Using Argo floats to characterize altimetry products A study of eddy-induced subsurface oxygen anomalies in the Black Sea

A. Capet¹, G. Taburet², E. Mason³, I. Pujol², M. Grégoire¹, M. Rio⁴

FOCUS-Liège University, Belgium
 ² CLS, France
 ³ IMEDEA, Spain
 ⁴ ESA/ESRIN, Italy

Context

Objectives

Methods

Results

Take home messages

Argo

CMEMS, Ocean Monitoring Index, 2021

Oxygen Penetration Depth (>20µM)

Capet et al., Biogeoscience, 2016

Korotaev et al., JGR, 2003

Ostrovskii and Zatsepin, Deep-Sea Research, 2016

Objectives

Context

Objectives

Methods

Results

Objectives

Characterize eddy dynamics in Black Sea periphery.

Objectives

- Characterize eddy dynamics in Black Sea periphery.
- Evidence associated subsurface oxygen anomalies.

Context

Objectives

Methods

Results

Take home messages

Argo

Objective 1: Characterize Mesoscale activity in the Black Sea periphery

Altimetry products

- Altimetry products
- Challenged nearshore

- Altimetry products
- Challenged nearshore
- \rightarrow EO4SIBS altimetry

- Altimetry products
- Challenged nearshore
- \rightarrow EO4SIBS altimetry
 - Comparison with previous products

Sets of Altimetry	CMEMS-SLA	CMEMS-ADT	EO4SIBS-ADT	Model
Along-track	1 Hz	1 Hz	5 Hz	-
MDT	- (SLA)	CLS (ADT)	CLS (ADT)	- (ADT)
Interp.	OI	OI	OI + Bathy	None
Spatial res.	$\sim 12 \ km$	$\sim 12 \ km$	~ 6 km	3km

- Altimetry products
- Challenged nearshore
- → EO4SIBS altimetry
- Comparison with previous products

Sets of Altimetry	CMEMS-SLA	CMEMS-ADT	EO4SIBS-ADT	Model
Along-track	1 Hz	1 Hz	5 Hz	-
MDT	- (SLA)	CLS (ADT)	CLS (ADT)	- (ADT)
Interp.	OI	OI	OI + Bathy	None
Spatial res.	$\sim 12 \ km$	$\sim 12 \ km$	~ 6 km	3km

How to compare altimetry products?

? Compare eddy properties

How to compare altimetry products?

X Compare eddy properties \rightarrow Model \neq reference!

How to compare altimetry products?

- X Compare eddy properties \rightarrow Model \neq reference!
- ? Use other variables from remote sensing.

How to compare altimetry products?

- X Compare eddy properties \rightarrow Model \neq reference!
- X Use other variables from remote sensing. \rightarrow Too complex!

How to compare altimetry products?

- X Compare eddy properties \rightarrow Model \neq reference!
- X Use other variables from remote sensing. \rightarrow Too complex!
- ? Compare derived subsurface signatures...

Objective 2: Subsurface anomalies

Exploit Eddies/Argo Match-ups

Objective 2: Subsurface anomalies

Exploit Eddies/Argo Match-ups

Objective 2: Subsurface anomalies

Exploit Eddies/Argo Match-ups

Eddy-centric composite framework

Objective 2: Subsurface anomalies

- Exploit Eddies/Argo Match-ups
- Composite mean of anomalies

Eddy-centric composite framework

Objective 2: Subsurface anomalies

- Exploit Eddies/Argo Match-ups
- Composite mean of anomalies

Eddy-centric composite framework

31.5°E

32.5°E

32°E

Objective 2: Subsurface anomalies

- Exploit Eddies/Argo Match-ups
- Composite mean of anomalies
- ▶ \neq Set
 - $\rightarrow \neq$ radial coordinates
 - $\rightarrow \neq$ mean picture
 - ightarrow
 eq error on the mean

Context

Objectives

Methods

Results

Take home messages

Argo

Results Different altimetry products

Subsurface oxygen anomalies

Take home messages

Context

Objectives

Methods

Results

Take home messages

Argo

 EO4SIBS provided an enhanced description of nearhsore eddy dynamics in the Black Sea.

- EO4SIBS provided an enhanced description of nearhsore eddy dynamics in the Black Sea.
- Argo floats are usefull to characterize altimetric products (and eddy detection methods).

- EO4SIBS provided an enhanced description of nearhsore eddy dynamics in the Black Sea.
- Argo floats are usefull to characterize altimetric products (and eddy detection methods).
- Structure of oxygen subsurface anomlies suggest BGC terms in the mesoscale contribution to Black Sea oxygen dynamics.

Objectives

Methods

Results

Argo

1. In the Black Sea : unique BGC vertical structure.

- H₂S horizon.
- Coupled phototrophic and chemotrophic loops.
- \rightarrow Challenging testing ground for BGC-Argos.

Argo

1. In the Black Sea : unique BGC vertical structure.

- H₂S horizon.
- Coupled phototrophic and chemotrophic loops.
- \rightarrow Challenging testing ground for BGC-Argos.
- 2. Everywhere: enforce BGC-Argo/model interface.
 - Organic matter: dissolved, particulate, lability,...
 - Characterize error distribution for all BGC-Argo variables.

Argo

Thank you!

Using Argo floats to characterize altimetry products: a study of eddy-induced subsurface oxygen anomalies in the Black Sea

Arthur Capet^{1,*}, Guillaume Taburet², Evan Mason^{1,3}, Isabelle Pujol², Marilaure Grégoire¹, Marie-Hélène Rio⁴

Capet et al., Frontiers in Marine Science, 2022 (In Press)

Thank you!

Thank you!

