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Abstract: RhoGDI2 is a guanine nucleotide dissociation inhibitor (GDI) specific for the Rho family
of small GTPases. It is highly expressed in hematopoietic cells but is also present in a large array of
other cell types. RhoGDI2 has been implicated in multiple human cancers and immunity regulation,
where it can display a dual role. Despite its involvement in various biological processes, we still do
not have a clear understanding of its mechanistic functions. This review sheds a light on the dual
opposite role of RhoGDI2 in cancer, highlights its underappreciated role in immunity and proposes
ways to explain its intricate regulatory functions.
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1. Introduction

Rho GTPases are highly conserved members of the Ras superfamily, which are best
known to organize the actin and microtubule cytoskeleton thereby defining the cell shape
and migration. They also control a wide variety of signaling pathways that regulate crucial
biological processes such as vesicle transport, cell division and gene transcription [1–3]. Rho
GTPases cycle between an active GTP-bound form and an inactive GDP-bound form. This
activity is regulated by three classes of proteins: guanine nucleotide exchange factors (GEFs)
catalyze the exchange of GDP for GTP to activate the GTPase; whereas GTPase-activating
proteins (GAPs) increase the intrinsic GTP hydrolysis rate of the GTPase and inactivate it;
and guanine nucleotide dissociation inhibitors (GDIs) sequester the GDP-bound form of
GTPases in the cytosol to prevent their activation by GEFs or ubiquitin-mediated degrada-
tion (Figure 1) [4]. Aberrant signaling of Rho GTPases and their regulators is commonly
found in many human cancers and has been attributed to several mechanisms [5–10].

To this date, nearly 85 RhoGEFs and 66 RhoGAPs have been identified for nearly
20 Rho GTPase family members, wherein, in stark contrast, only three human RhoGDIs
have been identified so far: RhoGDI1 (or RhoGDIα), RhoGDI2 (or RhoGDIβ or D4-GDI
or Ly-GDI) and RhoGDI3 (or RhoGDIγ) [8]. All three reside exclusively in the cytoplasm
wherein RhoGDI1 is ubiquitously expressed [11,12]. RhoGDI2 was initially believed to be
expressed specifically in hematopoietic cells [13,14] but subsequently has also been found
in various other cell types and tissues, including cancer cells [8]. RhoGDI3 is primarily
expressed in the brain, lung, kidney, testis and pancreas where it targets the Golgi, and
shows specificity towards RhoB and RhoG [15]. There is not much known about RhoGDI3
in cancer and immunity, therefore it will not be discussed further in this review.

RhoGDI1 and RhoGDI2 have been implicated in multiple human cancers through
their involvement in cancer cell migration, invasion and metastasis and, thus, are regarded
as attractive targets for cancer biology [8]. RhoGDI2 has largely remained in RhoGDI1′s
shadow because of its lower abundancy and more restrained distribution. It is, however,
starting to garner more attention due to discoveries hinting that RhoGDI2 may play more
complex roles in multiple human cancers and many key cellular processes. This review
highlights the similarities and differences between RhoGDI1 and RhoGDI2, whilst also
encapsulating the multiple roles the latter has shown or has been proposed to play. Finally,
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we also suggest possible novel functions for RhoGDI2 and tie everything together in the
context of cancer.
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Figure 1. Schematic diagram of the Rho GTPase regulatory cycle. Inactive Rho GTPase is dissociated 
from its GDP and uptakes GTP to get activated through a process promoted by the Rho guanine 
exchange factors (RhoGEFs). Active GTP-bound Rho GTPase can then interact with its effectors such 
as Rho-associated coiled-coil containing kinases (ROCKs), PAK family of serine/threonine kinases 
(PAKs) and other kinases to participate in various biological processes. This interaction ceases when 
Rho GTPase-activating proteins (RhoGAPs) stimulate the hydrolysis of the bound GTP to GDP, 
thereby inactivating the Rho GTPase. The inactive GDP-bound form of Rho GTPase is free to bind 
to and be sequestered by Rho guanine nucleotide dissociation inhibitors (RhoGDIs). This induces 
their relocation to the cytoplasm, prevents their ubiquitin-mediated degradation and regulates the 
activation of Rho GTPases by GEFs. Created with BioRender.com. 
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2. RhoGDI1 and RhoGDI2: Similarities and Differences 
RhoGDI1 was the first RhoGDI to be discovered in rabbit intestine and bovine brain 

cytosol in 1989 and is widely considered to be the prototype of RhoGDIs. Subsequently, 
corresponding human cDNA was isolated and a RhoGDI protein was also identified in 
yeast [11]. Leffers et al. characterized RhoGDI2 and found that it was largely expressed in 
hematopoietic cells [16]. RhoGDIs interact with the GDP-bound Rho GTPases and extract 
Rho GTPases from the membrane to regulate them from undergoing the GDP/GTP ex-
change cycle. [17]. The N-terminal domain of the RhoGDIs interacts with the switch 1 and 
switch 2 regions of GDP-bound Rho GTPases which prevents the exchange of GDP for 
GTP and therefore keeps them in their inactive form [18,19], whereas the C-terminal do-
main also contributes towards their inhibition by extracting Rho GTPases from the mem-
brane [17,20]. 

RhoGDIs may also shuttle inactive Rho GTPases towards membranes leading to their 
activation [17,21]. Moreover, RhoGDIs can protect its interacting Rho GTPases from 

Figure 1. Schematic diagram of the Rho GTPase regulatory cycle. Inactive Rho GTPase is dissociated
from its GDP and uptakes GTP to get activated through a process promoted by the Rho guanine
exchange factors (RhoGEFs). Active GTP-bound Rho GTPase can then interact with its effectors
such as Rho-associated coiled-coil containing kinases (ROCKs), PAK family of serine/threonine
kinases (PAKs) and other kinases to participate in various biological processes. This interaction ceases
when Rho GTPase-activating proteins (RhoGAPs) stimulate the hydrolysis of the bound GTP to GDP,
thereby inactivating the Rho GTPase. The inactive GDP-bound form of Rho GTPase is free to bind
to and be sequestered by Rho guanine nucleotide dissociation inhibitors (RhoGDIs). This induces
their relocation to the cytoplasm, prevents their ubiquitin-mediated degradation and regulates the
activation of Rho GTPases by GEFs. Created with BioRender.com (accessed on 28 January 2023).

