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We present a complete analysis of the laser control of a model molecular system using both optimal control
theory and adiabatic techniques. This molecule has a particular potential energy surface with a bifurcating
region connecting three potential wells which allows a variety of processes such as isomerization, tunneling, or
implementation of quantum gates on one or two qubits. The parameters of the model have been chosen so as
to reproduce the main features of H3CO which is a molecule benchmark for such dynamics. We show the
feasibility of different processes and we investigate their robustness against variations of laser field. We discuss
the conditions under which each method of control gives the best results. We also point out the relation
between optimal control theory and local control.
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I. INTRODUCTION

Control of physicochemical processes by ultrashort laser
pulses remains nowadays an attractive and challenging do-
main. The aim of this kind of control is to design a laser
pulse which drives the system from an initial state to a spe-
cific target state or even better, to find laser fields able to
perform unitary transformations on molecular qubits. By this
way, shaped laser pulses have become new reagents for
chemical reactions. Some of the most important experimen-
tal contributions to this field have been reviewed recently
�1�. On the other hand, different control schemes have been
proposed, among others we can cite the Brumer-Shapiro co-
herent control �2,3�, the Tannor-Rice-Kosloff local control
approach �4,5�, the Rabitz optimum control theory �OCT�
based on learning algorithms or closed-loop control proce-
dures �6–9�, or the simulated Raman adiabatic passage �STI-
RAP� scheme �10–12�.

This paper is devoted to a theoretical analysis of different
scenarios based on STIRAP �or extension of this process as
f-STIRAP �13�� and OCT by working only in the infrared
domain, i.e., without transitions via excited electronic states.
We consider a two-dimensional �2D� model of a bifurcating
region in the ground potential energy surface of a polyatomic
system. Such a region connects three non equivalent wells. A
deep reactant well is connected to a symmetric double well.
One passes from the reactant well to the double basin with a
large amplitude bending mode of a migrating hydrogen atom
around a given bond. The double well corresponds to an
internal rotation of this atom around the axis defined by the
particular bond. This three-well bifurcating region is an in-
teresting pinball topography which suggests different pro-
cesses of control:

�1� transformation of a delocalized state into a localized
state in the double-well potential �14�

�2� transformation of a localized state of the double-well
potential into the other. This has been already proposed in
the spirit of Cope rearrangement �15� or enantiomer selection
�16�

�3� isomerization from the reactant well to a given basin
of the surface like in hydrogen transfer in organic molecules
�17�. In our case, this reaction involves a break of symmetry.

�4� realization of one or two qubits systems �18–23�. The
double-well region offers different possibilities for the choice
of the quantum numbers which allow to define the qubits
�parity or excitation� �24�.
We address different control issues: the efficiency of various
strategies which depend on the shape of the dipolar surface
or, equivalently on the structure of the dipolar matrix and the
robustness of the control with respect to the process used and
the duration of the pulse. In each case, we also analyze the
different pathways which are enforced by the laser field. Fi-
nally we briefly discuss the relationship between local con-
trol and OCT in the particular case where the objective is to
maximize the average value of the projector on a superposed
state.

II. MODEL

We consider a model recently proposed which reproduces
the main features of a bifurcating region connecting three
potential energy wells �25�. Isoenergy contours are presented
in Fig. 1. The model is calibrated on an ab initio computation
at the QCISD level �25� of the isomerization of the methoxy
radical into hydroxymethyl which is a molecule benchmark
for such energy landscapes �26�. We should emphasize that
we do not intend to control dynamics of this particular radi-
cal moiety, but we are rather interested in this particular to-
pography for which a convenient analytical expression has
been proposed.
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The model describes the rotation of the hydrogen atom
around a polar bond connecting two atoms �here CO� in
different chemical environments �see Fig. 2�. The two active
coordinates �� �0,�� and �� �−� ,�� are the spherical
angles of the migrating hydrogen atom with respect to the
center of the bond. In CS geometry ��=0�, the first active
bending coordinate � connects the reactant well R to a sec-
ond well through a first transition state TS1 �the barrier
height from the reactant is 1.673 eV�. This second well is a
transition state TS2 according to a second symmetry break-
ing active coordinate �. TS2 is the top of the small barrier
�0.195 eV� of the double well corresponding to rotational
conformers P and P�. Between TS1 and TS2 lies a valley
ridge inflexion point �VRI�. Mathematical definitions of a
VRI point can be found in different works �27–30�. Roughly
speaking, it is a point where a valley corresponding to a
particular internal mode becomes an unstable ridge. We point
out that field-free dynamics has already been carried out in
such bifurcating regions by assuming that initial wave pack-

ets can be prepared in the valley uphill from the VRI �31,32�.
In the quasiharmonic regime, one can introduce vibrational
quantum numbers for � and � oscillators. The ground state
of the R well is denoted by �0,0�R. The delocalized states of
the double well are of parity even and odd and are thus noted
�n+ ,m� and �n− ,m�. The splitting of the first level �0+ ,0�,
�0− ,0� is 4.3�10−5 eV. This corresponds to a rather long
tunneling time of about 95 ps much longer than the
duration of the pulses used in the control. The first localized
states coming from the in phase and out of phase superposi-
tion are �nL,0�= ��n+ ,0�+ �n− ,0�� /�2 and �nR,0�= ��n+ ,0�
− �n− ,0�� /�2. They are associated to m=0 for the � vibrator.
We recall that the notations R and L do not refer to enanti-
omers in this example �R is P and L is P��.

