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ON THE POINTWISE REGULARITY OF THE MULTIFRACTIONAL

BROWNIAN MOTION AND SOME EXTENSIONS

C. ESSER AND L. LOOSVELDT

Abstract. We study the pointwise regularity of the Multifractional Brownian Mo-

tion and, in particular, we obtain the existence of so-called slow points of the process,

that is points which exhibit a slower oscillation than the a.e regularity. This result
entails that a non self-similar process can also exhibit such a behavior. We also con-

sider various extensions with the aim of imposing weaker regularity assumptions on

the Hurst function without altering the regularity of the process.

Introduction

Given a compact subset [a, b] of (0, 1) and a function H : R → [a, b], the Multi-
fractional Brownian Motion (MBM) is the process defined in [8] by the harmonizable
representation

(0.1) BH(t) =

∫
R

eitξ − 1

|ξ|H(t)+ 1
2

dŴ (ξ),

where dŴ is the “Fourier transform” of the real-valued white noise measure dW . A
slightly different MBM has been defined alternatively and independently in [26] by the
moving average representation

(0.2) B′H(t) =

∫
R

(
|t− s|H(t)− 1

2 − |s|H(t)−1/2
)
dW (s).

When H(·) = h is a constant function, we recover the equivalent definitions of the
Fractional Brownian Motion (FBM) of Hurst parameter h. For this reason, H is usually
called the Hurst function. Note that the fundamental equality∫

R
f(s) dW (s) =

∫
R
f̂(ξ) dŴ (ξ),

which holds almost surely for all function f ∈ L2(R), ensures that the processes (0.1)
and (0.2) are identical, up to a multiplicative deterministic smooth, bounded and non-
vanishing function, see [13].

Generally, one requires that the function H : R→ [a, b] is β-Hölderian, for some β > b.
With this assumption, one can recover several fundamental properties of FBM, namely

(a) Local asymptotic self-similarity [8, 20, 21]: for all t ∈ R,

lim
ρ→0+

Law

{
BH(t+ ρs)−BH(t)

ρH(t)
, s ∈ R

}
= Law{BH(t)(s), s ∈ R},
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where {BH(t)(s), s ∈ R} is FBM with constant Hurst parameter H(t). Here, the
convergence holds for the finite-dimensional distributions but also in the space of
continuous functions over an arbitrary compact subset of R, see [1, Definitions 1.69
and 1.70]. In particular, if the function H is non constant, the process {BH(t), t ∈ R}
is not self-similar.

(b) Uniform modulus of continuity [8]: on an event of probability 1, for every open
bounded subset D of R, one has

lim sup
s,t∈D,|s−t|→0

|BH(s)−BH(t)|
|s− t|HD

√
log |s− t|−1

=
√

2CD

where HD = inft∈DH(t) and CD = supt∈H−1(HD)∩D C(t), where H−1(HD) denotes

the reciprocal image of HD, with

C(t) =

√∫
R

1− cos2(xt)

|x|1+2H(t)
dx, ∀t ∈ R.

(c) Law of the iterated logarithm [8]: on an event of probability 1, for all t ∈ R,

lim sup
s→t

|BH(s)−BH(t)|
|s− t|H(t)

√
log log |s− t|−1

=
√

2C(t)

(d) Existence of local-time, see e.g. [9, 10].

We also refer to the book [1] for a very complete overview on the topic.
In the present paper, we will be particularly interested in the pointwise regularity of

MBM. Using the terminologies introduced by Kahane [22], item (c) above means that
almost surely, almost every point t ∈ R is ordinary while item (b) ensures for some points,
called the rapid points, exhibits faster oscillation. Moreover, concerning the Brownian
Motion (BM), Kahane pointed out in [22] the existence of a third family of points, called
slow points, presenting a slower oscillation. Recently, in [19], we showed that FBM also
exhibits these three types of points and we also showed that this property is somehow
exceptional using two different notions of genericity. A natural question is therefore to
understand where this particularity comes from. The extension from BM to FBM has
underlined that the existence of slow points does not depend on the Markovian property
of the process. The results in [16] highlighted that the existence of slow points does not
depend on the Gaussianity of the process either: indeed, the (generalized) Rosenblatt
process, which is known to be non-Gaussian, also presents slow points in its pointwise
regularity. In this paper, we prove that the existence of slow points does not depend on
the self-similarity either, because MBM presents slow points.

The paper is organized as follows. Section 1 is devoted to the proof of upper bounds
for the regularity of the MBM, while the optimality of these bounds is studied in Section
2. Note that these sections rely deeply on a wavelet-type expansion of MBM first given in
[6]. In Section 3, by slightly modifying this expansion, we show that one can relax some
hypothesis made on the function H without altering the pointwise regularity properties
of the process. This model could be of interest for simulation purposes, when we have
to consider multifractional phenomena with few regularity assumptions for the Hurst
function.

1. A sharp upper bound for some oscillations

The definition (0.1) of MBM naturally leads to considering the following Gaussian
field.
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Definition 1.1. The generator of Multifractional Brownian motion (gMBM) is the
Gaussian field {B(t, θ) : (t, θ) ∈ R× (0, 1)} defined as

B(t, θ) =

∫
R

eitξ − 1

|ξ|θ+ 1
2

dŴ (ξ).

From (0.1), it is clear that, for all t ∈ R, we have BH(t) = B(t,H(t)).
A wavelet-type expansion of gMBM is the crucial point for our analysis of the pointwise

regularity of MBM. Let us introduce it in a few words. Details can be found in the
paper [6]. In what follows, {2j/2ψ(2j · −k) : (j, k) ∈ Z2} stands for the Lemarié-
Meyer orthonormal wavelet base of the Hilbert space L2(R), introduced in [24]. Its
particular features are the fact that the mother wavelet ψ belongs to the Schwartz class

of C∞ functions whose derivatives of any order have fast decay and that ψ̂ is compactly
supported and is vanishing in a neighbourhood of 0. Thanks to these facts, the function

Ψ : (t, θ) ∈ R2 7→
∫
R

eitξψ̂(ξ)

|ξ|θ+ 1
2

dξ

is well-defined, see [1, Definition 5.3 and Proposition 5.10]. Moreover, one can check that
Ψ belongs to C∞(R2) and satisfies the following fast decay property: for all a, b ∈ R and
L,m, n ∈ N,

(1.1) sup
θ∈[a,b]

sup
t∈R

(3 + |t|)L|Dm
t D

n
θΨ(t, θ)| <∞,

see [6, Lemma 2.1]. The function Ψ leads to the following expansion for gMBM, for all
R× (0, 1),

(1.2) B(t, θ) =
∑
j∈Z

∑
k∈Z

2−jθεj,k
(
Ψ(2jt− k, θ)−Ψ(−k, θ)

)
,

where (εj,k)(j,k)∈Z2 is a sequence of i.i.d. N (0, 1) random variables. The convergence of

this series holds in L2(Ω), as a consequence of Wiener isometry, but also, most impor-
tantly in our case, almost surely uniformly on every compact subset of R× (0, 1), as can
be deduced from the following estimate.

