb{N}$ there exists a unique $d$-uple of integers $\left(r_{1}^{(n)}, \ldots, r_{d}^{(n)}\right)$ such that

$$
\rho^{(n)}(\alpha)=\frac{1}{q} \sum_{i=1}^{d} r_{k}^{(n)} \beta^{-k} .
$$

## Necessary condition : link to Galois conjugates

Let $\beta=\beta_{1}, \ldots, \beta_{d}$ be the roots of the minimal polynomial of $\beta$. Let $\operatorname{Per}(\beta)$ be the set of real numbers in $[0,1$ [ with ultimately periodic $\beta$-expansion.

## Lemma (2)

For every $n \in \mathbb{N}, m \in\{1, \ldots, d\}$, we have

$$
\beta_{m}^{n}\left(\frac{1}{q} \sum_{i=0}^{d-1} p_{i} \beta_{m}^{i}-\sum_{k=0}^{n} a_{k} \beta_{m}^{-k}\right)=\frac{1}{q} \sum_{k=1}^{d} r_{k}^{(n)} \beta_{m}^{-k}
$$

In particular, if $\alpha \in \operatorname{Per}(\beta)$ and $\left|\beta_{m}\right|>1$,

$$
\frac{1}{q} \sum_{i=0}^{d-1} p_{i} \beta_{m}^{i}=\sum_{k=0}^{\infty} a_{k} \beta_{m}^{-k}
$$

Note that if $\alpha \in \mathbb{Q}$, then $p_{1}=\ldots=p_{d-1}=0$.

## Necessary condition

Recall that a Pisot number is an algebraic integer whose Galois conjugates all have modulus $<1$, and a Salem number is an algebraic integer whose Galois conjugates all have modulus $\leq 1$, with equality in at least one case.

## Theorem (1)

If $\beta>1$ is a real number such that $\mathbb{Q} \cap[0,1[\subset \operatorname{Per}(\beta)$, then $\beta$ is either a Pisot number or a Salem number.

## Sufficient condition

Let $\rho_{m}^{(n)}=\frac{1}{q} \sum_{k=1}^{d} r_{k}^{(n)} \beta_{m}^{-k}$.

## Lemma (3)

The following are equivalent :

- $\alpha \in \operatorname{Per}(\beta)$.
- $\rho^{(n)}$ is periodic.
- $r_{k}^{(n)}$ is bounded independently of $k$ and $n$.
- $\rho_{m}^{(n)}$ is bounded independently of $m$ and $n$.


## Theorem (2)

If $\beta$ is a Pisot number, then $\operatorname{Per}(\beta)=\mathbb{Q}(\beta) \cap[0,1[$.

## Alternate bases

Expansions in an alternate base ( $\beta_{0}, \ldots, \beta_{p-1}$ ) are obtained by alternating the transformations $T_{\beta_{0}}, \ldots, T_{\beta_{p-1}}$ rather than iterating $T_{\beta}$ :

$$
a_{-1}=0, \varrho^{(0)}=\alpha, a_{i}=\left\lfloor\beta_{i \% p} \varrho^{(i)}\right\rfloor, \varrho^{(i+1)}=\left\{\beta_{i \% p \varrho^{(i)}}\right\}
$$

where $i \% p$ denotes $i$ modulo $p$.
The value of a sequence of digits $\left(a_{i}\right)_{i \in \mathbb{N}}$ is

$$
\sum_{i=0}^{\infty} \frac{a_{i}}{\beta_{0} \beta_{1} \ldots \beta_{p-1} \beta_{0} \ldots \beta_{i \% p}},
$$

with $i+1$ factors in the denominator.
We wish to find necessary and sufficient conditions on $\beta_{0}, \ldots, \beta_{p-1}$ for all rational numbers to have a periodic expansion, and we wish to adapt Schmidt's work if possible. We let $\delta=\prod_{i=0}^{p-1} \beta_{i}$ and $\beta^{(i)}$ denotes the alternate base $\left(\beta_{i}, \ldots, \beta_{p-1}, \beta_{0}, \ldots, \beta_{i-1}\right)$.

## Example

Let us consider $p=2, \beta_{0}=\frac{1+\sqrt{13}}{2}, \beta_{1}=\frac{5+\sqrt{13}}{6}$ and $\alpha=1$.


## Adapting Schmidt : First steps

Proving that $\delta$ is an algebraic integer is substantially harder than in the $p=1$ case.

## Proposition (a twist on Charlier, Cisternino, Maśaková, and Pelantová)

If for all $i \in\{0, \ldots, p-1\}$ there exists $q_{i} \in \mathbb{Z}$ and an ultimately periodic sequence $a^{(i)} \in \mathbb{Z}^{\mathbb{N}}$ that evaluates to $\frac{1}{q_{i}}$ in $\beta^{(i)}$, then $\delta$ is an algebraic integer. If furthermore, for all $i \in\{0, \ldots, p-1\}$, $a^{(i)}$ is in $\mathbb{N}^{\mathbb{N}}$ and $a_{n p}^{(i)} \geq 1$ for some $n \geq 0$, then $\beta_{i} \in \mathbb{Q}(\delta) \forall i \in\{0, \ldots, p-1\}$.

In the following, we assume that $\delta$ is an algebraic integer and that $\beta_{i} \in \mathbb{Q}(\delta) \forall i \in\{0, \ldots, p-1\}$.