In the dipolar approximation, the reduced 2D Hamiltonian
takes the form

Ĥ = Ĥ0 − �
k

�̂kEk�t� , �1�

where Ĥ0= T̂+ V̂ is the field free Hamiltonian and k denotes
the polarization direction. The exact constrained 2D kinetic
energy operator can be numerically computed by the TNUM
algorithm �33� by freezing the inactive coordinates at the TS1
geometry. We extract an approximate kinetic energy operator
by fitting the standard angular momentum expression in
spherical coordinates. In Euclidian normalization conven-

tion, T̂ is then equal to

T̂Eucl = −
�2

2I�
	 �2

��2 + cotan�
�

��

 −

�2

2I�

1

sin2 �

�2

��2 ,

where constant inertia moments I�=6160 a.u. and
I�=4430 a.u. are estimated from the TNUM grids. In the
Wilson normalization convention in which the volume ele-

ment is d�d�, T̂ becomes

T̂Wil = −
�2

2I�

�2

��2 −
�2

2I� sin2 �

�2

��2 + v��� ,

where v��� is an extra potential term. This analytical expres-
sion is particularly suited to the use of the split operator
algorithm �34� which is needed to propagate the wave pack-
ets. This point is due to the fact that the coefficient of a given
differential operator � /�qk does not depend on qk but only on
the other coordinates. We assume that the molecules are
aligned in the laboratory frame with the polar bond oriented
along the e�z axis �see Fig. 2�. This could be obviously an
important constraint �35�. We consider linear polarizations
with directions e�x in the CS plane and e�y perpendicular to the
CS plane.

To pursue the construction of the model, we also propose
a simple form for dipolar surfaces based on a chemical
analysis of the molecule. Indeed, the system can be roughly
described as the rotation of a charged particle around a polar
bond. The dipolar components �x�� ,�� and �y�� ,�� are
larger on the P , P� side ���� /2� when the particle is close
to the most electronegative atom. They decrease quickly for
��� /2, when the particle enters a region near the weakly
electronegative atom. The analytical model is given in the
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FIG. 1. Isoenergy contours �in eV� in the model potential energy
surface of the isomerization H3CO→H2COH as a function of two
active angular coordinates �see Fig. 2�. The zero of energy is
at the bottom of the product well �P or P��; R=0.181 eV,
TS1=1.854 eV, and TS2=0.195 eV.
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FIG. 2. �Color online� Active coordinates � and � for the
isomerization H3CO→H2COH and polarization directions for
aligned molecules.
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Appendix. �x�� ,�� and �y�� ,�� are respectively symmetric
and antisymmetric with respect to �. Some cuts are given in
Fig. 3.

III. CONTROL METHODOLOGIES

A. Local and optimal methods

The control algorithms are usually classified as local
�4,36–38� or global depending on whether the field is deter-
mined from the instantaneous dynamical properties by maxi-
mizing a performance index or from the variational calculus
of a cost functional. The objective functional can be defined
in different manners �7,8� which are strongly connected �9�.
The procedure to maximize the cost functional under the
constraint of satisfying the time dependent Schrödinger
equation is described in details in the literature �39�. The
Zhu, Botina, Rabitz formulation �7� leads to three coupled
equations: the Schrödinger equation for �	�t�� with an initial
condition �	i�t=0��= ��i� �forward propagation�, the
Schrödinger equation for the Lagrange multiplier �	 f�t�� with
a final target condition �	 f�T��= �� f� �backward propagation�,
and an equation for the optimum field

Ej�t� = − �1/�
0�Im��	i�t��	 f�t���	 f�t��� j�	i�t��� , �2�

where 
0 is a positive penalty factor chosen to weight the
significance of the laser fluence. An experimental switching
function s�t�=sin2��t /T� is usually introduced �39�, 
0 is
then replaced by 
0→
0 /s�t�. The equations are solved by
an iterative formulation �7� adapted to a discrete implemen-
tation based on a second order split operator scheme �34�.
We have used the improvement proposed in Ref. �40�. At
each iteration, the field is given by Ej

�k�=Ej
�k−1�+�Ej

�k� where
�Ej

�k� is calculated by �Eq. �2��.
It is worth noting that the local approach is strongly re-

lated to the Zhu, Botina, and Rabitz approach when the per-
formance index involves a projection on a nonstationary
state. The local control methodology is overviewed in Ref.
�38�. The field is chosen in order to maximize the rate of

variation of a performance index y�t�=y��Ôj�t��� which is a

function of expectation values �Ôj�t��= �	i�t��Ôj�t��	i�t�� of

Hermitian operators with j=1,N. In the case where the target
operator is a projector on a nonstationary wave packet at a

final time T: Ô�T�= �� f��� f�, the rate depends on a single

expectation value dy�t� /dt=d�Ô�t�� /dt. If the time depen-
dence of the operator is fixed by the field free Hamiltonian

Ô�t� = e−iH0�t−T�/��� f��� f�eiH0�t−T�/� = �� f�t���� f�t�� , �3�

in other words, when the operator projects down to the wave
packet which freely evolves towards the target state at time
T, then one obtains �38�

dy�t�/dt = − 2 Im��Ô�t���̂ · E� �t��� . �4�

The local control field giving a monotonous increase of the
performance index is obtained by setting, for a polarization

direction, Ej�t�=−� j Im��Ô�t��̂ j��. By inserting expression
�3� into this last equation, one gets an expression correspond-
ing to the first step �without zero order field� of the iterative
optimum control �Eq. �2��, i.e., when 	 f�t� evolves with the
field free Hamiltonian

Ej�t� = − � j Im��	i�t��� f�t���� f�t���̂ j�	i�t��� . �5�

The method focuses on the � j coefficient. With few trials, it
is possible to find values of � j providing an acceptable field.
The latter is then used as an initial-guess field to continue the
iterative optimum control procedure. This speeds up the rate
of convergence of the algorithm by finally choosing the best

0.