Lemma 1.2. [5] Let (εj,k)(j,k)∈Z2 be a sequence of independent N (0, 1) random variables.
There are an event Ω∗0 of probability 1 and a positive random variable C1 of finite moment
of every order such that, for all ω ∈ Ω∗0 and (j, k) ∈ Z2, the inequality

|εj,k(ω)| ≤ C1(ω)
√

log(3 + j + |k|)(1.3)

holds.

This last Lemma is also useful to show that the sample paths of the field

B(t, θ) :=

−1∑
j=−∞

∑
k∈Z

2−jθεj,k
(
Ψ(2jt− k, θ)−Ψ(−k, θ)

)
are almost surely C∞ functions.

In the sequel, we assume the following condition for the Hurst function. It is slightly
less restrictive than the original uniform Hölder regularity assumption required in [8, 26].
Note that it is the condition used in [1, Theorem 1.89] to study the pointwise Hölder
exponent of MBM.

Condition 1.3. The Hurst function H : R → [a, b], with 0 < a < b < 1, is such that
for all t ∈ R, there exists γ ≥ H(t) such that H belongs to the pointwise Hölder space
Cγ(t), which means that there exist Rt > 0 and ct > 0 such that

|H(s)−H(t)| ≤ ct|s− t|γ
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for all s ∈ R with |s− t| ≤ Rt.

Our main result of this section can be stated as follows.

Theorem 1.4. If the function H : R → [a, b] satisfies the Condition 1.3 then almost
surely, for every interval I of R with non-empty interior, there exists t ∈ I such that

(1.4) lim sup
s→t

|BH(s)−BH(t)|
|s− t|H(t)

<∞.

The proof of Theorem 1.4 uses the wavelet series representation (1.2) that gives for
all t ∈ R
(1.5) BH(t) =

∑
j∈Z

∑
k∈Z

2−jH(t)εj,k
(
Ψ(2jt− k,H(t))−Ψ(−k,H(t))

)
.

First, note that Condition 1.3 and the fact that the trajectories of the field B are almost
surely C∞ functions entail that almost surely

(1.6) lim sup
s→t

|B(s,H(s))−B(t,H(t))|
|s− t|H(t)

<∞

for all t ∈ R. Therefore, we only need to analyse the high frequency part of MBM, which
can be done through the field

(1.7) B̃(t, θ) :=
∑
j∈N

∑
k∈Z

2−jθεj,k
(
Ψ(2jt− k, θ)−Ψ(−k, θ)

)
.

Remark 1.5. Before going further, let us remark that one can reduce our work to the
proof of the existence of a point satisfying (1.4) in the interval [0, 1). Indeed, let us
recall that any open interval in R can be written as a countable union of dyadic intervals
(λj,k = [k2−j , (k + 1)2−j))j∈N,k∈Z. Therefore, in order to prove Theorem 1.4, it is
sufficient to show that, for all j ∈ N and k ∈ Z, there exists an event Ωj,k of probability
1 such that, for all ω ∈ Ωj,k, there exists t ∈ λj,k which satisfies (1.4). Now, up to
dilatations and translations, it suffices to consider the dyadic interval λ0,0 = [0, 1).

Let us come back to the field (1.7). This last one has been largely considered in [2],
where an alternative wavelet-type expansion of MBM is given. Let us already mention
that we will also be interested in this representation in the last section of this paper.
From now on, as in [2], for all j ∈ N and k ∈ Z, the notation gj,k stands for the function

gj,k : (t, θ) 7→ 2−jθ
(
Ψ(2jt− k, θ)−Ψ(−k, θ)

)
.

Lemma 1.6. For all compact interval K of [0, 1) and for all n ∈ N, there exists a
deterministic constant cK,n > 0 such that, for all ω ∈ Ω∗

sup
t∈K,θ∈[a,b]

∑
j∈N

∑
k∈Z
|Dn

θ gj,k(t, θ)||εj,k(ω)|

 ≤ cK,nC1(ω).

In particular, for every t ∈ K and every θ1, θ2 ∈ [a, b], we have

|B̃(t, θ1)− B̃(t, θ2)| ≤ cK,1C1(ω)|θ1 − θ2|.

Proof. The first part is a direct consequence of Lemma 1.2 and [2, Lemma 2]. The second
part is obtained by applying the Mean Value Theorem to each function gj,k(t, ·). �

The strategy to prove the existence of slow points relies on a procedure which allows
to deduce a sharper estimate than the inequality (1.3) obtained in Lemma 1.2. This
procedure was initiated by Kahane for BM [22] and we have generalized it for FBM [19].
This generalized version can also be applied in the present setting and can be summarized
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in the following theorem. Throughout this paper, given t ∈ R and j ∈ N, kj(t) stands
for the unique integer such that t ∈ [kj(t)2

−j , (kj(t) + 1)2−j).

Theorem 1.7. [19] Let us fix m > 0. There exists an event Ω∗1 of probability 1 such that
for every ω ∈ Ω∗1, there are µ > 0 and t ∈ (0, 1) such that

(1.8) |εj,k(ω)| ≤ 2lµ

for every j ∈ N0 and every k ∈ Λlj,m(t), where

Λ0
j,m(t) = {k ∈ Z : |kj(t)− k| ≤ 1}

and for all l ≥ 1,

Λlj,m(t) = {k ∈ Z : 2m(l−1) < |kj(t)− k| ≤ 2ml}.

The set of such points t is denoted Sµlow,m.

From now on and until the end of this section, we fix m > 0 such that 1
m < a and

denote

(1.9) Ω∗ = Ω∗0 ∩ Ω∗1

the event of probability 1 obtained as the intersection of the events of probability 1 given
by Lemma 1.2 and Theorem 1.7 respectively. For all j ∈ N, let us set

B̃j(t, θ) :=
∑
k∈Z

2−jθεj,k
(
Ψ(2jt− k, θ)−Ψ(−k, θ)

)
.