## Adapting Schmidt : grouping digits

Let $f_{\beta}\left(a_{0}, \ldots, a_{p-1}\right)=a_{0} \beta_{1} \ldots \beta_{p-1}+a_{1} \beta_{2} \ldots \beta_{p-1}+\ldots+a_{p-1}$. Then, let $\eta_{k}(\alpha)=f\left(a_{k p}(\alpha), \ldots, a_{k p+p-1}(\alpha)\right)$. We have
$\alpha=\sum_{i=0}^{\infty} \frac{\eta_{k}(\alpha)}{\delta^{k+1}}$.
We have $\eta_{k}(\alpha) \in \operatorname{Digits}(\beta)$, where this last set is $f_{\underline{\beta}}\left(\left\{0, \ldots,\left\lfloor\beta_{0}\right\rfloor\right\} \times \ldots \times\left\{0, \ldots,\left\lfloor\beta_{p-1}\right\rfloor\right\}\right)$
Additionally, let $\rho^{(n)}(\alpha)=\left(T_{\beta_{p-1}} \circ \ldots \circ T_{\beta_{0}}\right)^{n}(\alpha)$. We get
$\rho^{(n)}(\alpha)=\delta^{n}\left(\alpha-\sum_{i=0}^{n-1} \frac{\eta_{k}(\alpha)}{\delta^{k+1}}\right)$ and $\rho^{(n+1)}=\delta \rho^{(n)}-\eta_{n}(\alpha)$.
Finally, let the minimal polynomial of $\delta$ be $x^{d}+\sum_{i=0}^{d-1} b_{i} x^{i}$.

## Necessary condition

Every number $\gamma$ in $\mathbb{Q}(\delta)$ can be decomposed as
$\gamma=\frac{1}{q} \sum_{i=0}^{d-1} p_{i} \delta^{i}$. This decomposition is unique when $q$ is fixed.
For a given $\alpha$, we consider this decomposition, choosing $q$ to be the least common multiple of all the minimal $q$ for $\alpha$ and the members of Digits $(\underline{\beta})$.

## Lemma

For all $n \in \mathbb{N}$, there exists a unique $d$-uple $\left(r_{1}^{(n)}, \ldots, r_{d}^{(n)}\right)$ of integers such that

$$
\rho^{(n)}(\alpha)=\frac{1}{q} \sum_{i=1}^{d} r_{k}^{(n)} \delta^{-k}
$$

## Necessary condition

Let $\delta, \ldots, \delta_{d}$ be the roots of the minimal polynomial of $\delta$, and let $\psi_{k}$ be the isomorphism from $\mathbb{Q}(\delta)$ to $\mathbb{Q}\left(\delta_{k}\right)$ that fixes $\mathbb{Q}$ and maps $\delta$ to $\delta_{k}$.

## Lemma

For all $\alpha \in \mathbb{Q}$ and $m \in\{1, \ldots, d\}$, we have

$$
\delta_{m}^{n}\left(\frac{1}{q} \sum_{i=0}^{d-1} p_{i} \delta_{m}^{i}-\sum_{k=0}^{n-1} \psi_{m}\left(\eta_{k}(\alpha)\right) \delta_{m}^{-k-1}\right)=\frac{1}{q} \sum_{k=1}^{d} r_{k}^{(n)} \delta_{m}^{-k}
$$

In particular, if $\alpha \in \operatorname{Per}(\underline{\beta})$ and $\left|\delta_{m}\right|>1$,

$$
\frac{1}{q} \sum_{i=0}^{d-1} p_{i} \delta_{m}^{i}=\sum_{k=0}^{\infty} \psi_{m}\left(\eta_{k}(\alpha)\right) \delta_{m}^{-k-1}
$$

## Necessary condition

## Theorem

If for all $i \in\{0, \ldots, p-1\}$ there exists $q_{i} \in \mathbb{Z}$ and an ultimately periodic sequence $a^{(i)} \in \mathbb{Z}^{\mathbb{N}}$ that evaluates to $\frac{1}{q_{i}}$ in $\beta^{(i)}$, and for all $i \in\{0, \ldots, p-1\}, a^{(i)}$ is in $\mathbb{N}^{\mathbb{N}}$ and $a_{n p}^{(i)} \geq 1$ for some $n \geq 0$, and if additionally we have $\mathbb{Q} \cap[0,1[\subset \operatorname{Per}(\underline{\beta})$, then $\delta$ is a Pisot number or a Salem number and $\beta_{i} \in \mathbb{Q}(\delta) \forall i \in\{1, \ldots, d\}$.

## Sufficient condition

## Lemma

The representation $\left(a_{i}\right)_{i \in \mathbb{N}}$ is periodic if and only if the representation $\left(\eta_{k}\right)_{k \in \mathbb{N}}$ is periodic.

## Theorem

If $\delta$ is a Pisot number and $\beta_{i} \in \mathbb{Q}(\delta) \forall i \in\{0, \ldots, p-1\}$, then

$$
\mathbb{Q}(\delta) \cap\left[0,1\left[\subset \cap_{i=0}^{p-1} \operatorname{Per}\left(\beta^{(i)}\right)\right.\right.
$$

## Open questions

- The case where $\beta$ is a Salem number is still not well understood, even when $p=1$.
- Is there any way to only use $\underline{\beta}$ rather than all the $\underline{\beta^{(i)}}$ ?

Thank you for your attention!