The optimum field able to steer a set of initial states to a
set of target states, i.e., to apply a unitary transformation to
the 2N states of N qubits

� � f
1

:

� f
2N
 = Ûgate� �i

1

:

�i
2N


can be obtained by the multitarget generalization of OCT
�18,21�. We have to propagate simultaneously a set of 2N

wave packets forward in time 	i
n�t=0�=�i

n with
n=1, . . . ,2N and a set of 2N Lagrange multipliers wave pack-
ets backwards 	 f

n�t=T�=� f
n with n=1, . . . ,2N. The optimum

field is given by a sum of contributions from each state

Ej�t� = − �1/�
0�Im	�
n=1

2N

��	i
n�t��	 f

n�t���	 f
n�t��� j�	i

n�t���
 .

�6�

A constraint on the phase of the quantum gate could be
added �41�.

The fidelity of the quantum gate is measured by

F = �tr�Ûgate
+ Ûcontrol��2/2N �7�

B. STIRAP and adiabatic processes

The second strategy for the control is based on adiabatic
passage �for a recent overview, see �11,12� and references
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FIG. 3. Cuts in the model dipolar momentum surface �see Ap-
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therein�. Such processes are widely used in a variety of
fields, extending from nuclear magnetic resonance and quan-
tum information to atomic and molecular excitations. Adia-
batic methods are usually achieved by using a series of in-
tense pulses which can be frequency chirped, the frequencies
and the chirping being adapted to the structure of the energy
levels. However, the modification of the shape of the pulse
envelope and the chirping rate must be sufficiently slow so
as to fulfill adiabatic conditions. One of the most well-known
adiabatic processes is the STIRAP excitation which involves
a counterintuitive sequence of two pulses in a three-level
system, in which the field of the Stokes pulse precedes and
overlaps the field of the pump pulse. These adiabatic tech-
niques allow a complete population transfer from an initial
state to a target state which can be either a stationary state,
i.e., an eigenstate of the field free Hamiltonian or a coherent
superposition of such states. They are also robust in the sense
that they are not sensitive to small variations of laser param-
eters. Due to these remarkable properties, such processes
seem to be particularly suitable for the control of chemical
reactions. For instance, they have been applied with success
for controlling the isomerization of HCN �42,43�. However,
the relevance of adiabatic techniques in a complex system
can be questioned. We stress that 100% efficiency of the
control is generally ensured only for a subset of levels with
particular couplings such as the tripod system. If the molecu-
lar system is rich in the energy range considered, the effect
of coupling to background states can deteriorate noticeably
the population transfer in particular if the background states
are resonant or almost resonant with laser fields. Another
major drawback of these methods is the duration of the
pulses which is longer than the time needed by optimal or
local control to reach their objective. This point can be prob-
lematic if other concurrent chemical processes with time
scale of the same order occur during the control.

To avoid the preceding problems, we combine in this pa-
per adiabatic processes which allow determining a simple
form for the overall field and optimization of some param-
eters of the pulse, leading to a shorter �of the order of few
picoseconds� and efficient control. The strategy can be sum-
marized as follows. We first select a subset of levels and we
determine an adiabatic process in order to achieve the objec-
tive of the control. These levels have to be carefully chosen,
as otherwise the value of the electric field is too large. More
precisely, we recall that the Rabi frequency 
12= ��12�E�t�
between the states 1 and 2 ��12 being the matrix element of
the dipole moment� must be sufficiently large so as to ful-
filled adiabatic conditions. For instance, a standard condition
is 
12T�1 where T is a characteristic duration of the pulse,
which is the full width half maximum for a Gaussian pulse.
In addition, in order to avoid other unwanted chemical pro-
cesses such as ionization, the intensity of the electric field
has to be limited to 1014 W/cm2 which roughly leads to a
minimum of the order of 0.1 a.u. for matrix elements of the
dipole moment. In a second step, considering all the levels of
the system, we decrease the pulse duration to few picosec-
onds and we optimize both the intensities and the delay be-
tween the different pulses to keep efficient control.

We now describe the computational details of the method.
We have used Gaussian pulses, the pulses being polarized in

the e�x or the e�y direction. The field E�t� is equal to the sum of
terms of the following form:

E0 exp�− �t − tk�2/2�2�cos��kt + �k� , �8�

where �, �k, E0, and �k are respectively the width, the fre-
quency, the amplitude, and the phase of the pulse. To sim-
plify even more the overall field, we assume that the width
and the amplitude are the same for all the pulses �except for
the quantum gates�. The delay is defined by the difference
between the times tk.

