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Abstract 

The floors of modern buildings are prone to excessive vibrations induced by human actions, 

especially when a group of people perform rhythmic activities in a coordinated manner. A 

reliable model for this load case, taking into account the experimentally observed group effect, 

is thus essential for the serviceability assessment of such structures. In this paper, a frequency-

domain load model for either a single person or multiple individuals was established for two 

rhythmic activities. The model parameters were determined by an indirect identification method 

from acceleration responses. An extensive experimental test campaign was conducted on a 

steel–concrete composite floor in order to provide input data for identification, including 

experimental modal analysis and human-induced vibration tests for up to 32 individuals. The 

load parameters were first determined for the single-person load model. Root Mean Square 

(RMS) forces were then calculated from the identified load models, and corresponding 

coordination factors as a function of crowd size are suggested. A decreasing exponential was 

obtained for up to 8 persons for skipping and 12 persons for jumping, followed by a constant 

plateau for larger groups. The proposed models involve a global coordination factor to be used 

in conjunction with the identified model corresponding to skipping and jumping activities. A 

comparison of the proposed model and three existing coordination factor models against 

experimentally identified forces was performed. The comparison revealed the accuracy of the 

suggested models with respect to experimentally identified forces, whereas differences to 

existing factors were found especially for jumping. 

Keywords: building floor, human-induced vibration, rhythmic load model, group effect, force 

identification, serviceability analysis. 
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1 Introduction 

Progress in construction has led to significant changes in the performance of building floors. In 

fact, these structures are becoming more lightweight, slender and flexible due to the growing 

use of materials with high strength properties but low weight. Architectural considerations 

together with an increasing trend toward open spaces have also contributed to this situation. As 

a result, some serviceability issues have emerged in general cases, especially for floors 

subjected to human activities (walking, running, skipping, jumping, etc.) where occupants can 

feel discomfort from floor vibrations. The most relevant load case causing this effect is human-

induced rhythmic loading, especially when a group of people excite the floor with a high level 

of synchronization. An et al. [1] highlighted this phenomenon by conducting an experimental 

investigation of an innovative composite floor subjected to human-induced vibrations. They 

confirmed that crowds jumping synchronously produced the greatest acceleration responses 

among the rhythmic activities studied. The impact of these actions could be even more 

pronounced: Lee et al. [2] demonstrated that crowd-rhythmic movements in a fitness centre 

located on the 12th floor of a 39-storey steel building in Seoul resulted in a 10-min vertical 

shaking episode causing panic to the occupants. Therefore, reliable load models for crowd-

rhythmic activities are a prerequisite for the vibration serviceability assessment of floors. 

Several attempts to develop such models have been made. Crowd models proposed in the 

literature were first based on a single person practicing rhythmic movements on the floor. Then, 

crowd effects observed in real situations (due to physical constraints, visual cues from crowd 

movement, stimulation from near environment [3], etc.) were investigated experimentally. A 

straightforward method for handling this is to conduct direct measurements of the force induced 

by each person on the floor. Dynamic load factors (DLFs) characterizing Fourier series models 

may then be determined for various rhythmic activities [3],[4]. Moreover, coordination 

factors [5] reflecting the lack of synchronization between individuals were proposed as a 

function of crowd size. The main rhythmic activity analysed was jumping, and several relations 

describing the variation in group loads against crowd size were derived, either for Fourier series 

models [6][7] or jumping pulse models [8]. Nevertheless, measuring single forces produced by 

each individual is not practical for the case of large crowd sizes. In fact, the maximum number 

of individual load plates used for such experiments was 15, as stated by Comer et al. [3]. The 

limited area of the force plate also restricts the movement of the individual, who may not be 

able to perform the activity in a comfortable manner. Alternatively, one can extrapolate results 

obtained with smaller crowd sizes or undertake simulations of larger crowds with a single-

person model. However, these approaches do not capture the experimental crowd effects 

mentioned earlier. 

Indirect determination of force parameters from measured responses on the floor was used 

instead, offering the possibility of analysing the group effect for larger crowds in real-life 

conditions without restricting their motion. Time-domain force reconstruction methods, widely 

used in structural dynamics for various loads [9][10], have been proposed for human-induced 

excitation. Dynamical systems were usually represented using a state–space description, and 

algorithms to identify unknown forces were based on various Kalman filter formulations 

[11],[12]. However, the estimation of input forces by these filter-type techniques is often 

contaminated by low-frequency drifts due to the integration of noisy response measurement in 

the identification process [13]. A sequential Bayesian approach based on a real-time noise 

updating was established to correct this issue [14]; however, this method is highly sensitive to 
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the sampling interval, and potential inaccuracies could arise from approximations introduced 

for the temporal discretization [13]. 

Most of the load models representing rhythmic activities were expressed in the time domain, 

characterized by sharp peaks at each harmonic. This enables the excitation of only one dominant 

mode of vibration at once. However, building floors encountered in practice generally have 

multiple dominant modes, and some have closely spaced modes such as for multi-span or multi-

panel floors [15],[16], indicating that time-domain models would not provide accurate results 

for these structures. Frequency-domain modelling is a good alternative to overcome this 

limitation [17], as it offers an excitation frequency window that can excite multiple close modes 

simultaneously. A proposal for the use of this model in the context of a random field approach 

was made by Xiong and Chen [18] for regular crowd jumping. It was based on the measurement 

of loads produced by 48 persons exciting a rigid floor using 3D motion capture technology. 

