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A B S T R A C T

In the energy transition context, restructuring energy systems and making informed decisions on the optimal
energy mix and technologies is crucial. Energy system optimisation models (ESOMs) are commonly used for
this purpose. However, their focus on cost minimisation limits their usefulness in addressing other factors
like environmental sustainability and social equity. Moreover, by searching for only one global optimum, they
overlook diverse alternative solutions. This paper aims to overcome these limitations by exploring near-optimal
spaces in multi-objective optimisation problems, providing valuable insights for decision-makers. The authors
extend the concepts of epsilon-optimality and necessary conditions to multi-objective problems. They apply this
methodology to a case study of the Belgian energy transition in 2035 while considering both cost and energy
invested as objectives. The results reveal opportunities to reduce dependence on endogenous resources while
requiring substantial reliance on exogenous resources. They demonstrate the versatility of potential exogenous
resources and provide insights into objective trade-offs. This paper represents a pioneering application of the
proposed methodology to a real-world problem, highlighting the added value of near-optimal solutions in
multi-objective optimisation. Future work could address limitations, such as approximating the epsilon-optimal
space, investigating parametric uncertainty, and extending the approach to other case studies and objectives,
enhancing its applicability in energy system planning and decision-making.
∗ Corresponding author.
E-mail address: antoine.dubois@uliege.be (A. Dubois).
vailable online 28 August 2023
306-2619/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.apenergy.2023.121789
Received 1 March 2023; Received in revised form 11 July 2023; Accepted 16 Augu
st 2023

https://www.elsevier.com/locate/apenergy
http://www.elsevier.com/locate/apenergy
https://zenodo.org/record/7665340
https://zenodo.org/record/7665340
https://zenodo.org/record/7665340
https://zenodo.org/record/7665340
https://zenodo.org/record/7665340
https://zenodo.org/record/7665340
https://zenodo.org/record/7665340
https://zenodo.org/record/7665340
https://zenodo.org/record/7665340
https://zenodo.org/record/7665340
https://zenodo.org/record/7665340
https://zenodo.org/record/7665340
https://zenodo.org/record/7665340
https://zenodo.org/record/7665340
https://zenodo.org/record/7665340
https://zenodo.org/record/7665340
https://zenodo.org/record/7665340
https://zenodo.org/record/7665340
https://zenodo.org/record/7665340
https://zenodo.org/record/7665340
https://zenodo.org/record/7665340
https://zenodo.org/record/7665340
https://zenodo.org/record/7665340
https://zenodo.org/record/7665340
https://zenodo.org/record/7665340
https://zenodo.org/record/7665340
https://zenodo.org/record/7665340
https://zenodo.org/record/7665340
https://zenodo.org/record/7665340
https://zenodo.org/record/7665340
https://zenodo.org/record/7665340
https://zenodo.org/record/7665340
https://zenodo.org/record/7665340
mailto:antoine.dubois@uliege.be
https://doi.org/10.1016/j.apenergy.2023.121789
https://doi.org/10.1016/j.apenergy.2023.121789


Applied Energy 350 (2023) 121789A. Dubois et al.

c
g
t
i
o
t
f
f
w
G
a
c
s
b
a
s
h
d
o

1

i
o
t
t
f
a
o
t
t
s
a
[
t
b
t
r

1. Introduction

The undergoing energy transition requires deep restructuring of en-
ergy systems in the long term. The objective is to maintain comparable
energy services while replacing fossil fuels with sustainable alterna-
tives. Achieving this goal necessitates significant transformations in the
supply chain, conversion processes, and utilisation methods. Energy
system planning is required to guide this restructuring and determine
the appropriate mix of energy sources and technologies to satisfy a
community’s or region’s future energy demand. The goal of this process
is to inform decision-makers to allow them to plan an efficient and
sustainable transformation of energy systems. Energy system optimi-
sation models (ESOMs) are commonly preferred in energy system
planning [1] due to their ability to explore and analyse multiple design
solutions. These models utilise optimisation techniques to explore a
wide range of possibilities for the energy system, providing answers to
technical questions regarding future challenges.

However, the use of ESOMs often limits the quality of insights they
provide, thus reducing their usefulness for decision-makers. Typically,
these insights are derived from a single cost-optimal solution, whereas
decisions are often made based on various indicators. While cost is
a crucial indicator for assessing the affordability and viability of an
energy system, focusing solely on this objective can overlook other sig-
nificant factors, such as environmental sustainability and social equity.
Additionally, these insights might not meet the needs of stakeholders
with differing interests.

Approaches such as scenario analysis, multi-objective optimisation,
and near-optimal space analysis are effective methodologies to sur-
mount the indicated limitation. Scenario analysis enables the indirect
integration of objectives by altering the fundamental assumptions un-
derpinning the model. In contrast, multi-objective optimisation directly
incorporates these objectives into the model itself. Near-optimal space
analysis, the third method, facilitates the inclusion of objectives that
cannot be modelled in the decision-making process. In the subsequent
sections, we delve into the shortcomings of an overly cost-focused
approach. Subsequently, we elucidate these three methodologies, their
drawbacks, and the potential advantages of merging multi-objective
optimisation with near-optimal space analysis.

1.1. The cost as leading indicator — limits and solutions

ESOMs determine the energy system configurations that minimise
or maximise a specified objective. Most studies choose the cost as the
objective, and the best configuration is the most cost-effective [1]. This
choice is historical, as explained by Pfenninger et al. [2]. Indeed, the
first ESOMs (from the MARKAL/TIMES [3] and MESSAGE [4] models)
were initially designed for cost minimisation. More recent models
followed this trend, such as Dispa-SET, which optimises the operation
cost [5]. The study of Yue et al. [6] highlights that by default, ESOMs
ignore non-economic factors entering into energy investment decisions
and how politics, social norms, and culture shape public policies.
This claim is also supported by Pfenninger et al. [2], who specifies
that energy system models focus heavily on economic and technical
aspects. This focus is inadequate for energy system planning as this
problem involves multiple stakeholders with different policy objectives,
for whom cost-optimal solutions might not be satisfying. For instance,
a model might focus on the cost-effectiveness of integrating wind
turbines into a power grid, neglecting diverse stakeholder needs. Gov-
ernments may prioritise economic growth, environmental bodies aim
for carbon reduction, and residents might value landscape preservation.
Thus, cost-effective solutions like wind turbines may not align with
all stakeholders’ varying objectives in energy planning. Moreover,
several studies have demonstrated that ignoring non-economic factors
increases the uncertainty of the models [2,6]. Fazlollahi et al. [7] also
states that, due to uncertainty in some parameters, it is insufficient
2

for energy system sizing to rivet on a unique mono-objective optimal D
solution. Finally, Trutnevyte [8] shows how cost-optimal scenarios do
not adequately represent real-world problems. However, there exist
methods for going beyond cost and considering non-economic factors.
Some of these methods are presented in the following sections.

1.1.1. Scenario analysis
The first approach to incorporate non-economic factors is scenario

analysis. Scenario analysis involves optimising the same model over
multiple scenarios with different values for some parameters. Differ-
ences between scenarios can result from uncertainties over technolog-
ical or economic parameters - e.g. future cost of technology. However,
they can also stem from political (e.g. nuclear decommissioning) or
social considerations (e.g. limitation of onshore wind turbines or trans-
mission lines development). Using scenarios that differ through those
considerations allows for studying the effects of non-economic factors.
For instance, the study by Fujino et al. [9] compares a fast-growth,
technology-oriented scenario to a slow-growth, nature-oriented one.
However, as stated in the review of Hughes and Strachan [10], this
scenario approach tends to simplify social and political dynamics.

1.1.2. Multi-objective optimisation
A second approach to include non-economic factors is multi-

objective optimisation. This approach allows for optimising several ob-
jectives simultaneously, highlighting the trade-offs that can be obtained.
More formally, while different methods exist to apply multi-objective
optimisation (e.g. weighted-sum approach, integer cut constraints, 𝜖-
onstraint method, evolutionary algorithm), they exhibit the common
oal of obtaining solutions from a Pareto optimal set, also called
he Pareto front. This Pareto front is composed of efficient solutions,
.e. solutions that are at least better than any other solutions in one
bjective. Thus, it is composed of the set of optimal trade-offs between
he studied objectives, i.e. any solution that is not part of the Pareto
ront is worse in all objectives than at least one solution in the Pareto
ront. Using multi-objective optimisation, the cost can still be optimised
hile considering other indicators. For instance, Becerra-López and
olding [11] conducted a study of a Texas power generation system
nalysing the trade-offs between economic and exergetic costs, i.e. the
umulative exergy – entropy-free energy – consumption. They demon-
trated how these trade-offs provide insights to the decision-makers
y not focusing exclusively on economic cost. Other objectives, such
s water consumption, grid dependence on imports or energy system
afety, are compared to cost by Fonseca et al. [12,13]. They show
ow much the assessed criteria impact the design and operation of
istributed energy systems. A final example of an alternative objective
ften combined with the cost is the amount of carbon emissions [14].

.1.3. Near-optimal spaces analysis
A third methodology that allows taking social and political factors

nto account is the study of near-optimal spaces, also called sub-optimal
r epsilon-optimal spaces. The idea is to analyse solutions close to
he optimal solution to understand how the use of resources and
echnologies varies when allowing a slight deviation in the objective
unction. This paradigm goes further than multi-objective optimisation,
s mentioned by DeCarolis [15]. It allows incorporating unmodelled
bjectives, typical of social factors, as they are unknown or difficult
o model. Indeed, the near-optimal region might contain solutions
hat are worse in terms of the main objective - e.g. the cost of the
ystem — but better in unmodelled objectives such as risk or social
cceptance. This concept was introduced in the 1980s by Brill et al.
16]. The authors proposed the first method for exploring those spaces:
he Hop-Skip-Jump method. This algorithm was coined as part of a
roader exploration methodology that the authors refer to as Modelling
o Generate Alternatives (MGA). This methodology was brought back
ecently and applied to energy system modelling by DeCarolis [15] and

eCarolis et al. [17]. They led to a renewed interest in such methods.
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Fig. 1. Graphical abstract showing the structure of the paper. The figures are miniatures of figures located further in the document.
Authors such as Price and Keppo [18] developed new exploration algo-
rithms while Li and Trutnevyte [19] combined MGA with Monte-Carlo
exploration to minimise parametric uncertainty.

There are several ways of extracting insights from near-optimal
spaces. Most researchers exploring near-optimal spaces focus on com-
puting numerous near-optimal solutions from which they derive in-
sights [18–21]. An alternative approach is to use methods to obtain
such insights directly without needing to compute many alternative
solutions [22]. The authors of Dubois and Ernst [23] took this approach
by introducing the concept of necessary conditions for near-optimality,
i.e. conditions that are true for every solution in the near-optimal space.
For instance, this can provide insights into the required capacity in a
given technology to retain a certain level of system cost-effectiveness.
More specifically, Dubois and Ernst [23] showed how, for instance, at
least 200 GW of new offshore wind need to be installed Europe-wise to
stay within 10% of the cost optimum.

1.2. Research gaps, scientific contributions and organisation

The exploration of near-optimal spaces has been used in mono-
objective optimisation problems but not, according to the author’s
best knowledge, in multi-objective optimisation problems. However,
these methods could also be valuable in multi-objective optimisation
setups. Indeed, while modelling and integrating more objectives, multi-
objective optimisation still leaves aside some unmodelled objectives.
Analysing solutions in the near-optimal space of multi-objective opti-
misation problems is a method to address this issue.

This paper thus aims to fill this gap by:

1. extending the concepts related to near-optimal spaces to multi-
objective optimisation;

2. computing necessary conditions in a multi-objective context to
highlight the range of insights that can be derived from them.