2. RhoGDI1 and RhoGDI2: Similarities and Differences

RhoGDI1 was the first RhoGDI to be discovered in rabbit intestine and bovine brain
cytosol in 1989 and is widely considered to be the prototype of RhoGDIs. Subsequently,
corresponding human cDNA was isolated and a RhoGDI protein was also identified in
yeast [11]. Leffers et al. characterized RhoGDI2 and found that it was largely expressed
in hematopoietic cells [16]. RhoGDIs interact with the GDP-bound Rho GTPases and
extract Rho GTPases from the membrane to regulate them from undergoing the GDP/GTP
exchange cycle. [17]. The N-terminal domain of the RhoGDIs interacts with the switch 1
and switch 2 regions of GDP-bound Rho GTPases which prevents the exchange of GDP
for GTP and therefore keeps them in their inactive form [18,19], whereas the C-terminal
domain also contributes towards their inhibition by extracting Rho GTPases from the
membrane [17,20].

RhoGDIs may also shuttle inactive Rho GTPases towards membranes leading to
their activation [17,21]. Moreover, RhoGDIs can protect its interacting Rho GTPases from
proteasomal degradation [22], demonstrating that RhoGDIs are not merely inhibitors for
Rho GTPases but also have a key role in their regulation and signaling. Quite expectedly
in view of these functions, both the RhoGDIs are involved in the regulation of multiple
biological processes such as actin cytoskeletal organization, cell migration and immune
response [23–26]. As mentioned previously, they are also implicated in many human
cancers where they can either be upregulated or downregulated (Table 1). The correla-
tion between RhoGDIs and prognoses in multiple human cancer will be discussed in a
later section.
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Table 1. Expression of RhoGDI1 and RhoGDI2 in human cancers. Biphasic, up and then down.

Cancer RhoGDI Regulation Reference(s)

Colorectal cancer
RhoGDI1 Up [27]

RhoGDI2 Up [28]

Breast cancer

RhoGDI1 Up [29]

RhoGDI2
Up [30,31]

Biphasic [32,33]

Hepatocellular carcinoma
RhoGDI1 Down [34]

RhoGDI2 Up [35]

Bladder cancer
RhoGDI1 Down [36]

RhoGDI2 Down [37]

Ovarian cancer RhoGDI2 Down [38,39]

Hodgkin’s lymphoma RhoGDI2 Down [40,41]

Gastric cancer RhoGDI2 Up [42,43]

Pancreatic cancer RhoGDI2 Up [44–46]

Melanoma RhoGDI2 Up [47]

Lung cancer RhoGDI2 Down [48,49]

Osteosarcoma RhoGDI2 Down [50,51]

Leukemias RhoGDI2 Down [52,53]

Although their extreme N-terminal domain (25 and 22 amino acids for RhoGDI 1
and 2, respectively) are completely divergent, RhoGDI 1 and 2 show 73.6% identity for
the remaining C-terminal sequence (Figure 2). RhoGDI1 and RhoGDI2 interact with
and form complexes with the classical Rho GTPases, i.e., RhoA, RhoC, Rac1, Rac2, Rac3,
RhoG and Cdc42 [19,54–56]. However, the interaction potency of RhoGDI2 with Cdc42 is
10–20 folds lower than that of RhoGDI1. Platko et al. observed that a single residue (Ile
177 in RhoGDI1/Asn 174 in RhoGDI2) is responsible for this difference in their affinity for
Cdc42 [57].

Several other proteins that are not part of the Rho GTPase family have been found
to interact with RhoGDI 1 or 2 or both, mainly through high throughput experiments.
Upon examining Uniprot (https://www.uniprot.org (accessed on 23 January 2023)) and
Biogrid (https://thebiogrid.org (accessed on 23 January 2023)) databases, the interactors
of both RhoGDIs can be extrapolated. Both RhoGDI 1 and 2 have been found to interact
with ubiquitin-fold modifier 1 (UFM1), small ubiquitin-like modifier 4 (SUMO4), U2 small
nuclear RNA auxiliary factor 2 (U2AF2) and DEAD (Asp-Glu-Ala-Asp) box polypeptide
58 (DDX58). However, RhoGDI1 interacts with Cullin3, whereas RhoGDI2 does not.
RhoGDI1 also interacts with EWS RNA-binding protein 1, ezrin, moesin and radixin. On
the other hand, RhoGDI2 interacts with RhoGEF Vav1, whereas RhoGDI1 is unable to do
so. RhoGDI2 also interacts with acyl-CoA thioesterase 7, B cell CLL/lymphoma 6 and
cadherin1. Perhaps the differences in functions of both RhoGDIs may be attributed to their
interactions with different proteins that do not belong to the Rho GTPase family.

Mouse models were used to identify the respective functions of RhoGDI 1 and 2.
Yin et al. generated RhoGDI2-null mice to explore its functions in lymphocytes. They ob-
served that there were no abnormalities in lymphoid development and immune responses.
However, in vitro cultivation of B and T cells from these mice showed de-regulated in-
teractions and other impaired phenotypes. They inferred that RhoGDI2 regulates Rho
GTPases in lymphocyte survival and responsiveness, wherein the absence of RhoGDI2 can
be compensated in vivo by other Rho GTPase regulatory proteins [26]. It was later shown
that RhoGDI1-null mice display abnormalities in the kidneys and reproductive system in