IV. WAVE PACKET CONTROL

A. Double well scenarios

We consider two control schemes in the double well prod-
uct region �P and P�, see Fig. 1�: the localization of the
ground delocalized state into one localized state, in the spirit
of the previous control on H2POSH �44� and the transforma-
tion from a localized state of one well �P� to a localized state
of the other well �P�� �15,16�. We schematize these processes
as follows:

�0 + ,0� →
1
�2

��0 + ,0� + �0 − ,0�� = �0L,0� , �9�

�0L,0� →
1
�2

��0 + ,0� − �0 − ,0�� = �0R,0� . �10�

1. Description of the adiabatic processes

We first analyze in details the processes
�0+ ,0�→ �0L,0� or �0+ ,0�→ �0R,0� which consist in pre-
paring one of the conformer from a delocalized state. The
presentation of the results follows the different steps of the
strategy. We begin by selecting the first three levels of the
system, that is �0+ ,0�, �0− ,0�, and �1+ ,0�. The method for
determining the adiabatic process consists in using the par-
ticular symmetry of the dipole moment. For instance, we
recall that �x only couples the levels �0+ ,0� and �1+ ,0�, the
transition �0− ,0� to �1+ ,0� being forbidden. We consider a
f-STIRAP scheme which, as the STIRAP technique, only
uses two pulses, the pump and the Stokes fields. We choose
to fix the frequencies �k and the phases �k of each pulse as
follows:

�k = E1+,0 −
1

2
�E0+,0 + E0−,0� ,

�k = 0, �11�

where E0+,0 is, for instance, the energy of the level �0+ ,0�.
In the three-state basis �0+ ,0�, �0− ,0�, and �1+ ,0�, the total
Hamiltonian can be written as

� E0+,0 

S cos��t� 
P cos��t�


S cos��t� E0−,0 
S cos��t�

P cos��t� 
S cos��t� E1+,0


 , �12�

where 
P and 
S are respectively the Rabi frequencies of
the pump and the Stokes pulses for the transitions �0+ ,0�
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→ �1+ ,0� and �0− ,0�→ �1+ ,0�. The 
 parameter is equal to
�y

0+0,0−0 /�y
1+0,0−0. The pump pulse is polarized along the e�x

direction whereas the Stokes pulse is polarized along the e�y
one. Note that the Rabi frequencies are chosen real without
loss of generality. Using the RWA approximation �12�, the
Hamiltonian HI reads in the interaction representation

HI = � 0 0 
P

0 0 
S


P 
S 0

 , �13�

where the small detunings E1+,0−E0+,0−� and
E1+,0−E0−,0−� are neglected.

The idea is then to use a f-STIRAP technique. f-STIRAP
is an extension of STIRAP which allows the creation of co-
herent superpositions of states �11�. f-STIRAP is now a well-
known process which has already been used in a variety of
systems to implement qubit gates or to generate superposed
states �45,46�. The process can be schematized by the fol-
lowing diagram:

The extension of the STIRAP technique consists in the fact
that the amplitudes of the two pulses are required to have a
constant ratio at the end of the pulse. More precisely, if the
eigenvector �	0� of eigenvalue 0 of HI writes

�	0� =
1

�
P
2 + 
S

2
�
S�0 + ,0� − 
P�0 − ,0�� �14�

then the following conditions have to be fulfilled by the two
Rabi frequencies:

lim
t→−�


P


S
= 0 and lim

t→+�


P


S
= � , �15�

where �= ±1. One deduces for the two limit cases that

�	0�− ��� = �0 + ,0� ,

�	0�+ ��� =
1
�2

��0 + ,0� − ��0 − ,0�� . �16�

It is then clear that for an adiabatic evolution, the localized
state can be obtained from f-STIRAP with �= +1 for �0R,0�
and �=−1 for �0L,0�. Another equivalent scheme can be con-
structed by replacing the intermediate state �1+ ,0� of the
f-STIRAP process with �2+ ,0�

One can also imagine other mechanisms of the same kind
using other intermediate states and the particular symmetry
of the dipole moment. Finally, the following points can be
noticed. A more complex superposed state can be obtained
with f-STIRAP if the ratio 
P /
S is different from 1 or −1
when t→ +�. Moreover, a process using only one linear
polarized laser field but with a frequency � and its second
harmonic 2� can also be built to control the tunneling �47�.

For the transformation �0L,0�→ �0R,0� from a localized
state to the other, we have slightly modified the previous
scheme. The limits of �Eq. �15�� become

lim
t→−�


P


S
= − � and lim

t→+�


P


S
= � �17�

leading thus to the following limit states:

�	0�− ��� =
1
�2

��0 + ,0� + ��0 − ,0�� ,

�	0�+ ��� =
1
�2

��0 + ,0� − ��0 − ,0�� , �18�

which correspond either to �0R,0� or �0L,0� according to the
value of the parameter �.

Having determined an adiabatic process able to control
the specified reaction, we are now in a position to examine
the conditions �choice of Rabi frequencies and delay be-
tween the pulses� under which the mentioned scheme of con-
trol continues to work for a shorter duration of the pulse, i.e.,
not in the adiabatic limit. The optimized laser field has not
been constructed using optimal algorithms in order to pre-
serve as much as possible the robustness of the solution
which, as stated above, is one of the most important features
of adiabatic processes. For that purpose, we have considered
a 2D grid �Rabi frequencies, delay� and we have calculated
for each point of the grid, i.e., for particular values of Rabi
frequencies and delay, the corresponding time evolution. The
Rabi frequency �the same for each pulse� varies from
10−5 a.u. to 5�10−4 a.u. whereas the limits of the delay are
5�104 a.u. and 5�105 a.u. For our model of H3CO, this
amounts to a pulse duration of about 20 ps and a field am-
plitude of 5�107 Vm−1 that corresponds to a very weak
field.

Figure 4 illustrates the results of applying the f-STIRAP
strategy for a total duration of 20 ps and for the intermediate
state �1+ ,0�. In the adiabatic limit, only states �0+ ,0� and
�0− ,0� are expected to be populated. A different behavior is
obtained for the process. This is due to coupling to back-
ground states and to the fact that adiabatic conditions are not
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rigorously fulfilled. For instance, the product Rabi frequen-
cies times duration of the pulse is of the order of 10. How-
ever, this deviation from the theoretical description does not
decrease its efficiency. The same behavior can be obtained
for different intermediate states and different total durations.