The first point is addressed in Section 2 by first introducing the math-
ematical concepts of near-optimality and necessary conditions in a
single-objective framework (see Section 2.1) and then extending them
to multi-objective optimisation (see Section 2.2). Section 3 then trans-
lates those concepts to a real case study: the multi-sectoral expansion
of the Belgian energy system. The results of this case study, including
necessary conditions representing the necessary amount of different
energy resources, are presented in Section 4 before highlighting the
contributions of this paper in Section 5. We can already highlight one
of those contributions: the open-source release of the code [24] and
the data [25] used to achieve this study. The graphical representation
of the organisation of this paper is depicted in Fig. 1.
3

2. Problem statement

In this section, the methodological contribution is described. It is
illustrated in a mathematical form to enhance its universality. Indeed,
this method could be applied to other problems than ESOM. It will be
applied in Section 3 to an ESOM formulation to facilitate understanding
of this method.

The first part of this section introduces the concepts of epsilon-
optimal space and necessary conditions for single-objective optimisa-
tion [23]. The second part extends these concepts to multi-objective
optimisation by:

1. generalising the optimisation problem to multiple objectives,
2. presenting generic notions related to multi-objective optimisa-

tion, including the image of the feasible space, efficient solu-
tions, and the Pareto front, and

3. explaining the extension of the concepts of epsilon-optimality
and necessary conditions to multi-objective optimisation.

2.1. Single-objective optimisation

2.1.1. Optimisation problem and epsilon-optimality
Let  be a feasible space and 𝑓 ∶  → R+ an objective function in

the positive reals. The single-objective optimisation problem is

min
𝑥∈

𝑓 (𝑥) . (1)

Let 𝑥⋆ denote an optimal solution to this problem that is: 𝑥⋆ ∈
argmin𝑥∈ 𝑓 (𝑥).

Definition 1. An 𝜖-optimal space, with 𝜖 ≥ 0, is defined as follows

𝜖 =
{

𝑥 ∈  ∣ 𝑓 (𝑥) ≤ (1 + 𝜖)𝑓 (𝑥⋆)
}

. (2)

Comment : The 𝜖-optimal space is the set of the feasible solutions
𝑥 ∈  with objective value 𝑓 (𝑥) no greater than (1 + 𝜖)𝑓 (𝑥⋆). The
deviation from the optimal objective value is measured via 𝜖, called the
suboptimality coefficient. Fig. 2 illustrates those concepts. A note must
be made on the specific case 𝑓 (𝑥⋆) = 0. In this case, 𝜖 resumes to
argmin𝑥∈ 𝑓 (𝑥), making the analysis of near-optimal spaces trivial.

2.1.2. Necessary conditions
The concepts of condition, necessary condition, and non-implied nec-

essary condition introduced in this section allow determining features
which are common to all solutions in a given 𝜖-optimal space. We
illustrate each definition using an example.

Definition 2. A condition is a function 𝜙 ∶  → {0, 1}. A set of
conditions is denoted 𝛷.
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Fig. 2. Graphical representation of an 𝜖-optimal space of a mono-objective optimisation
roblem in  = R+. The function 𝑓1 that is minimised is shown in blue. Its minimum
s located at 𝑥⋆1 . Using this value and its corresponding objective value 𝑓1(𝑥∗1) allows
o determine an 𝜖-optimal space  𝜖 with 𝜖 = 𝜖1. The values of the different parameters
nd functions used in this example are described in Appendix A.

xample. Let the feasible space  be the set of reals, i.e.  = R,
hen, the set of conditions 𝛷 could be the set of conditions of the form
𝑐 (𝑥) ∶= 𝑥 ≥ 𝑐 with 𝑥 ∈  (thus 𝑥 ∈ R) and 𝑐 ∈ R.

efinition 3. A necessary condition for 𝜖-optimality is a condition
hich is true for any solutions in 𝜖 . For a feasible space  , set of

onditions 𝛷 and suboptimality coefficient 𝜖, 𝜙 ∈ 𝛷 is a necessary
ondition if

𝑥 ∈ 𝜖 ∶ 𝜙(𝑥) = 1 . (3)

he set of all necessary conditions for 𝜖-optimality in 𝛷 is denoted 𝛷𝜖 .

xample. Let us consider that the epsilon-optimal space is given by
𝜖 = [0, 1]. Then, the condition 𝜙0(𝑥) ∶= 𝑥 ≥ 0 is respected by all 𝑥 ∈
𝜖 , making 𝜙0 a necessary condition. Moreover, it is straightforward

o show that the set of all conditions in 𝛷 which are necessary is
𝜖 = {𝜙𝑐 ∣ 𝑐 ≤ 0}. Indeed, any condition 𝜙𝑐 (𝑥) ∶= 𝑥 ≥ 𝑐 is true

over 𝜖 = [0, 1] if 𝑐 ≤ 0.

As shown in Dubois and Ernst [23], necessary conditions can pro-
vide insights into features common to many near-optimal solutions.
However, depending on how conditions are defined, their study also
claims the number of necessary conditions can be infinite, which is
counterproductive in providing insights. This situation happens, for
instance, in our previous example. Indeed, the set 𝛷𝜖 = {𝜙𝑐 ∣ 𝑐 ≤
0} contains an infinite number of necessary conditions. To limit the
number of conditions, we introduce the concept of non-implied necessary
conditions.

Definition 4. A non-implied necessary condition for 𝜖-optimality
is a necessary condition 𝜙 ∈ 𝛷𝜖 that is not implied by any other
necessary condition 𝜙′ ∈ 𝛷𝜖 ⧵ {𝜙}, where 𝛷𝜖 is the set of necessary
conditions for 𝜖-optimality. The set of non-implied necessary conditions
is denoted 𝛷

𝜖
.

Example. In our example, the only non-implied necessary condition
is 𝜙0, i.e. 𝛷

𝜖
= {𝜙0}. The set of necessary conditions is 𝛷𝜖 = {𝜙𝑐 ∣

≤ 0}. In this set, 𝜙0 implies all other conditions and is not implied
y any of them. Indeed, for any 𝑥, knowing that 𝑥 ≥ 0 is true implies
hat 𝑥 ≥ 𝑐 when 𝑐 ≤ 0. Thus, knowing that 𝜙0 is a necessary condition
mplies that any 𝜙𝑐 with 𝑐 ≤ 0 is a necessary condition, whatever the
-optimal space. On the opposite, it is not possible to imply that 𝜙0 is a

necessary condition from the knowledge of other necessary conditions
in the set 𝛷𝜖 = {𝜙𝑐 ∣ 𝑐 ≤ 0}. This defines 𝜙0 as a non-implied necessary
4

condition.
The interested reader can find a more formal definition of im-
plication leading to alternative definitions of non-implied necessary
conditions in Appendix B.

2.1.3. Non-implied necessary condition computation
This section presents the detailed computation of a particular type

of non-implied necessary condition to provide a practical sense of these
concepts. It demonstrates how to compute a non-implied necessary
condition from a set of conditions taking the form of constrained sums
of variables. In the case studies described in Section 3, this type of
condition is used to study the minimum amount of energy that can be
driven from different sources.

Let  ⊂ R𝑛 be a feasible space, 𝑓 ∶  → R+ an objective function to
minimise over this space, and 𝛷𝐝 a set of conditions defined as follows:

𝛷𝐝 =
{

𝜙𝑐𝐝(𝐱) = 𝐝𝑇 𝐱 ≥ 𝑐
}

, (4)

where 𝐱 ∈  , 𝐝 ∈ {0, 1}𝑛 and 𝑐 ∈ R. The conditions are constrained
sums of variables 𝐝𝑇 𝐱 =

∑𝑛
𝑖=1 𝑑𝑖𝑥𝑖. In this particular case, Dubois and

Ernst [23] have proven that 𝜙𝑐⋆𝐝 = 𝐝𝑇 𝐱 ≥ 𝑐∗ with 𝑐∗ = min𝐱∈𝜖 𝐝𝑇 𝐱 is the
only non-implied necessary condition that can be derived from 𝛷𝐝. The
value 𝑐∗ represents the minimum value that 𝐝𝑇 𝐱 can take over the set
𝜖 , that is when allowing a deviation of 𝜖 from the optimal value 𝑓 (𝐱⋆).
Algorithm 1 illustrates the computation of this value in three steps.

Algorithm 1: Computation of a non-implied necessary condition -
Single-objective case
Data:
𝑓 - objective function,
 - feasible space,
𝜖 - suboptimality coefficient,
𝐝 - binary vector defining the conditions 𝐝𝑇 𝐱

Result: 𝑐∗
Steps:

1. Solve min𝐱∈ 𝑓 (𝐱) to obtain 𝐱⋆.
2. Build 𝜖 by adding the constraint 𝑓 (𝐱) ≤ (1 + 𝜖)𝑓 (𝐱⋆) to  .
3. Solve 𝑐∗ = min𝐱∈𝜖 𝐝𝑇 𝐱.

Example. Let us illustrate this algorithm on the travellings sales-
man problem. This problem aims to find the shortest possible route
a salesman can take to visit a set of cities exactly once and return
to the starting city. Mathematically, we can model this problem in
the following way. Let 𝐺 = (𝑉 ,𝐸) be a complete undirected graph,
where 𝑉 = {1, 2,… , 𝑛} is the set of cities, and 𝐸 is the set of edges
connecting the cities. Each edge 𝑒 = (𝑖, 𝑗) has a non-negative weight
𝑤(𝑒) representing the distance between city 𝑖 and city 𝑗. Let 𝑥𝑖𝑗 be a
inary decision variable equal to 1 if the salesman travels directly from
ity 𝑖 to city 𝑗 in the tour and 0 otherwise. The objective is to minimise
he total distance travelled by the salesman, i.e.: min

∑

(𝑖,𝑗)∈𝐸 𝑤𝑖𝑗𝑥𝑖𝑗 . This
bjective must be met under a series of constraints we will not detail
ere. Let us assume now that there are two types of routes: paved
nd gravel. The salesman wants to avoid taking gravel routes while
aintaining a path that is not much longer than the optimal path. This
ew path can be obtained using Algorithm 1. Step 1 consists in solving
he original problem. Using the optimal solution of this problem, one
an perform step 2 by adding the constraint 𝑓 (𝐱) ≤ (1 + 𝜖)𝑓 (𝐱⋆) to

the initial problem. In this constraint, 𝐱 is a vector containing all 𝑥𝑖𝑗 ,
𝑓 (𝐱) =

∑

(𝑖,𝑗)∈𝐸 𝑤𝑖𝑗𝑥𝑖𝑗 , and 𝐱⋆ is the optimal solution. The value of 𝜖 can
vary depending on the relative increase in path length the salesman is
willing to accept. The third step can then be performed by setting an
appropriate 𝐝. As the salesman wants to minimise the number of gravel
routes travelled, all values of 𝐝 corresponding to this type of route are
set to 1. The value 𝑐∗ obtained as the optimal value of this third step
gives the minimal number of routes that must be taken to ensure that
the total length of the path travelled does not deviate by more than 𝜖
of the optimal length.
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2.2. Multi-objective optimisation

This section extends the concepts presented previously to multi-
objective optimisation while introducing notions specific to this type
of optimisation problem.

2.2.1. Problem formulation
Let 𝐟 ∶= (𝑓1,… , 𝑓𝑘,… , 𝑓𝑛) be a vector of 𝑛 objective functions such

that ∀𝑘 𝑓𝑘 ∶  → R+. We seek to minimise these functions over the
feasible space  , which, using the notation of Ehrgott [26], we note:

‘‘min
𝑥∈

’’ 𝐟 (𝑥) . (5)

Let  be the image of  in the objective space:

 = 𝐟 () = {𝑦 ∈ R𝑛 ∣ 𝑦 = 𝐟 (𝑥) for some 𝑥 ∈ } . (6)

This space is the image of  under the objective functions 𝐟 , and
𝐟 (𝑥) ∶= (𝑓1(𝑥),… , 𝑓𝑘(𝑥),… , 𝑓𝑛(𝑥)). Therefore,  ∈ R𝑛+ and each of its
components 𝑦𝑘 are defined by 𝑦𝑘 = 𝑓𝑘(𝑥) for some 𝑥 ∈  .

