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Abstract
The small sample sizes inherent in rare and pediatric disease settings offer signifi-
cant challenges for clinical trial design. In such settings, Bayesian adaptive trial 
methods can often pay dividends, allowing the sensible incorporation of auxiliary 
data and other relevant information to bolster that collected by the trial itself. Previ-
ous work has also included the use of one-arm trials augmented by the participants’ 
own natural history data, from which the future course of the disease in the absence 
of intervention can be predicted. Patient response can then be defined by the degree 
to which post-intervention observations are inconsistent with the predicted “natural” 
trajectory. While such trials offer obvious advantages in efficiency and ethical hazard 
(since they expose no new patients to a placebo, anathema to patients or their par-
ents and caregivers), they can offer no protection against bias arising from the pres-
ence of any “placebo effect,” the tendency of patients to improve merely by being 
in the trial. In this paper, we investigate the impact of both static and transient pla-
cebo effects on one-arm responder studies of this type, as well as two-arm versions 
that incorporate a small concurrent placebo group but still borrow strength from 
the natural history data. We also propose more traditional Bayesian changepoint 
models that specify a parametric functional form for the patient’s post-intervention 
trajectory, which in turn allow quantification of the treatment benefit in terms of 
the model parameters, rather than semi-parametrically in terms of a response rela-
tive to some “null” model. We compare the operating characteristics of our designs 
in the context of an ongoing investigation of centronuclear myopathies (CNMs), a 
group of congenital neuromuscular diseases whose most common and severe form 
is X-linked, affecting approximately 1 in 50,000 newborn boys. Our results indicate 
our two-arm responder and changepoint methods can offer protection against pla-
cebo effects, improving power while protecting the trial’s Type I error rate. How-
ever, further research into innovative trial designs as well as ongoing dialog with 
regulatory authorities remain critically important in rare disease research.
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1 Introduction

The field of rare disease is particularly challenging for professionals who design, 
lead, and manage randomized clinical trials (RCTs). The very small sample sizes 
associated with such rare disease patient populations make it difficult for traditional 
clinical trial designs to achieve the statistical power desired by trial sponsors, while 
at the same time maintaining limits on Type I error (false positive) rates required by 
regulatory authorities. Pediatric RCTs often present similar challenges.

Fortunately, recent developments in clinical trial methodology have contributed 
to decrease the number of patients needed for clinical development. In particular, 
historical data (often from previous RCTs) may help to appreciate not only the natu-
ral evolution of a population that closely matches the studied population, but also 
the economic and social burden of the disease [1]. More sensitive outcomes may 
capture a minimal change in patients [2], and surrogate endpoints or biomarker 
expression levels may demonstrate the proof of mechanism and engagement before a 
clinical benefit is measured [3]. Finally, the selection of specific populations that are 
expected to be best responders to treatment [4] may help to maximize the treatment 
effects.

Incorporating auxiliary information in the statistical plan offers the opportunity 
to augment statistical power. Hierarchical Bayesian statistical approaches [5, 6] are 
particularly well suited to this task, since they offer a formal framework for combin-
ing auxiliary information via prior distribution. Specific examples of methods often 
used in rare and pediatric disease include power priors [7], commensurate priors 
[8], and robust mixture priors [9]. These approaches attempt to weight the auxiliary 
information appropriately, often by judging how well its results agree with the direct 
information obtained inside the trial itself. Neuenschwander and Schmidli [10] pro-
vide a review of Bayesian hierarchical approaches to incorporating historical data, 
including their links to meta-analysis. Cooner et  al. [11] offer a related review of 
methods useful in rare disease, while Basu and Carlin [12] focus on pediatric appli-
cations, where the approach is used to borrow strength from corresponding adult 
data. On this last point, Gamalo-Siebers et al. [13] also review Bayesian approaches 
in pediatric trials, as well as provide European and U.S. regulatory perspectives. 
Most recently, techniques incorporating propensity scores have been used to bor-
row from real-world (non-randomized) historical datasets. Zhao et al. [14] illustrate 
the use of commensurate priors for this purpose, while Wang et al. [15] and Li et al. 
[16] recommend a composite likelihood approach that has been suggested for use by 
US regulatory authorities.

Perhaps, the most common RCT usages of auxiliary data are designs that bor-
row strength from historical data on the control group, i.e., patients that would 
be assigned placebo or standard of care (SOC) in a traditional RCT. Unlike cor-
responding data on the novel treatment’s effect in humans, historical control data 
will often be available, either from the sponsor’s own previous research on the 
target population or through blinded control data sharing sources, such as the 
TransCelerate project (https:// www. trans celer atebi ophar mainc. com/). In pedi-
atric research, historical data on adult controls are often used to supplement or 

https://www.transceleratebiopharmainc.com/
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even replace pediatric controls, processes referred to as partial and full extrapo-
lation, respectively [17]. While such extrapolation is often necessitated by small 
sample sizes and ethical concerns, it also carries the risk of biasing estimates 
of the drug effect, due to incommensurability between the auxiliary and primary 
data sources. For example, even if the patients in the historical study are roughly 
the same age as those in the current trial, temporal evolution in the SOC may 
mean that historical placebo success rates are too low, making the novel treatment 
appear more effective relative to the current SOC than it really is.

