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Abstract: This study examines the long-term relationship between carbon emissions and a number of
researchers engaged in Research and Development (R&D), economic development, foreign capital
inflows, renewable energy and population growth in 26 countries between 1995 and 2015. Pedroni’s
panel cointegration test confirms the cointegrating relationship between the variables. Long-term
elasticities are derived from FMOLS regression. Researchers in R&D and renewable energy are
negatively and significantly related to carbon emissions. There is a positive and significant long-term
relationship between GDPs per capita and CO2 and between the FDI and CO2. Dumitrescu and
Hurlin’s panel causality test revealed unidirectional causality running from economic development
to carbon emissions and feedback hypotheses between the FDI and CO2 and between renewable
energy and CO2.

Keywords: human capital; renewable energy; CO2 emission

1. Introduction

During the last decades, research on the link between innovation and pollution has
expanded significantly [1–5]. This is both due to the rapid increase of CO2 emissions
by nearly 90% since 1970 and continuing enhancing environmental concerns and techno-
logical advancements, which can effectively mitigate the consequences of environmental
pollution and climate change without destroying economic growth [6]. At the same time,
policymakers aim to achieve economic growth without “without inflicting environmental
harm” [7].

However, a separate strand of studies explores the effect of human capital on pollution.
Led by the cognitive capitalism theory, some studies suggest that nations with greater
cognitive capital tend to achieve more wealth led by innovation, effectively adopt modern
technologies, develop strong institutions and demonstrate higher environmental awareness
and pro-environmental behavior [8–10]. Lin et al. [11] stated that economies’ technology
development and implementation are highly dependent on the so-called “innovative hu-
man capital”. This is basically research and development personnel, whose knowledge and
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skills serve as a unique resource of cutting-edge technologies and innovations, including
those aimed at clean production, clean energy generation and environmental sustainability.

To the best of our knowledge, few research studies have considered innovative hu-
man capital as a pollution-reducing factor. Some scholars who explored the relationship
employed education-based proxies of innovative human capital, such as tertiary education,
which might have created certain issues, as tertiary education measures human capital
stock rather than specifies innovative human capital.

Based on the study of Lin et al. [11], our paper employed Research and Development
(R&D hereafter)-based measures of innovative human capital, which is the number of
researchers involved in R&D.

Our study explores the relationship between innovative human capital and carbon
emissions in 26 industrialized economies between 1995 and 2015. This paper’s structure is
as follows. We first provide an overview of related literature. Based on the literature review,
we construct a model and design a model estimation framework, which is described in
detail in the Data and Methods section. Following that methodological description, we
provide and discuss the econometric results. The final section concludes our findings.

2. Literature Review

Numerous researchers have explored the link between carbon emissions and inno-
vation, considering innovation and technological as the significant factor to mitigate cli-
mate change issues [12] and enhance environmental wellbeing without harming economic
growth. Existing research can measure innovation by expenditure in energy R&D, expendi-
ture in R&D, renewable energy consumption, the number of patent families, number of
researchers engaged in R&D, industry–university–research cooperation and even green
project financing (e.g., green bonds) [13], etc. Authors have explored the effect of public
expenditure in energy R&D and carbon emissions per GDP. Authors have investigated the
relationship between public energy R&D and per capita carbon emissions using a sample
of 13 developed economies, including Canada, Denmark, Finland, France, Germany, Italy,
Japan, Norway, the Netherlands, Spain, Sweden, the UK and the USA between 1980 and
2004 and employing the Granger causality approach. They distinguished two channels by
which public expenditure in energy R&D may affect carbon emissions, which are carbon
emissions and carbon intensity. Their findings suggest that spending on energy R&D
improves the energy efficiency, yet it did not significantly relate to the carbon factor or
carbon intensity. On the other hand, carbon trends are related to the formation of energy
R&D budgets.