https://www.uniprot.org
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adulthood and that levels of RhoGDI2 expression did not change in WT and RhoGDI1-null
mice [58]. Double knockouts of RhoGDI 1 and 2 were then generated in order to get a better
insight into their specific and shared functions. These mice are characterized by aberrant
homeostasis of lymphocytes and an increased eosinophil population. T cells derived from
the mice display defective in vitro proliferation and development and lower levels of CD3
expression. These results show that RhoGDI 1 and 2 share similar functions and can partly
substitute for each other in lymphocytic migration and development [59].
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terminal domains are enclosed in the red box. RhoGDI2 is phosphorylated at Y24, S31 and Y153 by 
β2 integrin-related kinases Src, c-Abl and Syk in response to PSGL-1 antibody ligation. On the con-
trary, RhoGDI1 is phosphorylated at S45, S48 and T52 by calcium-dependent protein kinase CPK3. 
(B) Predictions of the 3D structure of RhoGDI1 and RhoGDI2 are from the AlphaFold project (AF-
P52565-F1 and AF-P52566-F1, respectively). Confidence regarding the 3D structure corresponding 
to different parts of the proteins is provided by color code, with dark blue representing the highest 
confidence and orange the lowest confidence. Ger: pocket accommodating the geranylgeranyl moi-
ety of the Rho GTPases. 
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Figure 2. Comparison of primary and tertiary structures of human RhoGDI1 and RhoGDI2.
(A) Protein sequences were compared using EMBL-EBI’s Clustal Omega tool. The accession num-
bers are as follows: human RhoGDI1, P52565 and human RhoGDI2, P52566. Identical residues are
indicated by asterisks; substitutions for amino acids possessing highly similar or somehow similar
characteristics are indicated by double and single dots, respectively. The highly divergent extreme
N-terminal domains are enclosed in the red box. RhoGDI2 is phosphorylated at Y24, S31 and Y153
by β2 integrin-related kinases Src, c-Abl and Syk in response to PSGL-1 antibody ligation. On the
contrary, RhoGDI1 is phosphorylated at S45, S48 and T52 by calcium-dependent protein kinase CPK3.
(B) Predictions of the 3D structure of RhoGDI1 and RhoGDI2 are from the AlphaFold project (AF-
P52565-F1 and AF-P52566-F1, respectively). Confidence regarding the 3D structure corresponding
to different parts of the proteins is provided by color code, with dark blue representing the highest
confidence and orange the lowest confidence. Ger: pocket accommodating the geranylgeranyl moiety
of the Rho GTPases.
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3. Regulatory Functions of RhoGDI2

RhoGDI2 is implicated in multiple biological processes in the human body either due
to their regulation of Rho GTPases or independently (Figure 3).
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Figure 3. Schematic representation of the main functions of RhoGDI2 in the human body. RhoGDI2
is known to play a major role in multiple biological processes. It is involved in actin cytoskeleton
organization, where it affects cell shape and movement. It is also involved in immune response
wherein it is phosphorylated by kinases (Src, c-Abl and Syk) at Y24, S31 and Y153. Phosphorylated
RhoGDI2 plays a role in T cell lymphocyte activation and migration and platelet function. RhoGDI2
is also involved in T cell regulation and inflammatory response. It regulates vascular remodeling
by helping the migration of smooth muscle cells and is also implicated in HIV-1 replication and
apoptosis. Lastly, RhoGDI2 is also involved in multiple cancers. Except for apoptosis, RhoGDI2
plays a Rho GTPase-dependent role in all other biological processes mentioned here. Created with
BioRender.com (accessed on 28 January 2023).

3.1. Actin Cytoskeletal Organization

The three best characterized Rho GTPases are RhoA, Rac1 and Cdc42. They transduce
signals in response to a chemical or mechanical stimuli to regulate different signaling
pathways [60]. These Rho GTPases have been shown to modulate actin cytoskeleton organi-
zation, thereby defining cell shape and movement. RhoGDI2 sequesters Rho GTPases in the
cytosol and may cause a rounding up of cells in various cell lines upon overexpression [16].

CRIF-1 (or CR6-interacting factor-1) is involved in mitochondrial functions and the
regulation of cell growth. In human umbilical vein endothelial cells (HUVECs), RhoGDI2
is upregulated upon CRIF-1 silencing, which results in reduced cell migration possibly
through the regulation of the activity of Rho GTPases [25]. In addition, RhoGDI2 has
been shown to negatively regulate trophoblast migration via the inhibition of Rac1 activity.
Trophoblasts need to proliferate and migrate to ensure a successful pregnancy [61].

3.2. Immune Response
3.2.1. Innate Immune Response

The innate immune system is the body’s first line of a quick and non-specific mecha-
nism of defending itself against foreign organisms entering the body [62].

RhoGDI2 negatively regulates Fcγ receptor (FcγR)-mediated phagocytosis in Jurkat T
cells by preventing the localization of Rac1 to the membrane and thereby inactivating it.

BioRender.com
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Phagocytosis, or the process of engulfing a foreign particle, is driven by a finely controlled
rearrangement of the actin cytoskeleton. It is essential to regulate the actin cytoskeleton as
phagosome and multicomponent signaling pathways transduce signals from phagocytic
receptors to the cytoskeleton. FcγR is one such receptor that clusters on monocytes and
macrophages to activate multiple signaling cascades to initiate phagocytosis; its function
has also been implicated in the pathophysiology of autoimmune diseases and in mediating
cytotoxic effects of monoclonal anti-tumour antibodies [63,64].

Though not related to its function, it is worth mentioning that RhoGDI2 was recently
identified as an extremely sensitive fecal biomarker to quantify gut inflammation in patients
with inflammatory bowel disease (IBD) to estimate IBD severity [65]. Severe IBD can lead
to gastrointestinal cancers as well as cardiovascular diseases; immunological disorders and
inflammatory biomarkers can be exploited for information about the immune system of an
individual, even if they aren’t directly involved in inflammation [66].