To combat this problem, many researchers in rare and pediatric disease are 
turning to a new auxiliary data source: historical observational data on the 
patients actually in the trial, referred to as natural history data. The basic idea 
here is reminiscent of a crossover study: each patient acts as their own control, 
with their natural history data providing the baseline estimate of the control 
effect. Each patient then “crosses over” to active treatment, and again the impact 
on the clinical endpoint of interest is measured. While not a true crossover study 
(since no patient “crosses back” from treatment to SOC), the use of natural his-
tory data offers a more ethical approach to rare and pediatric clinical trials, albeit 
one whose evidential value is lower than that of a traditional two-arm RCT.

In this paper, we propose a class of natural history study (NHS)-leveraging 
trials designed for evaluating rare or pediatric drugs, where randomizing a full 
complement of patients to placebo is both unethical and practically impossible. 
Our model operates on longitudinal continuous responses yij , where i indexes the 
patient and j indexes the time of observation. Our “base design” is a one-arm 
study and is reminiscent of one recently used by Fouarge et al. [18] in a study of 
centronuclear myopathies (CNMs), a group of rare congenital neuromuscular dis-
eases. The design uses each patient’s individual NHS-based disease trajectory to 
establish a baseline from which response to active treatment can be judged. Like 
most modern Bayesian adaptive trials, our design uses simulation to calibrate its 
operating characteristics, including Type I error and power. We then consider the 
impacts of various departures from the model’s assumptions on these and other 
characteristics. In particular, we measure the impacts of the temporal length and 
number of patient’s historical observations, as well as the presence of varying 
types of “placebo effect,” a well-known threat to the validity of one-arm studies.

Next, we modify our design to a two-arm study that includes a very small pla-
cebo group, to assess whether such a change can assist in reducing bias with-
out an unacceptable corresponding increase in variance (or ethical hazard). This 
work involves modestly extending the size of our model in carefully prescribed 
ways that minimize the additional estimation burden. We then compare the per-
formance of this model to our initial one-arm design, again in both the presence 
and absence of various placebo effects. We also consider a hierarchical Bayesian 
changepoint model [19] that parametrizes the post-intervention trajectory, permit-
ting the significance of the treatment effect to be judged using the posterior distri-
bution of the change in slope. Our ultimate goal is a design that offers sufficient 
clinical evidence, protects patients, and will be acceptable to regulatory authori-
ties in the United States, Europe, and elsewhere.



240 Statistics in Biosciences (2022) 14:237–258

1 3

The remainder of our paper evolves as follows. Section 2 describes our base one-
arm NHS-leveraging design, and shows how it can be calibrated to have any desired 
Type I error and power performance. Section 3 then reevaluates this performance in 
the presence of various forms of model misspecification, including a placebo effect. 
In Sect.  4, we introduce our extended two-arm models, and again judge whether 
they can outperform the simpler one-arm model, as well as a traditional two-arm 
frequentist model. Finally, Sect.  5 discusses our findings and offers directions for 
future work in this area.

2  One‑Arm Bayesian Natural History Data Model

Beginning with the one-arm Bayesian natural history model of Fouarge et al.[18],1 
the observed response yij for subject i and time j , scaled between 0 and 1, is mod-
eled as

The beta distribution is defined by the parameters aij and bij , which are defined in 
terms of the mean �ij and “the sample size” � of the distribution as

The parameter � is estimated from the data, and the mean �ij is defined as a ran-
dom effects model with logit-link function,

and T is a constant to center time. The variability in the model can be derived using 
properties of the beta distribution. The temporal evolution of the mean is linear on 
the logistic scale. This implies that except near the boundary, the evolution of the 
response is approximately linear. On a long time scale, the evolution of patients is 
probably not linear, but when reduced to a trial compatible time scale of 6 months 
or 1 year, linearity is a reasonable expectation. A similar assumption of linearity is 
regularly accepted in rare disease; for instance, when evaluating Duchenne muscular 
dystrophy patients with the 6-min-walk distance when the time window is on the 
order of a year, even though this is a measure with a non-linear inverse U-shaped 
evolution over the life-course [20]. Capitalizing on this model, the method can be 
summarized by the three following items:

1. Individual prediction Combining the NHS data with the run-in data from patients 
enrolled but not included in the NHS allows the derivation of individual predictive 

yij ∼ Beta
(
aij, bij

)
.

aij = �ij ∗ � and bij =
(
1 − �ij

)
∗ �.

