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Abstract. The objective of this paper is to carry out periodic orbital propagation and bifurcations detection
around asteroid 433 Eros. Specifically, we propose to exploit a frequency-domain method, the harmonic
balance method, as an efficient alternative to the usual time integration. The stability and bifurcations of
the periodic orbits are also assessed thanks to the Floquet exponents. Numerous periodic orbits are found
with various periods and shapes. Different bifurcations, including period doubling, tangent, real saddle and
Neimark-Sacker bifurcations, are encountered during the continuation process. Resonance phenomena are
highlighted as well.
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1. Introduction
Interest in asteroids and small celestial bodies significantly increased in the last two decades,

and, consequently, the number of space exploration missions increased as well. Concerning the
orbital propagation around asteroids and the study of the bifurcations of their periodic orbits,
one of the methods considered is the grid searching method proposed by Yu & Baoyin (2012).
It was applied to compute families of orbits around 216 Kleopatra Yu & Baoyin (2012); a
summary of all the classifications of bifurcations was proposed by Jiang (2015). This paper
focuses on orbital dynamics about 433 Eros, which was subject of recent studies Ni (2016),
Scheeres (2000). The rotation period of 433 Eros is of 5.270 hours and the density is equal
to 2.673 g/cm3. The focus of this study is made on the method applied for the computation of
periodic orbits and the detection of the bifurcation. The harmonic balance method is applied
to the equation of motion offering a new and unique approach to compute periodic solutions.
The paper is organized as follows. First, details on the polyhedron method for the gravitational
modeling of the asteroid are briefly recalled. Then, the harmonic balance method, used for
orbital propagation, is introduced. Finally, the obtained results are exposed.

2. Polyhedron method
The polyhedron method introduced by Werner (1994) is extensively used to model the

gravitational field of irregular celestial bodies like asteroids. The method is based on the con-
struction of a surface mesh with the assumption that the density of the body is constant. Some
meshes were generated from radar observations, others are the direct result of on-site obser-
vations during specific missions, e.g., NASA mission Osiris-REX on 101955 Bennu, ESA
mission Rosetta on 67P Churyumov–Gerasimenko and JAXA mission Hayabusa on 25143
Itokawa Tsuchiyama (2011). The polyhedron model of 433 Eros is the result of NASA mis-
sion NEAR Shoemaker Veverka (2001). Figure 1 shows the mesh of 433 Eros, consisting of
856 vertices and 1708 faces.
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Figure 1: Polyhedron model of 433 Eros

The main advantage of the polyhedron method is the simple computation of the gravitational
potential of the celestial body, U , namely

U =
1
2

Gρ ∑
edges

(re ·Ee · re) · Le −
1
2

Gρ ∑
f aces

(
r f · F f · r f

)
·ω f (1)

where ρ is the bulk density of the body, G is the gravitational constant, the two vectors re
and r f are body-fixed vectors from the particle to the edge e and the face f , respectively.
Matrices Ee and F f gather the geometric parameters of the edges e and faces f . Le denotes
the integration factor of the particle position and the edge e whereas ω f corresponds to the
solid angle of the face f relative to the particle.

The gradient of the gravitational potential is then easily obtained

∇U =−Gρ ∑
edges

(Ee · re) · Le + Gρ ∑
f aces

(
F f · r f

)
·ω f (2)

This expression of the gravitational potential yields the equation of motion in the co-rotating
frame

ẍ + 2ωa × ẋ + ωa × (ωa × x) + ∇U(x) = 0 (3)

The body-fixed vector that links the asteroid body’s center of mass to the particle is denoted
x, ωa represents the angular velocity of the asteroid. The harmonic balance method is used to
compute solutions to this equation.
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3. Harmonic Balance
The harmonic balance method aims at approximating periodic solutions of the equations of

motion, x(t), by means of a Fourier series truncated to the N-th harmonic, namely

x(t) =
cx

0√
2
+

NH

∑
k=1

(sk sin(kωt) + ck cos(kωt)) (4)

A similar decomposition is carried out for the nonlinear force ∇U . Vectors sk and ck are the
Fourier coefficients associated to the sine and cosine, respectively. ω corresponds to the fre-
quency of the periodic orbit (which is not correlated to the angular velocity of the asteroid,
ωa). The Fourier coefficients are gathered in a new vector z for the displacement and b for the
nonlinear force of dimension (2NH + 1) n× 1, with n the degrees of freedom of the studied
system. Equation 3 can eventually be rewritten as

h(z, ω) = A(ω)z− b(z) = 0 (5)

where matrix A describes the linear dynamics. A predictor-corrector algorithm is used to solve
Equation 5, as proposed in Detroux (2014). This approach presents numerous advantages
over the classical time integration method. Working in the frequency domain provides a fast
and efficient alternative from time domain methods to solve the equation of motion. The
predictor-corrector algorithm is a great tool to compute orbit families.