Note that on Ω∗, since inequality (1.3) holds, it is straightforward to check that the

trajectories of the field B̃j are continuously differentiable, using the fast decay property
(1.1).

Lemma 1.8. On the event Ω∗ of probability 1, there exists a deterministic constant
cm > 0 such that, for all n ∈ N and µ > 0, if t ∈ Sµlow,m and ε > 0 is such that

Iε(t) := [t− ε, t+ ε] ⊂ (0, 1), then∣∣∣∣∣∣
n∑
j=0

(B̃j(t, θ1)− B̃j(s, θ2))

∣∣∣∣∣∣ ≤ cmµ2−θ1n2n|θ1−θ2| + C∗ cIε(t),1|θ1 − θ2|

for all s ∈ Iε(t) with |s− t| ≤ 2−n+1 and θ1, θ2 ∈ [a, b].

Proof. If t ∈ Sµlow,m, s ∈ [t − ε, t + ε] with |s − t| ≤ 2−n+1 and θ1, θ2 ∈ [a, b], then by
the Taylor formula at first order, there exist x between s and t, and ξ between θ1 and θ2

such that
n∑
j=0

(B̃j(t, θ1)− B̃j(s, θ2)) = (t− s)
n∑
j=0

∑
k∈Z

εj,kDtgj,k(x, ξ)

+ (θ1 − θ2)

n∑
j=0

∑
k∈Z

εj,kDθgj,k(x, ξ).(1.10)

The second series on the right-hand side of equality (1.10) is bounded by Lemma 1.6.
In order to control the first series on the right-hand side of (1.10), as Dtgj,k(x, ξ) =

2j(1−ξ)DtΨ(2jx− k, ξ), we use the fast decay property (1.1) to get, for all 0 ≤ j ≤ n,∑
k∈Z
|εj,kDtgj,k(x, ξ)| ≤ c12j(1−ξ)

∑
l∈N

∑
k∈Λlj,m(t)

|εj,k|
1

(3 + |2jx− k|)4
,(1.11)
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for a deterministic positive constant c1. Now, note that for all l ≥ 1 and k ∈ Λlj,m(t), we
have

|2jx− k| ≥ |kj(t)− k| − |2jx− kj(t)|
≥ |kj(t)− k| − (|2jx− 2jt|+ |kj(t)− 2jt|)

≥ 2m(l−1) − 3,

because j ≤ n. Together with (1.11) and inequality (1.8), this implies that∑
k∈Z
|εj,kDtgj,k(x, ξ)| ≤ c12j(1−ξ)

∑
l∈N

∑
k∈Λlj,m(t)

2lµ
1

(3 + |2jx− k|)4

≤ c22mµ2j(1−ξ)
∑
k∈Z

1

(3 + |2jx− k|)3

≤ c3µ2j(1−ξ)

where c2 and c3 are positive deterministic constants only depending on m. Thus,∣∣∣∣∣∣
n∑
j=0

∑
k∈Z

εj,kDtgj,k(x, ξ)

∣∣∣∣∣∣ ≤ c3µ
n∑
j=0

2j(1−ξ) ≤ c42n(1−ξ) ≤ c42−θ1n2n|θ1−θ2|

for a deterministic constant c4 only depending on m, since ξ ∈ (0, 1) is between θ1 and
θ2. �

Lemma 1.9. On the event Ω∗ of probability 1, there exists a deterministic constant
cm > 0 such that, for all µ > 0, θ ∈ [a, b] and t ∈ Sµlow,m

(1) one has ∣∣∣∣∣∑
k∈N

εj,kΨ(2jt− k, θ)

∣∣∣∣∣ ≤ cmµ,
(2) if ε > 0 is such that Iε(t) := [t − ε, t + ε] ⊂ (0, 1), then for all n ∈ N, s ∈ Iε(t)

with |s− t| ≤ 2−n+1 and j ≥ n, one has∣∣∣∣∣∑
k∈N

εj,kΨ(2js− k, θ)

∣∣∣∣∣ ≤ cmµ2
1
m (j−n).

Proof. The first bound is obtained exactly as in (1.11), partitioning the sum over k ∈ Z
with the subsets Λlj,m(t) and using the fast decay property (1.1) for Ψ. Concerning the

second bound, we note that, if l is the greatest integer for which |s − t| ≥ 2ml2−j then,

for all l′ ∈ N and k ∈ Λl
′

j,m(s), the construction gives

|εj,k| ≤ 2l
′+lµ.

As |s− t| ≤ 2−n+1, we deduce l ≤ 1
m (j + 1− n) and we obtain the desired upper bound

by partitioning the sum over k ∈ Z using the subsets Λl
′

j,m(s). �

Let us recall that, for all L > 1, there exists a deterministic constant c > 0 such that,
for all j ∈ Z and x ∈ R,

(1.12)
∑
k∈Z

√
log(3 + |j|+ |k|

(3 + |2jx− k|)L
≤ c
√

log(3 + |j|+ 2j |x|),

see for instance [3, Lemma 4.2] for a proof.
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Lemma 1.10. On the event Ω∗0 of probability 1, there exists a deterministic constant
c1 > 0 such that, for all θ1, θ2 ∈ [a, b] and j ∈ N,∣∣∣∣∣∑

k∈N
εj,k

(
2−jθ1Ψ(−k, θ1)− 2−jθ2Ψ(−k, θ2)

)∣∣∣∣∣ ≤ C∗ c1|θ1 − θ2|2−ja
√

log(3 + j).

Proof. If inequality (1.3) holds, we know from the fast decay property (1.1), that the
function

θ 7→
∑
k∈N

εj,k2−jθΨ(−k, θ)

is smooth. Therefore, using the Taylor formula at first order, we obtain the existence of
ξ between θ1 and θ2 such that∑

k∈N
εj,k

(
2−jθ1Ψ(−k, θ1)− 2−jθ2Ψ(−k, θ2)

)
= (θ1 − θ2)

∑
k∈N

εj,k2−jξΨ(−k, ξ).

Using (1.3), the fast decay property (1.1) and inequality (1.12), we get∣∣∣∣∣∑
k∈N

εj,k2−jξΨ(−k, ξ)

∣∣∣∣∣ ≤ C∗2−jξ∑
k∈Z

√
log(3 + j + |k|)

(3 + |k|)4
≤ C∗c12−jξ

√
log(3 + j)

≤ C∗c12−ja
√

log(3 + j),

for a positive deterministic constant c1. The conclusion follows immediately. �

We have now enough material to prove Theorem 1.4.