The robustness of the strategies has been checked against
two parameters: the time delay between successive pulses
and the Rabi frequency of each pulse. Figure 5 shows the
robustness against these two variables for the f-STIRAP pro-
cess and for two total durations of about 20 ps �see Fig. 4�
and 4.5 ps. Remarkable robustness is achieved, especially for
the longer pulse duration, advocating for a possible experi-
mental feasibility of the control scheme. Moreover, it can be
clearly seen that the strategy is more robust for longer pulses.
This point can be explained by the fact that larger the dura-
tion of the pulse is, the more the adiabatic conditions are
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FIG. 4. Dynamics controlled by f-STIRAP strategy for the
preparation of the superposed state �0R,0� through the intermediate
state �1+ ,0�. Panels �a� and �b� show respectively the evolution of
populations in the Hamiltonian eigenbasis and in the superposed
states �0L,0� and �0R,0�. Populations of other vibrational states re-
main small during the process. The Rabi frequencies of the different
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units. The solid line corresponds to the Stokes pulse and the dashed
line to the pump pulse. The total duration of the pulse is of the order
of 20 ps.
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fulfilled and consequently the more the process is robust
�48�. The same study with similar results can be done for the
transformation from a localized state to the other. However,
we notice that the overall dynamics is generally much more
oscillatory with more complex structures as compared to the
preceding reaction.

2. Optimal control

Methods based on local or global control allow finding
optimum fields with a smaller duration T than fields obtained
by the adiabatic approach. Figure 6 displays the evolution of

populations in the eigenbasis of Ĥ0 �Eq. �1��, in particular for
the states �0+ ,0� and �0− ,0� and the average value of the
operator � showing the localization in the P� well
��=−75° � at the end of the process, after about 4.5 ps. This
time is chosen because it is the shortest time ensuring a good
performance index in the STIRAP approach. The objective is
reached at 99.99% in 10 iterations with the Rabitz algorithm
�Eq. �2�� improved by the correction proposed in Ref. �40�
using 
0=1.2 without any zero order field. Focusing on the
first step of the procedure and using local control �Eq. �5��,
we obtain a zero order field with �x=8 and �y =1.2 leading to
a performance index of 91%. The Rabitz algorithm then con-
verges at 99.99% in 3 iterations.

One observes that the populations of the �0+ ,0� and
�0− ,0� eigenstates become equal very early but the average
� position shows that the equality of populations does not
involve the correct phase to form the localized superposition
1
�2

��0+ ,0�+ �0− ,0��= �0L,0�. Transient excitations help at
reaching the target superposition. The OCT field is shown in
Fig. 7. A part of the structure of the pulse can be understood
as follows. The pulse is composed of two subpulses, one
along the e�x direction and the other along the e�y direction. We
consider this latter part. This subpulse can be viewed as a
half-cycle pulse �HCP� �49�, i.e., only one half of an optical
field cycle. HCPs have already been used in different appli-
cations; we can cite the control of molecular alignment or
orientation �49,50� or the control of tunneling in a double-

well system �51�. This pulse, being of short duration with
respect to the tunneling time but long in comparison with the
period associated to the transitions �0+ ,0�→ �1+ ,0� or
�0− ,0�→ �1+ ,0�, produces a superposition of states �0+ ,0�
and �0− ,0�. Using the sudden approximation �52�, the evo-
lution operator UHCP for the HCP can be written as follows
in the basis defined by �0+ ,0� and �0− ,0�:

UHCP = exp�iAHCP�x� , �19�

where AHCP is the area of the pulse times the corresponding
matrix element of the dipole moment and �x the Pauli ma-
trix. Starting from a delocalized state, it can then be shown
that a HCP of area � /4 and a free evolution of a quarter of
the tunneling time lead to a completely localized state �51�.
A numerical calculation shows that the area of the optimal
pulse along the e�y direction is very close to � /4. Notice that
the condition 
max�� where 
max is the peak Rabi
frequency and � the detuning has to be fulfilled to avoid
the appearance of other resonances and the transfer of
population to excited states. � can be roughly estimated by
�=E1+,0−E0+,0 which leads to the following larger possible
value of the electric field E=2.5�10−3 a.u. The second part
of the pulse along the e�x direction is a more complex field
which cannot be explained so simply as it does not respect
the condition 
max��.

We have also tested the robustness of this process against
the area of the different pulses. As can be seen in �Eq. �19��,
the area is the main feature of such short pulses. We have
observed that the process is robust �of the order of 10%� with
respect to such inaccuracies affecting the area of the pulse. It
seems that this feature can be attributed to the simple form of
the optimal field.

B. Bifurcation scenario

We now investigate the possibility of steering the ground
state �0,0�R of the R well towards the P �0R,0� or P� �0L,0�
product basin through the VRI region �see Fig. 1�. This con-
trol is summarized by the following schematic diagram:
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FIG. 7. OCT field obtained for the shortest laser pulse duration
studied in the preceding section �f-STIRAP strategy� for the trans-
formation �0+ ,0�→ �0L,0� �Eq. �9��.
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�0,0�R → �0L,0� or �0,0�R → �0R,0� . �20�

This scenario involves a break of symmetry after a passage
over a high barrier �1.67 eV�. From a dynamical point of
view, it can be wondered which path the controlled wave
packet will follow, i.e., whether the bifurcation occurs early
�near the VRI� or not �near TS2�. It should be noted that this
example illustrates the extreme sensibility of the control to
parameters of the model. This scenario looks like isomeriza-
tion processes between two wells which have already been
discussed in the literature �17,53,37�. However, the topogra-
phy between TS1 and TS2 with a change of curvature along
� leads to delocalized eigenvectors strongly coupled by the
dipolar momentum. This is unfavorable to the STIRAP
scheme which needs intermediate states well decoupled from
all the others. In OCT, we do not succeed in finding a satis-
factory optimum field for the current model inspired from the
QCISD ab initio level with a TS1 barrier of 1.67 eV. The
algorithm finds a path involving a too high excitation

���t��Ĥ0���t�� of several eV up to 7 eV which is completely
unrealistic. We adopt another potential energy surface in-
spired from other ab initio calculations �MP2� with a smaller
energy barrier from the reactant �1.56 eV� at TS1 �R
=0.451 eV, TS1=1.911 eV, and TS2=0.216 eV� and a
slightly different profile along � for ��80°. We use the
same dipolar momentum model. In this case, the OCT gives
a reasonable field leading to an average unperturbed energy
of the order of ETS1 as shown in Fig. 8. For a pulse duration
of 4.5 ps, the target is reached with 95.3% in 240 iterations
starting with two zero order fields Ej

0�t�=E0 cos�� jt� where
E0=0.02 a.u. and the � j are the harmonic frequencies of the
two � and � vibrators in the R well. Figure 8 shows the
average value of the two active coordinates during the pro-
cess. The controlled break of symmetry occurs in a sequen-
tial manner. The � angle first reaches the TS2 value before
the break of symmetry and the cooling occurs in the double
well region.

Figures 9 and 10 give the optimal fields and the corre-

sponding Gabor transforms

F��,t� = ��
−�

+�

H�s − t,��E�s�ei�sds�2

, �21�

where H�s ,�� is the Blackman window �54�

H�s,�� = 0.08 cos	4�

�
s
 + 0.5 cos	2�

�
s
 + 0.42 if �s� �

�

2
,

H�s,�� = 0 elsewhere,

and � is the time resolution. Here we have fixed �=0.2 ps.
The Gabor transforms contain the zero order frequencies

�1715 cm−1 for Ex and 1578 cm−1 for Ey�. A lot of frequen-
cies are used during the time interval �0.8,1.5� ps. They per-
mit to increase the unperturbed energy above TS1. The inter-
mediate states playing a significant role in this heating are
the low excitations of the � vibrator �nearly �0,1�R, �0,2�R,
and �0,3�R� and the first excitation in the � vibrator �1,0�R.
Between 1.5 ps and 3 ps, a lot of delocalized states are popu-
lated with a weight smaller than 5%. At this point, the OCT
path involves a large number of intermediate states. Note that
this is the extreme opposite of the situation favorable for
applying the STIRAP technique. The cooling occurs after
3 ps and mainly involves two states of the double well re-
gion �nearly �0+ ,1� and �0− ,1��. In this example, cooling is
easier than heating probably because the dipolar momentum
is very different in the two regions.
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We have also tried without any success the local approach
�37� which consists in heating and cooling the wave packet
according to the average � position. Besides the difficulty of
the expected break of symmetry, the average � position does
not reach the TS1 value during the heating but remains in the
corresponding well excluding an efficient cooling.

V. LOGICAL GATES

We examine the possibility of realizing logical gates on
one or two qubits. We recall that a quantum computation can
be described as a sequence of logical gates which determine

a unitary transformation Ûgate �55�. Different molecular sys-
tems such as vibrationally excited molecules �18–24� have
already been proposed for the implementation of one and
two-qubits gates and several control schemes using either
�-pulses �22� or optimal control theory �18–22� have been
constructed. In the present case, the low lying states can be
thought of as a qubit �0�= �0+ ,0� and �1�= �0− ,0�. The pre-
vious transformation �0+ ,0�→ �0R,0� is obviously related to
the well known Hadamard transformation

ÛHAD	�0 + ,0�
�0 − ,0� 
 = �1/�2�	1 1

1 − 1

	�0 + ,0�

�0 − ,0� 
 = 	�0L,0�
�0R,0� 
 .

Following this idea, it can be shown that arbitrary unitary
operations can be performed on the preceding qubit. For that
purpose, we can use a universal set of one-qubit gates com-
posed of the rotation gate and the phase gate which is defined
by

ÛPHASE	�0 + ,0�
�0 − ,0� 
 = 	1 0

0 ei� 
	�0 + ,0�
�0 − ,0� 
 .

The basic transformation on a two-qubit system is the
controlled-not �CNOT� gate which permutes the state of the
second qubit only if the first qubit is in state 1

ÛCNOT�
�00�
�01�
�10�
�11�


 =�
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

�

�00�
�01�
�10�
�11�


 .

There are different ways of defining a two-qubit system in
our example. According to the proposal of Sola et al. �22�,
we can choose excitation-parity or parity-excitation of the �
vibrator. This gives, respectively, the following definitions:

�
�00�
�01�
�10�
�11�


 =�
�0 + ,0�
�0 − ,0�
�1 + ,0�
�1 − ,0�


 or �
�00�
�01�
�10�
�11�


 =�
�0 + ,0�
�1 + ,0�
�0 − ,0�
�1 − ,0�


 .

We explore also the usual realization of a two-qubit system
using states of two � and � vibrators in the double well

�
�00�
�01�
�10�
�11�


 =�
�0 + ,0�
�0 + ,1�
�0 − ,0�
�0 − ,1�


 .

In the next section, we will give examples of control which
aim at implementing the Hadamard gate, the phase gate, and
the CNOT gate.