Using mRNA microarray analysis, RhoGDI2 was found to be differentially expressed
in chronic chagasic cardiomyopathy (CCC), a myocardial disease characterized by severe
cardiac inflammation leading to heart failure. RhoGDI2 was identified as one of the top
genes, along with Rac2, from a module that is enriched in the pathway of natural killer
(NK) cell-mediated cytotoxicity [67]. This suggests that RhoGDI2 may be involved in CCC
pathogenesis via NK cell-mediated cytotoxicity, possibly via Rac2 regulation [68]. Despite
the fact that NK cells belong to the family of T and B cell lymphocytes, the level of RhoGDI2
protein expression in NK cells has not yet been documented [69].

The association of RhoGDI2 and Rac2 was also reported in a signaling pathway that is
implicated in the pathogenesis of oral lichen planus (OLP), a chronic inflammatory and
immune-mediated disease affecting skin, nail, hair and mucous membranes. Caspase-1,
an inflammatory caspase, is upregulated in OLP tissues wherein Rac2 and RhoGDI2 were
identified as its potential interactors. Moreover, it was also observed that the gene and
protein expression levels of Rac2 and RhoGDI2 are upregulated in OLP tissues, where they
positively correlate with Caspase-1 leading to immune deregulation and inflammation in
OLP [70].

3.2.2. Adaptive Immune Response

The highly specific and relatively slow adaptive immune system, made up of B and T
cell lymphocytes and antibodies, takes over when the innate immune system is unable to
destroy the germs [62].

Though also not a function of RhoGDI2, it was recently reported through a large
nationwide cohort study that antibodies against RhoGDI2 can be used as a diagnostic
biomarker for long-term kidney graft loss and fibrosis in patients with kidney transplants
from deceased donors. Further studies showed that RhoGDI2 autoantibodies were asso-
ciated with chronic antibody-mediated rejection and inferior graft survival [20,71–74]. It
would be interesting to explore if the autoantibodies against RhoGDI2 can be used as a
diagnostic biomarker in other organ transplants.

3.2.3. Phosphorylated RhoGDI2

RhoGDI2 phosphorylated at unspecific site(s) was immunoprecipitated from Jurkat
T cells stimulated by phorbol myristyl acetate (PMA). However, it could not be immuno-
precipitated from resting T cells, suggesting that phosphorylation of RhoGDI2 could have
potential consequences for lymphocyte activation [14]. Phosphorylated RhoGDI2 was also
immunoprecipitated from monocyte U937 immune cells after PMA treatment. Further
experiments showed that RhoGDI2 was phosphorylated at unspecified tyrosine residue(s)
in anti-CD3 monoclonal antibody (mAb)-activated Jurkat and Raji T cells. It was also
observed that RhoGDI1 remained unphosphorylated in PMA-induced U937 cells and
anti-CD3mAb-activated T cells. This is of interest, as PMA induces the differentiation of
U937 cells from non-adherent myelomonocytic cells to adherent macrophage-like cells and
anti-CD3 mAbs are a well-recognized protocol for T cell activation.
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It was also reported that upon T cell activation by anti-CD3 mAbs, RhoGDI2, but not
RhoGDI1, interacts with Vav1, a RhoGEF that is also expressed abundantly in immune
cells. Both Vav1 and RhoGDI2 then co-localize at the periphery of the immune synapse, the
interface between the T cell and an antigen-presenting cell [75,76]. Theoretically, RhoGDI2
and Vav1 have opposing functions, so their interaction is intriguing. This could suggest
that RhoGDI2 might be involved in the regulation of hematopoietic-specific Rho GTPases
via different mechanisms leading to their inhibition. In Jurkat T cells, knocking down
RhoGDI2 reduces their adhesive and migratory ability by decreasing the activities of Rac1
and Cdc42. It has also been recently discovered that RhoGDI2 can be phosphorylated
at Tyr24, Ser31 and Tyr153 (by Src, c-Abl and Syk), which would play a role in Rac1
activation by RhoGDI2. Phosphorylation of RhoGDI2 at Y24/153 increased its ability to
bind to Vav1, which could explain the promoting role of RhoGDI2 in T cell adhesion and
migration, while the phosphorylation at S31 is required for the opening of RhoGDI2 and
the subsequent release of its interacting Rho GTPases [24,76]. This is in contrast with the
anti-migratory effect of RhoGDI2 in multiple other cell types [62], bolstering the fact that
perhaps RhoGDI2 participates in different regulatory pathways in T lymphocytes. This is
of additional importance as RhoGDI2 was initially observed in B and T lymphocytes where
it is abundantly expressed [16], suggesting that RhoGDI2 is the predominant RhoGDI in
hematopoietic cells and that it plays a dual role in the immune response.

In human platelets, RhoGDI1 has a homogenous distribution whereas RhoGDI2 is dis-
tributed unevenly or in a polarized manner within the same cell. Downregulating RhoGDI2
in human platelets inhibited their spreading, which was not observed upon RhoGDI1 si-
lencing. It was also noticed that RhoGDI2, and not RhoGDI1, was phosphorylated at PKC
substrate motifs upon platelet activation and co-localized with PKC in adherent platelets.
This study suggests that RhoGDI2 may also play a role in platelet function by regulating
Rho GTPases activity and affect the hemostasis [77]. This could mean that despite RhoGDI1
being the preferred binding partner for Rac1 and Cdc42 in most cell types, these key Rho
GTPases preferentially bind to RhoGDI2 in human platelets.

3.3. Apoptosis

Apoptosis driven by caspase-3 can be induced by anti-Fas antibody, etoposide, taxol,
daunorubicin, overexpression of PMA and staurosporine [78–80]. RhoGDI2, but not
RhoGDI1, is cleaved at Asp19 by caspase-3 during apoptosis in Jurkat T cells, ML-1 and HL-
60 human leukemic cell lines and macrophages. The cleaved form of RhoGDI2 (deprived of
its N-terminal extremity) is then translocated into the nucleus suggesting a pro-apoptotic
role of RhoGDI2. An identical caspase-3-dependent cleavage is also observed in sponta-
neous and TNF-α induced apoptosis in polymorphonuclear neutrophils (PMN) and in
camptothecin-induced apoptotic human promyelocytic cells. This is of particular impor-
tance as apoptosis is a critical step when PMN migrates into affected tissues and interacts
with extracellular matrix (ECM) proteins to ameliorate inflammation [81]. Cleavage of
RhoGDI2 by caspase-3 is now considered a hallmark of the apoptosis [20,80].