Proof of Theorem 1.4. In view of (1.6) and Remark 1.5, it suffices to show that on the
event Ω∗ of probability 1 defined in (1.9) there exists t ∈ (0, 1) such that

lim sup
s→t

|B̃(s,H(s))− B̃(t,H(t))|
|s− t|H(t)

<∞.

Let us recall that we have fixed m ∈ N such that 1
m < a. Theorem 1.7 allows to consider

t ∈ Sµlow,m for some µ > 0. Now, if s ∈ (0, 1) is such that 2−n ≤ |s− t| ≤ 2−n+1, we write

∣∣∣B̃(t,H(t))− B̃(s,H(s))
∣∣∣ ≤

∣∣∣∣∣∣
n∑
j=0

(B̃j(t,H(t))− B̃j(s,H(s)))

∣∣∣∣∣∣
+
∑

j≥n+1

∣∣∣∣∣∑
k∈N

εj,k2−jH(t)Ψ(2jt− k,H(t))

∣∣∣∣∣
+
∑

j≥n+1

∣∣∣∣∣∑
k∈N

εj,k2−jH(s)Ψ(2js− k,H(s))

∣∣∣∣∣
+
∑

j≥n+1

∣∣∣∣∣∑
k∈N

εj,k

(
2−jH(t)Ψ(−k,H(t))− 2−jH(s)Ψ(−k,H(s))

)∣∣∣∣∣ .
From Condition 1.3 we know that, if n is large enough,

(1.13) |H(t)−H(s)| ≤ ct|t− s|H(t).
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Thus, Lemma 1.8 and (1.13) combined with the fact that 2−n ≤ |s− t| ≤ 2−n+1 give∣∣∣∣∣∣
n∑
j=0

(B̃j(t,H(t))− B̃j(s,H(s)))

∣∣∣∣∣∣ ≤ cmµ|t− s|H(t)2ctn2−(n−1)H(t)

+ C∗cIε(t),1ct|t− s|
H(t)

≤ (cmµ+ C∗cIε(t),1)|t− s|H(t).

Using 2−n ≤ |s− t| ≤ 2−n+1, Lemma 1.9 and (1.13) imply

∑
j≥n+1

∣∣∣∣∣∑
k∈N

εj,k2−jH(t)Ψ(2jt− k,H(t))

∣∣∣∣∣ ≤ 2cmµ2−nH(t) ≤ 2cmµ|s− t|H(t)

while, as 1
m < a,

∑
j≥n+1

∣∣∣∣∣∑
k∈N

εj,k2−jH(s)Ψ(2js− k,H(s))

∣∣∣∣∣ ≤ cmµ ∑
j≥n+1

2( 1
m−H(s))(j−n)2−H(s)n

≤ cmµ
∑

j≥n+1

2( 1
m−a)(j−n)2−H(s)n

≤ cmµ|t− s|H(t)2|H(t)−H(s)|n

≤ cmµ|t− s|H(t).

Finally, by Lemma 1.10 and (1.13)

∑
j≥n+1

∣∣∣∣∣∑
k∈N

εj,k

(
2−jH(t)Ψ(−k,H(t))− 2−jH(s)Ψ(−k,H(s))

)∣∣∣∣∣ ≤ C∗ c2|t− s|H(t),

for a deterministic positive constant c2. �

Remark 1.11. Theorem 1.4 implies that if t is a point which satisfies (1.4), then r 7→
|r|H(t) is a pointwise modulus of continuity for BH at t. Let us remark that our strategy
can also be applied to recover the upper bounds for the well-known uniform modulus
of continuity as well as the law of iterated logarithm. Let us explain how to adapt our
proofs on this purpose.

Concerning the uniform modulus of continuity, if s, t ∈ [0, 1] are such that 2−n ≤
|s−t| ≤ 2−n+1 and θ1 and θ2 are fixed in [a, b], we know that, almost surely, one can write
(1.10). Therefore, if inequality (1.3) holds, using Dtgj,k(x, ξ) = 2j(1−ξ)DtΨ(2jx − k, ξ),
the fast decay property (1.1) and (1.12), one has∣∣∣∣∣∣

n∑
j=0

∑
k∈Z

εj,kDtgj,k(x, ξ)

∣∣∣∣∣∣ ≤ cC1

n∑
j=0

∑
k∈Z

2j(1−ξ)
√

log(3 + |j|+ |k|)
(3 + |2jx− k|)L

≤ cC1

n∑
j=0

2j(1−ξ)
√

log(3 + |j|+ 2j |x|)

≤ cC1

n∑
j=0

2j(1−ξ)
√
j

≤ cC12n(1−ξ)√n(1.14)



ON THE POINTWISE REGULARITY OF THE MBM AND SOME EXTENSIONS 9

where c is a positive deterministic constant whose value may differ from a line to another
but does not depend on any relevant quantities. Similarly, for all j > n, we have

(1.15)

∣∣∣∣∣∑
k∈N

εj,kΨ(2jt− k, θ1)

∣∣∣∣∣ ≤ cC1

√
j

and

(1.16)

∣∣∣∣∣∑
k∈N

εj,kΨ(2js− k, θ2)

∣∣∣∣∣ ≤ cC1

√
j.

Therefore, gathering the expression (1.10), Lemma 1.6, the inequalities (1.14), (1.15) and
(1.16), Lemma 1.10 and Condition 1.3, we get

|BH(s)−BH(t)| ≤ cC1

(
(|t− s|2n(1−ξ)√n+ |H(t)−H(s)|

+
∑
j>n

(
2−jH(t)

√
j + 2−jH(s)

√
j + |H(t)−H(s)|2−ja

√
log(3 + j)

))

≤ cC1

(
|t− s|2n(1−ξ)√n+ 2−nH(t)

√
n+ 2−nH(s)

√
n+ |H(t)−H(s)|

)
≤ cC1

(
2−nH(t)

√
n+ |t− s|H(t)

)
≤ |t− s|H(t)

√
log |s− t|−1.

Thus, we have shown that, almost surely, for all t ∈ [0, 1]

(1.17) lim sup
s→t

|BH(s)−BH(t)|
|t− s|H(t)

√
log |s− t|−1

<∞.