(1)�ij =
1

1 + exp(−�ij)
, where� ij = �i + �i ∗

(
T + tj

)
,

1 The difference in the sample size parameter between this paper and that in Fouarge et al. [18] is due to 
a typo in that older paper. The sample size parameter � need not be time- or subject-specific.
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distributions of the endpoint or endpoints over time after treatment administration. 
For the time being, only pre-treatment data (i.e., from the NHS or a short “run-in” 
period) are used to fit our null model. All data gathered post-administration are 
used only to determine patient responder status, as follows:

2. Identifying responders The joint predictive probability of improvement (increase 
or decrease over time depending on the endpoint measured) is computed for each 
patient. If the joint predictive probability of the patient’s observed improvement 
is smaller than some threshold (say, 0.05), then a patient is declared to be a 
responder. Formally, a patient is considered a responder if

where ŷi,t+1 is the observed value for patient i at time t + 1 , and yi,t+1 is the ran-
dom variable as derived from the model for patient i at time t + 1.

  Figure 1 shows a graphical representation of the global strategy to define a 
responder. Given the observed natural history (red dots) of a patient for a given 
endpoint (here, bounded between 0 and 100), the evolution of the data can be 
predicted using the defined model (dotted line), which is of course also influenced 
by the responses of the other subjects in the dataset. The observed responses 
during the trial post-baseline (green dots) can then be compared to the predic-
tive distributions readily generated using the Bayesian hierarchical model. If the 
joint probability of observing these values is sufficiently low, then the patient is 
classified as a responder. The intervals are 95% point-wise prediction intervals.

3. Control of trial Type I error Using this definition of responder, the predictive 
distribution of the rate of response is simulated under the null hypothesis of no 
treatment effect. A statistical significance threshold value is then determined to 
guarantee an overall Type I error of less than or equal to 5%.

P
(
yi,t+1 > �yi,t+1andyi,t+2 > �yi,t+2andyi,t+3 > �yi,t+3

)
< 0.05

Fig. 1  Graphical Representation of the global strategy to define a responder
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This predictive probability-based definition of responder is reminiscent of a 
“Bayesian p-value” [21], and is particularly useful in settings where we seek a very 
generally applicable framework for detecting a treatment effect. Our hierarchical 
Bayesian model can be applied to potential primary and secondary endpoints by age 
class and by genotype. Patient-level random effects 

(
�i, �i

)
 enable the modeling of 

differences in level and progression of the disease. Since our responses are scores 
bounded by an upper and lower value, the beta distribution is useful to ensure that 
predictions do not fall outside the possible score range.

The model is readily fit using Proc MCMC in SAS 9.4,2 using diffuse, non-
informative prior distributions for all unknown parameters. More formally, the fol-
lowing priors were used:

– The random effect vectors 
(
�i, �i

)
 are assigned a bivariate normal prior with 

mean (�, �) and variance matrix V
– For the fixed effects (�, �) , a normal distribution centered on zero with variance 

equal to 2
– The sample size parameter � is assigned an improper uniform distribution, 

bounded below by zero
– The matrix for generation of the random effects is sampled from an inverse 

Wishart(2,S) where the hyperparameter S is given by

In addition, prior sensitivity was assessed. Multiple scenarios obtained by chang-
ing the hyperparameters of the priors were conducted, wherein the fixed effect 
parameters were given different means and variances, while the variance–covari-
ance matrix of the random effects was also modified. For the fixed effects, the new 
hyperparameters allowed for priors that were more informative (reducing the prior 
variability of the parameters by 50%) and also encouraged a mean shift of 1 prior 
standard deviation. For the random effects, the hyperparameter matrix S above was 
replaced by 2S; small positive correlations between the two components were also 
added. Despite these changes, the resulting posterior model estimates never deviated 
by more than 5% from their original values, suggesting that the effect of priors on 
the parameters was minimal. This suggests our originally specified priors are indeed 
minimally informative, as desired.

Our motivating dataset arose in the context of a natural history study of 59 Euro-
pean patients suffering from CNM [22]. The patients were evaluated four times a 
year if they were younger than 2 years of age, twice a year if below 6 years old, 
and for older patients at 6 months and 12 months after enrollment and then once 
a year thereafter. Strict standard operating procedures were used to prospectively 

S =

(
1 0

0 0.01

)
.

2 We note that alternative Bayesian computational approaches exist, including the increasingly popular 
BRMS package in R that calls the STAN software (mc-stan.org).
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acquire this data. The main clinical responses consist of quantitative endpoints 
which are bounded from below and above (scales, percentages, etc.). These bounds 
are the reason that Fouarge et  al. [18] adopt the beta likelihood, since this makes 
the results more interpretable for clinical colleagues. As such, we too have adopted 
this approach, even though applying a normal model on a transformed (say, logit) 
scale could possibly offer statistical advantages. In future clinical trials, trial sub-
jects who did not participate in the NHS will go through a brief pre-intervention 
“run-in” period, to collect data to be used in estimating the trajectory of their dis-
ease progression.