3.4. HIV-1 Replication

Rho GTPases have been reported to regulate the replication of human immunodefi-
ciency virus type 1 (HIV-1), the causative agent of acquired immunodeficiency syndrome
(AIDS), by promoting its entry and its infection into T cells [82]. It was noted, however,
that RhoGDI2 negatively regulated the rate of HIV-1 replication in infected MT-4 T cells
by reducing the F-actin content and the activity of both Rac1 and RhoA at the early phase
of the viral life cycle. Env are glycoproteins anchored in the viral membrane essential for
the viral entry into cells, and the activation of RhoA mediates the reorganization of the
cytoskeleton to facilitate this entry [83,84]. Upon further analysis, it was observed that
expression of recombinant RhoGDI2 affected Env-mediated processes, possibly via receptor
clustering and virus-cell membrane fusion.
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3.5. Vascular Remodeling

Vascular remodeling is involved in the pathogenesis of many life-threatening cardio-
vascular diseases, transplantation and chronic rejection [85,86]. Vascular smooth muscle
cells (VSMCs) undergo a transition from contractile to proliferative phenotype for suc-
cessful vascular development and remodeling. Upon binding of angiotensin (Ang) II, a
peptide hormone, to its receptor angiotensin II receptor type I, RhoA becomes activated
and further mediates migration of VSMCs. A recent study also reported that Ang II induces
proteasomal degradation of RhoGDI 1 and 2 by upregulating ubiquitination, which leads
to reduced proliferation in VSMCs [87].

Consistent to this, the expressions of RhoGDI1 and RhoGDI2 are significantly increased
by TGFβ1 in human aortic adventitial fibroblasts, wherein TGFβ1 drives the differentia-
tion of vascular myofibroblasts from fibroblasts, and positively correlates with vascular
remodeling [88]. Upon further investigation, it was discovered that TGFβ1 promotes the
interactions between RhoGDI2 and Rac1 or Cdc42 via the Smad signaling pathway, with no
effect on the interactions between RhoGDI1 and Rac1/Cdc42. This suggested that RhoGDI2,
and not RhoGDI1, participates in TGFβ1 induced myofibroblast differentiation [89].

4. Regulatory Functions of RhoGDI2 in Cancer

RhoGDI2 is either upregulated or downregulated in many cancers depending on
its type and stage. More interestingly, its level of expression can be either meaningless
or strongly correlated with a good or poor prognosis. Figure 4 reports different cancer
types for which studies identified RhoGDI2 as having pro- or anti-cancer tumour effects.
This section reviews recent findings on RhoGDI2 in cancer progression and highlights its
dual functions.
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Figure 4. RhoGDI2 in cancer. Based on in vitro experiments and on correlation studies using human
tumour samples, RhoGDI2 has been described as possessing either pro- or anti-tumour functions,
depending on cancer types. It plays a tumour promoting role in hepatocellular carcinoma (HCC),
colorectal carcinoma (CRC), breast cancer (BRCA), gastric cancer (GC), pancreatic ductal adenocarci-
noma (PDAC) and skin cutaneous melanoma (SKCM). It plays a tumour suppressive role in lung
adenocarcinoma (LUAD), bladder cancer (BLCA), osteosarcoma (OS), Hodgkin’s lymphoma, ovarian
(OV) cancer and in multiple leukemias. Created with Biorender.com (accessed on 28 January 2023).

Biorender.com


Int. J. Mol. Sci. 2023, 24, 4015 9 of 19

4.1. Ovarian Cancer

While RhoGDI1 is uniformly expressed in multiple ovarian (OV) cancer cells, RhoGDI2
protein expression is either upregulated or downregulated depending on the OV cancer
cell line. RhoGDI2 has also been shown to act as a tumour and metastasis suppressor
in OV cancer by enhancing Rac1 activity to activate p38 and JNK/MAPK cascades [38].
This was corroborated by a recent study that observed that Adenosine (Ado), a purine
nucleotide exerting anti-tumour activity in multiple human cancers, enhances RhoGDI2
expression in A2780 OV cancer cells and A2780 subcutaneous xenografts in nude mice.
They also observed that Ado inhibited tumour growth in the mice in a RhoGDI2-dependent
manner [39].

4.2. Breast Cancer

Similar to OV cancer, RhoGDI2 protein expression was shown to be either upregulated
or downregulated depending on the breast cancer (BRCA) cell line, while RhoGDI1 is
similarly upregulated in all BRCA cell lines [30,31]. Eventually, a stage-dependent biphasic
pattern of RhoGDI2 expression has been evidenced in breast cancer tissues with a marked
increase from normal to hyperplasia, followed by a decrease from in situ to invasive
lesions. An inverse correlation between RhoGDI2 expression and lymph node metastasis
was observed, implying that RhoGDI2 might act as a tumour promoter but metastasis
suppressor in BRCA [32]. However, it is important to remember that RhoGDI2 is not
only expressed by cancer cells but also by cells of the tumour micro-environment, such
as immune cells. Therefore, modifications in RhoGDI2 expression measured in tumour
samples can be influenced also by differences related to immune cell populations infiltrating
the tissue.

Another study further demonstrated that Rictor/mTOR pathway, which is upstream
of Rho GTPases signaling, downregulates RhoGDI2 expression and promotes Rac1 activity,
thereby stimulating cell invasion and metastasis in BRCA cells. They confirmed that lower
RhoGDI2 levels were associated with poor prognosis in the human epidermal growth
factor receptor 2 (HER2)+ BRCA [33]. However, the data obtained from public databases
including all BRCA subtypes and analyzed with the “Kaplan-Meier Plotter” (an online tool
available for exploring the correlation between the expression of any gene and survival of
patients with cancer (https://kmplot.com (accessed on 25 January 2023)) [90], show that a
high RNA expression level of RhoGDI2 is associated with a lower probability of overall
survival (Figure 5).