Concerning the law of iterated logarithm, by an indexing argument, one can note that
for all t ∈ [0, 1], there exits an event Ω∗t of probability 1 and a positive random variable
Ct of finite moment of any order such that, for all ω ∈ Ω∗t ,

(1.18) |εj,k(ω)| ≤ Ct(ω)
√

log(3 + |j|+ |k − kj(t)|).

Then we use [16, Lemma 3.22] which gives, for all L, for all n ∈ N,

(1.19)
∑
k∈Z

√
log(3 + j + |k − kj(t)|

(3 + |2jx− k|)L
≤ c
√

log(3 + j)

if 0 ≤ j ≤ n, and

(1.20)
∑
k∈Z

√
log(3 + j + |k − kj(t)|

(3 + |2jx− k|)L
≤ c
√
j − n+ 1

√
log(3 + j)

for all j > n. Adapting what has been done for (1.14), (1.15) and (1.16) by using
inequality (1.18) instead of (1.3) and inequalities (1.19) and (1.20) instead of (1.12), we
get, for all t, s ∈ [0, 1],

|BH(s)−BH(t)| ≤ cC ′t|t− s|H(t)
√

log log |s− t|−1

for some positive random variable C ′t of finite moment of any order. In particular, by
Fubini theorem, almost surely, for almost every t ∈ [0, 1],

(1.21) lim sup
s→t

|BH(s)−BH(t)|
|t− s|H(t)

√
log log |s− t|−1

<∞.
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2. Optimality of the upper bound

Let us now focus on the optimality of the previously obtained modulus of continuity. It
is worth mentioning that the optimality of the pointwise modulus of continuity r 7→ rH(t)

for some points t of the MBM given in Theorem 1.4 has been already obtained in [1,
Theorem 6.17], under the following assumption on the Hurst function H, which is a little
bit stronger than Condition 1.3.

Condition 2.1. The Hurst function H : R → [a, b], with 0 < a < b < 1, is such that
for all t ∈ R, there exists γ > H(t) such that H belongs to the pointwise Hölder space
Cγ(t).

We show in this section how to extend the proof of [1, Theorem 6.17] to get the

optimality of the two other pointwise modulus of continuity r 7→ rH(t)
√

log r−1 and

r 7→ rH(t)
√

log log r−1. Using the terminology of [19] inspired by the work of Kahane
[22], the points t for which the modulus of continuity given by (1.4) is optimal are called
slow points. Similarly, those for which (1.17) is optimal are called fast points. Finally,
we will get the existence of the so-called ordinary points: for almost every point t, the
modulus of continuity given in (1.21) is optimal.

Theorem 2.2. If the function H : R→ [a, b] satisfies Condition 2.1 then almost surely,
for every non-empty interval I of R,

• there exists t ∈ I such that

0 < lim sup
s→t

|BH(s)−BH(t)|
|s− t|H(t)

√
log |s− t|−1

<∞.

Such a point is called a rapid point.
• almost every point t ∈ I is such that

0 < lim sup
s→t

|BH(s)−BH(t)|
|s− t|H(t)

√
log log |s− t|−1

<∞.

Such a point is called an ordinary point.
• there exists t ∈ I such that

0 < lim sup
s→t

|BH(s)−BH(t)|
|s− t|H(t)

<∞.

Such a point is called a slow point.

The method for the proof of Theorem 2.2 is based on a wavelet-type argument and
relies on a biorthogonality property of sequences of functions defined via Ψ: For any
fixed θ ∈ R, the two sequences of functions

{2j/2Ψ(2j · −k, θ) : (j, k) ∈ Z2} and {2j/2Ψ(2j · −k,−θ − 1) : (j, k) ∈ Z2}

are biorthogonal in L2(R), see [1, Proposition 5.13 (i)]. This result allows to express
coefficients appearing in the decomposition (1.2) in terms of B, see [1, Lemma 6.22].

Lemma 2.3. [1] On the event Ω∗0 of probability 1, for every θ ∈ (0, 1) and for all
(j, k) ∈ Z2, one has

2−jθεj,k = 2j
∫
R
B(u, θ)Ψ(2ju− k,−θ − 1)du

where εj,k is given by the representation (1.2).



ON THE POINTWISE REGULARITY OF THE MBM AND SOME EXTENSIONS 11

In the case of the MBM BH , Lemma 2.3 allows to write

(2.1) 2−jH(t)εj,kj(t) = 2j
∫
R
B(u,H(t))Ψ(2ju− kj(t),−H(t)− 1)du.

In order to state the next result, we recall that a modulus of continuity is an increasing
function σ : R+ → R+ satisfying σ(0) = 0 and for which there is C > 0 such that
σ(2x) ≤ Cσ(x) for all x ∈ R+. We say that σ is submultiplicative if σ(xy) ≤ σ(x)σ(y)
for all x, y ∈ R+.

Remark 2.4. It is very classical that√
1 + x+ y ≤

√
1 + x

√
1 + y and log(3 + x+ y) ≤ log(3 + x) log(3 + y)

for all x, y ∈ R+. It follows that the modulus of continuity of interest in Theorem
2.2 for the rapid and ordinary points are asymptotically equivalent as r → 0+ to the
submultiplicative modulus of continuity given respectively by

r 7→ rH(t)
√

1 + log r−1 and r 7→ rH(t)
√

1 + log(3 + log r−1).

Remark 2.5. The assumption that σ is submultiplicative can be slightly weakened by
imposing the existence of a constant C > 0 such that σ(xy) ≤ Cσ(x)σ(y) for all x, y ∈
R+.

Proposition 2.6. Let us consider t ∈ R and a submultiplicative modulus of continuity
σ with polynomial growth. Assume that the Hurst function H : R→ [a, b], with 0 < a <
b < 1, is such that there exists γ > 0 such that H belongs to the pointwise Hölder space
Cγ(t). Then on the event Ω∗0 of probability 1, one has for every j large enough

2−jH(t)|εj,kj(t)| ≤ C
(

sup

{
|BH(s)−BH(t)|

σ(|s− t|)
: |s− t| < c2−j/2

}
σ(2−j) + 2−γj

)
for a deterministic constant c > 0 and a positive random variable C, where the variables
εj,k are given by (1.5) and where the supremum may take the value +∞.