Although more reliable for characterizing group-induced loads, the implementation of this 

model is quite laborious and the generation of load parameters for every person in the group is 

time consuming. A simplified frequency-domain load model for rhythmic activities along with 

an adequate identification method from the measured responses on building floors are thus one 

of the key elements to be provided in this field of research. 

In this paper, a frequency-domain load model characterizing two rhythmic activities is 

established for either a single person or multiple individuals exciting a floor structure. The 

parameters of this model are determined from experimental acceleration measurements using 

the least-squares identification technique. Experimental tests of a steel–concrete composite 

floor are presented along with the results. The background of the parametric identification 

method used for rhythmic loads is summarized, comprising the formulation of load models and 

response analysis procedures. Moreover, the load parameters are determined for the case of a 

single person, and the group effect is studied for multiple individuals. This is done by means of 

Root Mean Square (RMS) forces computed from the identified load models, providing 

relationships between RMS forces and crowd sizes. Finally, a comparison is made between the 

predictions of the proposed coordination factor models and those of three existing models for 

rhythmic activities against experimentally identified forces, and the findings are discussed. 

2 Experimental set-up 

An experimental program was performed in order to provide reliable data to be used in human-

induced load identification for individuals and crowds. It comprised two test campaigns of a 

flexible floor: modal analysis and human-induced vibration tests [19]. 

2.1 Tested structure 

Experimental tests were carried out on a three-storey composite steel and concrete parking 

structure located in Nantes, France (Fig. 1). The tested floor was located at 3 m above the 

ground and had a total area of approximately 4200 m². A rectangular area of 22.5  15.785 m² 

near the centre of the floor was selected for testing. It was made of a composite concrete deck 

of 130 mm thickness, with a 0.75-mm-thick profiled steel sheet of Cofraplus 60 type. The 

composite floor was supported underneath by welded I-members, and connection was achieved 

by shear studs of 19 mm diameter and 100 mm height. The secondary beams consisted of a 

500×5 web and 150×12 flanges. The primary beams consisted of a 470×8 web and 200×15 
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flanges except for two beams with a 4806 web and 15010 flanges. The columns were 

composed of hot-rolled HEB340 profiles. All beams were assumed to be simply supported. 

 

Fig.1: Composite steel and concrete parking floor in Nantes (France). 

2.2 Modal analysis 

The first test campaign aimed at characterizing the modal properties of the floor using 

Experimental Modal Analysis (EMA) [20]. The structure, having a considerable mass, was 

excited by a digitally controlled electrodynamic shaker (Fig. 2(a)), equipped with a 230 kg mass 

moving vertically with an amplitude of 0.5 or 1 mm. The shaker was consecutively placed at 

two positions, labelled “Setup 1” and “Setup 2” in Fig. 2(b). For each position of the shaker, 

white noise excitation enabled the detection of natural frequencies ranging between 3 and 

10 Hz, which is within the range of frequencies of human excitation [21]. Then, the frequency 

of excitation was tuned to each natural frequency detected and the responses were measured by 

wireless accelerometers, having a sampling frequency of 64 Hz and a measurement range of 

± 2 g. The accelerometers were placed on the floor structure at different locations (Fig. 2(b)). 

Synchronous measurement of the acceleration near the shaker (with an accelerometer having a 

measurement range of ± 2 g) provided Frequency Response Functions (FRFs) that are 

necessary for determining the modal properties (natural frequency, modal mass, damping ratio) 

of the floor by a curve fitting procedure. Relative accelerations (to the maximum value) made 

it possible to determine the modal shapes in the studied area. 
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(a) (b) 

Fig. 2: Experimental modal analysis set-up: (a) electrodynamic shaker; (b) positions of the shaker and 

accelerometers. 

Data analysis revealed the existence of 20 closely spaced vibration modes with natural 

frequency ranging between 3 and 10 Hz. The structure is thus a relatively low-frequency 

floor [22], sensitive to human excitation. Examples of modal shapes identified for four different 

modes are shown in Fig. 3. Mode 1 is a global mode, whereas higher modes are more local. 

  

(a) (b) 
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(c) (d) 

Fig. 3: Identified modal shapes: (a) mode 1; (b) mode 4; (c) mode 6; (d) mode 11. 

Solid black lines represent supporting beams. Dimensions are in metres. 

Natural frequencies, modal masses and damping ratios of the modes illustrated in Fig. 3 are 

summarized in Table 1. 

Table 1: Modal parameters of the floor. 

Mode Frequency (Hz) Modal mass (t) Damping ratio (%) 

1 3.56 297 0.44 

4 3.94 167 0.57 

6 4.17 150 0.61 

11 4.85 98 0.70 

 

2.3 Human-induced vibration tests 

A series of tests were conducted to measure the floor acceleration under two human-induced 

rhythmic loads: skipping (running at a fixed place) and jumping jacks, called “jumping” in this 

paper. Since it was considered that substantial effects in loads and responses would be observed 

through stepwise changes of group size [21], tests were conducted considering six series of one, 

two, four, eight, 16, and 32 individuals, respectively. 