However, later research provided evidence on the significant effects of innovation
and technological advances on various environmental indicators, including carbon emis-
sions. Lee and Min [14] observed the negative effect of firm innovation (green R&D) on
carbon dioxide emissions using data on Japanese manufacturing firms during 2001–2010.
Irandoust [3] studied the relationship between renewable energy consumption, techno-
logical innovation, economic growth and carbon dioxide emissions in Nordic countries.
Technological innovation is measured by real R&D spending on the energy sector. Their
findings suggest that technological innovation has an significant impact on renewable
energy consumption. Álvarez-Herránz et al. [15] explained that, despite the time lags
required for energy innovation to reach their maximum effect, it reduces the energy inten-
sity and pollution. Zhang et al. [16] observed that environmental innovation can reduce
carbon emissions using data from 30 provinces of China between 2000 and 2013. Similarly,
Ganda [17] observed a negative relationship between innovations—in particular, renewable
energy consumption and R&D expenditure—and carbon emissions in OECD countries.
Khan et al. [18] studied the relationship between environmental innovation, renewable
energy consumption, carbon emissions, trade and income in G7 between 1990 and 2017.
Their findings revealed the negative impact of exports, environmental innovation and
renewable energy consumption on carbon dioxide emissions in the long run. Similar find-
ings were also obtained by Nguyen et al. [19], who attributed technology and spending
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on innovation as the main drivers of lowering carbon emissions in 13 countries of G20.
Wahab et al. [20] suggested that the adoption of new technologies aimed at cleaner produc-
tion can reduce carbon emissions in G7 economies between 1996 and 2017. At the same time,
some studies revealed that the innovation–pollution relationship is sector-dependent. For
example, Zhang et al. [21] (2020) attempted to identify whether carbon emissions policies
are related to the implementation of low-carbon technology innovations. Their findings
suggest that carbon emissions policies improve technology innovation in the power and
aviation sectors only and are not related to each other in the steel, chemical, building mate-
rial, petrochemical, nonferrous metals and paper industries. Erdoğan et al. [4] suggested
that policies aimed at lowering carbon emissions should be designed and implemented in
each sector separately, as the effects of technology innovation on carbon emissions vary.
Using data on G20 between 1991 and 2017, the authors findings revealed that innovations
in the industrial sector discourage carbon emissions and, on the other hand, enhance carbon
emissions in the construction sector. The latest research considers the role of technological
innovation, measured by patent applications in the remittances–renewable energy—CO2
relationship [22]. Their findings suggest to incorporate R&D with carbon policies to quickly
attain low-carbon growth.

On the other hand, another strand of research considered human capital as a pollution-
reducing factor [23,24]. Those studies explained that greater human capital measured either
by intelligence or cognitive abilities implies greater commitment to environmentalism
and pollution reduction. Considering cognitive capital and the number of researchers
occupied in research and development as elements of national human capital, it indeed
may decrease the pollution levels and encourage public and private commitment to cleaner
and ecologically friendly technologies [25].

Hassan et al. [26] examined the effect of the index of per capita human capital and
biocapacity on the ecological footprint, measured by the area of bio-productive lands, as
they both may have an impact on human pro-environmental behavior. For this purpose,
the authors employed cointegration and the Granger causality approach. Their findings
suggested a neutral relationship between the variables. Yao et al. [27] used a sample of
20 OECD economies between 1870 and 2014 using parametric and nonparametric tests to
explore the effect of human capital on carbon emissions. Their results implied a negative yet
time-variant relationship between human capital and carbon dioxide emissions. However,
human capital may be indirectly related to pollution reduction. While investigating the
effect of fiscal decentralization on CO2 emissions, Khan et al. [28] observed the significant
role of human capital. Their study also highlighted the one-way causal effect running
from eco-innovation to CO2 emissions. In contrast, Wang and Wu [29] investigated if
air pollution could be related to brain drain in China and India. The empirical results
revealed that a higher concertation of pollutants in the air negatively impact the stock
of technologically innovative human capital—a higher-educated population engaged in
R&D in enterprises, research centers and universities. Eshchanov et al. [30] observed that
cognitive abilities positively related to pro-environmental behavior and a favorable attitude
toward renewable energy sources using household data of Uzbek households. Finally,
Lin et al. [11] explored the relationship between innovative human capital, carbon dioxide
emissions and economic growth in Chinese provinces during 2003–2017 by employing
System GMM. Innovative human capital was measured by the number of patents of every
one million R&D staff full-time equivalent. Their findings suggested that innovative human
capital decreases carbon dioxide emissions, and its further development will enhance the
environmental sustainability of China.
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3. Data and Methods