Proof. As the first moment of Ψ vanishes, see [1, Remark 5.12], we get by using equality
(2.1) and the change of variables y = 2ju− k

2−jH(t)|εj,k|

≤ 2j
∫
R

∣∣B(u,H(t))−B(t,H(t))
∣∣∣∣Ψ(2ju− k,−H(t)− 1)

∣∣du
=

∫
|y|≤2j/2

∣∣B(
k + y

2j
, H(t))−B(

k + y

2j
, H(

k + y

2j
))
∣∣∣∣Ψ(y,−H(t)− 1)

∣∣dy
+

∫
|y|≤2j/2

∣∣B(
k + y

2j
, H(

k + y

2j
))−B(t,H(t))

∣∣∣∣Ψ(y,−H(t)− 1)
∣∣dy

+

∫
|y|>2j/2

∣∣B(
k + y

2j
, H(t))−B(t,H(t))

∣∣∣∣Ψ(y,−H(t)− 1)
∣∣dy(2.2)

where k := kj(t). Let us now provide an appropriate upper bound for each term on the
right-hand side of (2.2). Note that the assumption of regularity on H implies that there
is a neighborhood I of t and a constant c0 > 0 such that

(2.3) |H(s)−H(t)| ≤ c0|s− t|γ ∀t ∈ I.

Now, for the first term we notice that

(2.4) |t− k + y

2j
| ≤ 2−j |y + (k − 2jt)| ≤ 2−j(|y|+ 1)
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and in particular if |y| ≤ 2j/2, then k+y
2j ∈ I for large j. It follows that∫

|y|≤2j/2

∣∣B(
k + y

2j
, H(t))−B(

k + y

2j
, H(

k + y

2j
))
∣∣∣∣Ψ(y,−H(t)− 1)

∣∣dy
≤ cI,1C1

(
2j
∫
|y|≤2j/2

∣∣H(t)−H(
k + y

2j
)
∣∣∣∣Ψ(y,−H(t)− 1)

∣∣dy
≤ C2

(
2j
∫
|y|≤2j/2

∣∣t− k + y

2j
∣∣γ∣∣Ψ(y,−H(t)− 1)

∣∣dy
≤ C22−γj

∫
R

(
1 + |y|

)γ∣∣Ψ(y,−H(t)− 1)
∣∣dy

≤ C32−γj(2.5)

for some positive random constants C2, C3, by using successively Lemma 1.6, equations
(2.3), (2.4) and (1.1).

For the second term, if |y| ≤ 2j/2, inequality (2.4) gives the existence of a constant

c > 0 such that |t− k+y
2j | ≤ c2

−j/2. Hence∫
|y|≤2j/2

∣∣B(
k + y

2j
, H(

k + y

2j
))−B(t,H(t))

∣∣∣∣Ψ(y,−H(t)− 1)
∣∣dy

≤ sup

{
|BH(s)−BH(t)|

σ(|s− t|)
: |s− t| < c2−j/2

}∫
|y|≤2j/2

σ(|t− k + y

2j
|)
∣∣Ψ(y,−H(t)− 1)

∣∣dy
≤ sup

{
|BH(s)−BH(t)|

σ(|s− t|)
: |s− t| < c2−j/2

}
σ(2−j)

∫
R
σ(|y|+ 1)

∣∣Ψ(y,−H(t)− 1)
∣∣dy

≤ c2 sup

{
|BH(s)−BH(t)|

σ(|s− t|)
: |s− t| < c2−j/2

}
σ(2−j)

(2.6)

for a constant c2 > 0, using (2.4), the submultiplicativity property of σ, (1.1) and the
polynomial growth of σ.

The upper bound for the last term is obtained using again the fast decay (1.1) of the
wavelet for L ≥ 2γ together with the boundedness of the process B. Indeed, on can write∫

|y|>2j/2

∣∣B(
k + y

2j
, H(t))−B(t,H(t))

∣∣∣∣Ψ(y,−H(t)− 1)
∣∣dy

≤ C3

∫
|y|>2j/2

1

(1 + |y|)2L
du

≤ C32−Lj/2
∫
R

1

(1 + |y|)L
dy

≤ C ′32−γj(2.7)

for some positive random constants C3, C
′
3. Putting together equations (2.2), (2.5), (2.6)

and (2.7) leads to the conclusion. �

In order to prove Theorem 2.2, it suffices now to provide convenient asymptotic lower
bounds for the coefficients εj,k. We summarize the relevant known results of [1], [4] and
[19] in the following Lemma.

Lemma 2.7. [1, 4, 19] Let (εj,k)(j,k)∈Z2 be a sequence of independent N (0, 1) random
variables. There exists an event Ω∗2 of probability 1 on which
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(1) for every t ∈ R, one has

lim sup
j→+∞

|εj,kj(t)| ≥ 2−3/2
√
π ,

(2) for every non-empty open interval I of R, there is t ∈ I such that

lim sup
j→+∞

|εj,kj(t)|√
j

> 0 ,

(3) for almost every t ∈ R, one has

lim sup
j→+∞

|εj,kj(t)|√
log j

> 0 .

The proof of the main result of this section is now straightforward.

Proof of Theorem 2.2. From Theorem 1.4, equation (1.21) and equation (1.17), it suffices
to prove the three lower bounds.

Let us work on the event Ω∗ ∩ Ω∗2 of probability 1. In each case, if σ denotes the
corresponding modulus of continuity, we know from Proposition 2.6 and Remark 2.4
that

2−jH(t)|εj,kj(t)| ≤ C
(

sup

{
|BH(s)−BH(t)|

σ(|s− t|)
: |s− t| < c2−j/2

}
σ(2−j) + 2−γj

)
with γ > H(t) by Condition 2.1. Lemma 2.7 then implies that

0 < lim sup
j→+∞

|εj,kj(t)|
σ(2−j)

≤ C lim
j→+∞

sup

{
|BH(s)−BH(t)|

σ(|s− t|)
: |s− t| < c2−j/2

}
since 2−γj

σ(2−j) tends to 0 as j tends to infinity. �

3. Extensions

The methodology developed in the previous sections can easily be adapted to study
very general random wavelet series of the form

fH =
∑
j∈N

∑
k∈Z

εj,k2−H(k2−j)jψ(2j · −k)

where (εj,k)(j,k)∈Z2 still denotes a sequence of i.i.d. N (0, 1) random variables. Among the
families of wavelet basis that exist, we will work with two classes: The Lemarié-Meyer
wavelets for which ψ belongs to the Schwartz class S(R), or Daubechies wavelets for
which ψ is a compactly supported function (see [15]). In both cases, the first moment of
the wavelet ψ vanishes. We will also include the setting given by biorthogonal wavelet
basis, [11, 12].