Participants were requested to stay at fixed positions uniformly distributed over the floor (as 

illustrated in Fig. 4 for the case of 32 persons). The crowd density was 0.16 person/m², which 

corresponds to a low-range density of occupants [23]. Individuals participated in rhythmic 

activities under the guidance of an experienced sports coach in order to represent a level of 

synchronization as close as possible to real situations. The tests were divided into two set-ups, 

each having specific crowd sizes, duration and a repetition number of activities, as presented in 

Table 2. 
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Table 2: Parameters of each set-up for vibration tests. 

Set-up Crowd size Duration Repetition 

1 1, 16, 32 1 min 9 times 

2 2, 4, 8 1 min 6 times 

 

 

Fig. 4: Monitored area (blue box); positions of 32 individuals for rhythmic activities (green triangles); 

locations of accelerometers (red rectangles). 

A total of 35 participants (26 men and nine women) were involved in this campaign. The test 

procedure was briefly described to all participants prior to starting the activities. Their ages 

ranged from 18 to 58 years (mean: 28 years, standard deviation: 12 years) and their weights 

(measured at the beginning of the test) varied from 52.3 to 126.6 kg (mean: 75.8 kg, standard 

deviation: 15.4 kg). Fig. 5 shows the 32 individuals skipping on the floor. 
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Fig. 5: 32 individuals skipping on the tested floor. 

2.4 Response measurements 

Floor accelerations induced by human activities were measured using 10 cabled accelerometers 

with a sampling frequency of 256 Hz. They were installed on the secondary beams of the tested 

floor at different locations (Fig. 4). A total of 2.5 h of response data was recorded during this 

campaign. An illustration of the accelerations measured by accelerometer no.°111 (Fig. 4) is 

presented in Fig. 6 for four individuals performing skipping and jumping activities. 

 

(a) 
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(b) 

Fig. 6: Accelerations measured by accelerometer no.°111 for four individuals: (a) skipping; (b) 

jumping. 

Acceleration recordings due to rhythmic activities were processed using MATLAB. For each 

activity, structural responses were extracted on the basis of an automatic envelope detection, 

which is simply implemented using a Hilbert transform. The envelope corresponding to each 

time window was truncated by 5 s at the beginning and at the end of each signal to keep the 

stationary response only and to match with the slot where all individuals were moving according 

to the protocol. Each recording was then filtered within the frequency range between 0 and 

10 Hz via Fast Fourier Transform (FFT). An example of a filtered acceleration signal for 

skipping activity extracted from the recording shown in Fig. 6 is illustrated in Fig. 7 in the time 

and frequency domains. 

 

(a) 
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(b) 

Fig. 7: Acceleration signal for four individuals skipping: (a) time domain; (b) frequency domain. 

3 Background for rhythmic load identification 

After having identified modal parameters of the floor structure, the latter was subjected to 

rhythmic activities by individuals (with known masses) located at known fixed positions. 

Corresponding accelerations were measured at pre-defined response points. In order to 

determine the loads that produced the floor accelerations, a parametric load model was 

established either for a single person or multiple individuals. It is noted that only the dynamic 

part of human loads was considered since quasi-static response is not measured by 

accelerometers. The method for evaluating the response of floors subjected to rhythmic 

activities is presented afterwards. 

3.1 Rhythmic load model 

In this study, a frequency-domain model for rhythmic activities is adopted considering a 

specific Power Spectral Density (PSD) formulation. The proposed load model takes into 

account the variation of excitation frequency during movement (“intra-subject variability”). 

3.1.1 Single-person load model 

The PSD load model from an existing random field approach for jumping [18] is expressed for 

each harmonic i by: 

 𝑆𝑝,𝑖(𝑓) = (𝑚𝑔)2 (
𝜌𝑆𝑖

𝑖𝑓𝑝
) [𝑝5 exp (− [(

𝑓−𝑖𝑓𝑝

𝑖𝑓𝑝𝑝6
)]

2

) + 𝑝7 exp (− [(
𝑓−𝑖𝑓𝑝

𝑖𝑓𝑝𝑝8
)]

2

)]  (1) 

where the corresponding parameters are described in [18]. 

Fig. 8 illustrates the PSD model using three harmonics, for an individual weighing 75 kg and 

jumping at 2 Hz. 

 

Fig. 8: PSD load model obtained from [18] (75-kg individual and 2 Hz excitation frequency) 
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We note that the exponential function (given in Eq. (1)) accurately models the frequency 

content at each harmonic. In fact, it has a bell shape enabling a gradual decrease in amplitude, 

which represents the spread of energy (leakage) in the vicinity of the peak of each 

harmonic [24]. As a consequence, the proposed formulation assumes that each harmonic can 

be modelled by a unique exponential function given by: 

 𝑆𝑝,𝑖(𝑓) = (𝑚𝑔𝛼𝑖)2 exp (−
(𝑓−𝑖𝑓𝑝)

2

𝛿𝑖
2 ) (2) 

where m is the mass of the participant, g the gravity acceleration (equal to 9.81 m/s²), fp the 

excitation frequency, αi an amplitude coefficient of the ith harmonic and δi a coefficient defining 

the leakage of energy from the frequency centres of each harmonic ifp [24]. The total PSD load 

model is then deduced for H harmonics by: 

 𝑆𝑝(𝑓) = ∑ 𝑆𝑝,𝑖(𝑓)𝐻
𝑖=1  (3) 

The PSD load model given by Eq. (2) was simplified for skipping and jumping activities in 

order to have a limited number of parameters for identification. In fact, three harmonics (H = 3) 

were considered for each activity, since it covers the maximum frequency range of human 

activities (between 0 and 10 Hz) [21]. The coefficient δi was taken from the aforementioned 

random field model for jumping activity [18] where it is evaluated according to the following 

expression: δi=iδ1. The ratio between amplitude coefficients ai=αi/α1 was assumed to be the 

same as that for the dynamic load factors (DLFs) of an equivalent time-domain load model. 