A. One-qubit gate

1. Adiabatic process

More complex methods than f-STIRAP strategy have to
be used for implementing qubit gates. For one-qubit gates,
we follow schemes proposed in �56,57�. We only consider
the phase gate. The Hadamard gate can be derived by using
a similar strategy. The procedure is composed of two STI-
RAP processes which are aimed at transferring the popula-
tion between states �0− ,0� and �1+ ,0� via state �2+ ,0�
which is not populated in the adiabatic limit. Only three
pulses can be used because the second one serves as a pump
field for the first STIRAP excitation and as a Stokes field for
the second STIRAP process. The first part of the scheme can
be viewed as follows:

The frequencies are chosen so that the different excitations
are resonant, i.e., we have

�x = E2+,0 − E1+,0,

�y = E2+,0 − E0−,0,

where �x and �y are respectively the frequencies of the fields
along the e�x and e�y directions. The phase of the first pulse is
fixed to �, the phase of the phase gate, whereas other phases
are chosen to be zero. Note that other procedures with dif-
ferent phases can also be considered �56,57�. The eigenvec-
tor �	0� of eigenvalue 0 of HI in the basis �0− ,0�, �1+ ,0�,
and �2+ ,0� reads as follows during the first STIRAP excita-
tion

�	0� =
1

�
P
2 + 
S

2
�
S�0 − ,0� − 
Pei��1 + ,0�� ,

and the second STIRAP
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�	0� =
− ei�

�
P
2 + 
S

2
�
S�1 + ,0� − 
P�0 − ,0�� .

In these expressions, the Rabi frequencies are assumed to be
real and the dependence on the phase � has been explicitly
written in order to clarify the proof.

It has been more difficult to control and to optimize one
qubit gates than processes involved in the double-well sce-
narios. This point is basically due to the fact that both popu-
lations and relative phases have to be controlled in a quan-
tum gate. This difficulty is particularly relevant in this case
because the levels of the qubit are not degenerate. The cor-
rect unitary transformation is therefore achieved by the adia-
batic process only in the interaction representation and not in
the bare state basis. The optimization allows to set up the
relative phases. Very good results have nevertheless been
obtained. Moreover, one of the advantages of adiabatic pro-

cesses is that the same form of the overall field can be used
to realize different quantum gates. This point is illustrated for
the phase gate in Fig. 11. Modifying only the phase of the
first pulse of the first STIRAP excitation and keeping con-
stant other parameters, two phase gates for �= �

4 and �= �
2

have been built by our strategy.

2. Optimal control

OCT confirms its efficiency in order to find fields of
smaller duration. We have derived a field for the Hadamard
gate on the �0+ ,0� and �0− ,0� states with T=4.5 ps. The
field is completely similar to the one used to realize the
scheme �9�. One obtains exactly the same behavior as shown
in Fig. 6. This field is very simple and has been discussed in
Sec. IV A. We have also checked that OCT can be used to
implement the phase gate.
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FIG. 11. The phase gate. Panel �a� displays the evolution of populations in the Hamiltonian eigenbasis during the phase gate transfor-
mation, the initial state is �0− ,0�. Panels �b� and �c� represent respectively the evolution of the fidelity for �= �

4 and �= �

2 . Panel �d� shows
the Rabi frequencies of the different pulses. The solid and dashed lines correspond respectively to the field Ex and the field Ey �see text�.

SUGNY et al. PHYSICAL REVIEW A 74, 043419 �2006�

043419-10



B. Two-qubit gate

1. Adiabatic process

We only consider the first CNOT gate involving the states
�0+ ,0�, �0− ,0�, �1+ ,0�, and �1− ,0�. Similar processes can
be constructed for other choices of qubits. The control
scheme that can be used for the CNOT gate is a strategy
similar in its spirit to the preceding process. We make a step
further by considering now a superposition of states. The
scheme can be represented as follows:

where three different pulses have been considered. The val-
ues of the frequencies for the pump pulses and the Stokes
field are chosen resonant with the corresponding transition.
We consider the subset of levels �1+ ,0�, �1− ,0�, �2+ ,0�, and
�2− ,0�. In this basis, the total Hamiltonian HI can be written
as

�
0 0 0 
1+

0 0 0 
1−

0 0 0 
S


1+ 
1− 
S 0

 ,

where the Rabi frequencies �with straightforward notations�
are assumed to be real. Diagonalizing the matrix CNOT, we
determine the corresponding eigenvectors involving the
states �1+ ,0� and �1− ,0�. These eigenvectors denoted �h+�
and �h−� of eigenvalues 1 and −1 can be defined as follows:

�h+� =
1
�2

��1 + ,0� + �1 − ,0�� ,

�h−� =
1
�2

��1 + ,0� − �1 − ,0�� .

In the basis �h+�, �h−�, �2+ ,0�, and �2− ,0�, HI is given by

�
0 0 0 
+

0 0 0 
−

0 0 0 
S


+ 
− 
S 0

 ,

where a straightforward calculation leads to the following
relations:


+ =
1
�2

�
1+ + 
1−� ,


− =
1
�2

�
1+ − 
1−� .

The idea is then to decouple the eigenvector �h+� from other
states of the basis. For instance, if we choose


1+ = �2
0 and 
1− = − �2
0, one obtains for HI

�
0 0 0 0

0 0 0 
0

0 0 0 
S

0 
0 
S 0

 .

The last step consists in applying the scheme of the phase
gate described above for a phase equal to �. In the adiabatic
limit, �h+� and �h−� will be respectively transformed into �h+�
and −�h−� which corresponds to the transformation of the
CNOT gate.