Clearly, as soon as we work with a compactly supported wavelet or a wavelet which
decays sufficiently fast, one can make sure that the function fH is almost surely well-
defined, exploiting Lemma 1.2. The process fH gives a multifractal version of the random
series studied in [19], by substituting the exponent h at level (j, k) by H(k2−j) as done
in [7]. Of course, this model can not be used to represent MBM. Nevertheless, we believe
that it can have its own interest as it can be used to numerically simulate multifractional
signals more efficiently than by considering the random series (1.5) since one can avoid the
computation of the fractional primitives. Moreover, concerning the pointwise regularity,
we will show that we do not alter the results obtained in the previous sections.

The biorthogonality of the wavelets allows to state in our present context the following
result similar to Proposition 2.6.
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Proposition 3.1. Let us consider t ∈ R and a submultiplicative modulus of continuity
σ. Assume that

f =
∑
j∈Z

∑
k∈Z

cj,kψ(2j · −k)

is a bounded function and that the wavelet ψ satisfies

sup
y∈R

(1 + |y|)2L|ψ(y)| < +∞

for some L > 0, and ∫
R
σ(1 + |y|)|ψ(y)|dy < +∞.

Then for every j large enough, one has

|cj,kj(t)| ≤ c
(

sup

{
|f(s)− f(t)|
σ(|s− t|)

: |s− t| < c2−j/2
}
σ(2−j) + 2−Lj/2

)
for a constant c > 0, where the supremum may take the value +∞.

Proof. The (bi)orthogonality of the wavelets allows to write

cj,k = 2j
∫
R
f(u)ψ(2ju− k) du.

Using similar arguments as in Proposition 2.6, for k = kj(t), we can write

|cj,k| ≤ 2j
∫
R

∣∣f(u)− f(t)
∣∣∣∣ψ(2ju− k)

∣∣du
=

∫
|y|≤2j/2

∣∣f(
k + y

2j
)− f(t)

∣∣∣∣ψ(y)
∣∣dy +

∫
|y|>2j/2

∣∣f(
k + y

2j
)− f(t)

∣∣∣∣ψ(y)
∣∣dy

≤ sup

{
|f(s)− f(t)|
σ(|s− t|)

: |s− t| < c2−j/2
}
σ(2−j)

∫
R
σ(1 + |y|)

∣∣ψ(y)
∣∣dy

+2‖f‖∞2−Lj/2
∫
R

1

(1 + |y|)L
dy

hence the conclusion. �

This section aims at showing that fH still shares the same features as MBM when one
considers its pointwise regularity. Moreover, in this context, we can significantly reduce
the condition made on the regularity of the function H to obtain the results. In the
sequel, Condition 1.3 is replaced by the following.

Condition 3.2. The Hurst function H : R → [a, b], with 0 < a < b < 1, is such that
for all t ∈ R there exist Rt > 0 and ct > 0 such that

|H(s)−H(t)| ≤ ct
log |s− t|−1

for all s ∈ R with |s− t| ≤ Rt.

Remark 3.3. Of course, any function H satisfying Condition 3.2 is necessarily continuous
and any Hölder-continuous function satisfies Condition 3.2. In particular, Condition 3.2
is weaker than Condition 1.3.

Remark 3.4. In [14], it is proved that if H is the function “Hölder exponent” of a con-
tinuous function, then there exists a sequence (Pj)j∈N0

of polynomials such that

(3.1)

{
H(t) = lim infj→+∞ Pj(t)

‖DPj‖∞ ≤ j, ∀j ∈ N0.
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Because of Condition 3.2, our function H is not enough general, but if a function H
satisfies (3.1) and if we assume the existence of a constant C > 0 such that, for all t ∈ R
and j ∈ N0,

(3.2) |H(t)− Pj(t)| ≤ ctj−1

then Condition 3.2 is satisfied. Note that the authors in [23] assume a condition similar
to (3.2) to prove a law of the iterated logarithm for a multifractional extension of BM
defined using the Faber-Schauder base.

Our result concerning the pointwise regularity of the process fH can then be stated
as follows.

Theorem 3.5. If the function H : R → [a, b] satisfies the Condition 3.2 then almost
surely, for every interval I of R with non-empty interior,

• there exists t ∈ I such that

(3.3) 0 < lim sup
s→t

|fH(s)− fH(t)|
|s− t|H(t)

√
log |s− t|−1

<∞,

• almost every point t ∈ I is such that

(3.4) 0 < lim sup
s→t

|fH(s)− fH(t)|
|s− t|H(t)

√
log log |s− t|−1

<∞,

• there exists t ∈ I such that

(3.5) 0 < lim sup
s→t

|fH(s)− fH(t)|
|s− t|H(t)

<∞.

Proof. We will slightly modify the proofs done in the previous sections for the MBM. As
previously mentioned, it suffices to work on [0, 1). Let us first focus on the three upper
bounds. On this purpose, for all j ∈ N, we define the random series

fH,j :=
∑
k∈Z

2−jH(k2−j)εj,kψ(2j · −k).

Let us start by showing the existence of slow points (3.5). As previously, we take m ∈ N
such that 1

m < a and on an event of probability 1, Theorem 1.7 allows to consider

t ∈ Sµlow,m, for some µ > 0. Now, if s ∈ (0, 1) is such that 2−n ≤ |s − t| ≤ 2−n+1, we
write

|fH(t)− fH(s)| ≤

∣∣∣∣∣∣
n∑
j=0

(fH,j(t)− fH,j(s))

∣∣∣∣∣∣+
∑

j≥n+1

|fH,jj(t)|+
∑

j≥n+1

|fH,j(s)| .

As in Lemma 1.8, we have∣∣∣∣∣∣
n∑
j=0

(fH,j(t)− fH,j(s))

∣∣∣∣∣∣ ≤ |s− t|
 n∑
j=0

∑
k∈Z
|εj,k|2j(1−H(k2−j))|Dtψ(2jx− k)|


for some x between s and t. Then, similarly to (1.11), we deduce, using the fast decay
property (1.1),

n∑
j=0

∑
k∈Z
|εj,k|2j(1−H(k2−j))|Dtψ(2jx− k)| ≤ c1µ

n∑
j=0

∑
k∈Z

2j(1−H(k2−j))

(3 + |2jx− k|)L
,
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for L sufficiently large and whose value will be specified later and a deterministic positive
constant c1 which only depends on ψ, L and m. Now, if k ∈ Z is such that |t− k2−j | ≤
2−j/2 then, by Condition 3.2, |H(t)−H(k2−j)| ≤ 2ctj

−1 and

2j(1−H(k2−j))

(3 + |2jx− k|)L
≤ 2j(1−H(t)) 22ct

(3 + |2jx− k|)L
.