2.1  Type I Error Control

Assuming no treatment effect, it is possible to derive the naturally occurring 
responder rate in future trials. This responder rate depends only on the threshold 
to define a responder. A smaller (more stringent) threshold would imply fewer 
naturally occurring responders and may preclude detecting a change under treat-
ment. On the other hand, a larger threshold may lead to an excessive rate of spuri-
ous responders.

Figure 2 shows the responder rates using the threshold of 5% under our model 
assuming no treatment effect (red curve) and a hypothetical increased responder 
rate under treatment (green curve). This curve was obtained by simulating studies 
of 12 patients. The red continuous shape is the corresponding beta distribution 
of the responder rate. To detect if the investigational product has a significant 

Fig. 2  Responder rate assum-
ing no treatment effect and a 
responder rate under treatment 
of an additional 30%
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effect, the responder rate in the future trial needs to be significantly greater than 
this responder rate. The red curve responder rate can be thought of as the “null 
responder rate” that needs to be compared to the one obtained in the trial.

Once the responder rate is obtained for the experimental treatment, the two 
responder rate posterior distributions can then be compared. If the difference 
between the two is sufficiently large, then the treatment can be considered a success. 
Typically, this is operationalized as requiring the proportion of the density of the dif-
ference lying to the right of zero to exceed some threshold (say, 95%). However, due 
to small sample sizes, this threshold may need to be adapted, as the usual asymptotic 
theory is not yet applicable. As such, simulations are used to better calibrate this 
threshold and ensure a false-positive rate of at most 5%.

To see this, note that the distribution of the probability that the difference in 
responder rates is greater than zero should follow a uniform distribution under 

 

Fig. 3  Influence of the sample size on the distribution of the probabilities of success. Red vertical line 
represents the 95% quantile
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the null assumption that there is no difference between the two responder groups. 
However, as can be seen from Fig. 3 this is approximately true for n = 200 , but 
not for the smaller sample sizes n = 12 and 30. In each case, the red vertical line 
represents the 95% quantile. Under classical asymptotic theory this value should 
be 0.95, and the histogram should be nearly flat. However, for smaller sample 
sizes this value needs to be recalibrated to ensure a 5% Type I error rate.

From this, one can now power future studies. For each sample size assessed, 
one needs to recalibrate the threshold for significance between the two responder 
rate distributions. Assuming a particular increase in the proportion of additional 
responders in the treatment group, one can then obtain the power to succeed. 
Figure 4 shows the associated assurance (Bayesian power) curves. The Bayesian 
power is obtained by averaging the usual frequentist power over the prior distri-
bution of the treatment effect. For each increase in the average treatment effect 
considered (x axis in Fig. 4), a prior distribution of the responder rate is obtained 
(as for the green curve in Fig.  2). The Bayesian power curve thus accounts for 
the uncertainties in the responder rates for all considered possible increases in 
average responder rates under treatment (x axis in Fig.  4). The corresponding 

Fig. 4  Power curves

Table 1  Bayesian power for 
the one-arm model (no placebo 
effect)

n 6 18 30 42 54

0% Increase 0.042 0.049 0.056 0.035 0.054
40% Increase 0.505 0.741 0.817 0.834 0.87
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values for a 0% (null) and 40% (target) increase in responder rates are addition-
ally detailed in Table 1. As can be seen from both the figure and the table, the 
Bayesian analog of Type I error has been appropriately controlled. We also see 
assurance greater than 80% for n ≥ 30.

3  Robustness of the One‑Arm Model

3.1  Effect of Run‑In Length

For patients coming from a natural history study, a key component of the design 
is the time and number of assessments in the run-in period. This run-in needs 
to be appropriately defined as it will serve as the baseline against which the 
responder status is defined.

To assess the impact of the run-in length and number of assessments, the width 
of the prediction interval will serve as our main metric. Prediction interval width 
is a convenient measure that indicates the effect on the uncertainty and reflects 
the “ease” of detecting a responder under treatment. Indeed, the narrower the pre-
diction interval, the more likely a response is to be detected.

Our simulation plan is designed to mimic a real-world situation where not all 
patients would go through a run-in phase in the trial. Indeed, those coming from 
the natural history study would not need a run-in. Since these patients have longer 
historical data trajectories that have high leverage on the results of the modeling, 
the simulations include such patients in order to account for such a leveraging 
effect. Our simulation algorithm thus proceeds as follows:

– Simulate 5 patients randomly according to the results of the model previously 
fitted to the data. The number of data points for the run-in length and the num-
ber of visits to be simulated is determined by the scenario at hand (see tables 
below);

– Include these patients in the database, and remodel the new database with 7 
extra patients from the original data (NHS patients), to maintain a total num-
ber of 12 patients;

– Compute the interval width for the first predicted visit after 3 months;
– After conducting these steps 500 times, assess the average width of the predic-

tion interval over all replications for all patients jointly.