4.3. Bladder Cancer

RhoGDI2 has largely been reported to be associated with a good prognosis in bladder
cancer (BLCA) patients, where it represses metastasis by inhibiting Rac1 activity. However,
it does not affect the primary tumour growth [37].

Despite being accepted as a metastasis suppressor, recent reports from Huang lab
unanticipatively find RhoGDI2 levels to be consistently elevated in most human and
mouse BLCA tissues. They have identified three different pathways—RhoGDI2/miR-
200c/JNK2/Sp1/MMP2 pathway, XIAP/Erk/nucleolin/RhoGDI2 and, lastly, miR-
145/Sp1/USP8/AUF1/RhoGDI2 pathway—through which they show that RhoGDI2 pro-
motes BLCA invasion in vitro and lung metastasis in vivo. They observe that RhoGDI2
acts as a tumour and metastasis promoter, despite being widely demonstrated in the past
as a metastasis suppressor, with no effect on the tumour [91–93]. Further investigations are
required to better define the exact function of RhoGDI2 in BLCA.

https://kmplot.com
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Figure 5. Correlation between patient survival and expression of RhoGDI1 and RhoGDI2 in few
cancers. The Kaplan–Meier plotter (https://kmplot.com (accessed on 25 January 2023)) can be used
to establish a correlation between the survival of patients and the level of expression of any gene in
the primary tumour. Sources for the database include GEO, TCGA and EGA. The plots shown here
were chosen to highlight the duality of RhoGDI2 expression in cancer that has either a good or poor
prognosis, sometimes for cancer affecting the same organ (compare the curves for lung squamous
cell carcinoma and lung adenocarcinoma). It also illustrates that the expression of RhoGDI2 and
RhoGDI1 do not always correlate similarly to survival, as seen for pancreatic ductal adenocarcinoma,
showing that they do not fulfill exactly the same function during cancer progression.
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4.4. Osteosarcoma

WSB1 (hypoxia-driven-WD repeat and SOCS box containing 1) is upregulated in
many human cancers and acts as a suppressor of cytokine signaling. In osteosarcoma
(OS), RhoGDI2 (but not RhoGDI1) is degraded by WSB1. In U2OS and MG63 human
osteosarcoma cell lines, it results in the activation of Rac1 which increases the amount of
F-actin, promotes the formation of lamellipodia and leads to enhanced cell motility and
migration ability. WSB1 was also shown to drive the metastatic potential of OS in vitro
and in the BALB/c (nu/nu) mouse model. Of most interest in this context is that RhoGDI2
overexpression in OS cells and mice is able to reverse the spreading of the WSB1-induced
metastasis [50,51], demonstrating its direct participation in OS progression.

4.5. Leukemias

RhoGDI2 was found to be mutated at two positions (V68L and V69A) in KM3 and Reh
human acute myeloid leukemia (AML) cell lines. Neither wild-type (wt) nor mutated (mt)
RhoGDI2 overexpression altered cell proliferation. However, overexpressing mtRhoGDI2
promoted cell adhesiveness and invasiveness in vitro. These induced phenotypes were
reversed by the overexpressing of recombinant wtRhoGDI2, which probably illustrates a
competition between wtRhoGDI2 and mtRhoGDI2 for a common interacting partner that
regulates AML progression [52].

CXCL12 is a chemokine that binds primarily to CXC receptor 4 (CXCR4) to induce
several signaling pathways related to chemotaxis, cell survival and proliferation and gene
transcription. RhoGDI2 is expressed quite highly in all acute lymphoblastic leukemia (ALL)
cell lines, including Jurkat T-ALL cells. It was found that downregulation of RhoGDI2
increases CXCL12-driven T-ALL migration. RhoGDI2 mutants were created to mimic phos-
phorylation induced by PMA on Y24 and Y153 (discussed in previous section). These phos-
phomimetic mutants were seen to rescue the inhibiting phenotype induced by wtRhoGDI2
on CXCL12-mediated ALL migration. Additionally, phosphorylation of RhoGDI2 on Y24
or Y153 reduce its affinity for RhoA or RhoC, leading to their increased activity. Further
investigations showed that the phosphorylation of RhoGDI2 was due to non-receptor
protein tyrosine kinases Src and ABL1 in response to CXCR4 stimulation by CXCL12 in
T-ALL [24,53,76,94].

4.6. Hodgkin’s Lymphoma

RhoGDI2 gene expression is selectively downregulated in Hodgkin’s lymphoma when
compared with B cell non–Hodgkin’s lymphoma (B-NHL) cells [40]. Due to RhoGDI2′s
abundance in hematopoietic cells and its possible role in apoptosis (explained in the
previous section), a study attempted to evaluate the functional relevance of RhoGDI2 in
apoptosis. Hodgkin L428 cells, which do not express endogenous RhoGDI2, were modified
to conditionally express recombinant RhoGDI2. Its induction led to only moderate levels of
apoptosis, questioning its importance in this model [41].

4.7. Pancreatic Cancer

RhoGDI2 was found to be significantly upregulated in tumour samples from patients
with pancreatic adenocarcinoma (PDAC) wherein its expression positively correlated with
tumour size, differentiation, clinical stage, lymph node metastasis, vascular invasion and
reduced life expectancy (see Figure 5). Silencing of RhoGDI2 was shown to decrease the in-
vasiveness of PDAC cells in vitro, and to reduce the expression of matrix metalloproteinase
(MMP) 2, possibly through regulation of Rac1 activity [44]. It suggests that RhoGDI2, or
the pathway it regulates, could be an interesting target in that particular highly aggressive
cancer for which the current therapeutic options are of limited long-term efficacy. IFN-γ
is a cytokine predominantly produced by natural killer cells and has anti-tumourigenic
effects [45]. It was observed that IFN-γ suppresses the expression of RhoGDI2, which
reduces Rac1 activity and CXCL8 expression. Moreover, overexpression of RhoGDI2 in
PDAC cells in vitro enhanced their proliferation, migration, invasiveness and apoptotic re-
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sistance to Gemcitabine (a chemotherapeutic drug). It does so by increasing the expression
of vimentin and Snail, a master regulator of epithelial-to-mesenchymal transition (EMT),
and by decreasing the expression of the epithelial marker E-cadherin. As an additional
validation of the involved mechanisms, the downregulation of Snail expression inverted
the phenotypes seen by overexpressing RhoGDI2 [46].