2.2.2. Efficient solutions and Pareto front
A way to highlight compromises between the objectives (𝑓1,… ,

𝑓𝑘,… , 𝑓𝑛) is to compute efficient (or Pareto optimal) solutions. As
defined by Ehrgott [26]:

Definition 5. A feasible solution 𝑥̂ ∈  is called efficient when there
is no other 𝑥 ∈  such that ∀𝑘 𝑓𝑘(𝑥) ≤ 𝑓𝑘(𝑥̂) and 𝑓𝑖(𝑥) < 𝑓𝑖(𝑥̂) for some
𝑖, that is, no other 𝑥 ∈  has a smaller or equal value in all objectives
(𝑓1,… , 𝑓𝑘,… , 𝑓𝑛) than 𝑥̂.

According to Ehrgott [26], multiple denominations exist for the set
of efficient points. This paper uses ‘Pareto front’ to indiscriminately
name the set of efficient points or their image in the objective space.

Definition 6. A Pareto front  is the set

 =
{

𝑥̂ ∈  ∣∄𝑥 ∈  ,

∀𝑘 𝑓𝑘(𝑥) ≤ 𝑓𝑘(𝑥̂),∃𝑖 𝑓𝑖(𝑥) < 𝑓𝑖(𝑥̂)
}

.
(7)

In the objective space, a Pareto front is defined as:

 =
{

𝑦̂ ∈  ∣∄𝑦 ∈  ,

∀𝑘 𝑦𝑘 ≤ 𝑦̂𝑘,∃𝑖 𝑦𝑖 < 𝑦̂𝑖

}

.
(8)

A Pareto front can be composed of an infinity of points. Thus, it
is typical to compute a subset of the efficient solutions which com-
pose it. This set is named approximated Pareto front. It is denoted by
 ,𝑚 (or equivalently  ,𝑚) where 𝑚 is the number of points in the
approximation.

Definition 7. An approximate Pareto front  ,𝑚, with 𝑚 ∈ N, is a
subset of 𝑚 efficient solutions in the Pareto front  .

Several techniques exist to obtain those efficient solutions, the two
most famous being the ‘weighted-sum approach’ and the ‘𝜖-constraint
method’ [26]. The weighted-sum approach consists of solving:

min
𝑥∈

𝑛
∑

𝑘=1
𝜆𝑘𝑓𝑘(𝑥) ∀𝑘 𝜆𝑘 > 0 . (9)

The 𝜖-constraint method resolves in solving:

min
𝑥∈

𝑓𝑗 (𝑥)

s.t. 𝑓𝑘(𝑥) ≤ 𝜖𝑘 for 𝑘 = 1,… , 𝑛 and 𝑘 ≠ 𝑗 ,
(10)
5

where ∀𝑘 𝜖𝑘 ∈ R.
2.2.3. Multi-criteria epsilon-optimal spaces
Starting from a Pareto front  , it is possible to define an 𝝐-optimal

space, given a suboptimality coefficients vector of deviations in each
objective: 𝝐 = (𝜖1,… , 𝜖𝑘,… , 𝜖𝑛) ∈ R𝑛+. This space is denoted by 𝝐 in
the decision space and 𝝐 in the objective space.

In the mono-objective setup, the 𝜖-optimal space is defined as the set
of points 𝑥 ∈  whose objective value 𝑓 (𝑥) do not deviate by more than
an 𝜖 fraction from the optimal objective value, i.e. 𝑓 (𝑥) ≤ (1+𝜖)𝑓 (𝑥⋆). In
a multi-objective case, there is no optimum but a set of efficient points
composing the Pareto front. This leads us to define the 𝝐-optimal space
as follows:

Definition 8. In a multi-objective optimisation problem, the 𝝐-optimal
pace 𝝐 , with 𝝐 = (𝜖1,… , 𝜖𝑘,… , 𝜖𝑛) ∈ R𝑛+, is the set of points 𝑥 whose
bjective values 𝑓𝑘(𝑥) do not deviate by more than an 𝜖𝑘 fraction from
he objective values 𝑓𝑘(𝑥̂) of at least one solution 𝑥̂ of the Pareto front
 for all 𝑘. It is the space

𝝐 =
{

𝑥 ∈  ∣∃𝑥̂ ∈  ,

∀𝑘 𝑓𝑘(𝑥) ≤ (1 + 𝜖𝑘)𝑓𝑘(𝑥̂)
}

.
(11)

Alternatively, this space can be defined as:

𝝐 =
⋃

𝑥̂∈

{

𝑥 ∈  ∣ ∀𝑘 𝑓𝑘(𝑥) ≤ (1 + 𝜖𝑘)𝑓𝑘(𝑥̂)
}

. (12)

Fig. 3 depicts a graphical representation of an 𝝐-optimal space in a
multi-objective framework and how it is built from efficient solutions.

Definition (11) relies on the entire Pareto front. However, practi-
cally, only a subset  ,𝑚 of 𝑚 efficient points of the Pareto front is
computed and used to obtain an approximation of the 𝝐-optimal space,
denoted 𝝐

𝑚.

Definition 9. An approximation 𝝐
𝑚, with 𝑚 ∈ N, of an 𝝐-optimal

space 𝝐 is the space

𝝐
𝑚 =

{

𝑥 ∈  ∣∃𝑥̂ ∈  ,𝑚,

∀𝑘 𝑓𝑘(𝑥) ≤ (1 + 𝜖𝑘)𝑓𝑘(𝑥̂)
}

.
(13)

Alternatively, this space can be defined as:

𝝐
𝑚 =

⋃

𝑥̂∈ ,𝑚

{

𝑥 ∈  ∣ ∀𝑘 𝑓𝑘(𝑥) ≤ (1 + 𝜖𝑘)𝑓𝑘(𝑥̂)
}

. (14)

The alternative formulation defines 𝝐
𝑚 as a union of spaces, where

each space is the set of points whose objective value in each 𝑓𝑘 does not
deviate by more than an 𝜖𝑘 fraction from the objective values 𝑓𝑘(𝑥̂) of
one solution 𝑥̂ in the approximated Pareto front  ,𝑚. Fig. 4 shows three
examples of approximate 𝝐-optimal spaces 𝝐

𝑚 in the objective space
(therefore noted 𝝐

𝑚) using three approximated Pareto fronts  ,𝑚, with
different numbers and spread of efficient solutions.

2.2.4. Necessary conditions
In the multi-objective optimisation framework, necessary conditions

and non-implied necessary conditions for 𝝐-optimality can be defined
in the same manner as in the one-dimensional setting (see Definitions 3
and 4, respectively). The only difference stems from the replacement of
𝜖 by 𝝐 .

2.2.5. Non-implied necessary condition computation
The computation of a non-implied necessary condition from con-

ditions of type 𝐝𝑇 𝐱 ≥ 𝑐 presented in Section 2.1.3 is generalised to
the multi-criteria case. In the mono-objective case, it was sufficient to
minimise the sum 𝐝𝑇 𝐱 over 𝜖 to obtain the value 𝑐∗ corresponding
to the non-implied necessary condition 𝐝𝑇 𝐱 ≥ 𝑐∗. However, in a multi-
objective setup, we do not have access to 𝝐 but to its approximation
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Fig. 3. Graphical representation of an 𝝐-optimal space of a multi-objective optimisation problem in  = R+. The two functions to be minimised 𝑓1 and 𝑓2 are represented in blue
nd red, respectively, and their respective minimums are 𝑥⋆1 and 𝑥⋆2 . The Pareto front  containing all efficient solutions is represented in orange. Fig. 3(a) shows in purple the
ull 𝝐-optimal space 𝝐 for a suboptimality coefficient vector 𝝐 = (𝜖1 , 𝜖2). As shown in Eq. (12), this space is the union of sub-spaces that can be computed from efficient solutions.
ig. 3(b) shows how one of these subspaces, corresponding to the efficient solution 𝑥̂, can be computed. From the value 𝑥̂, the corresponding objective values 𝑓1(𝑥̂) and 𝑓2(𝑥̂) are
btained. This allows to determine all the solutions in  whose objective value is smaller than 𝑓𝑘(𝑥̂)(1 + 𝜖𝑘) for 𝑘 ∈ 1, 2. The values of the different parameters and functions used
n this example are described in Appendix A.
Fig. 4. Graphical representations in the objective space of approximations 𝝐
𝑚 of an 𝝐-optimal space of a multi-objective optimisation problem based on three different approximate

areto front  ,𝑚. The axes correspond to the two functions to minimise, i.e. 𝑓1 and 𝑓2. The boundary of the image of the feasible space  is represented in blue in the three cases.
he part of this boundary corresponding to the entire Pareto front  is drawn in orange. The complete 𝝐-optimal space 𝝐 corresponding to this Pareto front is coloured in light
urple. Each graph corresponds to a different approximate Pareto front  ,𝑚. These sets of points are represented in brown. From each of these points, part of the approximate
-optimal spaces can be computed, and their union is represented in solid purple. The values of the different parameters and functions used in this example are described in
ppendix A.
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𝝐
𝑚, which is the union of several subsets, each corresponding to one
oint in  ,𝑚 (i.e. a subset of the Pareto front). The minimum over this
pace can thus be obtained by taking the minimum of the minima of
𝑇 𝐱 over each of these subsets. Even with this approach, 𝝐

𝑚 being a
ubset of 𝝐 , minimising 𝐝𝑇 𝐱 over it will only provide an upper bound
𝑐 of the value 𝑐∗, i.e. 𝑐 ≥ 𝑐∗. Algorithm 2 shows how this value can be
btained.

Algorithm 2: Computation of a non-implied necessary condition -
Multi-objective case
Data:

 ∈ R𝑛 - feasible space,
𝐟 - objective functions,
𝑚 - number of points,
𝝐 - vector of suboptimality coefficients,
𝐝 - binary vector defining the conditions 𝐝𝑇 𝐱

Result: 𝑐
Steps:

1. Draw 𝑚 points 𝐱̂(1),… 𝐱̂(𝑖),… 𝐱̂(𝑚) of the Pareto front using an
appropriate method.

2. For all 𝑖 ∈ [1, 2,… , 𝑚], compute 𝑐(𝑖) = min𝐝𝑇 𝐱 over the space
{𝐱 ∈  ∣ ∀𝑘 𝑓𝑘(𝐱) ≤ (1 + 𝜖𝑘)𝑓𝑘(𝐱̂(𝑖))}.

3. Take the minimum 𝑐 = min𝑖∈[1,2,…,𝑚] 𝑐(𝑖) of these values to find
the appropriate condition 𝜙𝑐 .
6

e

There is no guarantee that the condition 𝐝𝑇 𝐱 ≥ 𝑐 is a (non-implied)
necessary condition. Indeed, it could be the case that for a solution
𝐱 ∈ 𝝐⧵𝝐

𝑚 that 𝐝𝑇 𝐱 < 𝑐. To make the upper bound 𝑐 as close as possible
to the real minimal value 𝑐∗, one must reduce the size of the difference
𝝐 ⧵ 𝝐

𝑚. Minding this gap can be done by improving the number
nd spread of efficient solutions in the approximated Pareto front. As
efined by Alarcon-Rodriguez et al. [27], solutions with a good spread
an be seen as having good coverage of the actual Pareto front. The
hree graphs of Fig. 4 show visually how, by increasing the number
nd the spread of efficient solutions drawn from the Pareto front, the
pproximated 𝝐-optimal space covers a more significant subset of the

points of the entire 𝝐-optimal space.