The current study examines the long-term relationships between atmospheric pollu-
tion, research in R&D fields, economic development, foreign capital inflows, renewable
energy and population growth. Our key independent variable is research in R&D, mea-
sured by the number of researchers engaged in R&D. Variables’ descriptions and summary
statistics are represented in Table 1. Our sample is restricted to the countries with full data
series covering Belgium, Canada, China, the Czech Republic, France, Germany, Hungary,
Ireland, Italy, Japan, South Korea, Latvia, Lithuania, Mexico, the Netherlands, Poland, Por-
tugal, Romania, the Russian Federation, Singapore, the Slovak Republic, Slovenia, Spain,
Turkey, the United Kingdom and the United States.

Table 1. Summary statistics.

Variable Indicator Source Mean Std. Dev. Min Max

CO2
CO2 emissions (metric tons per

capita)
World Development

Indicators (WDI) 8.61 3.99 2.54 21.29

RRD Researchers in R&D (per million
people)

World Development
Indicators (WDI) 2685.72 1447.22 213.58 7013.49

FDI Foreign direct investment, net
inflows (% of GDP)

World Development
Indicators (WDI) 5.48 9.13 −15.84 86.59

GDP pc GDP per capita (constant 2010 US$) World Development
Indicators (WDI) 25,840.96 15,655.76 1332.41 65,432.75

RE Renewable energy consumption (%
of total final energy consumption)

World Development
Indicators (WDI) 10.85 8.78 0.33 40.37

POPG Population growth (annual %) World Development
Indicators (WDI) 0.39 0.87 −2.26 5.32

The dependent variable is carbon emissions measured as CO2 emissions in metric
tons per capita. The average CO2 emission in our sample is 8.6 metric tons per capita
(Table 1). Between 1995 and 2015, carbon dioxide emissions decreased rapidly. Economies
significantly decreased their pollution levels between 2007 and 2015. Before 2005, the
amount of CO2 emissions fluctuated, yet with an ascending tendency.

The figures below represent a time series of the selected variables as a pretest measure
to identify trends and breaks as suggested by [31].

Independent variable—the number of researchers engaged in R&D per million popu-
lation. The average number of researchers in R&D in our sample is 2.7 thousand people
(Table 1). Between 1996 and 2015, the number of researchers engaged in R&D grew rapidly
(Figure 1). In 2015, two outstanding economies were South Korea and Singapore, where
the number of researchers exceeded 7 thousand per million people, followed by Ireland
and Japan (>5 thousand) and Germany (4.7 thousand). The bottom 5 were Latvia, Turkey,
China, Romania and Mexico, where the number of researchers in R&D was less than
2 thousand (Figure 2).
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Figure 2. Researchers engaged in R&D in 2015 (per million population).

The control variables in the model include net inflows of the FDI as a GDP share, GDP
per capita, share of renewable energy in the total final energy consumption and the annual
rate of population growth. The FDI, GDP per capita and population growth experienced
a significant fall down between 2007 and 2010, which may be a response to the global
financial crisis. On the other hand, renewable energy consumption started a growing trend
in 2005.

Our study describes CO2 emissions as follows:

CO2i,t = f (RRDi,t, GDP pci,t, FDIi,t, REi,t, POPGi,t) (1)
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where CO2 is the carbon dioxide emissions per capita, GDP pc is the GDP per capita,
FDI—foreign direct investment as a share of the GDP, RE—renewable energy consumption
as a % of the total final energy consumption and POPG is the population growth rate. i and
t represent individual and temporal dimensions.

As one can note, some variables represent shares, while others are expressed in the
number of people, dollars or tons. Such disparities may complicate further analyses and
decrease the results quality due to data sharpness. We therefore transform Equation (1) by
taking natural logs from each variable, so that each variable is now expressed in the same
measurement unit.

ln CO2i,t = β0 + β1 ln RRDi,t + β1 ln GDP pci,t + β2 ln FDIi,t + β3 ln REi,t + β4 ln POPGi,t (2)

The first step of our analyses assumes a stationarity check. For this purpose, we
employ five panel unit root tests, which are the LLC test by [32], Breitung’s test by [33], the
IPS test by [34] and Fisher-type tests by Maddala & Wu [35]. We check each variable in two
different forms—level and first difference—to test the null hypothesis of stationarity. In
case our level model is nonstationary, then there may exist a cointegrating relationship [36].