Pernica [4] conducted an experimental study to extract time-domain load parameters (especially 

DLFs) for several human activities, including running-on-the-spot and stride jumps, which 

correspond to skipping and jumping as performed in our experiments, respectively. 

Each load model is decomposed in a Fourier series as follows: 

 𝑃(𝑡) = 𝑚𝑔[∑ 𝐷𝐿𝐹𝑖 sin(2𝜋𝑖𝑓𝑝𝑡)3
𝑖=1 ] (4) 

These loads are one of the most widely used models from the literature reproducing 

experimental activities. DLFs for these two load models are provided in Table 3. 

Noting δ1= δ and α1= α, the PSD load model can be simplified by the following expression: 

 𝑆𝑝(𝑓) = (𝑚𝑔𝛼)² ∑ [𝑎𝑖
2 exp (−

(𝑓−𝑖𝑓𝑝)
2

(𝑖𝛿)²
)]3

𝑖=1  (5) 

where the relative parameters ai (i=1, 2, 3) are given in Table 3. Parameters to be identified for 

each activity are then fp, α and δ. 

Table 3: Load parameters DLFi [4] and ai for skipping and jumping. 

Activity DLF1 DLF2 DLF3 a1 a2 a3 

Skipping 1.57 0.58 0.26 1 0.4 0.15 

Jumping 1.75 1.1 0.42 1 0.6 0.25 

 



12 

3.1.2 Crowd load model 

The load model characterizing crowd-rhythmic activities is modelled using a random field 

approach [18]. For N individuals rhythmically exciting the floor structure, each person on an 

excitation point k is assumed to have a PSD load model noted Sp,k( f ). In reality, these persons 

perform rhythmic activities in a different manner depending on the style of each individual’s 

movement (“inter-subject variability”). The interaction of each pair of individuals is then 

expressed by a coherence function. For the proposed PSD load model, this is taken into account 

by assuming a complete coherence function, which is corrected by coordination factors 

reflecting the reduction of crowd loads due to the lack of synchronization between 

individuals [5]. The correction is determined after the identification of load parameters fp, α and 

δ for each activity window (assumed to be identical for all participants). 

Hence, the PSD force matrix for a group of N individuals [𝑆𝑝,𝑁(𝑓)] (N  N) is defined by [18]: 

 [𝑆𝑝,𝑁(𝑓)]
𝑘,𝑙

= {
𝑆𝑝,𝑘(𝑓),       𝑘 = 𝑙

𝑆𝑝,𝑘,𝑙,           𝑘 ≠ 𝑙
 (6) 

where Sp,k( f ) is the PSD load model for a person in the group and Sp,k,l( f ) the cross-PSD model 

between the kth and lth persons. 

For an individual having a known mass mk, the PSD model Sp,k( f ) is expressed by: 

 𝑆𝑝,𝑘(𝑓) = 𝐶(𝑁)2 𝑆𝑝(𝑓) (7) 

Here, Sp( f ) is the PSD load model for a single person exciting the floor obtained by Eq. (5) and 

C(N) the coordination factor related to crowd size N. 

On the other hand, the cross-PSD load model Sp,k,l( f ) is given by: 

 𝑆𝑝,𝑘,𝑙(𝑓) = √𝑆𝑝,𝑘(𝑓)𝑆𝑝,𝑙(𝑓) (8) 

3.2 Response of floors to rhythmic activities 

Major steps for the calculation of the floor response due to rhythmic activities are provided 

next. Further details can be found in [25]. 

For a number nm of natural modes of the floor, the PSD matrix of generalized forces [𝑆𝑝∗(𝑓)] 

(nm  nm) is given by: 

 [𝑆𝑝∗(𝑓)] = [Φ𝑝
𝑇] [𝑆𝑝,𝑁(𝑓)] [Φ𝑝] (9) 

where [Φ𝑝] is the matrix of modal amplitudes at the excitation points (N  nm). 

The uncoupled equations of motion for each natural mode n are: 

 �̈�𝑛(𝑡) + 2𝜉𝑛𝜔𝑛�̇�𝑛(𝑡) + 𝜔𝑛
2𝑞𝑛(𝑡) =

1

𝑀𝑛
𝑝𝑛

∗(𝑡) (10) 

where ωn, Mn, ξn, qn and pn* are the circular frequency, modal mass, damping ratio, modal 

coordinate and generalized force for the nth mode, respectively. Combining Eq. (10) for all 

modes in the frequency domain gives the PSD matrix of modal coordinates related to 

displacement [𝑆𝑞(𝑓)] (nm  nm) as follows: 
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 [𝑆𝑞(𝑓)] = [𝐻(𝜔)][𝑆𝑝∗(𝑓)][𝐻(𝜔)]̅̅ ̅̅ ̅̅ ̅̅ ̅𝑇 (11) 

where [𝐻(𝜔)] is the frequency response function (FRF) matrix (nm  nm) defined for each 

circular frequency ω by: 