Table 2  Average (MC standard errors) of the 500 simulated prediction interval widths

3-visit run-in over 3 months 4 months 6 months

Average width 0.22 (0.096) 0.19 (0.079) 0.16 (0.072)

4-month run-in with 3 assessments 4 assessments 5 assessments

Average width 0.19 (0.079) 0.20 (0.080) 0.18 (0.072)
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Table 2 shows the average prediction interval widths and associated Monte Carlo 
standard errors for various run-in lengths, and for varying numbers of run-in obser-
vations. The first case is considered in the upper part of the table, where all three 
cases are conducted assuming 5 exchangeable patients with a 3-visit run-in, as in 
Fouarge et  al. [18]. One can see that the intervals become narrower as the run-in 
period length increases, with the 6-month intervals being roughly 30% narrower 
than the 3-month intervals. This makes sense, as the longer observation window sta-
bilizes the slope of the fitted regression line, leading to narrower prediction inter-
vals. However, the lower part of the table reveals the that increase in the number of 
visits (from 3 to 4 or 5) in a fixed temporal window (here, 4 months) has little to no 
effect on interval width. This suggests that it is run-in length that is the key driver of 
improved model performance.

3.2  Impact of Placebo Effects

As mentioned above, a common concern with one-arm studies is they effectively 
assume no “placebo effect”; any deviation from the predicted trajectory is attributed 
to the treatment. As such, the impact of different placebo effects, and the probabil-
ity that their responses will be mistakenly attributed to the treatment, needs to be 
assessed.

We consider three cases. In the first, it is assumed that the placebo increases the 
response rate by a constant proportion q across the time scale. That is, the drug 
delivers a static (time-constant) shift in the response, akin to an increase in the 

Fig. 5  Examples of various types of placebo effects and a potential changepoint model
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intercept �i in Eq. (1). This corresponds to the orange line in Fig. 5, where a con-
stant vertical shift is observed post baseline. The second case instead assumes the 
placebo effect is more dramatic initially, but is also transient, vanishing at the end of 
6 months; this is the solid black line in the figure. Finally, the third case (shown as 
the light blue line) involves an improvement in slope starting at baseline. We defer a 
discussion of the impact of this “changepoint” model (and its potential not only as a 
placebo effect, but as a replacement for our responder model) to Sect. 4 below.

The response rate histogram corresponding to a constant shift of q = 0.005 is 
shown as the light blue curve in Fig. 6 below. We see higher responder rates than 
those under a completely inactive placebo (black curve), but not as high as under 
the 40% increase in efficacy we hope to see from the drug (black dotted curve). The 
probability that a study would be declared a success under this modified placebo 
effect with 18 patients is 54.1%, down from 74.1% in the no placebo effect case (see 
Fig. 4, Tables 3 and 1).

Fig. 6  Distribution of the responder rates used in the simulations for impact on the placebo effect

Table 3  Change in Power at a 
40% increase in response rate 
when considering a placebo 
effect created by a shift of q 
units

Shift (q) Sample size (n)

6 18 30 42 54

0.005 0.554 0.541 0.701 0.714 0.685
0.01 0.254 0.420 0.469 0.458 0.466
0.015 0.281 0.301 0.265 0.294 0.351
0.02 0.095 0.199 0.194 0.193 0.173
0.03 0.103 0.173 0.170 0.216 0.245
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Next, we consider the case where the placebo effect is transient, delivering an 
initial increase in response probability, but one that fades to zero over time (solid 
black line in Fig. 5). This is what has been seen empirically in several past studies 
of neuromuscular diseases; see e.g., Mercuri et al. [23] and Goemans et al. [20]. We 
assume the placebo effect is high at the start of the study (say, an initial increase of 
proportion r on the vertical scale), but then attenuates back linearly to no increase 
(i.e., the expected trajectory) at 6 months. In this scenario, the probability that the 
drug will be declared a success assuming r = 0.01 is 54.7% with 18 patients (see 
Table  4). The orange curve in Fig.  6 shows the distribution of the responder rate 
under this placebo effect. Again, we see responder rates slightly higher than those 
under a completely inactive placebo (black curve), but not nearly as high as those 
seen under the hoped-for 40% increase in efficacy (black dotted curve).

Replacing the 40% increase in response rate with a 0% increase, we can see the 
Bayesian Type I error that results from ignoring the impact of the placebo effect in 
the calibration of the threshold if indeed there is one (Step 3 of the general meth-
odology described in Sect.  2). We reconsidered different magnitudes of the static 
(shift) and transient placebo effects to assess their impact. In all cases, the Type I 
error drops to 0 fairly quickly, due to the lack of opportunities to reject the null. 
Small placebo effects therefore do have a meaningful impact on false-positive rates 
if they are not accounted for. In cases where placebo effects are expected, alternative 
methods are therefore required, especially if the nature of the placebo effect is not 
known up front. Such methods are the subject of the next section.

4  Two‑Arm Bayesian Natural History Data Models

In this section, we propose two alternative methods to incorporate a placebo arm in 
the trial design. First, a “responder” approach like that used in the one-arm model 
above will be considered. The responder rates obtained in each of the treatment arms 
will then be compared, and significance will be assessed as in the one-arm design. 
Second, a more standard Bayesian approach based on parametric modeling of the 
placebo effect is considered. Treatment effects will then be assessed by looking at 
the posterior distribution of the change in slope between the two treatment arms.