4.8. Colorectal Cancer

RhoGDI2 gene and protein expressions are upregulated in the highly invasive and
metastatic colorectal cancer (CRC) cell lines as compared to less invasive cell lines. It is
also upregulated in CRC tissues wherein its expression negatively correlates with patient
survival. Overexpression of RhoGDI2 enhances the proliferation, migration and invasive
capacities of CRC cells partly via the activation of the PI3K/Akt pathway [28]. Although
not explored further, the activation of PI3K/Akt pathway by RhoGDI2 overexpression in
CRC could occur via its regulation of Rho GTPases.

4.9. Hepatocellular Carcinoma

RhoGDI2 has been shown to be upregulated in hepatocellular carcinoma (HCC) cells
where its overexpression increased their rates of proliferation and invasion, via activating
the PI3K/Akt pathway and increasing the levels of MMP2 and MMP9 (consistent to PDAC).
MMPs are ECM-degrading enzymes involved in tumour invasion and metastasis. They
are also intimately involved in the regulation of the activities of cytokines and cytokine
receptors [95]. No further research was conducted to delve into the relation between
RhoGDI2 and PI3K/Akt pathway in HCC [35].

A recent report claims that synergistic effects of traditional Chinese medicines Eu-
phorbia Pekinesis and Glycyrrhiza glabra against HCC ascites in mice models is due to the
downregulation of the expression of RhoGDI2 and Frk (Fyn-related kinase), a member of
the Src non-receptor tyrosine kinase family. Frk and RhoGDI2 are both involved in the
pathway of vasopressin-regulated water re-absorption, which has been implicated in fluid
retention in cirrhosis and seems to be a common therapeutic target pathway of various
anti-ascites drugs [96].

4.10. Gastric Cancer

RhoGDI2 shows significantly elevated expression levels in gastric cancer (GC) samples
as compared to normal and para-cancerous tissues. In addition, knocking down RhoGDI2
expression decreases the migration and invasion of GC cells, enhances their sensitivity
towards chemotherapeutic drugs and reduces tumour growth in mice models. RhoGDI2
acts as a scaffold protein to promote the binding of Rac1 to FilaminA, an actin binding
protein. FilaminA further promotes Rac1 activation via binding to Trio, a Rac1 specific
RhoGEF, and thereby enhances the invasive abilities of GC cells. Both RhoGDI2 and
FilaminA are indicated to be associated with poor prognosis of GC patients. Whether
RhoGDI1 can also associate with FilaminA is not known. In addition to promote Rac1
binding to FilaminA, the RhoGDI2-Rac1 axis is also involved in another signaling pathway
in GC since suppressing the expression of RhoGDI2 repressed the Rac1/Pak1/LIMK1 axis,
which is involved in EMT, cell migration and invasion in multiple human cancers [42,43].

4.11. Melanoma

Myosin VIIA (Myo7a) is an unconventional myosin serving in intracellular movements.
It was shown to promote proliferation, migration, invasion and tumour growth in B16
melanoma cells (a mouse model of skin cutaneous melanoma). Knocking down Myo7a
decreases the expression of RhoGDI2 and Rac1 activity. Most interestingly, restoring the
expression of RhoGDI2 in these cells is sufficient to also restore Rac1 activity, showing its
direct implication in the process. Due to the involvement of Rac1 in multiple human cancers,
it was inferred that Myo7a could exert tumour-promoting phenotypes by promoting
RhoGDI2 expression levels and consequently Rac1 activity in B16 melanoma [47].
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4.12. Lung Cancer

Knocking down RhoGDI2 significantly increased the proliferation, migration and inva-
sion of A549 lung adenocarcinoma (LUAD) cells via increased Rac1 activity. Rac1 promotes
migratory and invasive abilities in LUAD along with cytoskeleton rearrangements. When
overexpressed, RhoGDI2 scatters F-actin filaments within the cytoplasm and induces loss
of cell-cell adhesion and stress fibers formation. Contrary to what was observed in PDAC,
overexpression of RhoGDI2 decreased the expression of Snail and increased the expression
of E-cadherin, which might account for the anti-tumoural role of RhoGDI2 in LUAD which
is suggested by correlation, showing an increased survival for patients having high tumour
RhoGDI2 expression (Figure 5). Surprisingly, however, the reverse was observed for lung
squamous cell carcinoma (Figure 5), again illustrating the critical importance of defining
the different regulatory pathways involving RhoGDI2 in different cancer types.

As opposed to what was observed in HCC, downregulating the RhoGDI2 expression
in LUAD increased the expression and activity of MMP9, which resulted in increased
migratory and invasive abilities. Further studies showed that, in stark contrast to HCC,
suppressing the expression of RhoGDI2 also increased the phosphorylation of Akt and
PI3K, hinting that RhoGDI2 may exert anti-tumoural activities in LUAD by decreasing
Rac1 activity and deactivating the PI3K/Akt pathway [48,49].

FHL1 (Four and a half LIM protein 1) is downregulated in multiple human cancers,
including LUAD, where it exerts anti-tumoural activity [97]. As a potential underlying
explanation, it was shown that FHL1 stimulates the expression of RhoGDI2, but not of
RhoGDI1. However, the precise pathway is not yet elucidated.

