

Nature versus nurture of the puberty: a combined clinical and polygenic risk score to predict pubertal timing in girls

Mojgan Yazdanpanah^a, Nahid Yazdanpanah^a, Sara Moline^b, Ken Ong^{c,d}, John Perry^c and Despoina Manousaki^{a,b,e}

^a Research Center of Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada

^b Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada

^c MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK

^d Department of Paediatrics, University of Cambridge, Cambridge, UK

^e Departments of Pediatrics, Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, Canada

Background

Precocious or late puberty are common causes of referral to pediatric endocrinology.

Methods

STUDY COHORT : ALSPAC²

- British birth cohort with genotypic and clinical data
- 8,799 children of European ancestry/3,140 girls \bullet
- Median AAM : 12.7 years (SD 1,15)
- Most of these cases are idiopathic and do not require extensive work-up.
- Pubertal traits are highly heritable.
- Epidemiological risk factors (obesity, socio-economic status etc) have also been linked to pubertal timing.

<u>Objective 1</u>: to evaluate the impact of genetic and epidemiological factors on age at menarche (AAM) and age at peak height velocity (APHV)

Objective 2: to develop a predictor of early or late AAM

- Mean APHV : 11.8 years (SD 0,82)
- 1.9 % girls with BMI \geq 25

POLYGENIC RISK SCORE (PRS) for AAM

- Developed from a GWAS in UK Biobank on AAM using LDpred2 (Privé F et al., 2022¹).
- 854,735 single-nucleotide polymorphims (SNPs) included in the PRS
- 699,499 SNPs (after QC) used to calculate the AAM PRS in ALSPAC

PHENOTYPIC DATA

- Exposure of interest: PRS
- Outcomes:

- AAM as a continuous outcome
- Early menarche (AAM \leq 10.4y); Late menarche (AAM \geq 15y)
- APHV evaluated by serial height measurements between ages 8y and 20y
- Covariates : BMI at age 8y, birthweight, gestational age, emotional difficulties score, mother's AAM, BMI and SES, fathers' BMI.

STATISTICAL METHODS

- Linear regression models in univariate and multivariate analyses
- All models with PRS were adjusted for 10 principal components (PC)
- Metrics of performance of each model : R² (continuous outcomes), AUROC (binary outcomes)

Results

UNIVARIATE MODELS

ີ້ບັ_{2.0}-

-.` \$**6**) 1.5

Discussion

0.4-62%

eut 0.3

- We demonstrates the advantage to combine PRS with clinical risk factors to predict pubertal timing, in agreement with a Chinese study³.
- Such predictors could help clinicians diagnose idiopathic forms of early puberty and avoid unnecessary investigations.
- Next step: replication of our findings in larger cohorts, various ancestries and in boys.

Fig. 4: Comparison of the AUROC of the PRS, clinical predictors, and their combination

Conclusion

A combined clinical and polygenic risk score could be proposed as a tool to predict (at no risk and low cost) which girls with extreme presentations of their pubertal timing do not warrant further investigations.

References

¹Privé, F., et al. Portability of 245 polygenic scores when derived from the UK Biobank and applied to 9 ancestry groups from the same cohort. Am J Hum Genet. 2022 Jan 6;109(1):12-23. PMID: 34995502 ²Fraser, A., et al. Cohort Profile: the Avon Longitudinal Study of Parents and Children: ALSPAC mothers cohort. Int J Epidemiol. 2013; 42, 97-110.

³Zhao, W., et al. Associations between polygenic risk score for age at menarche and serum hormone levels in multiple race/ethnic groups. Menopause. 2021 Apr 19;28(7):819-828.