Once all variables are stationary after first differencing, we may proceed with the coin-
tegration analysis. Here, we adopt the panel cointegration test introduced by
Pedroni [36,37] for heterogeneous panels. It tests the model for the cointegrating vec-
tor by employing seven parametric and nonparametric statistics. The test’s output is
grouped by group and panel estimates. The null hypothesis states no cointegration and
may be rejected in the favor of the majority of the test statistics.

After confirming a cointegrating relationship between variables, we estimate the
regression coefficients, which, in our case, are long-term elasticities, since natural logs are
taken from each variable. We estimate our model with a Fully Modified Ordinary Least
Squares (FMOLS) estimator that is usually applied if the model exhibits a cointegrating
vector [32].

FMOLS coefficients provide us with the effect of selected variables on CO2 and their
significance, yet it does not account for the causality direction. We employ Dumitrescu
and Hurlin’s [33] panel causality test, which is based on Granger’s technique. The test is
designed for heterogeneous panel data and assumes a noncausal relationship. Dumitrescu
and Hurlin’s test described the regression equation as follows:

yi,t = αi + ∑K
k=1 γikyi,t−k + ∑K

k=1 βikxi,t−k + εi,t (3)

where xi,t and yi,t are observations of two stationary variables in a strongly balanced panel
dataset for individual i in a period.

The test runs separate regressions to check different causal directions. The test output
results in a table providing Wald statistics and underlying z statistics. The final decision is
made based on z-bar statistics [38].

4. Results

We first demonstrate the results of panel unit root tests (Table 2). We test each variable
in the level- and first-difference forms with the LLC, Breitung, IPS and Fisher tests on
both the ADF and PP. The dependent variable—log of carbon emissions—is nonstationary
at the level under all the test statistics but stationary after first differencing and strongly
significant. Researchers in R&D (RRD) demonstrate stationarity at the level form under the
LLC test, while other test statistics demonstrate the opposite. First, differencing eliminates
the unit root at p < 0.01. The level forms of GDP pc and RE are nonstationary but become
stationary after the first differencing. On the other hand, the level forms of the FDI and
population growth (POPG) are stationary both at the level and first-difference forms. Our
results suggest that most of the variables are nonstationary at the level but stationary after
detrending, which enables the further investigation of panel cointegration.
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Table 2. Panel unit root test results.

Form Variable
Test

LLC Breitung IPS ADF Fisher PP Fisher

Level ln CO2
1.2358 2.5056 4.0181 45.9329 34.7407

(0.8917) (0.9939) (1.0000) (0.7101) (0.9685)

First-difference ∆ln CO2
−8.1625 *** −10.146 *** −10.2910 *** 229.0940 *** 487.9605 ***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Level ln RRD
−3.0719 *** 7.7004 3.0491 59.9960 49.9982

(0.0011) (1.0000) (0.9989) (0.2085) (0.5530)

First-difference ∆ln RRD
−8.6075 *** −8.9015 *** −9.8892 *** 208.9463 *** 351.0317 ***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Level ln GDP pc −2.5543 8.9488 −0.6820 44.0777 76.2989
(0.0053) (1.0000) (0.2476) (0.7746) (0.0157)

First-difference ∆ln GDP pc −7.8853 *** −8.0403 *** −6.7039 *** 175.9595 *** 204.6046 ***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Level ln FDI
−6.1026 *** −7.1488 *** −5.9123 *** 133.3009 *** 158.4418 ***

(0.0000) (0.0000) (0.0000) (0.0001) (0.0000)

First-difference ∆ln FDI
−13.237 *** −14.465 *** −11.8957 *** 337.4060 *** 617.9227 ***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Level ln RE
0.2612 7.6633 5.4611 20.7966 31.0526

(0.6030) (1.0000) (1.0000) (1.0000) (0.9907)

First-difference ∆ln RE
−7.2622 *** −9.5504 *** −10.2925 *** 226.8364 *** 452.8732 ***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Level ln POPG
−8.1323 *** 0.4863 −1.5792 ** 161.9481 *** 106.7020 ***

(0.0000) (0.6866) (0.0571) (0.0000) (0.0000)

First-difference ∆ln POPG
−7.7530 *** −8.4494 *** −6.7115 *** 262.6809 *** 343.1562 ***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Note: *** and ** indicate significance at the 1% and 5% levels, respectively. The figures in parentheses are p-values.