Method 1 (Responder Method) Let us assume that the response rates in the 
treated and control arms are ptrt and pplac , respectively. Define Δ = ptrt − pplac , 

Table 4  Change in Power at a 
40% increase in response rate 
with a transient placebo effect 
of r%

Transient 
shift (r)

Sample size (n)

6 18 30 42 54

0.01 0.298 0.547 0.638 0.670 0.631
0.02 0.285 0.316 0.376 0.431 0.473
0.03 0.079 0.200 0.172 0.196 0.193
0.04 0.056 0.042 0.057 0.056 0.060
0.05 0.098 0.038 0.049 0.048 0.040
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and reject H0 if P(Δ > 0|data) ≥ 𝛿, where � is determined to ensure a 5% Bayes-
ian Type I error rate, as in Sect. 2.

Method 2 (Parametric Changepoint Method) Without loss of generality 
(though possible loss in computational efficiency), take T = 0 in model (1), and 
let the intervention take place at tj = 0 for each patient. This implies that nega-
tive times indicate natural history or run-in observations, while positive times 
refer to post-intervention (in-trial) observations. Now extend model (1) to a lin-
ear changepoint model,

where the “ + ” superscript denotes positive part, i.e., t+
j
= tj for tj > 0 , and 

t+
j
= 0 for tj < 0 . Thus, �i is the change in slope after the intervention. Our origi-

nal model assumes �i = 0 for patients receiving placebo, and defines response 
relative to the (�i, �i) straight line that continues after intervention. However, 
with observations on patients receiving placebo, we can estimate a change in 
slope for both drug and placebo patients. Note, however, that, unlike Method 1, 
this approach assumes we use all the data (not just the pre-intervention data) to 
estimate the parameters, since some of them are now unique to the post-inter-
vention period.

Next, we define treatment effect as the difference between the drug and pla-
cebo post-intervention slopes. That is, we assume �i ∼ N

(
�trt, �

2
trt

)
 for treated 

patients, �i ∼ N(�plac, �
2
plac

) for placebo patients, and place vague hyperpriors on 
the 4 hyperparameters. We then fit the model, and base our test on the posterior 
distribution of Δ = �trt − �plac , rejecting H0 if P(Δ > 0|data) ≥ 0.95.

We compare these two methods by assessing the power obtained for the same 
treatment and placebo effects. One can already speculate that the parametric 
modeling scheme will lead to less uncertainty in the estimates, and thus detect 
treatment effects more efficiently when the model is correct. However, this par-
ametric method is strongly dependent on the assumed treatment and placebo 
effects in the model (2). This model dependency is alleviated by the responder 
method, which does not specify the form of the post-intervention model.

For comparison purposes, a frequentist method was also applied to the two-
arm clinical trial. This test looks for a change in response from baseline to 
6 months that is significantly higher for the treatment effect than for the placebo 
effect. Figure 7 plots traditional (frequentist) power for this method versus sam-
ple size. Each curve corresponds to a true treatment effect. Total sample size is 
plotted on the horizontal axis, and a 2:1 patient allocation scheme is assumed. 
One can see that, for a treatment effect of a 3-point increase (which corresponds 
to a 25% increase in the responder rate in the previous section), the power never 
exceeds 30% even with 60 patients. No uncertainty is assumed on the fixed treat-
ment effects in these simulations, so these are curves of the evolution of power 
as a function of the sample size for different types of effects in the frequentist 
sense and not assurance (Bayesian power).

(2)�ij = �i + �itj + �it
+

j
,
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4.1  Responder Method Performance

Recognizing the negative impact on Type I error and power that ignoring the pla-
cebo effect may have, incorporating it into a two-arm model seems reasonable. Two 
different placebo effects will be considered in this section:

1. The constant shift placebo effect ( q ) introduced above (orange curve in Fig. 5);
2. The transient placebo effect ( r ) introduced above (solid black curve in Fig. 5); 

and
3. The changepoint placebo effect introduced above but not yet investigated (light 

blue curve in Fig. 5).

These three effects will allow us to compare the one-arm method’s performance 
with those of our two-arm responder models. The assumed treatment effect will 
always be superimposed on the different placebo effects, and corresponds to a 3% 
increase in the response score at 6 months.