 [𝐻(𝜔)]𝑛,𝑛 =
1

𝑀𝑛(𝜔𝑛
2 −𝜔2+2𝑖𝜉𝑛𝜔𝑛𝜔)

 (12) 

The PSD matrix of modal coordinates related to acceleration [𝑆�̈�(𝑓)] is given by: 

 [𝑆�̈�(𝑓)] = 𝜔4[𝑆𝑞(𝑓)] (13) 

Finally, for nr response points, the PSD matrix of acceleration responses [𝑆�̈�(𝑓)] (nr  nr) is 

deduced by: 

 [𝑆�̈�(𝑓)] = [Φ𝑟][𝑆�̈�(𝑓)][Φ𝑟
𝑇] (14) 

where [Φ𝑟] is the matrix of modal amplitudes at the response points (nr  nm). Diagonal terms 

of [𝑆�̈�(𝑓)] are arranged into a single column vector {𝑆𝑎(𝑓)} of length nr. The final response 

matrix [𝑆𝑎] (nr  Ne) is obtained by the combination of successive {𝑆𝑎(𝑓)} columns, each 

calculated by the same method described earlier for Ne frequencies. 

RMS accelerations were used as a response descriptor since it is a robust estimator of the human 

response to human-induced vibrations, justifying its adoption in many guidelines on evaluating 

human comfort [22] or defining acceptability limits for comfort [5]. Forces were also 

characterized by RMS values to have similar parameters for forces and responses. For a given 

parameter w (force or response) having a PSD vector noted Sw( f ), the corresponding RMS 

value is calculated by the following expression: 

 𝑤𝑟𝑚𝑠 = √∫ 𝑆𝑤(𝑓)𝑑𝑓
+∞

0
 (15) 

4 Identification of single-person rhythmic load models 

In order to define a crowd load model characterizing rhythmic activities, the PSD load model 

described in Section 3.1 for the case of a single person should be first determined. In this 

section, load parameters of the aforementioned model were experimentally identified for 

skipping and jumping activities. Acceleration records for the case of a single person 

(Section 2.4) were used for that purpose. 

4.1 Least-squares fitting 

Research works dealing with parametric identification from measured floor responses use the 

same method to identify, for each harmonic, the load parameters from the displacement [21] or 

the acceleration responses [26]. However, several simplifying assumptions related to the 

structure were made for that purpose (one principal mode of vibration, idealized modal shape, 

harmonic response, etc.). These methods were also based on time-domain load models that 

could not reproduce “intra-subject variability” effects observed during the experiments. 

To circumvent these limitations, the proposed method aims to determine the load parameters of 

the frequency-domain model presented in Section 3.1. Optimization was based on a least-

squares fitting applied to all types of floor structures (having multiple modes and various modal 
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shapes). This was done by minimizing an objective function consisting in the squared norm of 

the difference between observations and model predictions in terms of acceleration responses. 

Parameters were identified using lsqnonlin solver that is available in the MATLAB 

Optimization toolbox. This solver is adapted to least squares problems based on nonlinear 

formulations, requiring two major inputs: an initial estimation of parameters and a function to 

be minimized. Solver calculates optimal parameters using the Levenberg–Marquardt algorithm 

along with Jacobian scaling to ensure stability. Details on the implementation of this technique 

for load model identification are provided in the next section. 

4.2 Identification method 

For N individuals rhythmically exciting the floor structure, the PSD load model described in 

Section 3.1 was adopted, characterized by load parameters fp, α and δ. Identification was made 

for each type of activity and activity window j (of about 1-min duration) for the case of a single 

person. Parameters fp and δ describing the shape of the PSD model were identified using PSD 

responses. Parameter α controlling the load amplitude was later identified using RMS 

acceleration responses. This two-step process was performed as follows: 

4.2.1 Step 1: Identification of fp and δ 

The floor responses due to each activity window j, measured by accelerometers, were 

rearranged into the PSD matrix of measured responses and noted [𝑆𝑎_𝑜𝑏𝑠]. Noting θ =[fp, δ], 

response computation was performed using the proposed PSD load model (Eq. (5)) and the 

response analysis procedure of Section 3.2 (with dominant natural modes). This resulted in the 

PSD matrix of predictive responses noted [𝑆𝑎_𝑝𝑟𝑒𝑑(𝜃)]. An initial value θ0,j was chosen for the 

investigated parameters, and optimization was carried out (Section 4.1) in order to have: 

 𝜃𝑜𝑝𝑡,𝑗 = argmin 
𝜃

‖[𝑆𝑎_𝑝𝑟𝑒𝑑(𝜃)]  − [𝑆𝑎_𝑜𝑏𝑠]‖
2
 (16) 

Resulting optimal vector θopt,j is considered valid if fp ranges between 1.5 and 3.5 Hz [5],[22] 

and δ is within the interval [0.01, 0.2 Hz]. 