The stability of orbits, as well as the detection of bifurcations, can be determined through
the Floquet multipliers which are the eigenvalues of the monodromy matrix Peletan (2013).
In the frequency domain, an alternative method known as Hill’s method exists. It consists in
introducing the periodic solution x∗(t) perturbed with another periodic solution s(t) modulated
by an exponential decay into the equation of motion, Eq. 3.

p(t) = x∗(t) + eλ ts(t) (6)

which eventually leads to the simple quadratic eigenvalue problem

(
∆2λ

2 + ∆1λ + hz
)

u = 0 (7)

that provides the Floquet mutlipliers, λ . If two multipliers cross at +1 on the unit circle the
bifurcation is a tangent bifurcation. If the crossing happens at -1, it is a period doubling
bifurcation. We refer to a real saddle if two multipliers leave the real axis as complex
conjugates; if they leave the unit circle as complex conjugates, there is the presence of a
Neimark Sacker bifurcation. A graphical depiction summarizes the different cases in Figure
2. ∆1 and ∆2 also describe the linear dynamic. hz is the derivative of equation 5 with respect
to z. The vector u is the equivalent of z but for the Fourier coefficients of s.

4. Results
We consider the continuation process between the periodic ratios, ω

ωa
starting from approx-

imately 2 up to 3. The results of the continuation are displayed in Figure 3, each point in
this plot correspond to a unique periodic orbit. We refer to each group of orbits separated by
bifurcations as families. They are gathered in Table 1.

Most bifurcations are located around resonant periods, associated to the nominal period
ratio 2:1 and 3:1, where Jacobi’s constant changes abruptly, whereas it remains roughly
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Figure 2: Bifurcations classified thanks to Floquet multipliers
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Figure 3: Continuation process between the periodic ratio of 2 and 3 with regard to the Jacobian
constant

constant in between. There is just a period doubling bifurcation between the two resonances
around the ratio 2.5:1. It is in fact a quasi-period doubling bifurcation, meaning that the
Floquet multipliers simply cross the value -1 on the unit circle and remain on it afterwards
Kang (2018).

The stable region identified during the continuation process, corresponding to family 6, is
displayed in black in Figure 4. The stability appears between a Neimark Sacker bifurcation
and a tangent bifurcation.

Figure 5 displays representative orbits for each family. The unfolding of the few first fam-
ilies can clearly be observed. After family 4, the shape of the orbits is rotated by 90 degrees
compared to those in family 3. Starting from family 8, the orbits begin to flatten to the point
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Family n° Period ratio Jacobian constant Bifurcation Stability
1 ]2.138;2.074] ]19.496;22.451] Tangent U
2 ]2.074;2.063] ]22.451;22.324] Period Doubling U
3 ]2.063;1.931] ]22.324;-55.984] Tangent U
4 ]1.931;2.041] ]-55.984;18.689] Real Saddle U
5 ]2.041;2.045] ]18.689;20.395] Neimark Sacker U
6 ]2.045;2.0455] ]20.395;20.411] Tangent S
7 ]2.0455;2.053] ]20.411;12.504] Period Doubling U
8 ]2.053;2.023] ]12.504;-25.824] Period Doubling U
9 ]2.023;2.454] ]-25.824;-49.136] Period Doubling U

10 ]2.454;2.965] ]-49.136;-48.199] Period Doubling U
11 ]2.965;2.989] ]-48.199;-37.213] Period Doubling U
12 ]2.989;2.969] ]-37.213;-34.969] Period Doubling U
13 ]2.969;2.935] ]-34.969;-35.409] Tangent U

Table 1. : Bifurcations, stability and period ratio of the orbit families
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Figure 4: Focus on the stable orbits during the continuation.

that family 10 has orbits with almost zero inclination. Families 11, 12 and 13 evolve into more
complex orbits.

5. Conclusion
In this paper, a new approach for the computation of periodic orbits around asteroids is

proposed. The harmonic balance method is introduced, and its application to the detection of
bifurcation and search for periodic orbits around the asteroid 433 Eros is presented. Twelve
bifurcations of different types are encountered mainly around the resonances 2:1 and 3:1. The
stability of the orbits is also studied and only one family of orbits is found to be stable.
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Figure 5: Families of periodic orbits around 433 Eros
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