On the other hand, if |t− k2−j | > 2−j/2, we write

2j(1−H(k2−j))

(3 + |2jx− k|)L
≤ 2j(1−H(t)) 2j(b−a)

(3 + |2jx− k|)L

and then, if L ≥ 2 is such b− a < L/2− 1, as |2jx− k| > 2j/2 − 2, we get

2j(1−H(k2−j))

(3 + |2jx− k|)L
≤ 2j(1−H(t)) 1

(3 + |2jx− k|)2
.

In total, we obtain∣∣∣∣∣∣
n∑
j=0

(fH,j(t)− fH,j(s))

∣∣∣∣∣∣ ≤ c2µ|t− s|
n∑
j=0

2j(1−H(t))
∑
k∈Z

1

(3 + |2jx− k|)2

≤ c3µ|t− s|
n∑
j=0

2j(1−H(t))

≤ c4µ|t− s|2n(1−H(t))

≤ c5|t− s|H(t),

where c2, c3, c4 and c5 are deterministic positive constants not depending on any relevant
quantity. Modifying the proofs of Lemma 1.9 and Theorem 1.4 in exactly the same way,
we obtain ∑

j≥n+1

|fH,j(t)| ≤ c6|t− s|H(t)

and, as |s− t| ≤ 2−n+1, by Condition 3.2,∑
j≥n+1

|fH,j(s)| ≤ c6|t− s|H(t)2|H(t)−H(s)|n ≤ 22ctc6|t− s|H(t),

with c6 a deterministic positive constant which does not depend on any relevant quantity.
Inequalities (3.3) and (3.4) are proved in a similar way, exploiting the alternative

arguments given in Remark 1.11.
The lower bounds are obtained by combining Lemma 2.7 together with Proposition

3.1. �

Remark 3.6. In the particular case where the function H is constant, we recover the
random wavelet series studied in [19]. Note however that, even in this simple case, we
improve here [19, Theorem 2.4] since we obtain that the three above limsup are strictly
positive, even if the wavelet is not compactly supported, see [19, Remark 5.2].

Remark 3.7. A careful look at the proofs shows that the random series fH could also be
defined through a biorthogonal system of vaguelets, see [18, 25, 17]. Recall that a family
of functions Ψj,k is called vaguelets if it satisfies a localization property

|Ψj,k(t)| ≤ C2j/2(1 + |2jt− k|)−1−α1 ∀ t ∈ R,
an oscillation property ∫

R
Ψj,k(t)dt = 0



ON THE POINTWISE REGULARITY OF THE MBM AND SOME EXTENSIONS 17

and a regularity property

|Ψj,k(t)−Ψj,k(s)| ≤ C2j(α2+1/2)|t− s|α2 ∀ s, t ∈ R

for some constant C > 0 and 0 < α2 < α1 < 1.

Let us end this section by considering a third process. In [2], the authors have proved
that the process {Z(t) : t ∈ R} defined for each t ∈ R as

(3.6) Z(t) =
∑
j∈Z

∑
k∈Z

2−jH(k2−j)εj,k
(
Ψ(2jt− k,H(k2−j))−Ψ(−k,H(k2−j)

)
shares common properties with MBM. Namely,

(a) when the function H is constant, it reduces to FBM.
(b) the trajectories of the process

Z(t) :=

−1∑
j=−∞

∑
k∈Z

2−jH(k2−j)εj,k
(
Ψ(2jt− k,H(k2−j))−Ψ(−k,H(k2−j)

)
are almost surely C∞ functions. Thus, the regularity of Z is only determined by the
process

(3.7) Z̃(t) :=
∑
j∈N

∑
k∈Z

2−jH(k2−j)εj,k
(
Ψ(2jt− k,H(k2−j))−Ψ(−k,H(k2−j)

)
.

(c) the process Z is also locally asymptotically self-similar.
(d) almost surely, for all t, the pointwise Hölder exponent of Z at t is H(t).
(e) if a and b satisfy the condition

(3.8) 1− b > (1− a)(1− ab−1)

then there exists an exponent d ∈ (b, 1] such that, almost surely, the process Z−BH
is uniformly Hölder of exponent d. In other words, there exists a process X more
regular than BH and Z such that

BH = Z +X.

In some sense, all these facts mean that, up to an additive regular process, if condition
(3.8) holds, Z is an appropriate representation of MBM. Of course, even if condition
(3.8) does not hold, the process Z has its own interest. Here, we want to show that Z
still shares the same features as MBM when one considers its pointwise regularity under
the less restrictive condition 3.2.

Theorem 3.8. If the function H : R → [a, b] satisfies the Condition 3.2 then almost
surely, for every interval I of R with non-empty interior,

• there exists t ∈ I such that

(3.9) lim sup
s→t

|Z(s)− Z(t)|
|s− t|H(t)

√
log |s− t|−1

<∞.

• almost every point t ∈ I is such that

(3.10) lim sup
s→t

|Z(s)− Z(t)|
|s− t|H(t)

√
log log |s− t|−1

<∞.

• there exists t ∈ I such that

(3.11) lim sup
s→t

|Z(s)− Z(t)|
|s− t|H(t)

<∞.
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Proof. We already know that it suffices to prove (3.9), (3.10) and (3.11) for the pro-

cess Z̃. Also, when one considers the increments Z̃(t) − Z̃(s), t, s ∈ R, the terms

2−jH(k2−j)Ψ(−k,H(k2−j)) in (3.7) cancel and thus we just need to study the pointwise
regularity of the random series∑

j∈N

∑
k∈Z

2−jH(k2−j)εj,kΨ(2j · −k,H(k2−j)).

Then, it suffices to replace ψ by Ψ(·, H(k2−j)) in the proof of Theorem 3.5.
�

When one wants to prove the positiveness of the limits in Theorems 2.2 and 3.5, the
strategy is to consider the biorthogonality property of the basis to express the coefficients
in terms of the increments of the process. In the present situation, it seems that there is no
obvious connection between the random coefficients in the series (3.6) and the oscillations
of the process. In particular, one can not apply this strategy anymore. Therefore, the
positiveness of the three limits remains an interesting open question which needs different
tools than those developed in this paper.
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26. R. F. Peltier and J. Lévy Véhel. Multifractional Brownian motion : definition and preliminary
results. Rapport de recherche de l’INRIA, 2645, 1995.
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