4.2.2 Step 2: Identification of α 

The PSD load model became α-dependent with fixed fp and δ values taken from the previous 

step, in order to ensure more precise identification in terms of RMS responses. We noted 

{𝑎𝑟𝑚𝑠_𝑜𝑏𝑠} as the experimental RMS acceleration vector and {𝑎𝑟𝑚𝑠_𝑝𝑟𝑒𝑑(𝛼)} as the predictive 

RMS acceleration vector, calculated from the α-dependent PSD matrix of forces using the 

response analysis method described in Section 3.2 (with dominant natural modes). These 

vectors were computed for all response points investigated, and optimization was performed 

(Section 4.1) to obtain: 

 𝛼𝑜𝑝𝑡,𝑗 = argmin 
𝛼

‖{𝑎𝑟𝑚𝑠_𝑝𝑟𝑒𝑑(𝛼)}  − {𝑎𝑟𝑚𝑠_𝑜𝑏𝑠}‖
2
 (17) 

4.2.3 Results 

The method described in the previous sections was used to identify the PSD load model for 

both activities performed by a single person. The mean measured and predictive PSD responses 

(using the identified PSD model) for all accelerometers is illustrated for skipping and jumping 

activities in Fig. 9. 
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(a) 

 

(b) 

Fig. 9: Comparison of mean measured and predictive PSD responses for a single person: (a) skipping; 

(b) jumping. 

The mean values and standard deviations of the identified load parameters fp, α and δ obtained 

from all activity windows are provided in Table 4. 

Table 4: Identified load parameters for a single person skipping and jumping. 

Activity fp (Hz) α δ (Hz) 

Skipping 2.62 ± 0.06 4.06 ± 1.40 0.062 ± 0.04 

Jumping 2.19 ± 0.04 4.63 ± 2.07 0.037 ± 0.02 
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The PSD load models were evaluated using the mean parameters for both analysed activities, 

considering an individual having a body mass of 75 kg. The resulting RMS forces were 1166 N 

for skipping and 1205 N for jumping, indicating that more energy is produced when performing 

the second activity than the first. 

It can be seen that the parameters of the PSD load models differ slightly between the studied 

activities. However, the identified excitation frequency indicates that jumping is a low-

frequency activity whereas skipping is a high-frequency one. The standard deviation of 

parameters reveals that the parameter with the greatest fluctuation between activity windows is 

α, followed by fp and then δ. This is due to the variable amount of impact made by the individual 

at each rhythmic sequence. The variability of parameters is generally more pronounced for 

skipping, because it exhibits more randomness in motion (similar to running) than jumping. 

5 Crowd size effect on human-induced rhythmic loads 

The influence of crowd size on human-induced rhythmic loads is analysed in this section, by 

identifying equivalent RMS forces based on the proposed PSD load model. Measurements of 

acceleration responses of all crowd sizes (from 1 to 32) for skipping and jumping activities 

were used for this purpose. 

5.1 Method 

Identification was performed for each type of activity, crowd size N and activity window j (of 

about 1-min duration). Each individual k had a known body mass mk and a PSD load model 

Sp,k( f ) given by Eq. (7). Identical load parameters were adopted for all persons (Section 3.1.2). 

The method detailed in Section 4.2 was used to identify optimal load parameters fp, α and δ 

(Eq. (5)). RMS forces by activity window j and individual k (noted Frms,j,k) were then calculated 

from the identified PSD load model Sp,k( f ) using Eq. (15). The combination of these values 

provided the equivalent RMS force of a single person being present in the group of N 

individuals, expressed as follows: 

 𝐹𝑟𝑚𝑠,𝑒𝑞,𝑗(𝑁) = √
1

𝑁
∑ 𝐹𝑟𝑚𝑠,𝑗,𝑘

2𝑁
𝑘=1  (18) 

The RMS forces obtained for all activity windows were then characterized by their mean values 

(noted Frms,eq(N)) and standard deviations for each crowd size N. 

The equivalent RMS force decreases with crowd size [5] due to considerations of group effect 

(restricted movement, lack of synchronization, etc.). As stated in Section 3.1.2, the relation 

between human-induced forces and crowd sizes is usually expressed in terms of coordination 

factors given by [5]: 

 𝐶(𝑁) =
𝐹𝑟𝑚𝑠,𝑒𝑞(𝑁)

𝐹𝑟𝑚𝑠,1𝑝
  (19) 

where Frms,eq(N) is the equivalent RMS force for an individual within a group of N individuals 

and Frms,1p the individual’s RMS force. 

As a consequence, the evolution of equivalent RMS forces Frms,eq(N) with respect to crowd size 

N should be fitted by an appropriate decreasing relation. For the activities investigated here, it 

was found that the identified relative RMS forces exhibit a power tendency for smaller crowds. 
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Moreover, coordination between individuals was stabilized at almost the same level for larger 

crowds. Consequently, the relationship between coordination factors (given by Eq. (19)) and 

crowd size was best described by a function divided into two parts as follows: 

 𝐶(𝑁) = {
𝑁−𝑟 ,       1 ≤ 𝑁 ≤ 𝑁0

𝐶0,            𝑁0 < 𝑁 ≤ 𝑁𝑚𝑎𝑥
 (20) 

where Frms,1p is the individual’s RMS force, r the group effect exponent, N0 the crowd size limit 

between the two parts, C0 the coordination factor for N0 individuals and Nmax the maximum 

investigated crowd size (32 for this study). 

A least-squares curve fitting procedure using the lsqcurvefit function in MATLAB was 

performed to determine optimal parameters Frms,1p and r for a given value of N0. The optimal 

value of N0 with respect to RMS forces, providing an exponent r lower than 1 [21] and a 

determination coefficient R² greater than 0.9, was then determined. 