Example. Let us continue with the travelling salesman problem intro-
duced in Section 2.1.3. We introduce a new set of non-negative weights
𝑡(𝑒) representing the time needed to travel between city 𝑖 and 𝑗. We now
have two objectives: the total distance travelled 𝑓 (𝐱) =

∑

(𝑖,𝑗)∈𝐸 𝑤𝑖𝑗𝑥𝑖𝑗
and the total time travelled 𝑔(𝐱) =

∑

(𝑖,𝑗)∈𝐸 𝑡𝑖𝑗𝑥𝑖𝑗 to visit all cities.
inimising these two objectives might lead to different solutions. We

an use appropriate techniques to determine efficient solutions 𝐱̂ from
he Pareto front, expressing the trade-offs between these two objectives.
f the salesman is still interested in avoiding the gravel routes while
aintaining close-to-optimal length and time of travel, we can employ
lgorithm 2. For a fixed set of suboptimality coefficients, step 2 implies
dding two constraints to the initial problem and minimising 𝐝𝑇 𝐱 for

ach efficient solution. As in the mono-objective case, the only values
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n
i

of 𝐝 set to 1 are the ones corresponding to gravel routes. Finally, step 3
will give us a value 𝑐, which expresses an upper bound on the minimum
umber of gravel routes the salesman needs to take to avoid deviations
n time and length larger than 𝜖1 and 𝜖2.

3. Case study

In this section, a case study using an ESOM will illustrate the
concepts and methodology presented in the previous section. First, the
context of the case study and the question to which it tries to provide
an answer are presented. The modelling tool used to implement the
methodology is then introduced, and its main features are detailed.
Finally, each element introduced in Section 2 is specified to the case
study.

3.1. Context

In the European Green Deal [28], the European Commission raised
the European Union’s ambition to reduce GHG emissions to at least 55%
below 1990 levels by 2030. Then by 2050, Europe aims to become the
world’s first carbon-neutral continent. Europe still relies massively on
fossil fuels to satisfy its energy consumption (∼75% coming from coal,
natural gas and oil according to the International Energy Agency [29])
as well as non-energy usages (e.g. chemical feed-stocks, lubricants and
asphalt for road construction [30]). The use of these fuels is the primary
source of GHG emissions. Carbon-neutral sources of energy must thus
be developed to curb emissions. The possibilities are numerous, and
one of the coming decade’s main challenges will be deciding which
resources to invest in. Several criteria will motivate these choices.

The most common criterion for discriminating between options is
cost. Indeed, as highlighted by Pfenninger et al. [2] and DeCarolis
[15], most studies use the cost indicator to plan the energy transition.
This choice makes sense as the cost of investment, maintenance and
operation of the energy system impacts the final consumers’ energy bill.
Thus, minimising the system cost is a social imperative to allow every
citizen access to affordable energy.

A lesser-known indicator, encompassing technical and social chal-
lenges, is the system’s energy return on investment (EROI). When defined
system-wise, the EROI is a ratio that measures the usable energy deliv-
ered by the system (𝐸𝑜𝑢𝑡) over the amount of energy required to obtain
this energy (𝐸𝑖𝑛) [31]. When the amount of energy required to deliver
a given energy service increases, the EROI of the system decreases. In
some sense, EROI measures the ease with which energy is extracted to
transform it into a form that benefits society. There are various manners
of defining 𝐸𝑖𝑛 and 𝐸𝑜𝑢𝑡, and incidentally, the EROI of a system. These
definitions depend mainly on what parts of the energy cascade - as
presented in Brockway et al. [32] or Dumas et al. [33] - are considered.
This paper considers that invested energy 𝐸𝑖𝑛 encompasses the energy
used to build the system infrastructure, ‘from the cradle to the grave’,
and to operate this system. Following the methodology of Dumas et al.
[33], 𝐸𝑜𝑢𝑡 will correspond to the final energy consumption (FEC) of
the system, as defined in the European Commission [34] standard.
FEC is the total energy, measured in TWh, consumed by end-users. It
encompasses the energy directly used by the consumer and excludes the
energy used by the energy sector, e.g. deliveries and transformation.

While cost and EROI can be linked (e.g. the transport of energy
resources will increase both the system cost and invested energy),
they are not fully correlated and favouring one or the other can lead
to different system configurations, as illustrated later in Section 4.
Both criteria can be included in the decision process by modelling
them as objectives in optimisation problems. These objectives can be
optimised individually or co-optimised using multi-criteria optimisation
techniques. In this case study, we will show how, using these objectives
in the methodology presented in Section 2, the following question can
7

be addressed:
Which resources are necessary to ensure a transition associated with
sufficiently good cost and EROI?

Indeed, the answer to this question can be obtained by computing
necessary conditions corresponding to the minimum amount of energy
that needs to come from these resources.

This question is, however, relatively broad, and for the sake of
conciseness, it needs to be specified. On top of decision criteria, consid-
erations such as energy independence (enhanced with the Russian in-
vasion of Ukraine) and social acceptance (e.g. the ‘not-in-my-backyard’
phenomena) are paramount in planning the energy transition. These
considerations will impact the type of resources that will be exploited.
Indeed, the first consideration incentives a push for domestically pro-
duced energy, while the latter favours the opposite. The first tends
to minimise the amount of exogenous resources in the system, while
the latter minimises the amount of energy coming from endogenous
resources. To consider these elements, the previous question can be
refined to:

Which endogenous or exogenous resources are necessary to
ensure a transition associated with sufficiently good cost and
EROI?

This study focuses on one of the European countries: Belgium. Bel-
gium made the same commitments for 2030 and 2050 as the European
Union [35]. Thus, it faces the challenge of replacing its fossil-based
economy with carbon-free solutions while striking the right balance
between endogenous and exogenous resources. Belgium’s population
density exacerbates this challenge. In 2019, Belgium had the second-
highest population density in Europe (excluding Malta) with 377 people
per km2, behind the Netherlands (507 people per km2) [36]. The
available land for onshore energy development is thus limited, while
offshore production is limited to around 8 GW of wind potential [37].
Other domestic resources such as solar, biomass, waste, or hydro also
have limited potential. This situation entails a small local energy poten-
tial compared to its demand. The study Limpens et al. [38] evaluates
that available local Belgian resources can only cover 42% of the coun-
try’s primary energy consumption. This situation strongly impacts the
type of resources Belgium must rely on.

Therefore, the question that will be addressed in this case study is:

Which endogenous or exogenous resources are necessary in
Belgium to ensure a transition associated with sufficiently good
cost and EROI?

3.2. EnergyScope TD

To answer this question, an appropriate ESOM is needed. The
commitments set for 2035 and 2050 cover all sectors of the econ-
omy, not just electricity production. To achieve net zero ambitions,
carbon-neutral solutions must be implemented for electricity, heat,
mobility, and non-energy. These different sectors can be modelled using
an open-source whole-energy system model such as EnergyScope TD
(ESTD) [39].

ESTD can be categorised as an ESOM. According to Contino et al.
[40], ESTD is a whole-energy system model, i.e. a model that captures
the different energy sectors exhaustively. Moreover, ESTD optimises the
energy system with an hourly resolution and has the advantage of hav-
ing a simple mathematical formulation compared to other models [39].
Using optimisation techniques, it determines the investment decisions
and sizing of various technologies (e.g. wind turbines, gas power plants,
boilers) as well as the selection of resources (e.g. wind, gas, diesel)
required to meet different types of end-use demand (EUD) listed in
Appendix C; and the hourly operation of the system. Mathematically,
ESTD models the energy system as a linear programming problem.

It takes a series of parameters as input and outputs the values of
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investment and operational variables determined by minimising an
objective while respecting a series of constraints. The objective is a
linear function; constraints are linear equalities or inequalities.

Parameters and variables can be indexed temporally. The default
temporal horizon 𝑇 is one year with an hourly resolution. To reduce
he computational burden of the optimisation, the horizon is clustered
y selecting a number of typical days, 12 by default. Thus, time-
ependent parameters and variables are indexed by a typical day 𝑡𝑑 and
n hour ℎ. The only exception is storage technologies, whose energy
evels are computed over all the hours of the year 𝑡 to allow storage
onger than a day up to seasonal. The equivalence between the original
ourly-resolution temporal horizon and the typical days is done via a
ime-indexed set 𝑇𝐻𝑇𝐷(𝑡) associating each hour 𝑡 of the year with

corresponding couple (𝑡𝑑, ℎ) = 𝑇𝐻𝑇𝐷(𝑡). This set is essential to
understand some of the equations in the rest of this section.

ESTD has been extensively used and validated in the Belgian case
[33,38,41–44]. More specifically, in Limpens et al. [38], the authors
studied the 2035 Belgian energy system using ESTD and built the corre-
sponding data set. This year is a trade-off between a long-term horizon
where policies can still be implemented and a horizon short enough
to define the future of society with a group of known technologies. To
build on these resources, we will model the Belgian energy system for
2035.

To finish this section, it is essential to note that while the results
presented in this paper are valid for Belgium, they could easily be
extended to other countries. Indeed, ESTD has already been used
to model the energy systems of other countries such as Switzerland
[45,46] and Italy [47]. Moreover, adapting those models to imple-
ment the methodology presented in this paper only requires minor
modifications, as presented in the following sections.

3.3. Feasible space

In the initial optimisation problem

‘‘min
𝑥∈

’’ 𝐟 (𝑥) , (15)

the first element to define is the feasible space  over which the
optimisation is performed. This study modelled the feasible space using
ESTD as a linear programming problem. Therefore, the problem to solve
has the following form:

‘‘min
𝐱

’’ 𝐟 (𝐱)

𝑠.𝑡. 𝐴𝐱 ≥ 𝐛 ,
(16)

here 𝐱 is the vector of variables of the problem, while 𝐴 and 𝐛 are
matrix and vector of parameters, respectively. More information on

he specific variables, parameters and constraints used in ESTD can be
ound in Limpens et al. [39] and the model’s documentation [48].

.3.1. Constraint on GHG emissions
A constraint that is of particular interest given the context of this

ase study is the limit on GHG emissions, i.e.

𝑊𝑃𝑡𝑜𝑡 ≤ 35 [MtCO2-eq/y] . (17)

In this section, we briefly describe how this constraint is defined.
he total yearly GHG emissions of the system are computed using a life-
ycle analysis (LCA) approach. Thus, they include the GHG emissions
long the whole life cycle, i.e. ‘from the cradle to the grave’ of the
echnologies and resources considered in ESTD. In ESTD, the global
arming potential (GWP) expressed in MtCO2-eq./year is used as an

ndicator to aggregate emissions of different GHG. Then, the yearly
missions of the system, which are denoted 𝐺𝑊 𝑃𝑡𝑜𝑡, are defined as
ollows:

𝑊𝑃𝑡𝑜𝑡 =
∑ 𝐺𝑊 𝑃𝑐𝑜𝑛𝑠𝑡𝑟(𝑗)

𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒(𝑗)
+

∑

𝐺𝑊 𝑃𝑜𝑝(𝑖) , (18)
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𝑗∈𝑇𝐸𝐶𝐻 𝑖∈𝑅𝐸𝑆 e
where 𝑇𝐸𝐶𝐻 and 𝑅𝐸𝑆 are the sets of technologies and resources
modelled in ESTD. 𝐺𝑊 𝑃𝑐𝑜𝑛𝑠𝑡𝑟 represents the GWP for the construction
of a technology, while 𝐺𝑊 𝑃𝑜𝑝 gives the GWP linked to the operation
of a resource. More specifically, 𝐺𝑊 𝑃𝑐𝑜𝑛𝑠𝑡𝑟(𝑗) is the GWP of technology
𝑗 over its entire lifetime allocated to one year based on the technology
lifetime 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒(𝑗). 𝐺𝑊 𝑃𝑜𝑝(𝑖) is the GWP related to the use of resource

over one year.
The 35 MtCO2-eq/y limit chosen in this case study comes from

he following reasoning. According to the International Energy Agency
IEA), Belgium’s 1990 territorial GHG emissions were approximately
05 MtCO2-eq [29]. Thus, the targets of the European Green Deal
mply reaching 47 MtCO2-eq/y in 2030 and 0 MtCO2-eq/y in 2050.1 By
onducting a linear interpolation between these dates, the 2035 Belgian
HG emissions should reach approximately 35 MtCO2-eq/y. This target

s used as a hard constraint for 𝐺𝑊 𝑃𝑡𝑜𝑡 in the model: 𝐺𝑊 𝑃𝑡𝑜𝑡 ≤ 35
MtCO2-eq/y].