Panels (a) through (d) in Fig.  8 show the evolution of assurance (Bayes-
ian power) in terms of the sample size of each of the treatment arms. One can 
directly see that power plateaus well below 1, with the changepoint placebo effect 
(panel d) adding the most artificial inflation of power. This is to be expected, 
since this type of effect (while atypical of most placebo effects) mimics the 
anticipated effect of the drug itself. Bayesian assurance accounts for the fact that, 
given our prior knowledge, many clinical trials will fail (placebo response will be 
higher than the treated response; this can be seen in Fig. 8e, in which solid lines 

Fig. 7  Evolution of power in terms of sample size obtained for 2:1 randomized trial simulations using a 
frequentist method
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Fig. 8  a to d show the different Bayesian powers for a shift placebo effect, a transient placebo effect, 
no placebo effect, and the changepoint placebo effect using the responder methodology, respectively. e 
shows the densities used in these simulations, while f shows the Bayesian power for different sample 
sizes using the parametric changepoint model
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correspond to placebo groups and dashed lines to treatment groups). For further 
information on the distinction between Bayesian and frequentist power, the reader 
is referred to O’Hagan et al. [24] or Kruschke [25]. The priors used in this exam-
ple for the responder rates were obtained from scenarios with 12 patients from 
the natural history study subject to each placebo effect.

To understand the benefit of considering this two-arm study, one must compare 
the one-arm model with a similar increase as considered here. The considered 
increase is a 25% increase in the responder rate with respect to the null. This 25% 
increase in the responder arm in a one-arm model approximately corresponds to 
the treatment effect used for the two-arm model on top of the placebo effect.

We next come to the issue of model comparison. Unfortunately, a fair com-
parison between the responder and parametric models using traditional Bayesian 
tools (Bayes factors, DIC, WAIC, or some other predictive or cross-validatory 
criterion) is not possible since the models do not take the same datasets as input. 
Specifically, the responder models use only the pre-intervention data, while the 
latter use all of the data, and thus their likelihoods are not directly comparable. 
Indeed, the responder models are not “predictive” models at all, using the post-
intervention data only to determine a patient’s response status.

Fortunately, a meaningful “global” comparison between the methods is still 
available by calculating the different powers obtained for a given sample size. If 
two methods deliver roughly the same Type I error, the method with the higher 
power would be preferable. Table 5 below shows this comparison for a total of 
30 patients. The table clearly shows a superiority of the two-arm model over 
both the frequentist and the one-arm model. The gain in power from the two-arm 
model over the one-arm model is due to a better characterization of the responder 
rate for untreated patients, and thus makes the distinctions between treated and 
untreated easier than with a noisy hypothesized distribution under H0 with the 
one-arm model. Further, the superimposition of the treatment effect on top of 
a small placebo effect makes accurate estimation of the responder rate slightly 
more important. There is also some indication that a more balanced randomiza-
tion (21 treated, 9 control) leads to better power. Finally, the two-arm method’s 
power also persists better under either the shift or transient placebo effects. The 
gain over the frequentist method is likely linked to the fact that in both the one-
arm and two-arm models, all the available information are used to make the 

Table 5  Comparison of power between the different modeling strategies for a given set of placebo effects 
and a total sample size of 30

Frequentist Two-Arm responder One-Arm

20 treated, 10 control 21 treated, 9 
control

24 treated, 6 
control

27 treated, 3 
control

30 treated

Placebo effect types
None 0.14 0.53 0.53 0.49 0.46
Shift effect 0.14 0.50 0.46 0.44 0.39
Transient effect 0.14 0.45 0.43 0.41 0.38
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decision with respect to treatment effect (joint probabilities), rather than focusing 
solely on the data collected at the last visit.

Throughout all these examples, one can see that the power to detect a 3-point 
increase is considerably higher than in the classical frequentist setting. Furthermore, 
in comparison to the one-arm model, assuming no placebo effect to adequately com-
pare, this scenario corresponds to an increase of approximately 25% in the responder 
rate. Indeed, when assessing the average increase in the responder rate with a linear 
increase of up to 3% at 6 months, this value increases by 25% from the naturally 
occurring average amount of responders.

4.2  Parametric Changepoint Model Performance

In this subsection, we consider a third type of placebo effect, namely a variety of 
effects arising from prespecified changepoint models. This will in turn allow us to 
compare the two two-arm methods (responder versus parametric changepoint) con-
sidered in this paper. This effect was plotted in the blue curve in Fig. 5. Figure 8f 
shows that straying away from the response models and using parametric change-
point methods when they are justified permits a further increase in Bayesian power, 
even to values in the 80–90% range.

Table 6 compares the two two-arm methods introduced in this paper and the clas-
sical frequentist two-arm method. As can be seen, the two-arm parametric method 
outperforms the two-arm “semiparametric” (responder) modeling strategy. How-
ever, as previously mentioned, these results are only valid under the assumption 
that the model is well specified. Our current changepoint model assumes a linear 
trajectory post intervention for both the placebo and treated groups. Of course, 
more sophisticated models can be considered-say, ones that include a discontinuous 
“jump” in response right after the intervention, mimicking our shift placebo effect. 
But any parametric model will be at risk of model misspecification. The second 
row of Table 6 compares the Type I error of the three procedures, and finds that, as 
expected, it is well calibrated for two-arm semiparametric methodology. This is also 
the case for the parametric model (5% error rate).