5.2 Results 

The resulting model parameters of Eq. (20) are summarized in Table 5. 

 Table 5: Model parameters for skipping and jumping. 

Activity r N0 C0 R² 

Skipping 0.64 8 0.26 0.93 

Jumping 0.53 12 0.27 0.98 

Note: R² is the determination coefficient of regression laws 

 

In Fig. 10, the identified equivalent RMS forces are plotted in conjunction with crowd size 

relations against the number of individuals. 

 

Fig. 10: Equivalent RMS forces against crowd size N including mean values and standard deviations 

(in error bars) along with regression curves (solid lines) for skipping and jumping. 
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The resulting curves provide a high-precision level for jumping (R²=0.98) and skipping 

(R²=0.93) for all crowd sizes. An exception to this is the case of four persons skipping, which 

presents lower identified values compared to their fitted counterparts. Since the fitting was 

made by an optimization procedure based on a least-squares technique, this case is considered 

to be an outlier and crowd size relations are then validated. 

5.3 Discussion 

For the first part of the proposed coordination factors, the group effect exponent for jumping is 

lower than that for skipping, indicating a smaller decrease of RMS forces with respect to crowd 

size N. This is because individuals reached a higher degree of synchronization in the first 

activity than in the second one. The power relation of rhythmic forces as a function of crowd 

size was also found by Ellis and Ji [21] but in terms of dynamic load factors (DLFs) for the first 

three harmonics. However, coordination factors continued decreasing for larger crowd sizes (up 

to 64). The existence of a constant group effect for larger crowd sizes was noted by Parkhouse 

and Ewins [7], who obtained squared DLF relations with a term proportional to 1/N, providing 

constant coefficients for a huge number of persons, although coordination factors for crowds 

ranging between one and 32 persons were still decreased. For both models, each harmonic has 

specific model parameters showing a decrease in coordination factors by harmonic order, 

whereas the proposed model takes into account a more global group effect coefficient to be 

applied to the entire individual load. 

As a result, the PSD force matrix for crowds expressed by Eq. (6) could then be deduced from 

the crowd model characterizing rhythmic activities given by Eq. (7) using: 

• The PSD function expressed by Eq. (5), with optimal parameters taken from Table 4 

(for the case of a single person); 

• Coordination factors obtained by Eq. (20) for the case of crowds, with parameters given 

in Table 5. 

6 Comparison with existing crowd models 

6.1 Investigated crowd size models 

Several crowd size models corresponding to rhythmic activities are available in the literature. 

For comparison purposes, three models either presenting a global coefficient or considering a 

constant group effect for larger crowd sizes were selected. 

In the first model, proposed by Faisca (as stated by Costa-Neves et al. [16]), the equivalent 

force of a single person in a group of N participants FN(t) is expressed as follows: 

 𝐹𝑁(𝑡) = 𝐶𝐷(𝑁)𝐹(𝑡) (21) 

where F(t) is the force produced by a single person and CD(N) a phase coefficient depending 

on the activity considered and the group size N. This coefficient was obtained for two types of 

activity (aerobics, free jumps) and corresponding values for crowd sizes up to 32 are given in 

Table 6. The model associated with “Free jumps” was used for the jumping activity in the next 

comparison. 

 



19 

Table 6: Phase coefficient CD(N) of Faisca’s model by type of activity [16]. 

N Aerobics Free jumps 

1 1 1 

3 1 0.88 

6 0.97 0.74 

9 0.96 0.7 

12 0.95 0.67 

16 0.94 0.64 

24 0.93 0.62 

32 0.92 0.6 

 

A second model was taken from the ISO 10137 standard [5] applied to coordinated rhythmic 

activities. The equivalent force related to a single person in a group of N individuals FN,i(t) is 

given for each harmonic i by: 

 𝐹𝑁,𝑖(𝑡) = 𝐶𝑖(𝑁)𝐹𝑖(𝑡) (22) 

where Fi(t) is the ith harmonic of the force of a single person and Ci(N) a coordination factor 

depending on the ith harmonic, the crowd size N and the considered activity. 

For jumping, the coordination factor is given as follows: 

• If 1 ≤ N ≤ 5, , Ci(N) = 1; 

• If N ≥ 50, Ci(N) depends on each harmonic and coordination degree (high, medium, 

low), as indicated in Table 7. 

Table 7: Coordination factor of ISO 10137 for jumping [5]. 

Coordination 1st harmonic 2nd harmonic 3rd harmonic 

High 0.8 0.67 0.5 

Medium 0.67 0.5 0.4 

Low 0.5 0.4 0.3 

• If 5 < N < 50, a linear interpolation between the two previous cases is applied. 

The degree of coordination adopted in this model was considered as medium for jumping, 

similar to what was encountered in experiments. For skipping, the coordination factor related 

to running activity (similar in motion) was used for comparison, expressed by the following 

relation (for all harmonics): 

 𝐶(𝑁) =
√𝑁

𝑁
  (23) 
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A third model was established by Ebrahimpour and Sack [6] for jumping activity in terms of 

dynamic load factors (DLFs), where each DLFi (of the ith harmonic) is expressed as a function 

of the crowd size N by: 

 {
𝑞𝐷𝐿𝐹𝑖 = 𝐴𝑖 − 𝐵𝑖𝑁, 1 ≤ 𝑁 ≤ 10
𝑞𝐷𝐿𝐹𝑖 = 𝐶𝑖,                      𝑁 > 10

  (24) 

where q is the intensity of the individual’s load (ratio of the individual’s weight to the occupied 

surface) and parameters Ai, Bi and Ci are given for each harmonic i in Table 8. 