Additionally, a panel unit root with a structural break is employed to check the
stationarity of the variables, as structural breaks may mislead stationarity tests to accept
the unit root while the opposite is true [39,40]. To be considered for a structural break,
we employed Karavias and Tzavalis’ [41] test for panel data. This methodology allows to
test the unit root in the presence of one or two structural breaks in the intercepts of the
individual series or in both intercepts and linear trends. The null hypothesis states the unit
root in all panels and no structural breaks, while, alternatively, one assumes the stationarity
of some panels and structural break(s). We assume one known structural break during the
global subprime mortgage crisis between 2008 and 2009. We tested all variables for the
unit root in the presence of a structural break in 2008 in both intercepts and trends. Table 3
demonstrates that the unit root are mostly contained in linear trends of ln CO2, ln RRD, ln
GDP pc and ln RE. Once the variables are detrended, the data is stationary.

Panel cointegration test results are depicted in Table 4. Out of seven test statistics,
four confirm the hypothesis of a long-term relationship between variables at p < 0.01. In
addition, Kao’s ADF and Westerlund’s variance ratio also demonstrate that the variables in
our model are cointegrated. Our results suggest a long-term relationship between carbon
emissions, researchers in R&D, GDP per capita, foreign capital investment, renewable
energy share and population growth, which means that, in the long term, these variables
can impact carbon dioxide emissions, yet the effect must be examined. For this purpose,
we ran a fully modified OLS regression (Table 5). Since all variables are in logarithmic form,
the coefficients represent long-term elasticities.

In our sample, the number of researchers in R&D is negatively related to carbon emissions,
or, in other words, the more researchers are employed in R&D sector, the less are volumes of
carbon dioxide emissions. As for other variables, the GDP per capita and FDI are positively
related to CO2 emissions. Shares of renewable energy, however, decrease carbon emissions in
selected economies. Population growth is not related to carbon dioxide emissions.
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Table 3. Karavias and Tzavalis’ panel unit root test with structural breaks.

Variables Intercept Linear Trend

ln CO2 −3.9318 *** −0.8835

∆ln CO2 −17.7569 *** −9.6421 ***

ln RRD −7.7910 *** −0.2121

∆ln RRD −18.4935 *** −9.1178 ***

ln GDP pc −10.2388 *** 2.1072

∆ln GDP pc −12.1393 *** −5.0840 ***

ln FDI −10.4964 *** −6.0351 ***

∆ln FDI −5.0840 *** −10.4964 ***

ln RE −2.9500 *** 0.2949

∆ln RE −20.1432 *** −12.5214 ***

ln POPG −18.1378 *** −7.8630 ***

∆ln POPG −25.8440 *** −14.6723 ***
Note: *** indicates significance at the 1% levels, respectively.

Table 4. Pedroni’s panel cointegration.

Test Statistic Score

V-stat −2.73 **
Panel rho-stat 1.221
Panel PP-stat −8.909 ***

Panel ADF-stat −0.9854
Group rho stat 2.954 ***
Group PP stat −10.67 ***

Group ADF stat 0.8447
Kao’s ADF −12.9579 ***

Variance ratio 2.6777 ***
Note: *** and ** indicate significance at the 1% and 5% levels, respectively.

Table 5. Long-term elasticities.

FMOLS

∆ ln RRD
−0.08 ***
(−5.64)

∆ ln GDP pc 0.54 ***
(35.75)

∆ ln FDI
0.05 ***
(4.19)

∆ ln RE
−0.24 ***
(−32.59)

∆ ln POPG
−0.02
0.09

Note: *** indicates significance at the 1% levels, respectively. Figures in parentheses are t-statistics.