An interesting feature of such methods (both two-arm models) is the observed 
gain in power when changing the randomization scheme. Indeed, an increase of two 
patients in the placebo group may yield a greater increase in power than increasing 
the sample size of the treated group from 6 to 30. This can be seen in the difference 

Table 6  Power for different types of models for the change point placebo effect

Model types

Method 2: Two-Arm 
Parametric Model (24 
treated, 6 control)

Method 1: Two-Arm 
responder (24 treated, 
6 control)

One-Arm 
responder Model 
(30 treated)

Frequentist

Placebo effect types
Change point Placebo 0.820 0.699 0.765 0.140
Type-1 error 0.050 0.056 0.059 0.050
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between the black and blue curves (or the blue and pink curves) in Fig.  8f. This 
feature is especially true for the small sample sizes, as a small increase in the pla-
cebo arm induces a better characterization of the slope and a greater reduction in 
the uncertainty linked to its estimation. Table 6 also shows that the One-Arm model 
performs slightly better than the two-arm model in this case. This feature was not 
seen in the previous paragraph. An explanation for this feature is linked to the type 
of placebo response considered and especially its magnitude. Indeed, in Fig. 8f, the 
increase in responder rate due to the placebo effect is rather small, while the treated 
effect on the other hand is rather important. The drop in power due to model mis-
specification observed in the previous case is therefore not impacting the models 
here.

5  Discussion and Future Work

Randomized clinical trials in the rare disease setting offer multiple challenges. We 
have proposed one-and two-arm Bayesian alternatives to classical statistical meth-
ods enabling the design of clinical trials with a limited number of patients. Since 
rare neuromuscular disease exhibits a wide range of phenotypic reactions, the data 
are also subject to a large heterogeneity in behaviors. Venturing away from semipa-
rametric modeling where a typical post-treatment parametric trajectory can be sensi-
bly imposed may also permit better accounting for these differences.

Our methodology allows calibration of an appropriate threshold for significance 
to control the Type I error (due to small sample size and deviations from asymptotic 
theory). Our simulations showed the design can yield sufficient power, and substan-
tially more than comparable two-arm frequentist designs.

Our semiparametric response models yield slightly less power than correspond-
ing hierarchical parametric Bayesian changepoint models. However, this feature is 
compensated by the fact that the classical hierarchical parametric Bayesian model 
is valid only if the model is appropriate. Simple parametric forms for placebo and 
treatment effects may be difficult to justify in small and heterogeneous populations. 
We therefore believe that the proposed response model methodology allows us to 
conduct a clinical trial with few patients having very different phenotypic behaviors 
that are hard to parametrically characterize without excessive loss of power. This 
is because more complex behaviors will typically require estimation of additional 
model parameters, with an associated loss in the estimation of degrees of freedom.

Future research looks to extending the methodology used in this paper to various 
other rare disease settings. Further, a more in-depth investigation of the gain or loss 
with respect to parametric models may be considered. More complex designs could 
also be included into this framework. For example, the trial could add a “crossover” 
aspect, wherein each placebo patient eventually also receives the treatment, further 
reducing the overall sample size required. Proper handling of the placebo effect and 
detection of response in the presence of a crossover requires further investigation.

In addition, future research might also further “stress test” the proposed 
responder analysis by continuing to challenge its hypotheses. This might include 
assessing the impact of model misspecifications in the early run-in periods, the 
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impact and handling of missing visits, or changes to the definition of responder. 
All of these features may be tested, changed, and investigated further to fit the 
desired purpose and lead to a valid approach for future clinical trials in the rare 
disease setting. As these trials sometimes necessitate various endpoint measures 
that may be dependent on the patient’s status, a hybrid approach considering two 
or more measures that jointly determine responder status may also be considered 
in order to improve decision-making in this context.

Finally, it is worthwhile noticing that these methods are independent of the 
chosen endpoint. In clinical trials, they may be applied to various types of end-
points simultaneously. Given the information at hand when designing the trial, 
one method may be preferred over another depending on, for example, the pla-
cebo effect, the treatment effect, the trajectory type, and other factors.

Appendix

In this brief appendix, we provide the SAS computer code used to fit our models:

proc mcmc data = data nmc = 500000 nbi = 10000 thin = 20 outpost = outpost;

array b[2] b0 b1;
array mub[2] beta0 beta1;
array Sigma[2,2];
array S[2,2] (1 0 0 0.01);
array parBeta[2] a bbeta;

parms beta0 0.06 beta1 0.01;
parms nu 0.1;
parms Sigma;

prior beta0 ~ normal(1, var= 1);
prior beta1 ~ normal(1, var= 1);
prior nu ~ general(0,lower=0);

prior Sigma ~ iWish(2,S);

random b ~ mvn(mub, Sigma) subject = ID;
mu  = b0 + b1*(time+11.92);
mu2 = 1/(1+exp(-mu)); 
a = mu2*nu;
bbeta = (1-mu2)*nu;
model y ~ beta(a,bbeta);

run;
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