5. Discussion and Future Directives

Although the role of RhoGDI2 in regulating the activity of Rho GTPases is well estab-
lished, recent findings have highlighted complex molecular mechanisms of this regulation.
In this review, we have presented the similarities and differences between RhoGDI1 and
RhoGDI2 in regulating Rho GTPases and subsequently many biological processes. We also
talked about the regulatory functions of RhoGDI2 in multiple biological processes such as
immune response, HIV-1 replication and vascular remodeling and paid attention to its dual
role in cancer.

It is important to note that despite sharing a high level of similarity in their structures,
RhoGDI1 and RhoGDI2 have proven to be quite divergent in some functions. Both RhoGDIs
may have different affinities for Rho GTPases or their co-regulators, which may cause them
to regulate differently to Rho GTPases-dependent biological processes. In addition to their
specific affinities towards Rho GTPases, the RhoGDIs may also be differentially distributed
in the cytoplasm and/or membranes in different cell types, contributing to their diverging
roles. However, the most crucial aspect to highlight is the completely divergent extreme
N-terminal domains of RhoGDI 1 and 2. Both the RhoGDIs fold differently at their N-
terminal domain (as highlighted in Figure 2B) and the N-terminal domain of RhoGDI2 is
acidic in comparison to the N-terminal domain of RhoGDI1, thereby possessing a negative
charge that may enable RhoGDI2 to establish long-range electrostatic interactions with
co-regulators, whilst RhoGDI1 would be unable to do so.

As illustrated by their names, RhoGDIs were first considered only as inhibitors of
the activity of Rho GTPases. However, as we have described, RhoGDI2 regulates many
biological processes by not only inhibiting, but also promoting the activity of Rac1, as
noticed in Jurkat T cell and myofibroblasts, and multiple human cancers [38,47,89]. To
the best of our knowledge, RhoGDI1 does not promote the activity of key Rho GTPases.
Further research should aim at explaining why RhoGDI2 is able to promote Rac1 activity
in some cell types and not others by focusing on three main points: (i) the search for direct
or indirect interactions between RhoGDI2 and third partners, such as the Rho GEFs Vav1
and Rac1-specific Trio [24,43,76]; (ii) investigation of the potential role of RhoGDI2 as a
scaffold protein that can enhance the binding between Rac1 and actin-binding proteins,
which would regulate its functions [42]; and (iii) analysis of dynamics of the subcellular



Int. J. Mol. Sci. 2023, 24, 4015 14 of 19

localization of RhoGDI2, which can vary within different cell types, and also contribute to
its dual role in regulating Rac1 activity.

As shown in Figure 6, RhoGDI2 is involved in several hallmarks of cancer, its expres-
sion correlates to either high or low aggressiveness in different human cancers. There
are multiple drugs being developed to target other regulators and effectors of Rho GT-
Pases [4,6,21]. Although no drugs specifically targeting RhoGDIs are in development, some
drugs and traditional medicine involved in ameliorating cancer phenotypes have been
shown to be implicated in different signaling pathways involving RhoGDI2. Therefore,
inhibiting RhoGDI2 activity has therapeutic potential for some cancers and other diseases,
but it is essential to tread carefully due to its complicated role in the human body. As an
alternative, a better understanding of the implications of RhoGDI2 in pro- and anti-cancer
pathways could lead to the identification of novel therapeutic targets. Further experiments
aiming to decipher the intracellular molecular pathways affected by RhoGDI2 are required
to appreciate its role in cancer biology.
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Figure 6. RhoGDI2 is involved in many hallmarks of cancer. RhoGDI2 is involved in many aggressive
phenotypes of cancers via its regulation of Rho GTPases either directly or indirectly by interacting
with other regulators of Rho GTPases. It modulates cell proliferation, tumour growth, cell migration,
invasion and metastasis. It also provides chemoresistance and is shown to be mutated in some
human cancers. It also contributes to tumour-promoting inflammation, angiogenesis and relapse-free
survival in multiple human cancers. Created with BioRender.com (accessed on 28 January 2023).

A critical role of Rho GTPases, and therefore of RhoGDIs, is the organization of the
actin cytoskeleton and all the downstream processes. Changes in the actin cytoskeleton
affect other cellular responses such as changes in gene transcription, the microtubule
cytoskeleton or vesicular transport. Besides transport, mobility and mechanical support, the
microtubule cytoskeleton is also involved in chromosome segregation, centriole duplication
and formation of primary cilia [98–100]. Rho GTPases have been extensively probed for
their roles in processes involved in centriole duplication and cell division [101–103]. Despite
the extensive research done to scrutinize RhoGDI2 for its involvement in multiple human
cancers, no work has been done to investigate if and how RhoGDI2 is involved in the
different steps regulating cell division.

RhoGDI2 has been shown to localize in centrosomes of human cervical cancer HeLa
cells, wherein it is involved in centrosomal amplification, prolonged mitosis and aberrant
cytokinesis. Mitosis is part of the cell cycle where the replicated chromosomes are separated
into two new nuclei, and perturbations in the centrosomal function are a hallmark of
cancer [104,105]. It will be interesting to investigate more functions of RhoGDI2 in the cell
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division cycle to increase our understanding of its involvement in cancer and other diseases
to ensure appropriate targeting of RhoGDI2 for cancer therapeutics.

Besides its role in cancer cells, RhoGDI2 is highly expressed in immune cells where
it regulates some of their key functions. Therefore, when considering studies correlating
patient prognosis and RhoGDI2 expression, we must take into account the immune cells
infiltrating the tumour microenvironment. This aspect of the role of RhoGDI2 in cancer
progression has so far received little attention, while it could, however, have significant
implications in cancer immunotherapy which is considered to be one of the most promising
approaches for treating cancers.

6. Conclusions

Due to its dual role, it is crucial to study RhoGDI2 in the context of cancer. For this
purpose, an enhanced characterization of its functions in cellular processes related to cancer,
of its potential partners and of the dynamics of its subcellular localization are mandatory.
However, one must remember to carry out these investigations not only in cancer cells
but also in immune cells. Following this, RhoGDI2 can prove to be significant in cancer
immunotherapy, which has made promising advances toward novel cancer therapeutics.
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