Finally, it is necessary to understand the nature of the relationship, whether it is causal
or linked through other channels. For this purpose, we conduct a panel causality test,
introduced by Dumitrescu and Hurlin [42]. We test each independent variable with CO2
for two hypotheses, which assume different causality directions. The first hypothesis
tests the RRD–CO2 nexus, i.e., causal relationship between the number of researchers in
R&D and carbon dioxide emissions. According to Table 6, RRD and CO2 are not causally
related in our sample, although the variables are strongly and negatively related in the long
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term. Economic development, on the other hand, is causally related to carbon emissions.
We observe a significant causal relationship running from the per capita GDP to carbon
emissions at p < 0.01. A bidirectional causal relationship was also observed between the
FDI and CO2 (Figure 3). It means that foreign capital inflows may be directed to carbon-
intensive sectors and thus increase atmospheric pollution. Similarly, there is a two-way
causality between renewable energy and carbon dioxide emissions, meaning that higher
shares of renewable energy consumption cause lower shares of carbon emissions.

Table 6. Dumitrescu and Hurlin’s noncausality test.

Null Hypothesis:
CO2 Causalities W-Stat Zbar-Stat

(p-Value)
Optimal Number of

Lags (AIC)

RRD does not cause CO2 1.0557 0.2010
(0.8407) 1

CO2 does not cause RRD 0.9161 −0.3025
(0.7623) 1

GDP pc does not cause CO2 2.4879 5.3649 ***
(0.0000) 1

CO2 does not cause GDP pc 1.0299 0.1077
(0.9143) 1

FDI does not cause CO2 1.7056 2.5442 **
(0.0110) 1

CO2 does not cause FDI 6.7268 4.9158 ***
(0.0000) 4

RE does not cause CO2 7.8991 7.0291 ***
(0.0000) 4

CO2 does not cause RE 4.2206 5.6614 ***
(0.0000) 2

POPG does not cause CO2 1.1809 0.6522
(0.5143) 1

CO2 does not cause POPG 10.2530 11.2727 ***
(0.0000) 4

Note *** and ** indicate significance at the 1% and 5% levels, respectively. Figures in parentheses are p-values.
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Our results provide interesting insights on the relationship between scientific advance-
ments of countries and atmospheric pollution. First, we found that researchers in R&D are
positively related to carbon emissions in the long term, yet the causal link is not supported.
Our findings are partly explained by Obydenkova and Salahodjaev [10], who find that
higher human capital, combined with democracy, encourage environmental commitments.
Secondly, we observed that economic development is significantly and positively related to
carbon emissions. There is also a causal link running from economic development to carbon
emissions. Similar findings were observed by [43,44], which generally stated that economic
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development initially encourages pollution. Further, there is a feedback effect between the
FDI and carbon emissions. The relationship between the FDI and CO2 is far from obvious,
as it largely depends on the economy’s development stage and environmental commit-
ment [45]. Although inflows of foreign capital may enhance the development of green
technologies [46], it can also be directed to support the most profitable pollution-extensive
sectors [47]. Finally, we found the bidirectional and negative effects of renewable energy.
Increasing shares of renewables consumed and policies aimed at green economy transition
would thus decrease environmental harm. Similar findings were observed by [48].

5. Conclusions

This study tested the long-term relationships between carbon dioxide emissions,
researchers engaged in R&D, GDP per capita, renewable energy and population growth in
26 economies between 1995 and 2015. The econometric estimates were based on Pedroni’s
cointegration test and Dumitrescu and Hurlin’s panel causality test. Our results suggest
a negative long-term relationship between the number of researchers in R&D, renewable
energy and CO2. A positive long-term relationship was observed between CO2, economic
growth and the FDI. A panel causality test revealed unidirectional causality running from
GDPs per capita to carbon emissions. Bidirectional causality was observed between carbon
emissions and the FDI and between renewable energy and carbon emissions.

Our study confirmed that innovations measured by researchers in R&D are nega-
tively related to atmospheric pollution in the long term. Indeed, innovations result in the
development of efficient and ecological solutions, aimed at improving the quality of life
and wellbeing. Such logic is supported by a number of researchers [2,49], whose results
concluded the pollution-reducing effect of innovations. Growing environmental concerns
encourage both adopting pro-environmental policies and promoting research and develop-
ment investments [50]. Thus, policymakers should encourage research and development
both through investment and human capital. Besides innovation, pollution can be reduced
by adopting renewable energy sources. On the other hand, the FDI exacerbates pollution.
It might be useful to create incentives for the adoption of pro-environmental technologies
and developing environmentally sustainable sectors, so that the direction of foreign capital
would shift in favor of green projects.
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