.4. Objectives

The second step in formalising the problem consists in choosing
ppropriate objectives. As mentioned at the start of this section, our
nterest lies in solutions with a sufficiently good cost and EROI. This
hoice implies optimising the system by minimising cost and maximis-
ng EROI. To better match the methodology presented in Section 2
here functions are minimised, 𝐸𝑖𝑛 (i.e. the energy invested in the

ystem) will be used as objective instead of EROI (the equivalence is
etailed in the following). The following sections define precisely the
wo objectives used in the case study.

.4.1. System cost
The first objective is the total annual cost of the system, 𝑓1 = 𝐶𝑡𝑜𝑡,

efined as:

𝑡𝑜𝑡 =
∑

𝑗∈𝑇𝐸𝐶𝐻

(

𝜏(𝑗)𝐶𝑖𝑛𝑣(𝑗) + 𝐶𝑚𝑎𝑖𝑛𝑡(𝑗)
)

+
∑

𝑖∈𝑅𝐸𝑆
𝐶𝑜𝑝(𝑖) . (19)

he yearly system cost is the sum of 𝜏(𝑗)𝐶𝑖𝑛𝑣(𝑗), the annualised invest-
ent cost of each technology with 𝐶𝑖𝑛𝑣 the total investment cost and 𝜏

he annualisation factor, 𝐶𝑚𝑎𝑖𝑛𝑡(𝑗), the operating and maintenance cost
f each technology and 𝐶𝑜𝑝(𝑖), the operating cost of the resources. This
ast variable is equal to

𝑜𝑝(𝑖) =
∑

𝑡∈𝑇 |{ℎ,𝑡𝑑}∈𝑇𝐻𝑇𝐷(𝑡)
𝑐𝑜𝑝(𝑖)𝐅𝑡(𝑖, ℎ, 𝑡𝑑) , (20)

here 𝑐𝑜𝑝(𝑖) is the cost of resource 𝑖 in [e/MWh] and 𝐅𝑡(𝑖, ℎ, 𝑡𝑑) corre-
ponds to the use in [MWh] of resource 𝑖 at time (ℎ, 𝑡𝑑). The values of
𝑜𝑝(𝑖) for each resource used in the study case are given in Tables 1 and
. The study of Limpens et al. [39] or the online documentation [48]
rovides more detail on this indicator.2

.4.2. Energy invested in the system
The second objective 𝑓2 is 𝐸𝑖𝑛, the energy invested in the system

ver one year:

𝑖𝑛 =
∑

𝑗∈𝑇𝐸𝐶𝐻

𝐸𝑐𝑜𝑛𝑠𝑡𝑟(𝑗)
𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒(𝑗)

+
∑

𝑖∈𝑅𝐸𝑆
𝐸𝑜𝑝(𝑖) , (21)

ith 𝐸𝑐𝑜𝑛𝑠𝑡𝑟(𝑗), the energy invested to built technology 𝑗, annualised by
ividing it by its lifetime, and 𝐸𝑜𝑝(𝑖) the energy to operate, i.e. produce,

1 Practically, the 2050 target is to be climate neutral, meaning the GHG
mission can be greater than 0 but must be compensated by carbon capture.

2 In the mathematical formulation of the model, an additional factor
𝑜𝑝(ℎ, 𝑡𝑑) is added to Eqs. (20), (22), and (26). This parameter is set to 1 in the
mplementation of the model used in this case study. It is thus removed from

quations for clarity.
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Table 1
2035 values of 𝑐𝑜𝑝, cost of the resource [e/MWh], and 𝑒𝑜𝑝, energy invested in obtaining
1 MWh of the resource [MWh/MWh], for each resource. Most values for 𝑐𝑜𝑝 come
from [48]. Data for 𝑒𝑜𝑝 relies on [49], using the ecoinvent database [50], and on [51].

bbreviations: Renewable (Re.), Electricity (Elec.).
𝑐𝑜𝑝 𝑒𝑜𝑝
[e/MWh] [MWh/MWh]

Endogenous resources

Hydro 0 0
Solar 0 0
Waste 23.1 0.0577
Wet biomass 5.76 0.0559
Wind 0 0
Wood 32.8 0.0491

Exogenous resources

Ammonia 76.0 a0.174
Ammonia (Re.) 81.8 a0.295
Diesel 79.7 0.210
Bio-diesel 120 a0.101
Elec. import 84.3 0.123
Gas 44.3 0.0608
Gas (Re.) 118 a0.147
Gasoline 82.4 0.281
Bio-ethanol 111 a0.101
H2 87.5 0.083
H2 (Re.) 119 a0.134
LFO 60.2 0.204
Methanol 82.0 0.0798
Methanol (Re.) 111 a0.146

aThe values are based on the work by Orban [51].

and transport resource 𝑖 over one year. Similarly to the cost indicator,
his last variable is equal to

𝑜𝑝(𝑖) =
∑

𝑡∈𝑇 |{ℎ,𝑡𝑑}∈𝑇𝐻𝑇𝐷(𝑡)
𝑒𝑜𝑝(𝑖)𝐅𝑡(𝑖, ℎ, 𝑡𝑑) , (22)

where 𝑒𝑜𝑝(𝑖) is the energy invested (in [MWh/MWh]) to obtain one
MWh of the resource 𝑖. The values of 𝑒𝑜𝑝(𝑖) for each resource used in
the study case are given in Tables 1 and 2. More detail is provided
by Dumas et al. [33] (in which 𝐸𝑖𝑛 is referred to as 𝐸𝑖𝑛,𝑡𝑜𝑡).

Minimising 𝐸𝑖𝑛 would be equivalent to maximising EROI, i.e.
𝐸𝑜𝑢𝑡∕𝐸𝑖𝑛, if 𝐸𝑜𝑢𝑡, which in our case is the FEC, was constant. It is not
the case in ESTD. In this model, only the values for the EUD, presented
in Table C.5, are fixed. While EUD measures an energy service, FEC
measures the quantity of energy used to deliver this service. FEC is thus
always measured in [TWh], while the unit for EUD will depend on the
demand. For instance, the EUD for heat will be measured in [TWh]
while [Mt-km] will be used for mobility. Using technology-dependent
conversion factors, FEC can be converted into EUD and vice-versa. For
instance, in ESTD, a FEC of 1 kWh of electricity supplies an EUD of
5.8 passenger-km with a battery-electric car. As the conversion factors
depend on the installed technologies, which depend on the optimisation
results, FEC is an output of the ESTD model and is not constant.
Nonetheless, the constant EUD cannot be employed directly as 𝐸𝑜𝑢𝑡 to
compute the EROI, as it is an energy service, not an amount of energy.
Therefore, the FEC is used to compute 𝐸𝑜𝑢𝑡 and, incidentally, the EROI
of the system.

3.5. Pareto front

Once all the elements of the initial optimisation problem (5) are
set up, one can compute efficient solutions from the Pareto front using
one of the methods described in Section 2.2.2. This case study uses a
modified version of the 𝜖-constraint method. It is applied by minimising
𝐸𝑖𝑛 over the feasible space with the additional constraint 𝐶𝑡𝑜𝑡 ≤ 𝜖(1 +
𝐶⋆𝑡𝑜𝑡) where 𝜖 ∈ R+ and 𝐶⋆𝑡𝑜𝑡 is the cost-optimal value, i.e. solving

min
𝑥∈

𝐸𝑖𝑛
⋆

(23)
9

s.t. 𝐶𝑡𝑜𝑡 ≤ (1 + 𝜖)𝐶𝑡𝑜𝑡 e
Table 2
Estimated cost 𝑐∗𝑜𝑝 [e/MWh] and estimated energy invested in obtaining 1 MWh of
the resource 𝑒∗𝑜𝑝 [MWh/MWh] for hydro, solar and wind. The estimation is done by
computing the total cost at the 𝐶𝑡𝑜𝑡 optimum and invested energy at the 𝐸𝑖𝑛 optimum
f the technologies that use these resources (i.e. PV for solar, onshore and offshore
ind for wind and hydro river for hydro) and then dividing it by the total energy
sed from these resources at the corresponding optimums, indicated in Table 4.

𝑐∗𝑜𝑝 𝑒∗𝑜𝑝
[e/MWh] [MWh/MWh]

Hydro 53.7 0.0489
Solar 50.0 0.147
Wind 47.0 0.0350

This method is a slight modification of the method described in Eq. (10)
where 𝜖 is a relative rather than absolute value. It has the benefit
of defining the constraint proportionally to the optimal value in the
associated objective and thus be directly interpretable. For instance, if
the optimal cost is 75 Be, one would use 𝜖 values of 1, 5, and 10%
instead of absolute values of 75.75, 78.75 and 82.5 Be. To obtain
several points over the Pareto front, the method was repeated for
different values of 𝜖 in ]0, 𝐶𝑒𝑡𝑜𝑡∕𝐶

⋆
𝑡𝑜𝑡[ where 𝐶𝑒𝑡𝑜𝑡 is the value of 𝐶𝑡𝑜𝑡 at

the 𝐸𝑖𝑛 optimum and 𝐶⋆𝑡𝑜𝑡 is the cost optimum.

3.6. Near-optimal spaces

The efficient solutions are used to define approximate near-optimal
spaces 𝝐

𝑚, with 𝝐 = (𝜖𝐶𝑡𝑜𝑡 , 𝜖𝐸𝑖𝑛 ) following Eq. (14) of Definition 9.
They are unions of spaces defined around unique, efficient solutions,
̂ ∈  ,𝑚. Each space can be easily defined by adding to the original
ESTD model the two linear constraints, which are:

𝐶𝑡𝑜𝑡(𝑥) ≤ (1 + 𝜖𝐶𝑡𝑜𝑡 )𝐶𝑡𝑜𝑡(𝑥̂) , (24)

𝐸𝑖𝑛(𝑥) ≤ (1 + 𝜖𝐸𝑖𝑛 )𝐸𝑖𝑛(𝑥̂) . (25)

3.7. Necessary conditions

The last concept to define is the type of necessary conditions com-
puted in the case study. We are interested in the necessary resources for
a transition with a sufficiently low cost and invested energy. We will
thus compute the necessary conditions corresponding to the minimum
amount of energy that needs to come from a specific individual or
group of resources. Mathematically, the set of such conditions would
be:

𝛷𝑅𝐸𝑆 =
{

∑

𝑖∈𝑅𝐸𝑆,
𝑡∈𝑇 |{ℎ,𝑡𝑑}∈𝑇𝐻𝑇𝐷(𝑡)

𝐅𝑡(𝑖, ℎ, 𝑡𝑑) ≥ 𝑐
}

, (26)

here 𝑅𝐸𝑆 ⊆ 𝑅𝐸𝑆 is a set of resources, 𝐅𝑡(𝑖, ℎ, 𝑡𝑑) the use of re-
ource 𝑖 at time (ℎ, 𝑡𝑑) and 𝑐 ∈ R+. 𝑅𝐸𝑆 can contain any resource.

However, in the context presented in Section 3.1, we have highlighted
a particular interest in two groups of resources: endogenous and ex-
ogenous. We will focus primarily on those two sets and give a more
detailed description of their resources. In ESTD, endogenous resources
(noted 𝑅𝐸𝑆𝑒𝑛𝑑𝑜) include wood, wet biomass, waste, wind, solar, hy-
ro, and geothermal energy. Exogenous resources (noted 𝑅𝐸𝑆𝑒𝑥𝑜) are
he other resources in the model: ammonia, renewable ammonia, im-
orted electricity, methanol, renewable methanol, hydrogen, renewable
ydrogen, coal, gas, renewable gas, light fuel oil, gasoline, diesel, bio-
iesel, and bioethanol. Renewable fuels such as renewable ammonia,
ethanol, and gas are assumed to be produced from renewable electric-

ty. Tables 1 and 2 list the model’s resources and the associated input
arameters required to compute the cost and invested energy when

mploying them.
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Table 3
Values of 𝐶𝑡𝑜𝑡 and 𝐸𝑖𝑛 objectives at the optimums.