Table 8: Parameters Ai, Bi and Ci (in psf) [6] 

Harmonic Ai Bi Ci 

1st harmonic 50.89 1.89 32 

2nd harmonic 20.89 0.89 12 

3rd harmonic 4 0 4 

 

6.2 Comparison of coordination factors 

The coordination factor models proposed in this research (provided by Eq. (20) with results 

from Table 5) are evaluated against the aforementioned models from the literature. Predictions 

of these models are also compared against the experimentally identified RMS forces presented 

in Section 5.2. For the model proposed by Ebrahimpour and Sack [6], coordination factors are 

determined as the relative values of the equivalent crowd load to the individual’s load for each 

harmonic. The resulting factors are plotted against crowd size N (for up to 32 individuals) in 

Fig. 11 for jumping and skipping activities. It can be observed that coordination factors have 

lower values for higher harmonics of the load. 

 

(a) 
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(b) 

Fig. 11: Comparison of coordination factors against experimentally identified forces: (a) jumping; (b) 

skipping. 

For jumping, higher harmonic relations are represented by dashed lines. 

For jumping activity, the ISO 10137 model provides the highest crowd-size-dependent 

coordination factors. In this model, group effect on the synchronization of individuals is 

neglected for crowd sizes of less than five and the coordination factor is stabilized beyond 50 

individuals, which is much larger than the 12 persons suggested as the crowd size limit in our 

study. The models proposed by Ebrahimpour and Sack, on one hand, and Faisca, on the other, 

result in lower factors, but still more severe than the values derived from the research described 

in this paper. 

For skipping activity, the proposed model has lower coordination factors than the ISO 10137 

model for smaller crowd sizes. However, the existence of constant plateau after eight 

individuals results in higher coordination factors suggested in this study compared to the ISO 

factors starting from 16 persons. This indicates that crowd forces may be underestimated for 

larger crowds if the ISO 10137 model is adopted. 

In terms of floor response, Gaspar and da Silva [27] computed accelerations due to several load 

models applied on a composite floor. They highlighted that the load model proposed by 

ISO 10137 provided the maximum responses resulting in an unacceptable vibration level in 

terms of human comfort. On the other hand, the Faisca model presented acceptable floor 

accelerations, and corresponding load parameters could be adjusted to meet the specific 

characteristics of the jumping activity analysed. Following the same trend as for coordination 

factors, use of the Ebrahimpour and Sack model would result in floor accelerations lying 

between those obtained by the two previous models. 

Overall, the proposed model, fitting well our experimental results, generally provides lower 

values than those given by the three existing models selected from the literature, especially for 

jumping. In fact, the exponential relation in the first part of the suggested model provides a 

sharper decrease compared to the other models for both jumping and skipping activities. The 

difference between coordination factors between these activities is due to the different motion 
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characteristics in terms of excitation frequency, impact intensity, duration of leg contact with 

the floor, etc. This leads to distinct behaviour by people in the group in terms of synchronization 

during movement. 

7 Conclusions 

An experimental investigation of rhythmic activities on a flexible steel–concrete composite 

floor is presented in this paper, followed by a numerical analysis to identify the corresponding 

load models. The investigated rhythmic activities were skipping and jumping and group sizes 

were between 1 and 32. The major outcomes of this study are summarized as follows: 

• A frequency-domain load model characterizing rhythmic activities is proposed. The 

parameters of this model were determined from experimental acceleration 

measurements on the tested floor using least-squares identification methods. Each 

rhythmic activity had a specific set of parameters depending on its style of motion. 

• The effect of crowd size (translated by the lack of synchronization between individuals) 

was investigated by computing RMS forces from the identified spectral load models and 

deducing corresponding coordination factors. The proposed expressions for these 

factors comprise a decreasing exponential up to a group size N0, followed by a constant 

plateau for larger groups. These relations can be used in combination with the proposed 

load model of a single person to define the total crowd load model for skipping and 

jumping activities. 

• The accuracy of the proposed coordination factors related to previously identified RMS 

forces is demonstrated. Moreover, a comparison of these factors with existing results 

from the literature reveals less conservative results, especially for jumping, whereas 

more conservative factors are noted for skipping for larger crowds (over 16 persons). 

These results constitute a contribution to previous research works paving the way for the 

development of a simple yet reliable serviceability assessment method of human comfort for 

multiple usages of floors (sports venues, fitness centres, gymnasiums, grandstands, etc.). 

It should be noted that the proposed model is applied for a low density of participants (below 

0.3 person/m²) and a group size between 1 and 32. As a future perspective, additional tests 

involving other rhythmic activities, and performed under more controlled conditions, could be 

carried out to investigate the group effect considering a wider range of crowd sizes. Correlation 

of motion between participants might also be analysed for the case of higher densities (more 

than 0.3 person/m²), and inter-subject variability could be further investigated for different 

individuals and excitation frequencies. 
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