Figure 12 shows the results of this strategy. We have ob-
tained a fidelity close to 0.95. The fact that the levels of the
two qubits are not degenerate implies a quick loss of the
fidelity of the order of 1 ps which seems problematic in view
of experimental applications. We emphasize that this behav-
ior can be observed in most of quantum gates constructed
from vibrationally excited states. It is a disadvantage of this
kind of system in comparison of other schemes such as op-
tical cavity �56,58� where all states are degenerate or almost
degenerate.

2. Optimal control

We present only the gate CNOT on the two qubits using
fundamental and first excited states of two � and � vibrators
in the double well. We impose the pulse duration T=4.5 ps.
Figure 13 displays the time evolution of the population when
each initial state �00�= �0+ ,0�, �01�= �0+ ,1�, �10�= �0− ,0�,
and �11�= �0− ,1� is driven by the optimum field which has
been obtained with 21 iterations. Panels �a� and �b� show the
inversion of population of the states of the second qubit.
Gray lines display intermediate populations of the different
eigenstates. Panels �c� and �d� show the population of the
first qubit states. The final value is again equal to one at the
end of the process even if intermediate depopulation occurs.

The optimal field obtained for this CNOT gate is given in
Fig. 14. Only the Ex component is used by the OCT. The
maximum of the weak Ey component is of the order of
1.5�10−3 V cm−1. The field is again very simple. The Gabor
transform �Eq. �21�� shows that a main frequency 1916 cm−1

corresponding to the �0− ,0�→ �0− ,1� transition acts during
the whole process.

VI. CONCLUDING REMARKS

This paper has focused on the application of OCT and
adiabatic processes to various situations that can be encoun-
tered when a potential energy surface presents a bifurcating
region connecting three potential wells �isomerization, tun-
neling, and implementation of one or two qubits quantum
gates�. In the present case, the symmetric double well region
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is the most favorable to realize control scenarios due to the
shape of the dipolar momentum surface. The results are ex-
pected to be transposable to other molecules such as
H2POSH presenting the same kind of double well region.

We have also investigated the advantages and limits of the
different methods. We recall that the goal of a control is to
reach a defined objective, the field solution being subject to
some physical constraints: on its duration and its intensity in
order to avoid other unwanted chemical processes and on its

form and its robustness in view of experimental applications.
Some of these constraints are respected by adiabatic pro-
cesses �simplicity of the form, robustness� and the other by
laser pulses determined from OCT �short duration with rea-
sonable intensity�. The question which naturally arises is
then which strategy is used in a given practical situation.
Some problems may seem trivial because they consist basi-
cally in a jump between two wells. However, as it is the case
for our scheme �20�, the structure of the eigenvectors and of
the dipolar matrix may generate difficulties and hinder the
use of STIRAP. The application of adiabatic processes looks
particularly problematic if a small number of levels with
small coupling to background states cannot be selected. OCT
seems to be the more efficient approach even if, as can be
shown in Sec. IV B, there is no guarantee to reach the ob-
jective of the control, particularly when the dipole moment is
rather flat in a given well. Moreover, if a solution exists there
is no more guarantee on the robustness of the optimal field.
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gray lines: intermediate transitions towards other eigenstates which
are denoted from 3 to 10 and nearly correspond to excitation of the
even and odd states of the � vibrator only. The � vibrator remains in
its ground state with no node along �.
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FIG. 14. OCT field for the CNOT gate on the �0+ ,0� , �0
− ,0� , �0+ ,1� , �0− ,1� states.
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For more simple scenarios of control �double well, qubit
gates�, several solutions have been obtained, but with differ-
ent features. In the case of adiabatic processes, one observes
that the duration of the overall pulse can be sufficiently re-
duced �of the order of few picoseconds� by an optimization
procedure which also decreases the robustness of the process
�Sec. IV A�. For quantum gates where both populations and
relative phases have to be controlled, we notice that the re-
duction of this time and the optimization are more difficult.
One of the great advantages of adiabatic processes as com-
pared to OCT is the simplicity of the form of the pulse, the
price to pay being generally larger duration and intensity.
This is not systematically true as can be shown for the Had-
amard gate where a very simple optimal field has been de-
rived �Sec. V A� by OCT. We have checked the robustness of
this latter field and found it to be very good, whereas this is
not the case for optimal pulses with more complex struc-
tures. Following this example, it seems possible to establish
a link between the simplicity of the optimal field and its
robustness. We plan to test this conjecture in other molecules
in the near future. Finally, we have focused here on dynamics
in reduced dimensionality. It is obvious that the larger the
pulse duration is the more dubious this approximation will
be. Our next step will be the consideration of coupling with
an environment.
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APPENDIX

This Appendix gives the analytical expression of the di-
pole moment that has been used in our calculations. We first
define the function �CS as an approximation of the �x in CS
plane ��=0�

�cs��� = �
k=0

4

ak cosk��� ,

where the parameters are given by a0=0.7, a1=1.1, a2=0.5,
a3=−1, a4=−1.11. The two active coordinates of the dipole
moment are then equal to

�x��,�� = �cs����f1���cos��� + f2����0.25 cos2���

+ 1.75 cos��� − 1�� ,

�y��,�� = �cs����f3���sin���� ,

where

f1��� =
1

2
arctg�− 3	� −

�

2

� + 0.9,

f2��� =
1

2
arctg�3	� −

�

2

� + 0.9,

f3��� =
1

2
arctg�3	� −

�

2

� + 2.4.
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