𝐶𝑡𝑜𝑡 𝐸𝑖𝑛
optimum optimum

𝐶𝑡𝑜𝑡 [Be /y] 52.8 56.8
𝐸𝑖𝑛 [TWh/y] 74.0 61.0

Table 4
Amount of energy used from each endogenous and exogenous resource at 𝐶𝑡𝑜𝑡 and
𝑖𝑛 optimums. The last column shows the maximum potential of each resource. Some
otentials are directly fixed as parameters. The others are computed from the maximum
apacity and capacity factors of the technologies using these resources.
Energy 𝐶𝑡𝑜𝑡 𝐸𝑖𝑛 Max.
[TWh/y] optimum optimum potential

Endogenous 185 164 185

Hydro 0.469 0.486 a0.488
Solar 61.5 54.2 a61.6
Waste 17.8 4.12 17.8
Wet biomass 38.9 38.9 38.9
Wind 42.6 43.0 a43.0
Wood 23.4 23.4 23.4

Exogenous 202 211 ∞

Ammonia (Re.) 65.6 0 ∞
Bio-diesel 0 3.14 ∞
Elec. import 27.6 27.6 27.6
Gas 28.2 34.5 ∞
Gas (Re.) 4.98 48.5 ∞
H2 (Re.) 19.4 44.8 ∞
Methanol (Re.) 56.4 52.8 ∞

Total 387 375 ∞

aPotential computed from maximum capacity and capacity factors.

4. Results

In this section, we provide the answer to the question that was asked
at the beginning of Section 3:

Which endogenous or exogenous resources are necessary in
Belgium to ensure a transition associated with sufficiently good
cost and EROI?

This answer is obtained by computing necessary conditions cor-
esponding to the minimum amount of energy coming from specific
esources required to ensure 𝝐-optimality in 𝐶𝑡𝑜𝑡 and 𝐸𝑖𝑛. However,
efore diving into the necessary conditions, we first analyse how the
ystem is configured at the two optimums and show the differences
etween those configurations. Then, by analysing efficient solutions, we
etermine how this system evolves when trade-offs are made between
𝑡𝑜𝑡 and 𝐸𝑖𝑛. Finally, knowing the Pareto front, we compute 𝝐-optimal

spaces and necessary conditions corresponding to the minimum amount
of energy coming from different resources in Belgium. The description
of the algorithm used to compute those necessary conditions can be
found in Appendix D.

4.1. Analysis of the system configuration at the two optimums

The Belgian energy system is analysed when optimising 𝐶𝑡𝑜𝑡 and 𝐸𝑖𝑛
ndividually, with a maximum carbon budget 𝐺𝑊 𝑃𝑡𝑜𝑡 of 35 MtCO2-

eq/y. To set a baseline to which we can compare the necessary con-
ditions computed in the following sections, we analyse the amount of
endogenous and exogenous resources used at each optimum. Table 3
shows the value of the two objective functions at the two optimums
and Table 4 details which energy sources are used in the system.
10
4.1.1. Results at the cost optimum
The optimal cost 𝐶⋆𝑡𝑜𝑡 is equal to 52.8 Be /y. At this optimum, the

otal amount of primary energy used in the system is 387 TWh/y,
8% of which comes from endogenous resources and the rest from
xogenous resources.

For endogenous resources, the values for wet biomass, waste and
ood are equal to their maximum potentials — set as input model
arameters. This observation makes sense as the 𝑐𝑜𝑝 of these resources

in Table 1 indicate they are among the cheapest. The hydro, solar and
wind energy quantities are also very close to their maximum potential.
For these resources, the maximum is not set directly on the quantity of
energy but on the capacities of the technologies using these resources.
For instance, the model can install a maximum of 6 GW of offshore
wind turbines and 10 GW of onshore wind turbines, which are the
two technologies using wind as a resource. These maximum capacities
can then be multiplied by the capacity factors of the corresponding
technologies to obtain a maximum energy potential. Moreover, these
resources are considered free in terms of cost and invested energy, as
shown in Table 1. The cost of using them arises from the technologies
to extract them from the environment. Table 2 shows approximated
values for 𝑐𝑜𝑝 and 𝑒𝑜𝑝. They are computed by dividing the cost or energy
invested for building and maintaining the technologies using them by
the total energy used from these resources — shown in Table 4. These
approximated values show that hydro, solar and wind are among the
cheapest resources, which explains their extensive use.

The model has no maximum potential for exogenous resources ex-
cept for imported electricity. This potential is reached as, even though
𝑐𝑜𝑝 is relatively high for imported electricity, it does not require any
conversion technology to produce the final electricity demand. Some
65.6 TWh/y of renewable ammonia is used in the system, 55.4 TWh/y
of which is used for electricity production and low-temperature heat
generation, while the remaining 10.2 TWh/y is used to satisfy non-
energy demand. Most renewable methanol is used to produce high-
value chemicals, even though 3.6 TWh/y of this resource is used for
fuelling boat freight. Finally, gas (renewable or not) is used to produce
heat and electricity and fuel buses for public mobility.

4.1.2. Results at the invested energy optimum
The optimal energy invested 𝐸⋆𝑖𝑛 amounts to 61 TWh/y. Among the

375 TWh/y of primary energy in the system, 164 TWh/y (44%) come
from endogenous resources and 211 TWh/y (56%) from exogenous
resources. A series of resources, including wet biomass, wood, wind,
hydro and imported electricity, are used at or near their maximum po-
tential. This is not the case for waste and solar. In particular, for solar,
𝑒𝑜𝑝 is about three times higher than any other endogenous resource.
This result can be explained by the higher energy needed to build 1 GW
of PV combined with a low average capacity factor compared to hydro
river plants or wind turbines. Some electricity is produced using natural
and renewable gas, while ammonia for non-energy demand is produced
from H2 using the Haber-Bosch process. The remaining amount of gas is
used to produce heat. Finally, high-value chemicals are produced using
renewable methanol, while 3.14 TWh/y of bio-diesel is used for boat
freight.

4.1.3. Comparison
Table 3 shows how the two objective functions vary from one opti-

mum to the other. The increase in cost when optimising 𝐸𝑖𝑛 is limited
to 7.67%. Invested energy at the 𝐶𝑡𝑜𝑡 optimum is around 74 TWh/y,
representing an increase of more than 20% from the 𝐸𝑖𝑛 optimal value.

As shown in Table 4, the total amount of energy needed in the
system differs only by 3%, but there are some differences between
the two energy mixes. At the 𝐶𝑡𝑜𝑡 optimum, the energy coming from
endogenous resources is 21 TWh/y higher, while energy from exoge-
nous resources is 9 TWh/y smaller. At each optimum, the share of
endogenous resources in the energy mix (48% and 44%, respectively) is

close to the maximum of 42% primary energy coming from endogenous
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Fig. 5. Approximated Pareto front showing trade-offs between 𝐶𝑡𝑜𝑡 and 𝐸𝑖𝑛. On the
axis, the absolute values of 𝐶𝑡𝑜𝑡 and 𝐸𝑖𝑛 are shown and completed, in parenthesis, by
the deviations from the optimal objective values in each objective. For instance, for
𝐶𝑡𝑜𝑡, the value 𝐶𝑡𝑜𝑡∕𝐶⋆

𝑡𝑜𝑡 − 1 is shown in parenthesis.

esources computed by Limpens et al. [38]. These values confirm the
ubstantial dependence of Belgium on imported resources to supply its
nergy consumption.

Looking at individual resources, solar and renewable ammonia, used
o produce electricity when optimising 𝐶𝑡𝑜𝑡, are replaced by fossil and

renewable gas at the 𝐸𝑖𝑛 optimum. At this optimum, a percentage of
the total 80 TWh/y of gas is used to produce high-temperature heat
instead of waste. The additional 35.4 TWh/y of renewable hydrogen is
used for three things: ammonia production (which is directly imported
when optimising cost), combined heat and electricity production, and
public mobility. Finally, while boat freight is fuelled using renew-
able methanol at the 𝐶𝑡𝑜𝑡 optimum, bio-diesel is preferred at the 𝐸𝑖𝑛
optimum.

4.2. Pareto front

Fig. 5 shows the values of 𝐶𝑡𝑜𝑡 and 𝐸𝑖𝑛 at the efficient solutions
obtained using the method described in Section 3.5 for values of 𝜖 equal
to 0.25, 0.5, 1.0, 2.5, 5.0 and 7.5%. The two additional points at the
curve extremes correspond to each objective’s optimum. The axes are
labelled both in terms of the absolute values of the objective functions
but also – in parenthesis – in terms of the deviations of these values
from the optimal objective value, i.e. 𝐶𝑡𝑜𝑡∕𝐶⋆𝑡𝑜𝑡 − 1 and 𝐸𝑖𝑛∕𝐸⋆𝑖𝑛 − 1.

This graph shows that 𝐸𝑖𝑛 decreases quite rapidly, saving 10 TWh/y
out of 74 TWh/y (∼−14%) when increasing 𝐶𝑡𝑜𝑡 by a relatively small
amount of 2.5%. This behaviour can also be interpreted as: choosing
the optimal cost implies a considerable addition in invested energy.
Inversely, as already mentioned, 𝐶𝑡𝑜𝑡 is still relatively low at the 𝐸𝑖𝑛
optimum, i.e. it only increases by 7.5%.

Fig. 6 shows the amount of endogenous and exogenous resources
used at each efficient solution, starting on the left with the cost opti-
mum and moving towards the invested energy optimum on the right.
As stated when comparing optimums, there is only a minor change for
endogenous resources when going from one optimum to the other. This
change, the reduction of solar and waste energy, appears when allowing
a 5% deviation in cost.

More change is happening for exogenous resources (Fig. 6(b)).
As we increase cost and decrease the invested energy, ammonia is
gradually replaced by gas (both natural and renewable). At a 2.5% cost
increase, the amount of renewable H2 starts increasing. Ammonia is
wholly removed from the system at 5%, while natural gas use reaches
its maximum and starts to decline. The same happens for renewable
ammonia when reaching a 7.5% cost increase, and some bio-diesel
appears. Overall, the change in the total amount of exogenous resources
11
used is non-monotonic. Starting to decrease, it then increases when
reaching the 5% threshold, corresponding to the drop in endogenous
resources use.

4.3. Necessary conditions

Analysing efficient solutions gives a first appreciation of the va-
riety of system configurations, offering a trade-off between different
objectives. However, using the necessary conditions, we can go one
step further by providing features respected by all those solutions and
some slightly less efficient solutions. We use Algorithm 2 to compute
non-implied necessary conditions stemming from different sets of con-
ditions of the type defined by (26) in Section 3.7. The main parameter
defining these conditions is 𝑅𝐸𝑆, the set of resources over which
he constrained sum is computed. The output of this algorithm is a
alue 𝑐, which defines a non-implied necessary condition for this set
f resources. Practically, this value represents the minimum amount
f energy that needs to come from this set of resources to ensure that
𝑡𝑜𝑡 and 𝐸𝑖𝑛 do not deviate by more than an 𝝐 fraction from at least
ne solution in the Pareto front. We will first compute this 𝑐 value for

conditions defined using the set of endogenous and the set of exogenous
resources. We will then look at sets containing one individual resource.

4.3.1. Endogenous vs. exogenous resources
In this first section, we compare the values 𝑐 of non-implied nec-

essary conditions computed from the sets 𝛷𝑅𝐸𝑆𝑒𝑛𝑑𝑜 and 𝛷𝑅𝐸𝑆𝑒𝑥𝑜 . These
conditions are computed for different values of deviations 𝝐. In this
case, the tuples 𝝐 = (𝜖𝐶𝑡𝑜𝑡 , 𝜖𝐸𝑖𝑛 ) corresponds to all the possible combina-
tions of 1, 2, 5, 10, 20, and 50%.

Comparing Figs. 7(a) and 7(b) shows that the behaviours of the
minima in endogenous and exogenous resources are very different.
For endogenous resources, the minimum for deviations of 1% in both
objectives is already down to 130 TWh/y, representing a 42% and 26%
decrease from the 𝐶𝑡𝑜𝑡 and 𝐸𝑖𝑛 optima, respectively. This amount is
divided by more than two when the deviation reaches 10% in both
objectives, leaving only 60 TWh/y left from endogenous resources. The
𝑐 value then reaches 0 TWh/y when allowing an increase of 50% in
𝐶𝑡𝑜𝑡. These results show that energy from endogenous resources can be
reduced by a significant amount for reasonably low increases in cost
and invested energy.

For exogenous resources, there is little to no decrease in the total
energy needed. Starting from 202 and 211 TWh/y at the optimums in
cost and energy invested, the minimum amount of this type of energy
is still around 174 TWh/y (i.e., −20% and −15% respectively) for
deviations of 10%. Most of the decrease is already present for devia-
tions of 1% with an amount of energy of 180 TWh/y, which is only 6
TWh/y less than the energy used at one of the efficient solutions. The 𝑐
value of non-implied necessary conditions then plateaus at 174 TWh/y.
This result shows how, contrarily to endogenous resources, exogenous
resources are essential, whatever the cost and energy invested. Indeed,
to respect a 𝐺𝑊 𝑃𝑡𝑜𝑡 constraint of 35 MtCO2-eq/y, at least 174 TWh/y
of energy needs to be imported.

4.3.2. Individual exogenous resources
We have shown that a certain amount of exogenous resources is

necessary due to limited endogenous resources. However, the previous
results do not show which specific exogenous resource is essential. This
analysis can be done by computing necessary conditions for groups of
conditions 𝛷{𝑖} where 𝑖 ∈ 𝑅𝐸𝑆 corresponds to a unique resource. We
could perform this analysis for all individual resources, but in Fig. 6(b),
the amounts of renewable methanol, gas, and imported electricity are
quasi-constant across the Pareto front. Therefore, it is interesting to
focus on these resources to see if they are essential or if we can
eliminate them by increasing the cost or the invested energy. In this
section, we analyse non-implied necessary conditions corresponding to
the minimum energy from these three resources.
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Fig. 6. Energy [TWh/y] coming from (a) endogenous and (b) exogenous resources at efficient solutions representing different trade-offs between 𝐶𝑡𝑜𝑡 and 𝐸𝑖𝑛. The leftmost bars
show these values at the 𝐶𝑡𝑜𝑡 optimum, while the rightmost bar shows these values at the 𝐸𝑖𝑛 optimum. The bars in the middle are characterised by their deviation in [%] from
the 𝐶𝑡𝑜𝑡 optimum. Abbreviations: Renewable (Re.), Electricity (Elec.).

Fig. 7. Values 𝑐 of necessary conditions (in [TWh/y]) for conditions of type 𝛷𝑅𝐸𝑆 . The set of resources 𝑅𝐸𝑆 corresponds to endogenous resources 𝑅𝐸𝑆𝑒𝑛𝑑𝑜 and exogenous resources
𝑅𝐸𝑆𝑒𝑥𝑜 for graph (a) and (b), respectively, while for graphs (c), (d) and (e), this set resumes to a single resource: renewable methanol, gas and imported electricity, respectively.
The values correspond to the minimum amount of energy that needs to come from these sets of resources to ensure a constrained deviation in 𝐶𝑡𝑜𝑡 and 𝐸𝑖𝑛. These deviations are
defined by the suboptimality coefficients vector 𝝐 = (𝜖𝐶𝑡𝑜𝑡 , 𝜖𝐸𝑖𝑛 ). For (a) and (b), all the combinations of the following percentages are taken as coefficients vectors: 1%, 2%, 5%,
10%, 20%, and 50%. For (c), (d) and (e), they are limited to the combinations of 1%, 2%, and 5%.
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The 𝑐 values of non-implied necessary conditions for deviations
𝜖𝐶𝑡𝑜𝑡 and 𝜖𝐸𝑖𝑛 of 1, 2 and 5% are shown in Figs. 7(c), 7(d), and 7(e).
We limit the analysis to deviations of 5% as we can see that we are
already equal (or near to) 0 TWh/y for all three resources at this
percentage. The amount of energy coming from the resources at the 𝐶𝑡𝑜𝑡
and 𝐸𝑖𝑛 optimums are respectively 56.4 and 52.8 TWh/y for renewable
methanol, 28.2 and 34.5 for gas, and 27.6 (at both optima) for imported
electricity. The minimum energy from each resource is around 50%
lower than at the efficient solutions when allowing deviations of 1%
in each objective. For renewable methanol and gas, the amount of
necessary energy is more sensitive to deviations in invested energy than
to deviations in cost. However, the conclusion is similar for the three
resources: for a relatively small increase in cost and invested energy,
they can be replaced by other resources.

4.4. Analysis and insights from the results

In response to the initial query of this case study, ‘‘Which en-
dogenous or exogenous resources are necessary in Belgium to ensure
a transition associated with sufficiently good cost and EROI?’’ our
analysis offers multiple insights. Examination of the optimums for
each objective revealed that endogenous resources are instrumental
in achieving an attractive cost and EROI. It also highlighted that
various exogenous resources could contribute to this outcome. Looking
at points along the Pareto front, we then refined this analysis. This next
step proved particularly informative for exogenous resources, revealing
a spectrum of energy mixes satisfying reasonable cost and EROI trade-
offs. Finally, the computation of necessary conditions unveiled an
innovative perspective. Despite being maximised at the optimums, en-
dogenous resources could be significantly reduced with relatively minor
increases in cost and invested energy. Conversely, while numerous ex-
ogenous resource mixes offered a good cost and EROI, the total energy
derived from these sources could not fall below a certain threshold.
Necessary conditions also corroborated the broad range of exogenous
mixes available, indicating that no specific resource is indispensable
when accounting for a moderate relaxation of the objectives.

These findings suggest that for Belgium to decarbonise its economy,
it must substantially rely on imported resources. This necessitates
careful management of factors that can mitigate Belgium’s dependence,
such as enhancing energy efficiency, increasing land use for renewable
energy production, and maintaining positive geopolitical relations with
various providers. Fortunately, allowing for acceptable deviations in
cost and EROI gives Belgium a wide choice in selecting imported energy
sources, offering opportunities for diversification and a more reliable
energy system.

While this analysis is specific to Belgium, similar considerations
apply to other countries in the European Union, one of the most densely
populated regions globally. Therefore, it is crucial to evaluate their
dependence on exogenous resources and the potential trade-offs and
opportunities.

5. Conclusion

The ongoing energy transition necessitates profound restructuring of
energy systems over the long term. Energy system optimisation models
(ESOMs) are critical in steering this restructuring and identifying the
optimal blend of energy sources and technologies to meet future energy
demand. However, focusing solely on cost when using these models
limits the value of the insights they can provide decision-makers.

We address this issue by introducing a methodology for exploring
the near-optimal spaces of multi-objective problems to answer specific
socio-technical questions and applying it to a specific case study.

Building upon the research of Dubois and Ernst [23], we extend the
principles of epsilon-optimality and non-implied necessary conditions
to multi-objective problems. These concepts are applied to the case of
Belgium’s whole-energy system in 2035, with an emissions target below
13
35 MtCO2/y, equating to an approximate 80% reduction compared to
2015 levels [38]. The case study involved identifying the necessary en-
dogenous or exogenous resources to ensure a transition with reasonable
cost and EROI. This need is determined by computing non-implied nec-
essary conditions, representing the minimum energy amount derived
from various resource sets to ensure a constrained deviation in cost
and energy invested. Our research findings suggest that while Belgium
could significantly curtail its consumption of endogenous resources,
diminishing reliance on exogenous resources presents a complex chal-
lenge. Furthermore, our results underscore the versatility of potential
exogenous resources.

The current methodology encounters a set of limitations that, if
addressed, could enhance the reliability of the results. The primary
constraint relates to the approximation of the epsilon-optimal space in
multi-objective optimisation problems, which affects the identification
of non-implied necessary conditions. Increasing the number of efficient
solutions can improve results but amplifies computational time. To
mitigate this constraint, future research could examine the influence
of the number and distribution of efficient solutions on the findings.
Another consideration involves the visual presentation of the results.
Specifically, necessary conditions for constrained deviations in two
objectives can be effectively displayed on a two-dimensional grid. How-
ever, should the objectives exceed two, or if near-optimal space anal-
ysis is merged with parametric uncertainty analysis, new innovative
techniques will be required to encapsulate the results succinctly.

Potential avenues for future research could contribute to expanding
the current methodology. Firstly, the method was developed around the
concept of necessary conditions. However, other methodologies were
developed to explore near-optimal spaces in a mono-objective setup as
presented, for instance, in Price and Keppo [18], Li and Trutnevyte
[19], Pedersen et al. [20] and Nacken et al. [52]. An interesting
research track would be to extend these methodologies in a multi-
objective setup. Secondly, the current methodology was developed for
fixed feasible spaces and objective functions. Incorporating techniques
for addressing parametric uncertainty, such as sensitivity analysis,
would enhance the breadth and applicability of the results.

Lastly, extensive research is required to substantiate the utility of
the method across varied contexts. Future research could replicate the
case study for different nations or regions grappling with resource
constraints and challenges of energy dependence. Moreover, while cost
and invested energy were the primary objectives in this study, other
criteria like land use, water use, or metal resources could be explored.
This framework could also be utilised to answer alternative queries
about various resources or technologies. Ultimately, this approach
could be extended to study near-optimal spaces for various optimisation
problems within and beyond the energy systems field.
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Appendix A. Numerical values of the epsilon-space examples

The functions depicted in Figs. 2, 3, and 4 are

𝑓1(𝑥) = 10 ∗ (2𝑥 − 0.75)2 + 2 and (A.1)

2(𝑥) = 10 ∗ (𝑥 − 0.75)2 + 1.5 . (A.2)

The coordinates of their minimums are (𝑥∗1 , 𝑓1(𝑥
∗
1)) = (0.375, 2) and

(𝑥∗2 , 𝑓2(𝑥
∗
2)) = (0.75, 1.5), respectively.

One-dimensional epsilon-optimal space

In Fig. 2, the 𝜖-optimal space 𝜖 of a one-dimensional optimisation
problem was obtained by first computing

(1 + 𝜖1)𝑓1(𝑥∗1) = (1 + 0.25) ∗ 2 = 2.5 (A.3)

where 𝜖1 = 0.25. Then, the limits of 𝜖 can be obtained by computing
the inverse image of this value, i.e. the set {0.263, 0.487}, which leads
to 𝜖 = [0.263, 0.487].

Two-dimensional epsilon-optimal space

In Figs. 3(a) and 3(b), the Pareto front  is represented in green.
This set of points respects Definition 6 of a Pareto front. Indeed, each
point 𝑥 in the interval [𝑥⋆1 , 𝑥

⋆
2 ] is such that ∄𝑥̂ ∈  where 𝑓1(𝑥̂) < 𝑓1(𝑥)

and 𝑓2(𝑥̂) < 𝑓2(𝑥).
In Fig. 3(b), a subset of the 𝝐-optimal space 𝝐 of a two-dimensional

optimisation problem is computed for a suboptimality coefficients vec-
tor 𝝐 = (𝜖1, 𝜖2) = (0.25, 0.6). This subset is computed from the point
𝑥̂ = 0.6, which is part of  . To obtain the subset of 𝝐 , the images
of 𝑥̂, 𝑓1(𝑥̂) = 4.025 and 𝑓2(𝑥̂) = 1.725, are computed. Multiplying these
values by the corresponding suboptimality coefficients gives

(1 + 𝜖1)𝑓1(𝑥̂) = (1 + 0.25) ∗ 4.025 = 5.03 and (A.4)

(1 + 𝜖2)𝑓2(𝑥̂) = (1 + 0.6) ∗ 1.725 = 2.76 . (A.5)

The inverse image of these values are {0.0997, 0.65} for 𝑓1 and
{0.395, 1.105} for 𝑓2. The set of points respecting ∀𝑘 𝑓𝑘(𝑥) ≤ (1+𝜖𝑘)𝑓𝑘(𝑥̂)
are then contained in [0.395, 0.65].

To obtain the full 𝝐-optimal space depicted in Fig. 3(a), one should
repeat this process with all points in  . However, in this simple
example, one can quickly compute the limits of the entire space by
using the two optimums, which are the extreme points of the Pareto
front. These limits are obtained by taking the inverse images of

(1 + 𝜖1)𝑓1(𝑥∗1) = (1 + 0.25) ∗ 2 = 2.5 and (A.6)

(1 + 𝜖2)𝑓2(𝑥∗2) = (1 + 0.6) ∗ 1.5 = 2.4 , (A.7)

which gives {0.263, 0.487} and {0.45, 1.05}. The lower and upper bound
of 𝝐 are then respectively given by the lower and upper bound of those

𝝐
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two sets, i.e.  = [0.263, 1.05].
Approximate Pareto fronts and epsilon-optimal spaces

Figs. 4(a), 4(b), and 4(c) show approximate 𝝐-optimal spaces for
three different set of efficient points. These sets are

1. Fig. 4(a): [(2.0, 2.91), (3.41, 1.85), (7.62, 1.5)];
2. Fig. 4(b): [(2.9, 2.01), (2.99, 1.97), (3.09, 1.94), (3.19, 1.91),

(3.3, 1.88), (3.41, 1.85), (3.52, 1.82), (3.64, 1.8), (3.77, 1.77),
(3.9, 1.75), (4.03, 1.72)];

3. Fig. 4(c): [(2.0, 2.91), (2.06, 2.64), (2.23, 2.40), (2.51, 2.19),
(2.9, 2.01), (3.41, 1.85), (4.03, 1.72), (4.76, 1.63), (5.61, 1.56),
(6.57, 1.51), (7.62, 1.5)].

Appendix B. Necessary conditions - Advanced definitions

B.1. Implication

The implication between two conditions can be defined mathemati-
cally and allow for a more formal definition of non-implied necessary
conditions.

Definition 10. An implication function 𝜓(𝜙1 ∣ 𝜙2) ∈ {0, 1} is
a function that indicates whether condition 𝜙2 implies condition 𝜙1.
When 𝜓(𝜙1 ∣ 𝜙2) = 1, then ∀𝑥 ∈  , 𝜙2(𝑥) = 1 ⟹ 𝜙1(𝑥) = 1. When
𝜓(𝜙1 ∣ 𝜙2) = 0, then ∃𝑥 ∈  , 𝜙2(𝑥) = 1 ⟹̸ 𝜙1(𝑥) = 1.

Example. Let us consider conditions 𝜙1(𝑥) ∶= 𝑥 ≥ 1 and 𝜙2(𝑥) ∶= 𝑥 ≥ 2
of the example introduced in Section 2.1.2. We have that 𝜓(𝜙1 ∣ 𝜙2) = 1.
Indeed, for all 𝑥 ∈  , if 𝜙2(𝑥) = 1 this means that 𝑥 ≥ 2, that 𝑥 ≥ 1 and
thus 𝜙1(𝑥) = 1. Conversely, 𝜓(𝜙2 ∣ 𝜙1) = 0. Indeed, there exist several
𝑥 ∈  such that 𝜙1(𝑥) = 1 and 𝜙2(𝑥) = 0. For instance, this is the case
for 𝑥 = 1.5.

Definition 11. A non-implied necessary condition is a necessary
condition 𝜙 ∈ 𝛷𝜖 that is not implied by any other necessary condition.
It is a necessary condition 𝜙 ∈ 𝛷𝜖 such that ∀𝜙′ ∈ 𝛷𝜖 ⧵ {𝜙} ∶ 𝜓(𝜙 ∣
𝜙′) = 0.

Example. The condition 𝜙0 respects this definition. Indeed, for any
other condition 𝜙′ ∈ 𝛷𝜖 , that is any 𝜙𝑐 with 𝑐 < 0, we have 𝜓(𝜙0 ∣
𝜙𝑐 ) = 0. The proof is straightforward. For any 𝑐 < 0, 𝜙𝑐 (𝑐) = 1 as 𝑐 ≥ 𝑐
is true, but 𝜙0(𝑐) = 0 as 𝑐 ≥ 0 is false.

B.2. Necessary conditions - True spaces

A last way to particularise the definition of (non-implied) necessary
conditions is by defining the space over which a condition is true.

Definition 12. The space 𝜙 is the subset of  where a condition 𝜙 is
true, that is:

𝜙 =
{

𝑥 ∈  ∣ 𝜙(𝑥) = 1
}

. (B.1)

Example. The spaces 𝜙𝑐 of the conditions 𝜙𝑐 (𝑥) ∶= 𝑥 ≥ 𝑐 are the
spaces [𝑐,∞]. These spaces might become more complex to determine
when considering, for instance, conditions using linear combinations of
variables, e.g. 𝜙(𝑥) ∶= 𝑎𝑥1 + 𝑏𝑥2 ≥ 𝑐 with 𝑥 = (𝑥1, 𝑥2) ∈  = R2.

Definition 13. A necessary condition for 𝜖-optimality is a condition
𝜙 such that 𝜖 ⊆ 𝜙.

Example. For a set of conditions 𝛷 = {𝜙𝑐 (𝑥) ∶= 𝑥 ≥ 𝑐} with 𝑥 ∈ R and
𝑐 ∈ R, and a 𝜖-optimal space 𝜖 = [0, 1], this definition implies that all
conditions 𝜙𝑐 with 𝑐 ≤ 0 are necessary, which corresponds to same set
as Definition 3. Indeed, the spaces 𝜙𝑐 = [𝑐,∞] include the space [0, 1],
when 𝑐 ≤ 0.
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Fig. B.8. Graphical illustration of implication using spaces over which conditions are
true, adapted from Dubois and Ernst [23]. The four spaces that are represented are the
feasible space  , the 𝜖-optimal space  𝜖 , and the spaces 𝜙1

and 𝜙2
where conditions

𝜙1 and 𝜙2 are respectively true. Both these conditions are necessary as  𝜖 ⊂ 𝜙1
and

 𝜖 ⊂ 𝜙2
. Moreover, 𝜙2 implies 𝜙1 as 𝜙2

⊂ 𝜙1
.

Table C.5
2035 Belgian end-use demand (EUD) value by type based on Limpens [53].
Abbreviations: temperature (T.), space heating (SP), hot water (HW), passenger
(pass.).

EUD type Unit EUD

Electricity (other) TWhe 62.1
Lighting TWhe 30.0
Heat high T. TWh 50.4
Heat low T. (SH) TWh 118
Heat low T. (HW) TWh 29.2
Passenger mobility Mpass.-km 194
Freight Mt-km 98.0
Non-energy TWh 53.1

Definition 14. Let 𝜙1 and 𝜙2 be conditions with 𝜙1 and 𝜙2 the spaces
over which they are respectively true, then the implication function
𝜓(𝜙1 ∣ 𝜙2) is defined as:

𝜓(𝜙1 ∣ 𝜙2) = 𝜙2 ⊆ 𝜙1 . (B.2)

This formulation fits Definition 10 of an implication function. In-
deed, if 𝜓(𝜙1 ∣ 𝜙2) = 1, then it means 𝜙2 ⊆ 𝜙1 , which in turns
implies that 𝜙1(𝑥) = 1 for any 𝑥 ∈  for which 𝜙2(𝑥) = 1. Similarly,
if 𝜓(𝜙1 ∣ 𝜙2) = 0, it means that 𝜙2 ⊈ 𝜙1 , which means ∃𝑥 ∈  such
that 𝜙1(𝑥) = 0 when 𝜙2(𝑥) = 1.

Definition 15. A non-implied necessary condition is a necessary
condition 𝜙 ∈ 𝛷𝜖 that is true over a space which does not include
any of the spaces over which other necessary conditions are true. It is
a necessary condition 𝜙 ∈ 𝛷𝜖 such that ∀𝜙′ ∈ 𝛷𝜖 ⧵ {𝜙} ∶ 𝜙′ ⊈ 𝜙.

Fig. B.8 illustrates these concepts, where 𝜙2 implies 𝜙1 as 𝜙2 ⊂ 𝜙1 .
They are both necessary conditions because they are true over 𝜖 .
Finally, if no other conditions exist in the set 𝛷 = {𝜙1, 𝜙2}, then 𝜙2
is a non-implied necessary condition as no other necessary condition
implies it.

Appendix C. Types of end-use demand in EnergyScope-TD

Four main types of EUD are considered in the model: electricity,
heat, transport, and non-energy demand. Electricity is further divided
between lighting and other electricity uses. Heat is subdivided into
high-temperature heat for industry, low temperature for space heat-
ing, and low temperature for hot water. Mobility is composed of
public and private passenger mobility and freight demands. Finally,
the non-energy demand includes demand for ammonia, methanol, and
high-value chemicals (HVCs). Table C.5 lists the values for each EUD
type in 2035 based on Limpens [53].

Appendix D. Computation of non-implied necessary conditions for
the case study

Algorithm 3 is an adapted version of Algorithm 2 allowing to
compute a non-implied necessary condition for a fixed set of resources
𝑅𝐸𝑆 and suboptimality coefficients vector 𝝐.
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Algorithm 3: Computation of one non-implied necessary condition
for a given set of resources and suboptimality coefficients vector.
Adaptation of Algorithm 2 to the case study.
Data:

 ∈ R𝑛 - feasible space defined via ESTD,
𝐟 = (𝐶𝑡𝑜𝑡, 𝐸𝑖𝑛),
𝑚 - number of points,
𝝐 = (𝜖𝐶𝑡𝑜𝑡 , 𝜖𝐸𝑖𝑛 ),
𝑅𝐸𝑆 - a set of resources

Result: 𝑐
Steps:

1. Compute the two optimums 𝐶⋆𝑡𝑜𝑡 = argmin 𝐶𝑡𝑜𝑡 and
𝐸⋆𝑖𝑛 = argmin 𝐸𝑖𝑛 (and derive 𝐶𝑒𝑡𝑜𝑡, i.e. the value of 𝐶𝑡𝑜𝑡 at the
𝐸𝑖𝑛 optimum).

2. Apply method (23) for 𝑚 − 2 values of 𝜖 in ]0, 𝐶𝑒𝑡𝑜𝑡∕𝐶
⋆
𝑡𝑜𝑡[ to

obtain points 𝐱̂(2),… 𝐱̂(𝑗),… 𝐱̂(𝑚−1) of the Pareto front.
Points 𝐱̂(1) and 𝐱̂(𝑚) correspond to the 𝐶𝑡𝑜𝑡 and 𝐸𝑖𝑛 optimums,
respectively.

3. For all 𝑗 ∈ [1, 2,… , 𝑚], compute

𝑐(𝑗) = min
∑

𝑖∈𝑅𝐸𝑆,
𝑡∈𝑇 |{ℎ,𝑡𝑑}∈𝑇𝐻𝑇𝐷(𝑡)

𝐅𝑡(𝑖, ℎ, 𝑡𝑑) (D.1)

over the space

{𝐱 ∈  ∣ 𝐶𝑡𝑜𝑡(𝐱) ≤ (1 + 𝜖𝐶𝑡𝑜𝑡 )𝐶𝑡𝑜𝑡(𝐱̂
(𝑗)),

𝐸𝑖𝑛(𝐱) ≤ (1 + 𝜖𝐸𝑖𝑛 )𝐸𝑖𝑛(𝐱̂
(𝑗))},

(D.2)

where 𝐶𝑡𝑜𝑡(𝐱) and 𝐸𝑖𝑛(𝐱) represent the values of the two
objectives at solution 𝐱.

4. Take the minimum 𝑐 = min𝑗∈[1,2,…,𝑚] 𝑐(𝑗) to find the non-implied
necessary condition:

𝜙𝑐 =
∑

𝑖∈𝑅𝐸𝑆,
𝑡∈𝑇 |{ℎ,𝑡𝑑}∈𝑇𝐻𝑇𝐷(𝑡)

𝐅𝑡(𝑖, ℎ, 𝑡𝑑) ≥ 𝑐 , (D.3)
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